

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1007/978-3-642-42017-7_6

http://hdl.handle.net/10251/40400

Springer Verlag (Germany)

Cuzzocrea, A.; Decker, H.; Muñoz-Escoí, FD. (2013). Capturing and Scaling Up
Concurrent Transactions in Uncertain Databases. Communications in Computer and
Information Science. 246:70-85. doi:10.1007/978-3-642-42017-7_6.

Capturing and Scaling-Up Concurrent
Transactions over Uncertain Databases

Alfredo Cuzzocrea1, Hendrik Decker2???, and FrancescD. Muñoz-Escóı 2†

Abstract This chapter provides a complete framework for capturing and
scaling-up concurrent transactions over uncertain databases. Models and
methods proposed in the context of this framework for managing data un-
certainty are innovative as previous studies have not considered the specific
case of concurrent transactions, which may worse the uncertainty of database
management activities beyond to the simplest case of isolated transactions.
Indeed, as this chapter demonstrates, inconsistency tolerance of integrity
management, constraint checking and repairing easily scale up to concur-
rent transactions in a natural way, and query answers in concurrent transac-
tions over uncertain data remain certain in the presence of uncertainty. This
analytical contribution is enriched by means of a reference architecture for
uncertain database management under concurrent transactions that strictly
adheres to models and methods that are the main contributions of this re-
search.

Key words: Uncertain Databases, Concurrent Transactions, Inconsistence
Tolerance of Integrity Management

1 Introduction

Uncertainty in databases is closely related to inconsistency, i.e. lack of in-
tegrity, in two ways. Firstly, the validity of answers in inconsistent databases
obviously is uncertain. Secondly, conditions for stating properties of uncer-

??? Supported by FEDER and the Spanish grants TIN2009-14460-C03, TIN2010-17139.

† Supported by FEDER and the Spanish grants TIN2009-14460-C03, TIN2010-17139.

ICAR-CNR and University of Calabria, I-87036 Cosenza, Italy · Instituto Tecnológico de
Informática, UPV, E-46022 Valencia, Spain

1

2 Cuzzocrea, Decker, Muñoz

tainty of data can be modeled as integrity constraints. Thus, each constraint
violation corresponds to some uncertainty in the database, no matter if the
constraint models a regular integrity assertion or some specific uncertainty
condition. This paper addresses both of the mentioned relations between un-
certainty and inconsistency.

For instance, the denial ← item(x, y), y < 75% constrains entries x in
the item table to have a probability (certainty) y of at least 75%. Sim-
ilarly, the constraint I =← uncertain(x), where uncertain is defined by
the database clause uncertain(x) ← email(x, from(y)), ∼authenticated(y),
bans each email message x that is uncertain because its sender y has
not been authenticated. Likewise, uncertain could be defined, e.g., by
uncertain(x)← item(x, null), indicating an uncertainty about each item x the
attribute of which has a null value.

An advantage of representing uncertainty by constraints is that the evolu-
tion of uncertainty across updates can then be monitored by inconsistency-
tolerant methods for integrity checking, and uncertainty can then be elimi-
nated by integrity repairing. For instance, each update U that tries to insert
an email by a non-authenticated sender will be rejected by each method that
checks U for integrity preservation, since U would violate I, in the preceding
example. Ditto, stored email entries with unauthenticated senders or items
with unknown attributes can be eliminated by repairing the violations of I
in the database.

Conventional approaches to integrity management unrealistically require
total constraint satisfaction before an update is checked and after a repair
is done. However, methods for checking or repairing integrity or uncertainty
must be inconsistency-tolerant as soon as data that violate some constraint
are admitted to persist across updates. In [22], we have shown that the total
consistency requirement can be waived without further ado for most (though
not all) known methods. Thus, they can be soundly applied in databases
with persistent constraint violations, i.e. with extant inconsistency and un-
certainty.

Rather than pretending that consistent databases certainly remain con-
sistent across updates (as conventional methods do), inconsistency-tolerant
methods just assure that inconsistency, i.e., uncertainty is not increased, nei-
ther by updates nor by repairs. Such increase or decrease is determined by
violation measures [20] (called ‘inconsistency metrics’ in [19]). Some of these
measures also serve to provide answers that have integrity in the presence
of uncertainty, by adopting an inconsistency-tolerant approach proposed in
[18], called AHI.

Inconsistency tolerance also enables uncertainty management for concur-
rent transactions. For making any guarantees of integrity preservation across
concurrent transactions, the usual requirement is that each transaction maps
each consistent state to a consistent successor state. Unfortunately, that ex-
cludes any prediction for what is going to happen in the presence of constraint
violations, i.e., of uncertainty. However, we are going to see that the incon-

Concurrent Transactions over Uncertain Databases 3

sistency tolerance of integrity management easily scales up to concurrent
transactions, and concurrent query answering with AHI remains certain in
the presence of uncertainty.

After some preliminaries in Section 2, we recapitulate inconsistency-
tolerant integrity management (checking, repairing and query answering) in
Section 3. In Section 4, we elaborate an example of how to manage uncer-
tainty expressed by constraints. In Section 5, we outline how inconsistency-
tolerant constraint management scales up to database systems with concur-
rent transactions. In Section 6, we provide a reference architecture for un-
certain database management under concurrent transactions, which incorpo-
rates our models and algorithms. In Section 7, we address related work. In
Section 8, we conclude and provide future research directions.

2 Formal Terminology and Definitions

We use terminology and formalisms that are common for datalog [1]. Also,
we assume some familiarity with transaction concurrency control [6].

Throughout the paper, we use symbols like D, I, IC , U for represent-
ing a database, an integrity constraint (in short, constraint), a finite set of
constraints (also called integrity theory) and, resp., an update. We denote
the result of executing an update U on D by DU , and the truth value of a
sentence or a set of sentences S in D be denoted by D(S).

Constraints often are asserted as denials, i.e., clauses with empty head
of the form ←B, where the body B is a conjunction of literals that state
what should not be true in any state of the database. For each constraint I
that expresses what should be true, a denial form of I can be obtained by
re-writing←∼I in clausal form, as described, e.g., in [17]. Instead of leaving
the head of denial constraints empty, a predicate that expresses some lack of
consistency may be used in the head. For instance, uncertain←B explicitly
states an uncertainty that is associated to each instance of B that is true in
the database.

3 Management of Uncertainty that Tolerates
Inconsistency

As argued in Section 1, violations of constraints, i.e., the inconsistency of
given database states with their associated integrity theory, reflect uncer-
tainty. Each update may violate or repair constraints, and thus increase or
decrease the amount of uncertainty. Hence, checking updates for such in-
creases, and decreasing uncertainty by reparing violated constraints, are es-
sential for uncertainty management. Also mechanisms for providing answers

4 Cuzzocrea, Decker, Muñoz

that are certain in uncertain databases are needed. In 3.1, 3.2, and 3.3, we
recapitulate and extend measure-based inconsistency-tolerance for integrity
checking [19], repairing [20] and, resp., query answering [18], in terms of un-
certainty.

3.1 Measure-based Uncertainty-tolerant Integrity

Checking

The integrity constraints of a database are meant to be checked upon each
update, which usually is committed only if it does not violate any constraint.
Since total integrity is rarely achieved, and in particular not in databases
where uncertainty is modeled by constraints, integrity checking methods that
are able to tolerate uncertainty are needed.

In [22], inconsistency-tolerant integrity checking has been formalized and
discussed. In particular, it has been shown that many (but not all) existing
integrity checking methods tolerate inconsistency and thus uncertainty, al-
though most of them have been designed to be applied only if all constraints
are totally satisfied before any update is checked. In [19], we have seen that
integrity checking can be described by ‘violation measures’ [20], which are a
form of inconsistency measures [27]. Such measures, called ‘uncertainty mea-
sures’ below, size the amount of violated constraints in pairs (D, IC). Thus,
an update can be accepted if it does not increase the measured amount of
constraint violations.

Definition 1. We say that (µ,4) is an uncertainty measure (in short, a
measure) if µ maps pairs (D, IC) to some metric space (M,4) where 4 is a
partial order, i.e. a binary relation on M that is antisymmetric, reflexive and
transitive. For E,E′ ∈M, let E≺E′ denote that E4E′ and E 6=E′.

In [25, 27] and [19, 20], various axiomatic properties of uncertainty mea-
sures that go beyond Definition 1 are proposed. Here, we refrain from that,
since the large variety of conceivable inconsistency measures has been found
to be “too elusive to be captured by a single definition” [25]. Moreover, sev-
eral properties that are standard in measurement theory [4] and that are
postulated also for inconsistency measures in [25, 27] do not hold for uncer-
tainty measures, due to the non-monotonicity of database negation, as shown
in [20].

Definition 2 captures each integrity checking methodM (in short, method)
as an I/O function that maps updates to {ok , ko}. The output ok means that
the checked update is acceptable, and ko that it may not be acceptable. For
deciding to ok or ko an update,M uses an uncertainty measure.

Definition 2. (Uncertainty-tolerant Integrity Checking (abbr.: UTIC))
An integrity checking method maps triples (D, IC,U) to {ok, ko}. Each such

Concurrent Transactions over Uncertain Databases 5

method M is called a sound (resp., complete) UTIC method if there is an
uncertainty measure (µ,4) such that, for each (D, IC,U), (1) (resp., (2))
holds.

M(D, IC , U) = ok ⇒ µ(DU , IC) 4 µ(D, IC) (1)

µ(DU , IC) 4 µ(D, IC) ⇒ M(D, IC , U) = ok (2)

IfM is sound, it is also called a µ-based UTIC method.

The only real difference between conventional integrity checking and UTIC

is that the former additionally requires total integrity before the update, i.e.,
that D(IC)= true in the premise of Definition 2. The range of the measure
µ used by conventional methods is the binary metric space ({true, false},4)
where µ(D, IC)= true means that IC is satisfied inD, µ(D, IC)= false that
it is violated, and true ≺ false , since, in each consistent pair (D, IC), there
is a zero amount of uncertainty, which is of course less than the amount of
uncertainty of each inconsistent pair (D, IC).

More differentiated uncertainty measures are given, e.g., by comparing or
counting the sets of instances of violated constraints, or the sets of ‘causes’ of
inconsistencies. Causes (characterized more precisely in 3.3.1) are defined in
[18, 19] as the data whose presence or absence in the database is responsible
for integrity violations. Other violation measures are addressed in [19].

As seen in [19], many conventional methods can be turned into measure-
based uncertainty-tolerant ones, simply by waiving the premise D(IC)= true
and comparing violations in (D, IC) and (DU , IC). If there are more vio-
lations in (DU , IC) than in (D, IC), they output ko; otherwise, they may
output ok . According to [22], the acceptance of U by an uncertainty-tolerant
method guarantees that U does not increase the set of violated instances of
constraints.

More generally, the following result states that uncertainty can be moni-
tored and its increase across updates can be prevented by each UTIC method,
in as far as uncertainty is modeled in the syntax of integrity constraints.

Theorem 1. Let D be a database and IC an integrity theory that models
uncertainty in D. Then, the increase of uncertainty in D by any update U

can be prevented by checking U with any sound UTIC method.

3.2 Uncertainty-tolerant Integrity-preserving Repairs

In essence, repairs consist of updates that eliminate constraint violations
[30]. However, hidden or unknown violations may be missed when trying to
repair a database. Moreover, as known from repairing by triggers [10], updates
that eliminate some violation may inadvertedly violate some other constraint.
Hence, uncertainty-tolerant repairs are called for. Below, we recapitulate the
definition of partial and total repairs in [22]. They are uncertainty-tolerant

6 Cuzzocrea, Decker, Muñoz

since some violations may persist after partial repairs. But they may not
preserve integrity.

Definition 3. (Repair)
For a triple (D, IC, U), let S be a subset of IC such that D(S)= false. An
update U is called a repair of S in D if DU (S)= true. If DU (IC)= false, U

is also called a partial repair of IC in D. Otherwise, if DU (IC) = true, U is
called a total repair of IC in D.

Example 1. Let D = {p(1, 2, 3), p(2, 2, 3), p(3, 2, 3), q(1, 3), q(3, 2), q(3, 3)}
and IC = {← p(x,y,z)∧∼q(x,z), ← q(x,x)}. Clearly, both constraints are
violated. U = {delete q(3, 3)} is a repair of {← q(3, 3)} in D and a partial
repair of IC . It tolerates the uncertainty reflected by the violation of
← p(2, 2, 3)∧∼q(2, 3) in DU . However, U also causes the violation of
← p(3, 2, 3)∧∼q(3, 3) in DU . Thus, the partial repair U ′ = {delete q(3, 3),
delete p(3, 2, 3)} is needed to eliminate the violation of ← q(3, 3) in D

without causing any other violation.

Example 1 illustrates the need to check if a given update or partial repair
is integrity-preserving, i.e., does not increase the amount of uncertainty. This
problem is a generalization of what is known as repair checking [2]. The
problem can be solved by UTIC, as stated in Theorem2.

Theorem 2. Let (µ,4) be an uncertainty measure,M a UTIC method based
on (µ,4), and U a partial repair of IC in D. For a tuple (D, IC), U preserves
integrity wrt. µ, i.e., µ(DU , IC) 4 µ(D, IC), if M(D, IC , U)= ok .

For computing partial repairs, any off-the-shelve view update method can
be used, as follows. Let S = {←B1, . . . ,←Bn} be a subset of constraints to
be repaired in a databaseD. Candidate updates for satisfying the view update
request can be obtained by running the view update request delete violated in
D∪{violated←Bi | 0≤ i≤n}. For deciding if a candidate update U preserves
integrity, U can be checked by UTIC, according to Theorem2.

3.3 Certain Answers in Uncertain Databases

Violations of constraints that model uncertainty may impair the integrity
of query answering, since the same data that cause the violations may also
cause the computed answers. Hence, there is a need of an approach to provide
answers that either have integrity and thus are certain, or that tolerate some
uncertainty. An approach to provide answers that are certain in uncertain
databases is outlined in 3.3.1, and generalized in 3.3.2 to provide answers
that tolerate uncertainty.

Concurrent Transactions over Uncertain Databases 7

3.3.1 Answers that are certain

Consistent query answering (abbr. CQA) [3] provides answers that are correct
in each minimal total repair of IC inD. CQA uses semantic query optimization
[11] which in turn uses integrity constraints for query answering. A similar
approach is to abduce consistent hypothetical answers, together with a set of
hypothetical updates that can be interpreted as integrity-preserving repairs
[24].

A new approach to provide answers that have integrity (abbr. AHI) and
thus certainty is proposed in [18]. AHI determines two sets of data: the causes
by which an answer is deduced, and the causes that lead to constraint vio-
lations. More precisely, for databases D and queries without negation in the
body of clauses, causes are minimal subsets of ground instances of clauses
in D by which positive answers or violations are deduced. For clauses with
negation in the body and negative answers, also minimal subsets of ground
instances of the only-if halves of the if-and-only-if completions of predicates
in D [12] form part of causes.

An answer then is defined to have integrity if it has a cause that does not
intersect with any of the causes of constraint violations, i.e., if it is deducible
from data that are independent of those that violate constraints. Definition 4
below is a compact version of the definition of AHI in terms of certainty.
Precise definitions of causes and details of computing AHI are in [18, 19, 20].

Definition 4. Let θ be an answer to a query ←B in (D, IC), i.e., θ

is either a substitution such that D(∀(Bθ))= true or D(←B)= true, i.e.,
θ=no.

a) Let Bθ stand for ∀(Bθ) if θ is a substitution, or for ←B if θ=no.

b) θ is certain in (D, IC) if there is a cause C of Bθ in D such that
C ∩CIC = ∅, where CIC is the union of all causes of constraint violations
in (D, IC).

3.3.2 Answers that tolerate uncertainty

AHI is closely related to UTIC, since some convenient violation measures are
defined by causes: cause-based methods accept an update U only if U does
not increase the number or the set of causes of constraint violations [19].
Similar to UTIC, AHI is uncertainty-tolerant since it provides correct results
in the presence of constraint violations. However, each answer accepted by
AHI is independent of any inconsistent parts of the database, while UTIC may
admit updates that violate constraints. For instance, U in Example 1 causes
the violation of a constraint while eliminating some other violation. Now,
suppose U is checked by some UTIC method based on a violation measure
that assigns a greater weight to the eliminated violation than to the newly

8 Cuzzocrea, Decker, Muñoz

caused one. Thus, U can be ok -ed, since it decreases the measured amount
of inconsistency.

In this sense, we are going to relax AHI to ATU: answers that tolerate
uncertainty. ATU sanctions answers that are acceptable despite some amount
of uncertainty involved in their derivation.

To quantify that amount, some ‘tolerance measure’ is needed. Unlike un-
certainty measures which size the amount of uncertainty in all of (D, IC),
tolerance measures only size the amount of uncertainty involved in the deriva-
tion of given answers or violations.

Definition 5. (ATU)

a) For answers θ to queries←B in (D, IC), a tolerance measure maps triples
(D, IC,Bθ) to (M,�), where M is a metric space partially ordered by �.

b) Let th be a threshold value in M up to which uncertainty is tolerable. Then,
an answer θ to some query ←B in (D,IC) is said to tolerate uncertainty
up to th if τ(D, IC,Bθ) � th .

A first, coarse tolerance measure τ could be to count the elements of
Cθ ∩CIC where Cθ is the union of all causes of Bθ and CIC is as in Defini-
tion 4. Or, taking application semantics into account, a specific weight may
be assigned to each element of each cause, similar to the tuple ranking in [5].
Then, τ can be defined by adding up the weights of elements in Cθ ∩CIC .
Another possibility to define τ : application-specific weights could be assigned
to each ground instance I ′ of each I ∈ IC . Then, τ could sum up the weights
of those I ′ that have a cause C′ such that Cθ ∩C′ 6= ∅.

For example, τ(D, IC ,Bθ) = |Ctheta ∩CIC | counts elements in Cθ ∩CIC ,
where | . | is the cardinality operator. Or, τ(D,IC ,Bθ) =

∑
{ω(c) |

c ∈ Cθ ∩CIC} adds up the weights of elements in Cθ ∩CIC , where ω is a
weight function.

4 Uncertainty Management in Concurrent Database
Transactions – An Example

In this section, we illustrate the management of uncertainty by inconsistency-
tolerant integrity management, and discuss some more conventional alterna-
tives. In particular, we compare uncertainty-tolerant integrity management
with brute-force constraint evaluation, conventional integrity checking that
is not uncertainty-tolerant, total repairing, and CQA, in 4.1 – 4.6.

The predicates and their attributes below are open to interpretation. By
assigning convenient meanings to predicates, it can be interpreted as a model
of uncertainty in a decision support systems for, e.g., stock trading, or con-
trolling operational hazards in a complex machine.

Let D be a database with the following definitions of view predicates ul,
um, uh that model uncertainty of low, medium and, respectively, high degree:

Concurrent Transactions over Uncertain Databases 9

ul(x)← p(x, x)

um(y)← q(x, y), ∼p(y, x) ; um(y)← p(x, y), q(y, z), ∼p(y, z), ∼q(z, x)

uh(z)← p(0, y), q(y, z), z > th

where th be a threshold value greater or equal 0. Now, let uncertainty be
denied by the following integrity theory:

IC = {← ul(x), ← um(x), ← uh(x) } .

Note that IC is satisfiable, e.g., by D= {p(1, 2), p(2, 1), q(2, 1)}. Now, let
the extensions of p and q in D be populated as follows.

p(0, 0), p(0, 1), p(0, 2), p(0, 3), . . . , p(0, 10000000),

p(1, 2), p(2, 4), p(3, 6), p(4, 8), . . . , p(5000000, 10000000)

q(0, 0), q(1, 0), q(3, 0), q(5, 0), q(7, 0), . . . , q(9999999, 0)

It is easy to verify that the low-uncertainty denial ← ul(x) is the only con-
straint that is violated in D, and that this violation is caused by p(0, 0)∈D.

Now, let us consider the update U = insert q(0, 9999999).

4.1 Brute-force Uncertainty Management

For later comparison, let us first analyse the general cost of brute-force eval-
uation of IC in DU . Evaluating ← ul(x) involves a full scan of p. Evaluating
← um(x) involves access to the whole extension of q, a join of p with q, and
possibly many lookups in p and q for testing the negative literals. Evaluat-
ing ← uh(x) involves a join of p with q plus the evaluation of possibly many
ground instances of z > th.

For large extensions of p and q, brute-force evaluation of IC clearly may
last too long, in particular for safety-critical uncertainty monitoring in real
time. In 4.2, we are going to see that it is far less costly to use an UTIC

method that simplifies the evaluation of constraints by confining its focus on
the data that are relevant for the update.

4.2 Uncertainty Management by UTIC

First of all, note that the use of customary methods that require the satis-
faction of IC in D is not feasible in our example, since D(IC) = false. Thus,
conventional integrity checking has to resort on brute-force constraint evalu-
ation. We are going to see that checking U by an UTIC method is much less
expensive than brute-force evaluation.

At update time, the following simplifications of medium and high uncer-
tainty constraints are obtained from U . (No low uncertainty is caused by

10 Cuzzocrea, Decker, Muñoz

U since q(0, 9999999) does not match p(x, x).) These simplifications are ob-
tained at hardly any cost, by simple pattern matching of U with pre-simplified
constraints that can be compiled at constraint specification time.

← ∼p(9999999, 0) ; ← p(x, 0), ∼p(0, 9999999), ∼q(9999999, x)

← p(0, 0), 9999999 > th

By a simple lookup of p(9999999, 0) for evaluating the first of the three
denials, it is inferred that ← um is violated.

Now that a medium uncertainty has been spotted, there is no need to
check the other two simplifications. Yet, let us do that, for later comparison
in 4.3.

Evaluation of the second simplification from left to right essentially equals
the cost of computing the answer x = 0 to the query ← p(x, 0) and success-
fully looking up q(9999999, 0). Hence, the second denial is true, i.e., there is
no further medium uncertainty. Clearly, the third simplification is violated if
9999999> th holds, since p(0, 0) is true, i.e., U possibly causes high uncer-
tainty.

Now, let us summarize this subsection. Validating U by UTIC according to
Theorem1 essentially costs a simple access to the p relation. Only one more
look- up is needed for evaluating all constraints. And, apart from a signifi-
cant cost reduction, UTIC prevents medium and high uncertainty constraint
violations that would be caused by U if it were not rejected.

4.3 Methods that are Uncertainty-intolerant

UTIC is sound, but, in general, methods that are uncertainty-intolerant (i.e.,
not uncertainty-tolerant, e.g., those in [26, 28]) are unsound, as shown below.

Clearly, p is not affected by U . Thus, D(ul(x)) =DU (ul(x)). Each integrity
checking method that is uncertainty-intolerant assumes D(IC)= true. Thus,
the method in [26] concludes that the unfolding ← p(x, x) of ←ul(x) is
satisfied in D and DU , and hence that also ← p(0, 0), 9999999> th (the
third of the simplifications in 4.2). is satisfied in DU . However, that is wrong
if 9999999>th holds. Thus, uncertainty-intolerant integrity checking may
wrongly infer that the high uncertainty constraint← uh(z) cannot be violated
in DU .

4.4 Uncertainty Management by Repairing (D, IC)

Conventional integrity checking requires D(IC) = true. To comply with that,
all violations in (D, IC) must be repaired before each update. However, such
repairs can be exceedingly costly, as argued below.

Concurrent Transactions over Uncertain Databases 11

In fact, already the identification of all violations in (D, IC) may be pro-
hibitively costly at update time. But there is only a single low uncertainty
constraint violation in our example: p(0, 0) is the only cause of the viola-
tion ← ul(0) in D. Thus, to begin with repairing D means to request U =
delete p(0, 0), and to execute U if it preserves all constraints, according to
Theorem2.

To check U for integrity preservation means to evaluate the simplifications

← q(0, 0) and ← p(x, 0), q(0, 0), ∼q(0, x)

i.e., the two resolvents of ∼p(0, 0) and the clauses defining um, since U af-
fects no other constraints. The second one is satisfied in DU , since there
is no fact matching p(x, 0) in DU . However, the first one is violated, since
DU (q(0, 0))= true. Hence, also q(0, 0) must be deleted. That deletion affects
the clause

um(y) ← p(x, y), q(y, z), ∼p(y, z), ∼q(z, x)

and yields the simplification ← p(0, y), q(y, 0), ∼p(y, 0).

As is easily seen, this simplification is violated by each pair of facts of the
form p(0, o), q(o, 0) in D, where o is an odd number in [1, 9999999]. Thus,
deleting q(0, 0) for repairing the violation caused by deleting p(0, 0) causes
the violation of each instance of the form ← um(o), for each odd number o
in [1, 9999999].

Hence, repairing each of these instances would mean to request the dele-
tion of many rows of p or q. We shall not further track those deletions, since
it should be clear already that repairing D is complex and tends to be signifi-
cantly more costly than UTIC. Another advantage of UTIC: since inconsistency
can be temporarily tolerated, UTIC-based repairs do not have to be done at
update time. Rather, they can be done off-line, at any convenient point of
time.

4.5 Uncertainty Management by Repairing (DU , IC)

Similar to repairing (D, IC), repairing (DU , IC) also is more expensive than
to tolerate extant constraint violations until they can be repaired at some
more convenient time. That can be illustrated by the three violations in DU ,
as identified in 4.1 and 4.2: the low uncertainty that already exists in D, and
the medium and high uncertainties caused by U and detected by UTIC. To
repair them obviously is even more intricate than to only repair the first of
them as tracked in 4.4.

Moreover, for uncertainty management in safety-critical applications, it
is no good idea to simply accept an update without checking for potential
violations of constraints, and to attempt repairs only after the update is com-

12 Cuzzocrea, Decker, Muñoz

mitted, since repairing takes time, during which an updated but unchecked
state may contain possibly very dangerous uncertainty of any order.

4.6 AHI and ATU for Uncertainty Management

Checking and repairing uncertainty constraints involves their evaluation, by
querying them. As already mentioned in 3.3.1, CQA is an approach to cope
with constraint violations for query evaluation. However, the evaluation of
constraints or simplifications thereof by CQA is unprofitable, since consistent
query answers are defined to be those that are true in each minimally repaired
database. Thus, for each queried denial constraint I, CQA will by definition
return the empty answer, which indicates the satisfaction of I. Thus, answers
to queried constraints computed by CQA have no meaningful interpretation.

For example, CQA computes the empty answer to the query ← ul(x) and
to ← uh(z), for any extension of p and q. However, the only reasonable
answers to ← ul(x) and ← uh(z) in D are x = 0 and, resp., x = 9999999, if
9999999> th. These answers correctly indicate low and high uncertainty in
D and, resp., DU .

For computing correct answers to queries (rather than to denials represent-
ing constraints), AHI and ATU are viable alternatives to CQA. A comparison
which turned out to be advantageous for AHI has been presented in [18]. ATU

goes beyond CQA and AHI by providing reasonable answers even if these an-
swers depend on uncertain data that violate constraints, as we have seen in
3.3.2.

5 Scaling-Up Uncertainty Management to Concurrency

The number of concurrently issued transactions increases with the number
of online users. So far, we have tacitly considered only serial executions of
transactions. Such executions have many transactions wait for others to com-
plete. Thus, the serialization of transactions severely limits the scalability of
applications. Hence, to achieve high scalability, transactions should be exe-
cuted concurrently, without compromising integrity, i.e., without increasing
uncertainty.

Standard concurrency theory guarantees the preservation of integrity only
if each transaction, when executed in isolation, translates a consistent state
into a consistent successor state. More precisely, a standard result of concur-
rency theory says that, in a history H of concurrently executed transactions
T1, . . . , Tn, each Ti preserves integrity if it preserves integrity when executed
non-concurrently and H is serializable, i.e., the effects of the transactions

Concurrent Transactions over Uncertain Databases 13

in H are equivalent to the effects of a serial execution of {T1, . . . , Tn}. For
convenience, let us capture this result by the following schematic rule:

isolated integrity + serializability ⇒ concurrent integrity
(*)

Now, if uncertainty corresponds to integrity violation, and each transac-
tion is supposed to operate on a consistent input state, then (*) does not
guarante that concurrently executed transactions on uncertain data would
keep uncertainty at bay, even if they would not increase uncertaity when
executed in isolation and the history of their execution was serializable.

Fortunately, however, the approaches and results in Section 3 straightfor-
wardly scale up to concurrent transactions without further ado, as shown for
inconsistency-tolerant integrity checking in [23], based on a mesure that com-
pares sets of violated instances of constraints before and after a transaction.

Theorem3 below adapts Theorem3 in [23] to measure-based UTIC in gen-
eral. It asserts that a transaction T in a history H of concurrently executing
transactions does not increase uncertainty if H is serializable and T preserves
integrity whenever it is executed in isolation. On one hand, Theorem3 weak-
ens Theorem3 [23] by assuming strict two-phase locking (abbr. S2PL), rather
than abstracting away from any implementation of serializability. On the
other hand, Theorem3 generalizes Theorem3 [23] by using an arbitrary un-
certainty measure µ, rather than the inconsistency measure mentioned above.
A full-fledged generalization that would not assume any particular realiza-
tion of serializability is possible along the lines of [23], but would be out of
proportion in this paper.

Theorem 3. Let H be a S2PL history, µ an uncertainty measure and T a
transaction in H that uses a µ-based UTIC method for checking the integrity
preservation of its write operations. Further, let D be the committed state
at which T begins in H , and DT the committed state at which T ends in H .
Then, µ(D, IC) 4 µ(DT , IC) .

The essential difference between (*) and Theorem3 is that the latter is
uncertainty-tolerant, the former is not. Thus, as opposed to (*), Theorem3
identifies useful sufficient conditions for integrity preservation in the presence
of uncertain data. Another important difference is that the guarantees of in-
tegrity preservation that (*) can make for T require the integrity preservation
of all other transactions that may happen to be executed concurrently with
T . As opposed to that, Theorem3 does away with the standard premise of
(*) that all transactions in H must preserve integrity in isolation; only T

itself is required to have that property. Thus, the guarantees that Theorem3
can make for individual transactions T are much better than those of (*).

To outline a proof of Theorem3, we distinguish the cases that T either
terminates by aborting or by committing its write operations. If T aborts,
then Theorem3 holds vacuously, since, by definition, no aborted transaction
could have any effect whatsoever on any committed state. So, we can suppose

14 Cuzzocrea, Decker, Muñoz

that T commits. LetM be the µ-based method used by T . Since T commits,
it follows that M(D, IC ,WT) = true, where WT is the write set of T , i.e.,
DT =DWT , since otherwise, the writes of T would violate integrity and thus
T would abort. Since H is S2PL, it follows that there is an equivalent seri-
alization H ′ of H that preserves the order of commited states in H . Thus,
D and DT are also the committed states at beginning and end of T in H ′.
Hence, Theorem3 follows from M(D, IC ,WT) = true and Definition 2 since
H ′ is serial, i.e., non-concurrent.

It follows from Theorem2 that, similar to UTIC, also integrity repairing
scales up to S2PL concurrency if realized as described in 3.2, i.e., if UTIC is
used to check candidate repairs for integrity preservation.

Also AHI and ATU as defined in 3.3 scale up to concurrency, which can be
seen as follows. Concurrent query answering is realized by read-only transac-
tions. In S2PL histories, such transactions always read from committed states
that are identical to states in equivalent serial histories, as described in the
proof of Theorem3. Hence, each answer can be checked for certainty or for
being within in the confines of tolerable uncertainty as described in 3.3.1 or,
resp., 3.3.2.

6 A Reference Architecture for Uncertain Database
Management under Concurrent Transactions

Figure 1 shows the reference architecture for uncertain database management
under concurrent transactions, integrated with a classical DBMS architec-
ture, which is the main result of our research. Here, a modular architecture
is depicted.

The modules refereed in Figure 1 are the following (from the bottom to
up):

• Physical Layer : it is the physical layer of classical DBMS, where data
are stored according to some storage scheme (e.g., based on fixed record
length);

• Access Methods : it contains the collection of access methods needed to
retrieve data from the physical layer as a reaction to the execution of
standard SQL statements that occur in the relational layer;

• Relational Layer : it is the relational layer of classical DBMS, where tuples
are processed according to the relational data model;

• Uncertainty Detection Layer : it is the layer where data uncertainty are
detected, according to a given uncertain data model (e.g., probabilistic
uncertain model);

• Uncertainty Management Layer : it is the layer where data uncertainty is
managed by using the elements (denoted by u mi(.,.,.)) of an integrated

Concurrent Transactions over Uncertain Databases 15

Fig. 1 Reference architecture for uncertain database management under concurrent trans-
actions

approach to uncertainty management, such as a combination of UTIC and
ATU, as proposed in Section 3 and Section 4;

• Relaxed Concurrency Protocol Layer : where concurrency is handled in an
inconsistency-tolerant manner, as proposed in Section 3 and Section 4,
such that sequentializable histories of concurrent transactions can proceed
without rollbacks that would be due to extant uncertainty;

16 Cuzzocrea, Decker, Muñoz

• Concurrent Transaction Layer : it is the layer where concurrent transac-
tions (modeled in terms of direct graphs) occur, for instance in the appli-
cation scenario of an e-commerce Web database system.

7 Related Work

An early, not yet measure-based attempt to conceptualize some of the ma-
terial in 3.1 has been made in [21]. Apart from that, it seems that integrity
maintenance and query answering in the presence of uncertain data never
have been approached in a uniform way, as in this paper. That is surprising
since integrity, uncertainty and answering queries with certainty are obviously
related.

Semantic similarities and differences between uncertainty and the lack of
integrity are observed in [29]. In that book, largely diverse proposals to handle
data that suffer from uncertainty are discussed. In particular, approaches such
as probabilistic and fuzzy set modeling, exception handling, repairing and
paraconsistent reasoning are discussed. However, no particular approach to
integrity maintenance (checking or repairing) is considered. Also, no attention
is paid to concurrency.

Several paraconsistent logics that tolerate inconsistency and thus uncer-
tainty of data have been proposed, e.g., in [7, 9]. Each of them departs from
classical first-order logic, by adopting some annotated, probabilistic, modal
or multivalued logic, or by replacing standard axioms and inference rules with
non-standard axiomatizations. As opposed to that, UTIC fully conforms with
standard datalog and does not need any extension of classical logic.

Work concerned with semantic inconsistencies in databases is also going on
in the field of measuring inconsistency [27]. However, the violation measures
on which UTIC is based have been conceived to work well also in databases
with non-monotonic negation, whereas the inconsistency measures in the lit-
erature do not scale up to non-monotonicity, as argued in [20].

8 Conclusions and Future Work

We have applied and extended recently developed concepts of logical incon-
sistency tolerance to problems of managing uncertainty in databases.

We have shown that the uncertainty of stored data can be modeled by
integrity constraints and maintained by uncertainty-tolerant integrity man-
agement technology. In particular, updates can be monitored by UTIC, such
that they do not increase uncertainty, and extant uncertainty can be par-
tially repaired while tolerating remaining uncertainty. Also, we have outlined
how databases can provide reasonable answers in the presence of uncertainty.

Concurrent Transactions over Uncertain Databases 17

Moreover, we have highlighted that uncertainty tolerance is necessary and
sufficient for scaling up uncertainty management in databases to concurrent
transactions. This result is significant since concurrency is a common and
indeed indispensable feature of customary database management systems.

As illustrated in Section 4, the use of uncertainty-tolerant tools is essential,
since wrong, possibly fatal conclusions can be inferred from deficient data by
using a method that is uncertainty-intolerant. A lot of UTIC methods, and
some intolerant ones, have been identified in [22, 19].

In ongoing research, we are elaborating a generalization of the results in
Section 5 to arbitrarily serializable histories. Also, we are working on scal-
ing up our results further to replicated databases and recoverable histories.
Moreover, we envisage further applications of inconsistency-tolerant uncer-
tainty management in the fields of OLAP, data mining, and data stream
query processing, in order to complement our work in [16, 13, 14, 15, 8].

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. F. Afrati and P. Kolaitis. Repair checking in inconsistent databases: algorithms and
complexity. In Proc. 12th ICDT, pages 31–41. ACM Press, 2009.

3. M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In Proceedings of PODS, pages 68–79. ACM Press, 1999.

4. H. Bauer. Maß- und Integrationstheorie. De Gruyter, 2nd edition edition, 1992.
5. J. Berlin and A. Motro. Tuplerank: Ranking discovered content in virtual databases.

In 6th NGITS, volume 4032 of LNCS, pages 13–25. Springer, 2006.
6. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, 1987.
7. L. Bertossi, A. Hunter, and T. Schaub. Inconsistency Tolerance, volume 3300 of LNCS.

Springer, 2005.
8. B. P. Budhia, A. Cuzzocrea, and C. K.-S. Leung. Vertical frequent pattern mining

from uncertain data. In KES, pages 1273–1282, 2012.
9. W. Carnielli, M. Coniglio, and I. D’Ottaviano, editors. The Many Sides of Logic,

volume 21 of Studies in Logic. College Publications, London, 2009.
10. S. Ceri, R. Cochrane, and J. Widom. Practical applications of triggers and con-

straints: Success and lingering issues (10-year award). In A. E. Abbadi, M. L. Brodie,
S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang, editors,
VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases,
September 10-14, 2000, Cairo, Egypt, pages 254–262. Morgan Kaufmann, 2000.

11. U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic query
optimization. ACM Trans. on Database Syst. (TODS), 15(2):162–207, 1990.

12. K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 293–322. Plenum Press, 1978.

13. A. Cuzzocrea. Olap over uncertain and imprecise data: Fundamental issues and novel
research perspectives. In Proc. 21st DEXA Workshop, pages 331–336. IEEE CSP,
2001.

14. A. Cuzzocrea. Retrieving accurate estimates to olap queries over uncertain and impre-
cise multidimensional data streams. In Proc. 23rd Scientific and Statistical Database
Management, volume 6809 of LNCS, pages 575–576. Springer, 2011.

18 Cuzzocrea, Decker, Muñoz

15. A. Cuzzocrea and H. Decker. Non-linear data stream compression: Foundations and
theoretical results. In Proc. 7th HAIS, volume 7208 of LNCS, pages 622–634. Springer,
2012.

16. A. Cuzzocrea and D. Gunopulos. Efficiently computing and querying multidimensional
olap data cubes over probabilistic relational data. In ADBIS, pages 132–148, 2010.

17. H. Decker. The range form of databases and queries or: How to avoid floundering.
In Proc. 5th ÖGAI, volume 208 of Informatik-Fachberichte, pages 114–123. Springer,
1989.

18. H. Decker. Answers that have integrity. In K.-D. Schewe and B. Thalheim, editors,
Semantics in Data and Knowledge Bases - 4th International Workshop SDKB, volume
6834 of LNCS, pages 54–72. Springer, 2011.

19. H. Decker. Inconsistency-tolerant integrity checking based on inconsistency metrics.
In Proc. KES, Part II, volume 6882 of LNCS, pages 548–558. Springer, 2011.

20. H. Decker. Measure-based inconsistency-tolerant maintenance of database integrity.
In Semantics in Data and Knowledge Bases - 5th International Workshop SDKB,
volume 7693 of LNCS, pages 149–173. Springer, 2013.

21. H. Decker and D. Martinenghi. Integrity checking for uncertain data. In Proc. 2nd
TDM Workshop on Uncertainty in Databases, volume WP06-01 of CTIT Workshop
Proceedings Series, pages 41–48, The Netherlands, 2006. Univ. Twente.

22. H. Decker and D. Martinenghi. Inconsistency-tolerant integrity checking. Transactions
on Knowledge and Data Engineering, 23(2):218–234, 2011.

23. H. Decker and F. D. M. noz Escóı. Revisiting and improving a result on integrity
preservation by concurrent transactions. In Proc. OTM Workshops, volume 6428 of
LNCS, pages 297–306. Springer, 2010.

24. T. H. Fung and R. Kowalski. The iff proof procedure for abductive logic programming.
J. Logic Programming, 33(2):151–165, 1997.

25. J. Grant and A. Hunteri. Measuring the good and the bad in inconsistent information.
In Proc. 22nd IJCAI, pages 2632–2637, 2011.

26. A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom. Constraint checking with partial
information. In Proceedings of PODS 1994, pages 45–55. ACM Press, 1994.

27. A. Hunter and S. Konieczny. Approaches to measuring inconsistent information. In
Inconsistency Tolerance, volume 3300 of LNCS, pages 191–236. Springer, 2005.

28. S. Y. Lee and T. W. Ling. Further improvements on integrity constraint checking for
stratifiable deductive databases. In VLDB’96, pages 495–505. Kaufmann, 1996.

29. A. Motro and P. Smets. Uncertainty Management in Information Systems: From
Needs to Solutions. Kluwer, 1996.

30. J. Wijsen. Database repairing using updates. Transaction on Database Systems,
30(3):722–768, 2005.

