
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1002/jbm.b.32907

http://hdl.handle.net/10251/40578

Wiley

Briz, N.; Antolinos Turpín, CM.; Alio, J.; Garagorri, N.; Gómez Ribelles, JL.; Gómez-
Tejedor, JA. (2013). Fibronectin fixation on poly(ethyl acrylate)-based copolymer. Journal
of Biomedical Materials Research Part B: Applied Biomaterials. 101B(6):991-997.
doi:10.1002/jbm.b.32907.



Briz N, Antolinos-Turpin CM, Alio J, Garagorri N, Ribelles J. L. Gomez, Gomez-Tejedor JA. 2013. Fibronectin fixation on poly(ethyl 

acrylate)–based copolymers. J Biomed Mater Res Part B 2013:101B:991–997. 

 

 

1 

Fibronectin fixation on poly (ethyl acrylate) based 

copolymers 

N. Briz
a,b,*

, C.M. Antolinos-Turpin
c,*,†

, J. Alió
d,e

, N. Garagorri
a,b

 , J.L. 

Gómez Ribelles
b,c 

, J.A. Gómez-Tejedor
c 

 

J Biomed Mater Res Part B 2013:101B:991–997. 

 

a 
TECNALIA, Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastian, Spain 

b
 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) 

c
 Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 

Camino de Vera  s/n, 46022 Valencia, Spain 

d
 Universidad Miguel Hernández de Alicante, Spain.  

e
 VISSUM Instituto Oftalmológico de Alicante, Spain. 

*
Both authors contributed equally to this paper. 

†
Author for correspondence 

 



Briz N, Antolinos-Turpin CM, Alio J, Garagorri N, Ribelles J. L. Gomez, Gomez-Tejedor JA. 2013. Fibronectin fixation on poly(ethyl 

acrylate)–based copolymers. J Biomed Mater Res Part B 2013:101B:991–997. 

 

 

2 

Abstract 

The aim of this paper is to quantify the adhered fibronectin (by adsorption and/or grafting) 

and the exposure of its cell adhesive motifs (RGD and FNIII7-10) on poly (ethyl acrylate) 

copolymers whose chemical composition has been designed to increase wettability and to 

introduce acid functional groups. Fibronectin was adsorbed to poly (ethyl acrylate), poly 

(ethyl acrylate-co-hydroxyethyl acrylate), poly (ethyl acrylate-co-acrylic acid) and poly (ethyl 

acrylate-co-methacrylic acid) copolymers and covalently cross-linked to poly (ethyl acrylate- 

co-acrylic acid) and poly (ethyl acrylate-co-methacrylic acid) copolymers. Amount of adhered 

fibronectin and exhibition of RGD and FNIII7-10 fragments involved in cell adhesion were 

quantified with ELISA tests. 

 Even copolymers with a lower content of the hydrophilic component showed a 

decrease in water contact angle. In addition, fibronectin was successfully fixed on all surfaces, 

especially on the hydrophobic surfaces. However, it was demonstrated that exposure of its 

cell adhesion sequences, which is the key factor in cell adhesion and proliferation, was higher 

for hydrophilic surfaces.  

 

Keywords: fibronectin adsorption, grafting, poly(ethyl acrylate), hydroxyethyl acrylate, 

acrylic acid, methacrylic acid 
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1. Introduction 

 

 Cell adhesion to biomaterials is critical to many tissue engineering applications. In 

many instances, cells adhere to synthetic surfaces via proteins adsorbed from physiological 

fluids and culture media. The physicochemical properties of the material, including 

topography, chemistry and surface energy modulate protein adsorption; this fact plays an 

important role in determining the design of the biomaterial
1-6

. The amount and conformation 

of the adsorbed proteins affect different cellular functions including adhesion, spreading, 

migration and differentiation. Cell adhesion to adsorbed proteins is primarily mediated by 

integrin receptors. Integrins represent a widely expressed family of heterodimeric trans-

membrane receptors that bind to adhesion motifs present in various extracellular matrix 

proteins, including fibronectin (FN), vitronectin, laminin, and collagen
7
. Several studies have 

demonstrated diverse cellular responses to substrates with different surface chemistries. It has 

been reported that surface chemistry alters the adsorption kinetics and structure of adsorbed 

FN
8
, modifying the functional presentation of the major integrin binding domain of FN, 

thereby altering integrin binding and promoting cell adhesion strength
9,10

.  

 The aim of this work was to analyze adsorption or grafting of fibronectin on poly 

(ethyl acrylate) (PEA) copolymers. These materials have been used in ocular implants 

showing excellent stability and biocompatibility. The conformation of fibronectin adsorbed 

on PEA substrates has been studied in the past,
11-13

 these studies have shown that this polymer 

induces fibrillogenesis in the absence of cellular activity. It is thought that this is the process 

which gives rise to this polymer’s very good performance in monolayer and three-

dimensional cultures of different cell types such as human endothelial cord vein, HUVEC 

cells, conjuntival epithelial cells, fibroblasts, chondrocytes and osteoblasts
14-17 

. 
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 PEA is a very hydrophobic polymer and copolymerization with more hydrophilic co-

monomers has been employed to improve wettability (see for instance reference
14

 and 

references therein). A certain degree of wettability and hydrophilicity are fundamental 

requirements for materials used in cell culture supports or vehicles for cell transplants in order 

to favor cell seeding especially in three-dimensional scaffolds and water permeation. This 

research focused on the influence of material properties on fibronectin adhesion and its 

conformation for the exposure of some adhesion sequences that interact with integrins.  The 

adhesion domains under study were the RGD (arginine-glycine-aspartic acid) motif which 

reacts with many integrins, and FNIII7-10 sequence which consists of the RGD motif on the 

10th type III repeat of FN in the presence of the proline-histidine-serine-arginine-asparagine 

(PHSRN) domain on the 9th type III repeat. FNIII7-10 motif interacts with α5β1 integrin, which 

controls proliferation and differentiation of osteoblasts and myoblasts, cell cycle progression, 

and FN matrix assembly
18

. 

 

 The aim of this paper is to show the importance of the presence of a small fraction of 

functional groups at the surface of a polymeric substrate on protein adsorption and exhibition 

of adhesion sequences that cells can recognize. Fibronectin is adsorbed on the surfaces of 

P(EA-co-HEA), P(EA-co-AAc), P(EA-co-MAAc) copolymers while the acid functionality 

introduced by the AAc or MAAc groups on the substrate is employed to fix the protein on the 

substrate by covalent bonds by means of free amine groups of FN. The quantification of FN 

and the exposed domains (RGD and FNIII7-10 ) was carried out by immunoassays. 
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2. Materials and Methods 

2.1. Substrate preparation 

Polymeric substrate preparation 

 Seven polymer networks were prepared by copolymerization of ethyl acrylate, EA 

(Scharlau, 99% pure), with hydroxyethyl acrylate, HEA (Aldrich 96% pure), acrylic acid, 

AAc (Scharlau 99% pure), or methacrylic acid, MAAc (Scharlau 99% pure). Ethylene glycol 

dimethacrylate, EGDMA) (Aldrich 99% pure) was used as cross-linking agent and benzoine 

(Scharlau 98% pure) was used as photoinitiator. The monomers were used as received, 

without further purification. Mixtures of the co-monomers in the desired ratios (see Table 1) 

with 1 wt% EGDMA and 0.5 wt% benzoin were placed in transparent molds and 

polymerization took place at room temperature under UV light, producing copolymer plates 

around 1 mm thick. These were given a post-curing treatment at 90ºC for 24 hours in order to 

reach full monomer conversion. The plates were then immersed in boiling ethanol for 24 

hours to extract any residual substances of low molecular weight from the samples, dried at 

room conditions for 48 hours and finally dried in vacuum at 60ºC until they reached a 

constant weight. All the resulting materials are biostable.  

 

Table 1. Co-polymer network composition. 

Reference EA(wt %) HEA(wt %) AAc(wt %) MAAc(wt %) 

 PEA 100 0 0 0 

 P(EA-co-HEA) 90/10 90 10 0 0 

 P(EA-co-HEA) 80/20 80 20 0 0 

 P(EA-co-AAc) 90/10 90 0 10 0 

 P(EA-co-AAc) 80/20 90 0 0 10 

 P(EA-co-MAAc) 90/10 80 0 20 0 

 P(EA-co-MAAc) 80/20 80 0 0 20 

 

 

Preparation of fibronectin-coated surfaces 
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 Adsorbed fibronectin: Copolymers of EA containing 10 or 20 wt% HEA, AAc or 

MAAc were treated with a solution of 50μg/ml of human plasma FN (Sigma, Spain) dissolved 

in phosphate saline buffer (PBS) (Sigma, Spain) for protein adsorption experiments. A 

volume of 100μl was used to cover the different polymeric disks (5 mm in diameter) for 1 

hour (30 minutes at 37ºC and 30 minutes at RT). Finally, disks were washed three times with 

PBS. 

 

 Covalently adhered fibronectin: FN was covalently cross-linked to disks of different 

copolymers of EA containing 10 or 20 wt% acrylic acid (AAc) or methacrylic acid (MAAc). 

The carboxylated copolymers were reacted with 2mM N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDAC purchased from Sigma, Spain) and 5mM N-

hydroxysulfosuccinimide sodium salt (NHS from Sigma, Spain) in pH 5.5 2-(N-Morpholino) 

ethane sulfonic acid buffer (MES from Sigma, Spain) for 30 min in order to convert the 

carboxylic acid into a reactive ester to posterior amidation with free amine groups of FN. 

After a wash with pH 5.5 MES, the disks were reacted with human FN (0.5 mg/ml, Sigma, 

Spain) in pH 5.5 MES for 2 h and then washed once with pH 5.5 MES and twice with PBS. 

 

2.2 Characterization of Materials 

Characterization of polymeric materials 

 The polymer networks obtained were physically and thermally characterized by 

contact angle tests, water sorption and Differential Scanning Calorimetry: 

 

 Differences in water contact angle (WCA) of the different copolymers as a 

consequence of the presence of hydroxyl or carboxyl groups at the surface were determined 

using the DATAPHYSICS OCA 20. Static contact angle of a 10 l drop of water deposited on 
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the solid surface; the results are the average of six measurements. Equilibrium water sorption 

was determined by weighing. Samples were immersed in liquid water at 37ºC to constant 

weight. Water content is expressed in dry basis: 

EWC
wwater

wdry polymer
                                                                    (1) 

Differential Scanning Calorimetry (DSC) experiments were performed in an N2 atmosphere 

(flow rate 600ml/min) using a Mettler-Toledo DSC 823e. Weights of specimens ranged from 

5 to 10 mg. Dry samples or samples swollen to equilibrium in immersion in liquid water were 

sealed in aluminum pans. The temperature range in the scans performed on dry samples was 

from -60 to 150ºC while wet samples were scanned from -80ºC to room temperature; heating 

rate was 10ºC/min. Two heating scans were recorded for each batch with cooling scan at 

40ºC/min between them in order to erase the effect of previous thermal history of the samples. 

From DSC curves, glass transition temperatures were determined from the inflection point 

temperature. 

 

Quantification of FN and its exposed adhesion motives  

 Enzyme-Linked Immuno Sorbent Assay (ELISA) was the selected technique to 

quantify FN and the exposure adhesion domains, RGD and FNIII7-10. The reagents 3,3’,5,5’-

Tetramethylbenzidine (TMB), albumin from bovine serum (BSA), phosphate buffered saline 

(PBS) and PBS containing Tween 20 (PBST) were purchased from Sigma (Madrid, Spain). 

Sulphuric acid 2N (H2SO4) was obtained from Panreac (Barcelona, Spain). The primary 

antibodies used to detect fibronectin (human polyclonal anti-human fibronectin
4
) were also 

purchased from Sigma (Spain); the RGD (monoclonal antibody anti-human FN, cellular union 

domain, clone P1H11
4
) was from Chemicon (Spain) and FNIII7-10 (HFN7.1 antibody

5
) was 

from Abcam (Spain). The secondary antibodies (conjugated with HRP, or horse radish 
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peroxidase) Rabbit polyclonal Secondary Antibody to Mouse IgG - H&L (HRP) was obtained 

from Abcam (Spain) and Anti-Rabbit IgG–Peroxidase antibody produced in goat from Sigma 

(Spain).  

 

 FN-coated copolymeric disks were blocked with 2% BSA in PBS for 2h at 37°C and 

washed twice with PBS afterwards. The primary antibodies were added at a dilution of 1:50, 

1:260, 1:260 for fibronectin, RGD and FNIII7-10 respectively, and incubated for 2h at 37°C. 

After intensive rinsing with PBST the secondary HRP conjugated antibodies were added at a 

dilution of 1:45 for fibronectin antibody and 1:83 for RGD and FNIII7-10 antibodies. 

Incubation was carried out for 1h at 37°C.  The surfaces were rinsed with PBST, followed by 

addition of TMB substrate solution at RT for 15 min. The reaction was stopped by 

transferring part of the dye solution to a 96 well plate (Corning, USA) with a stop solution 

(2N H2SO4). The optical density (OD) was measured at 450 nm with a Powerwave XS reader 

(Bio Tek Instruments Inc, Winooski, VT, USA). Nine disks were analyzed for each material 

and each antibody, and copolymers without coatings were studied as a reference.  

 

3. Results  

 

Table 2. Contact angle, equilibrium water content (EWC) and glass transition temperatures of 

dry and wet samples.  

Samples 

Contact angle 

(deg) 

 

EWC % 

(10.000min) 

Tg Dry (ºC) Tg Wet (ºC) 

PEA 100  72.30 ± 0.07 1.5 -13.7± 0.5 -13.9± 0.5 

P(EA-co-HEA) 90/10  69.70 ± 0.30 3.6 -9.8± 0.5 -15.1± 0.5 

P(EA-co-HEA) 80/20  67.90 ± 0.05 5 -8.4± 0.5 -7± 0.5 
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Physical and thermal characterization parameters of the different materials are listed in 

Table 2. Poly(ethyl acrylate), or PEA, is an amorphous material with a glass transition 

temperature of -13.7ºC, thus, its behavior is that of a rubber-like material at room 

temperature. The contact angle with water (72.3 degrees) and the water sorption capacity of 

only 1.5% show that this material is quite hydrophobic. Wettability and hydrophilicity of PEA 

can be modified by copolymerization with more hydrophilic monomers. The addition of 20% 

HEA increases water sorption up to 5% while contact angle decreases to 67.9 degrees. 

Copolymers containing 20% by weight of AAc and MAAc are more hydrophilic, with water 

sorption capacities of 8% and 5% respectively. The contact angle of P(EA-co-AAc)  

decreases to 60 degrees but in the case of P(EA-co-MAAc) the increase in wettability is more 

modest. Copolymer homogeneity produced by free radical polymerization was investigated 

by DSC (see Figure 1).   The presence of phase separation in the copolymer material even in 

nanometric dimensions is revealed by the presence of more than one glass transition in the 

DSC heating thermograms. Figure 1c shows that P(EA-co-HEA) presents a single glass 

transition that shifts in the temperature axis with varying copolymer composition while Figure 

1a shows copolymers containing AAc or MAAc present traces of a high temperature glass 

transition that can be ascribed to domains formed by PAAc or PMAAc blocks that associate 

forming a high-temperature glass transition close to that of pure PAAc or PMAAc polymers.  

 

P(EA-co-AAC) 90/10  70.50 ± 0.06 4.2 -2.9± 0.5 -12.1± 0.5 

P(EA-co-MAAC) 90/10  71.00 ± 0.04 4 6.8± 0.5 -10.2± 0.5 

P(EA-co-AAC) 80/20  60.50 ± 0.18 8 -3.9± 0.5 3.8± 0.5 

P(EA-co-MAAC) 80/20  71.40 ± 0.05 5 -11.9± 0.5 -13.5± 0.5 
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a) 

b) 
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Figure 1. DSC heating thermograms of the different copolymer networks. (a) P(EA-co-

MAAc) 80/20 and P(EA-co-AAc) 80/20 thermograms in the whole temperature range of the 

measurements (b) P(EA-co-MAAc) and P(EA-co-AAc) thermograms in the temperature 

range of the PEA-rich phase transition (c) P(EA-co-HEA) copolymer network thermograms. 

 

 

 Thermograms corresponding to wet and dry samples are presented in Figure 1b and c 

to show the plasticization effect due to water, which confirms the incorporation of hydrophilic 

groups in the polymer phase responsible for the low-temperature glass transition. 

 

 The total amount of fibronectin adsorbed (AP) on the copolymers containing 

hydrophilic groups is clearly smaller than on PEA substrates (Figure 2). For the grafted 

fibronectin (CP), Figure 2 shows that the amount of grafted fibronectin is smaller for 

Methacrylic Acid copolymer than for Acrylic Acid ones. Furthermore, Figure 2 shows that 

the amount of grafted fibronectin increases with the amount of acid groups (Methacrylic or 

c) 
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Acrylic Acid) increases, as expected by the rise of reactive groups. The total RGD and FNIII7-

10 adhesion domains exhibited is also shown in Figure 2, whereas Figure 3 shows the ratio of 

ligand exhibited to the total amount of fibronectin adsorbed. 

 

 

Figure 2. Amount of fibronectin adsorbed (AP) on PEA and copolymer network substrates or 

grafted (CP) on P(EA-co-AAc) or P(EA-co-MAAc) substrates. The total exhibition of the 

RGD and FNIII7-10 adhesion domains is also shown. 

 

 

Figure 3. Exhibition of RGD and FNIII7-10 adhesion domains relative to the total amount of 

fibronectin adsorbed (AP) or grafted (CP) on the substrate surface. 
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4. Discussion 

One of the important characteristics of copolymer networks such as the ones 

synthesized in this work is the homogeneity in the distribution of monomeric units of the 

different components at molecular level. Differences in monomer reactivity can produce the 

formation of copolymer chains with higher content in the most reactive component than in 

average. The consumption of this more reactive monomer makes those sequences of the 

component with lower reactivity, nearly pure, form at the end of the reaction. This fact can 

produce phase separation at nanometric scale, with domain sizes of just a few nanometers. 

These domains can be hardly observed by microscopy techniques. Nevertheless, glass 

transition is a phenomenon that involves cooperative motions of polymer chains in 

rearranging regions of just few nanometers. If phase separation takes place, the glass 

transition of the different phases can be detected even if the domain size is smaller than ten 

nanometers, while a single glass transition appears only if the components are mixed at 

molecular level in the whole volume of the sample (see for instance reference
19

). DSC 

thermograms of the dry and wet samples provide some insight into the structure at molecular 

level. Random copolymers show a single, broad glass transition appearing in a range of 

temperature situated between those of the corresponding homopolymers. On the contrary, the 

presence of a phase separation, even at a nanometric scale, produces two glass transitions; 

each of which in the range of the pure homopolymers. These glass transition temperatures are 

more or less shifted depending on the degree to which each component dissolves into the 

other. Figure 1a shows the second heating scan of the dry P(EA-co-AAc) 80/20 and  P(EA-

co-MAAc) 80/20  copolymer networks. Both show a glass transition in the temperature 

interval between -20 and 20 ºC corresponding to a PEA-rich phase but another one between 

120 and 130ºC corresponding to a PAAc or PMAAc phase.  The incorporation of the AAc or 

MAAc segment into the copolymer network is indicated by the shift in the low-temperature 
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transition with respect to pure PEA as shown in Figure 1b and 1c. Table 2 shows the values of 

the glass transition temperature of the different samples. It is interesting to compare the glass 

transition temperature of the wet samples with respect to the dry ones. The introduction of 

water molecules in the polymer phase increases polymer chain mobility thus decreasing its 

glass transition temperature, what is known as plasticization. In the samples containing 10% 

AAc or MAAc, plasticization of the PEA-rich phase indicates the incorporation of the 

hydrophilic groups. Nevertheless, in the samples containing 20% AAc or MAAc, the results 

are not as clear-cut. In principle, higher hydrophilic monomer content in the network should 

result in a more pronounced plasticization, i.e. a larger shift of the glass transition towards 

lower temperatures but in fact this is not the case. This result may be attributable to the fact 

that a significant proportion of the hydrophilic segments cluster in domains separated from 

the PEA-rich copolymer phase. In the case of P(EA-co-HEA) networks, the glass transition 

temperature of both homopolymers are not so different, -13.7ºC for PEA and 5ºC (-9.8ºC) for 

PHEA
20

. The absence of two separate glass transitions in the DSC thermogram of the dry 

copolymers and the shift of the glass transition temperature with increasing HEA content 

seem to support the idea that a random copolymer is being formed. In P(EA-co-HEA) 90/10 

this glass transition clearly shifts to lower temperatures with water absorption but the sample 

with 20% HEA does not (Figure 1c). The reorganization of hydrophilic domains due to the 

presence of water, a phenomenon known as hydrophobic interaction was shown in this 

system, which would explain this behaviour
20

. 

 

 Since functional groups are introduced in the polymer chain by copolymerization ethyl 

acrylate and functional monomeric units are distributed along the polymer chains at molecular 

distances and thus, surface composition is expected to reflect average composition of the 

material. The amount of adsorbed fibronectin on the substrates diminishes significantly with 
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increasing hydroxyl group content (Figure 2), a fact that correlates with the increase of 

equilibrium water content and the decrease of WCA. In the case of P(EA-co-HEA) substrates 

this result can be related to the results of the culture of human endothelial cells HUVEC on 

these substrates. It was shown
20

 that adhesion and viability of HUVEC on the substrates 

required a previous coating of fibronectin, with cell numbers and viability tests decreasing 

sharply with the increase of HEA groups in the substrate. A similar result was found in a 

previous study on the culture of epithelial conjuntival cells on supports using this formulation. 

Cell numbers decreased sharply over culture time in supports with only 20% HEA and were 

not viable in supports containing 50% HEA
17

. On the other hand, it was shown that the 

conformation of the adsorbed FN changed with hydrophilicity. The results shown in Figure 3 

show that the exhibition of RGD and FNIII7-10 domains in P(EA-co-HEA) relative to the total 

amount of fibronectin adsorbed increases with HEA content and is significantly higher than in 

pure PEA. In addition, it was observed that the HEA copolymers with adsorbed FN were 

observed to favour exhibition of FNIII7-10 domains.  Exhibition of adhesion ligands was also 

analyzed in P(EA-co-AAc) and P(EA-co-MAAc) containing 10% of hydrophilic monomeric 

units. Interestingly, the exhibition of RGD sequences is predominant in P(EA-co-AAc) 

substrates while the opposite occurs in P(EA-co-MAAc); in any case they are higher than in 

PEA substrates. It can be said that in this type of substrates adhesion of chondrocytes was 

improved by the presence of small amounts of a hydrophilic component in the copolymer 

which was ascribed to improved exhibition of adhesion sequences of the proteins adsorbed 

from the culture medium
14

. 

 

 Grafting of fibronectin on the PEA substrates is performed by reaction on the carboxyl 

groups exhibited by the copolymer surface; in order to achieve this, P(EA-co-AAc) or P(EA-

co-MAAc) with different AAc or MAAc contents were prepared. Both series of networks 
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possess physical properties that are quite similar with respect to water sorption capacity and 

surface energy. The difference between the two series of copolymers is essentially the 

mobility of the carboxyl group, which is much more restricted in the case of the methacrylic 

acid monomeric unit due to the proximity of methyl group bonded to the same carbon atom in 

the main polymer chain. In the case of the acrylic acid this methyl group is substituted by a 

hydrogen atom. Classical dielectric or dynamic-mechanical relaxation studies have shown 

that rotation around the bond that links the carboxyl group to the main chain is much easier in 

acrylic than in methacrylic acid
21

. The influence of this fact on the grafting of fibronectin on 

the copolymer surface is significant: as shown in Figure 2, the amount of fibronectin grafted 

on the surface is larger in the copolymer containing AAc than in those with MAAc for the 

same fraction of carboxyl groups. On the other hand, it was expected that an increase in the 

content of AAc or MAAc would result in a greater amount of fixed FN on the surface because 

the quantity of COOH groups are higher. However, non-significant differences have been 

observed, which could be due to the phase separation (shown by DSC) that results in a PEA-

rich phase that becomes saturated with AAc or MAAc monomeric units while the rest forms 

domains which are not active for FN adhesion. In fact, it was shown that an increase of the 

AAc or MAAc fraction in the network from 10 to 20% does not increase water contact angle 

which suggests that no further carboxyl groups exists at the surface. In the case of the 

networks which contain AAc, the exhibition of RGD or FNIII7-10 adhesion motifs significantly 

increases when the content of AAc increases from 10% to 20%. This behaviour can be also 

observed in the exposure of FNIII7-10 domain in P(EA-co-MAAc). However, the exposure of 

RGD domain decreases when the percentage of MAAc is reduced. 

Nevertheless, it is worth noting that the amount of fibronectin does not improve in the 

different networks with respect to fibronectin adsorbed on PEA; however, exhibition of the 

adhesion motifs with respect to the total fibronectin is higher. The results obtained in this 
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work are consistent with others authors’ results
 
demonstrating the influence of surface 

chemistry in the conformation of the FN which can adopt a more globular or extended 

conformation depending on the distribution of hydrophilic or polar groups on the surface. 

Protein conformation subsequently influences cellular adhesion
7,9,10,20,22

. 

 

4. Conclusions 

We have tested the ability of PEA based copolymer substrates to sustain the 

fibronectin coating and its proteic conformation through the study of the exposure of adhesion 

motifs that are essential for cell adhesion and viability. It could be concluded that in the case 

of adsorbed FN, low hydrophilic group content on the surface rapidly decreases the amount of 

fibronectin and increases the exposure of adhesion motifs. However, in the case of covalently 

adhered FN, the quantity of FN is higher when the surface is more hydrophilic; it seems, 

however, that the exposure of adhesion domains does not depend on wettability. The exposure 

of FNIII7-10 domain in grafted FN was shown to depend on the composition of copolymer, 

being higher in MAAc surfaces than in AAc surfaces and in surfaces with a high content of 

monomeric units of this type. Generally speaking, it seems that the increment in functional 

groups (OH and COOH) improves the exposure of adhesion motifs (except the RGD domain 

in P(EA-co-MAAc)), being higher in surfaces with OH. Moreover, the fixation of FN by 

covalent bonds does not result in either higher protein content or a greater percentage of 

exposed adhesion domains on the surface with respect to FN adsorption.  
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