
Performance Improvement of
Multichannel Audio by

Graphics Processing Units

by
José Antonio Belloch Rodríguez

Supervisor:
Prof. Antonio M. Vidal Maciá

Prof. Alberto González Salvador

DOCTORAL THESIS

Valencia, Spain
September 2014

To Lola

Abstract

Multichannel acoustic signal processing has undergone major development
in recent years due to the increased complexity of current audio processing
applications. People want to collaborate through communication with the
feeling of being together and sharing the same environment, what is con-
sidered as Immersive Audio Schemes. In this phenomenon, several acoustic
effects are involved: 3D spatial sound, room compensation, crosstalk cance-
lation, sound source localization, among others. However, high computing
capacity is required to achieve any of these effects in a real large-scale sys-
tem, what represents a considerable limitation for real-time applications.

The increase of the computational capacity has been historically linked
to the number of transistors in a chip. However, nowadays the improve-
ments in the computational capacity are mainly given by increasing the
number of processing units, i.e expanding parallelism in computing. This
is the case of the Graphics Processing Units (GPUs), that own now thou-
sands of computing cores. GPUs were traditionally related to graphic or im-
age applications, but new releases in the GPU programming environments,
CUDA or OpenCL, allowed that most applications were computationally
accelerated in fields beyond graphics. This thesis aims to demonstrate
that GPUs are totally valid tools to carry out audio applications that re-
quire high computational resources. To this end, different applications in
the field of audio processing are studied and performed using GPUs. This
manuscript also analyzes and solves possible limitations in each GPU-based
implementation both from the acoustic point of view as from the compu-
tational point of view. In this document, we have addressed the following
problems:

Most of audio applications are based on massive filtering. Thus, the
first implementation to undertake is a fundamental operation in the audio
processing: the convolution. It has been first developed as a computational
kernel and afterwards used for an application that combines multiples con-
volutions concurrently: generalized crosstalk cancellation and equalization.
The proposed implementation can successfully manage two different and
common situations: size of buffers that are much larger than the size of the
filters and size of buffers that are much smaller than the size of the filters.

Two spatial audio applications that use the GPU as a co-processor have

iv Abstract

been developed from the massive multichannel filtering. First application
deals with binaural audio. Its main feature is that this application is able
to synthesize sound sources in spatial positions that are not included in the
database of HRTF and to generate smoothly movements of sound sources.
Both features were designed after different tests (objective and subjective).
The performance regarding number of sound source that could be rendered
in real time was assessed on GPUs with different GPU architectures. A
similar performance is measured in a Wave Field Synthesis system (second
spatial audio application) that is composed of 96 loudspeakers. The pro-
posed GPU-based implementation is able to reduce the room effects during
the sound source rendering.

A well-known approach for sound source localization in noisy and re-
verberant environments is also addressed on a multi-GPU system. This
is the case of the Steered Response Power with Phase Transform (SRP-
PHAT) algorithm. Since localization accuracy can be improved by using
high-resolution spatial grids and a high number of microphones, accurate
acoustic localization systems require high computational power. The solu-
tions implemented in this thesis are evaluated both from localization and
from computational performance points of view, taking into account dif-
ferent acoustic environments, and always from a real-time implementation
perspective.

Finally, This manuscript addresses also massive multichannel filtering
when the filters present an Infinite Impulse Response (IIR). Two cases are
analyzed in this manuscript: 1) IIR filters composed of multiple second-
order sections, and 2) IIR filters that presents an allpass response. Both
cases are used to develop and accelerate two different applications: 1) to
execute multiple Equalizations in a WFS system, and 2) to reduce the
dynamic range in an audio signal.

Keywords: Multichannel filtering, Spatial Sound, Sound Source localiza-
tion, Graphics Processing Units.

Resumen

El procesado de audio multicanal ha experimentado un gran desarrollo en
los últimos años y como consecuencia se ha producido un aumento notable
de la complejidad computacional en las nuevas aplicaciones. Actualmente,
se pretende que la telecomunicación ofrezca una sensación de cercańıa, com-
partiendo incluso el mismo entorno entre usuarios distantes. Es lo que
llamamos: Esquemas de Audio Inmersivo. En este fenómeno intervienen
varios efectos acústicos: sonido espacial 3D, compensación de salas, can-
celación crosstalk, localización de fuentes sonoras, entre otros. Pero a su
vez, para llevar a cabo cualquiera de estos efectos en un sistema real, se
necesita una alta capacidad computacional, lo que representa una severa
limitación cuando se trata de ejecutar dichas aplicaciones en tiempo real.

El aumento de la capacidad computacional ha ido históricamente unido
al número de transistores en un chip. Actualmente, las mejoras en la ca-
pacidad computacional están ı́ntimamente ligadas al número de unidades
de proceso que tiene un computador, lo que permite un alto grado de para-
lelismo en computación. Este es el caso de las Unidades de Procesamiento
Gráfico (GPUs, Graphics Processing Units), que poseen actualmente miles
de núcleos computacionales. Las GPUs se han relacionado tradicional-
mente con la computación gráfica o el tratamiento de imágenes, pero con
la aparición de nuevos entornos de programación para GPUs (CUDA o
OpenCL) muchas aplicaciones de otros campos cient́ıficos han podido ser
aceleradas mediante su implementación en las GPUs. Esta tesis tiene como
objetivo desarrollar aplicaciones de audio que necesiten gran cantidad de
recursos computacionales, demostrando con ello que las GPUs son herra-
mientas totalmente válidas para llevarlas a cabo. Para ello, se han imple-
mentado y evaluado sobre el entorno de programación CUDA diferentes
aplicaciones del campo de procesado de señales de audio. También se han
analizado y resuelto las posibles limitaciones surgidas durante el proceso
de implementación, tanto desde el punto de vista acústico como desde el
punto de vista computacional.

En la tesis se han abordado los siguientes problemas:

La primera operación a implementar en GPU era la operación funda-
mental en el procesado de audio: la convolución, ya que la mayoŕıa de
aplicaciones de audio multicanal están basadas en el filtrado masivo. En

vi Resumen

principio, la convolución se ha desarrollado como un núcleo computacional,
que posteriormente se ha usado para desarrollar una aplicación que combina
múltiples convoluciones concurrentemente: cancelación crosstalk general-
izada y ecualización. La implementación propuesta es capaz de gestionar
dos situaciones comunes en el filtrado multicanal: buffers para muestras de
audio de tamaños mayores que los tamaños de los filtros; y buffers para
muestras de audio de tamaños menores que los tamaños de los filtros.

Se han desarrollado dos aplicaciones de audio espacial a partir del fil-
trado masivo multicanal que usan las GPUs como co-procesadores. La
primera aplicación gira en torno al sonido binaural. Esta aplicación pre-
senta dos caracteŕısticas importantes: 1) es capaz de sintetizar fuentes sono-
ras en posiciones espaciales que no estén incluidas en las bases de datos de
los filtros HRTFs, y 2) genera movimientos continuos entre diferentes posi-
ciones. Estas caracteŕısticas se han obtenido en la implementación después
de diversas pruebas tanto objetivas como subjetivas. Posteriormente, se
ha estudiado el máximo número de fuentes sonoras que pueden ser gestio-
nadas por diferentes arquitectura GPU. El mismo estudio se ha llevado a
cabo en un sistema de śıntesis de onda Wave Field Synthesis (segunda apli-
cación de sonido espacial) compuesto por 96 altavoces. La implementación
de este sistema en GPU es capaz de reducir los efectos de sala durante la
reproducción.

Otro problema que se ha abordado en esta tesis es la localización de
fuentes sonoras en entornos ruidosos y con mucha reverberación. Para este
problema se ha propuesto una implementación basada en el algoritmo de lo-
calización Steered Response Power with Phase Transform (SRP-PHAT) en
un sistema multi-GPU. La exactitud en la localización de las fuentes sonoras
está ı́ntimamente ligada a una malla espacial de puntos donde se busca la
fuente, y al número de micrófonos utilizados en el algoritmo. En esta tesis,
se han evaluado las capacidades de las GPUs cuando éstas implementan el
algoritmo SRP-PHAT bajo condiciones de tiempo real, atendiendo a dife-
rentes parámetros: tamaño de malla, número de micrófonos, reverberación
en la sala, y relación señal a ruido.

Finalmente, esta tesis trata el problema del filtrado masivo multicanal
cuando los filtros presentan una respuesta al impulso infinita (Infinite Im-
pulse Response, IIR). Se han analizado dos casos particulares: 1) Filtros
IIR compuestos de múltiples secciones paralelas de orden dos, y 2) Filtros
IIR que presentan una respuesta plana en frecuencia (allpass filters). Am-
bas estructuras se usan para desarrollar y acelerar dos aplicaciones de audio

vii

diferentes: 1) implementar múltiples ecualizaciones en un sistema WFS, y
2) reducir el margen dinámico en señales de audio.

Palabras Clave : Filtrado Masivo Multicanal, Śıntesis de Campo de On-
das, Localización de Fuentes Sonoras, Sonido Espacial, Unidades de Proce-
samiento Gráfico.

viii Resumen

Resum

El processament d’àudio multicanal ha experimentat un gran desenvolupa-
ment en els darrers anys i com a conseqüència s’ha prodüıt un augment
notable de la complexitat computacional en les noves aplicacions. Actual-
ment, es pretén que la telecomunicació ofereixi una sensació de proximitat,
compartint fins i tot el mateix entorn entre usuaris distants. És el que
s’anomena: Esquemes d’Àudio Immersiu. En aquest fenomen intervenen
diversos efectes acústics: so espacial 3D, compensació de sales, cancel.lació
crosstalk, localització de fonts sonores, entre altres. Però, per dur a terme
qualsevol d’aquests efectes en un sistema real, es necessita una alta capac-
itat computacional, el que representa una severa limitació quan es tracta
d’executar aquestes aplicacions en temps real.

L’augment de la capacitat computacional ha anat històricament unida
al nombre de transistors en un xip. Actualment, les millores en la capacitat
computacional estan ı́ntimament lligades al nombre d’unitats de procés que
té un ordinador, el que permet un alt grau de paral.lelisme en computació.
Aquest és el cas de les Unitats de Processament Gràfic (GPUs, Graphics
Processing Units), que posseeixen actualment milers de nuclis computa-
cionals. Les GPUs s’han relacionat tradicionalment amb la computació
gràfica o el tractament d’imatges, però amb l’aparició de nous entorns de
programació per a GPUs (CUDA o OpenCL) moltes aplicacions d’altres
camps cient́ıfics han pogut ser accelerades mitjançant la seua implementació
a les GPUs. Aquesta tesi té com a objectiu desenvolupar aplicacions d’àudio
que necessiten gran quantitat de recursos computacionals, demostrant amb
això que les GPUs són eines totalment vàlides per dur-les a terme. Amb
aquest objectiu, s’han implementat i avaluat diferents aplicacions del camp
de processament de senyals d’àudio sobre l’entorn de programació CUDA.
També s’han analitzat i resolt les possibles limitacions sorgides durant el
procés d’implementació, tant des del punt de vista acústic com des del punt
de vista computacional.

En la tesi s’han abordat els següents problemes:

La primera operació a implementar a la GPU era l’operació fonamental
en el processament d’àudio: la convolució, ja que la majoria d’aplicacions
d’àudio multicanal estan basades el filtrat massiu. Primerament, s’ha de-
senvolupat la convolució com un nucli computacional que posteriorment

x Resum

s’ha utilitzat per desenvolupar una aplicació que combina concurrentment
múltiples convolucions: cancel.lació generalitzada i equalització. La im-
plementació proposta pot gestionar dues situacions comuns en el filtrat
multicanal: buffers de mostres d’àudio de major tamany que el dels filtres,
o per contra buffers de mostres d’àudio de menor tamany que el dels filtres.

S’han desenvolupat dues aplicacions d’àudio espacial a partir del fil-
trat massiu multicanal que fan servir les GPUs com a co-processadors. La
primera aplicació gira entorn al so binaural. Aquesta aplicació presenta
dues caracteŕıstiques importants: 1) Pot sintetitzar fonts sonores en posi-
cions espacials que no estan incloses a les bases de dades dels filtres HRTFs,
i 2) genera moviments continus entre diferents posicions. Aquestes carac-
teŕıstiques s’han obtingut en la implementació després de diverses proves
tant objectives com subjectives. Posteriorment, s’ha estudiat el màxim
nombre de fonts sonores que poden ser gestionades per diferents arquitec-
tures GPU. El mateix estudi s’ha dut a terme a un sistema de śıntesi d’ona
Wave Field Synthesis (segona aplicació de so espacial) compost per 96 al-
taveus. La implementació d’aquest sistema en GPU pot reduir els efectes
de sala durant la reproducció.

Un altre problema que s’ha abordat en aquesta tesi és la localització de
fonts sonores en entorns sorollosos i amb molta reverberació. Per a aquest
problema s’ha proposat una implementació basada en l’algoritme de local-
ització Steered Response Power with Phase Transform (SRP-PHAT) en un
sistema multi-GPU. L’exactitud en la localització de les fonts sonores esta
ı́ntimament lligat a una malla espacial de punts on es busca la font i el nom-
bre de micròfons utilitzats en l’algorisme. En aquesta tesi, s’han avaluat
les capacitats de les GPUs quan aquestes implementen l’algoritme SRP-
PHAT sota condicions de temps real, tenint en compte diferents paràmetres:
tamany de la malla, nombre de micròfons, reverberaciò a la sala, i relaciò
senyal a soroll.

Finalment, aquesta tesi tracta el problema del filtrat massiu multicanal
quan els filtres presenten una resposta a l’impuls infinita (Infinite Impulse
Response, IIR). S’han analitzat dos casos particulars: 1) Filtres IIR com-
postos de múltiples seccions paral.leles d’ordre dos, i 2) Filtres IIR que pre-
senten una resposta plana en freqüència (allpass filters). Ambdues estruc-
tures es fan servir per a desenvolupar i accelerar dues aplicacions d’àudio
diferents: 1) implementar múltiples equalitzacions a un sistema WFS, i 2)
reduir el marge dinàmic a les senyals d’àudio.

Paraules Clau : Filtrat Massiu Multicanal, Śıntesi d’Ona, Localització de

xi

Fonts Sonores, So Espacial, Unitats de Processament Gràfic.

xii Resum

Acknowledgements

It is a pleasure for me to thank those who made this thesis possible. First
and foremost, I offer my sincerest gratitude to my supervisors, Prof. Al-
berto González and Prof. Antonio M. Vidal Maciá, who supported me
throughout this thesis with their knowledge and advice whilst allowing me
the room to work in my own way.

I am very grateful to Prof. Rudolf Rabenstein from the University of
Erlangen- Nüremberg, Dr. Pedro Vera from the University of Jaen and Dr.
Leroy Anthony Drummond from Lawrence Berkeley National Laboratory
for serving as reviewers of this thesis and for providing me with very useful
comments that helped to improve the final manuscript. Special thanks also
to Prof. José Ranilla Pastor from University of Oviedo and Prof. Pedro
Juan López Rodŕıguez from Technical University of València for acting as
members of the committee.

I would like to thank Prof. Vesa Välimäki, who hosted me at the De-
partment of Signal Processing and Acoustics of the Aalto University, Espoo,
Finland. I really appreciate the opportunity he gave me and his kind sup-
port during the months I spent working with his team. I want to thank
also Prof. Lauri Savioja, Dr. Balázs Bank, and Dr. Julian Parker for their
collaboration in the work that I conducted at Aalto University. Special
mention goes to Pekka and Annelie Välimäki for making me spend a won-
derful time in Helsinki. I will never forget the finnish meals and the good
moments that I spent at your home.

I owe my deepest gratitude to Dr. Paco Mart́ınez, Dr. Miguel Ferrer
and Dr. Máximo Cobos for their continuous support and collaboration,
which have contributed in a very important way to the development of this
thesis.

I would like to show my gratitude to all the people at the Universi-
tat Politècnica de València that shared my daily work at the Institute of
Telecommunications and Multimedia Applications (iTEAM). In particular,
I would like to thank Prof. Jose J. López, Dr. Gema Piñero, and Dr. Maŕıa

xiv Acknowledgements

de Diego. Thanks also to my current and former colleagues at the iTEAM:
Emanuel Aguilera, Amparo Mart́ı, Fernando Domene, Luis Maciá, Jorge
Lorente, Carla Ramiro, Laura Fuster, Marian Simarro, Eliseo Villanueva,
Pablo Gutierrez, Cristian Antoñanzas, and Csaba M. Józsa.

Special thanks go to my close friend Sandra Roger for all the advice,
support, and help during the good and difficult moments we have been
sharing since we met at the Faculty of Telecommunications Engineering of
the UPV in 2001. You advised me to start a research career and this is the
first result. Thank you.

Thanks to my dear friends Choni, Bea, Paco, Dani, Bego, Lucas, Elena
Bernal, Elena Fdez, Andreu, Maŕıa and specially to the dentists Alberto
Albero and Vicente Ejarque for being always by my side and for making
me smile even in my worse days. I would like to acknowledge the encou-
ragement given by family friends Ángel, Rosa, and Marta.

I am deeply indebted to my parents, Toni and Pili, and to my sister
Mapi, for their endless confidence and fondness.

Last, but not least, I would like to express my sincere gratitude to Lola,
whose continuous support has made it possible for me to complete this
thesis. Finding you was the best thing that could have ever happened to
me during my research career. I love you.

José Antonio Belloch Rodŕıguez
July 2014

Contents

Abstract iii

Resumen v

Resum ix

Acknowledgements xiii

List of symbols xxv

Abbreviations and Acronyms xxxi

1 Introduction 1

1.1 Background . 3

1.2 Motivation . 5

1.3 Objectives . 7

1.4 Organization of the Thesis 8

2 Preliminaries and Tools 11

2.1 Introduction . 13

2.2 Frequency domain . 15

2.2.1 Discrete Fourier Transform 18

2.2.2 Fast Fourier Transform 19

2.3 Convolution . 19

2.3.1 Convolution Theorem 20

2.3.2 Convolution in Audio Signals 21

2.3.3 Convolution with long sequences 22

2.3.4 Overlap-save . 22

2.3.5 Overlap-add . 23

2.3.6 Other operations in Digital Signal Processing 25

2.3.7 Real-time processing 27

2.4 Traditional Hardware for Digital Signal Processing 28

2.4.1 Digital Signal Processors 28

2.4.2 Field-Programmable Gate Arrays 28

xvi Acknowledgements

2.5 Multi-core Architectures and Graphic Processing Units (GPUs) 29
2.5.1 Multi-core and GPUs Origin 30

2.6 GPU and CUDA . 31
2.6.1 Streams on GPU . 35
2.6.2 Multi-GPU programming with multicore 36

2.7 Tools used for the development of the thesis 36
2.7.1 ASIO protocol . 39

3 State-of-the-Art 41
3.1 Generalized crosstalk cancellation and equalization (GCCE) 43
3.2 Headphone-base spatial audio 45
3.3 Wave Field Synthesis . 46
3.4 Sound source localization 47
3.5 GPU computing in other research inside audio field 49
3.6 Conclusion . 49

4 Massive Multichannel Filtering 51
4.1 Convolution . 53

4.1.1 Pipelined algorithm in a multichannel system 56
4.2 Crosstalk Cancellation using a stereo signal 60

4.2.1 Definition of the problem 60
4.2.2 GPU Implementation 63
4.2.3 Test system and Results 66

4.3 Multichannel massive audio processing for a GCCE application 67
4.3.1 Definition of the problem 68
4.3.2 GPU data structure for efficient convolution 70
4.3.3 GPU data structure for GCCE applications 72
4.3.4 Performance and Results 80
4.3.5 Conclusions . 82

5 Headphone-based spatial sound system 87
5.1 Introduction . 90
5.2 Processing Head-Related Transfer functions 91
5.3 Switching technique . 93

5.3.1 Evaluation of the switching technique 95
5.4 Interpolation technique . 98

5.4.1 Evaluation of the interpolation technique 101
5.5 GPU-based implementation of a head-phone audio application105

5.5.1 Emulating a source movement 111

xvii

5.5.2 Interaction with the user 114

5.6 Results . 115

5.7 Conclusions . 119

6 Wave Field Synthesis system 121

6.1 Theory of a WFS system 123

6.1.1 Room Compensation in a WFS system 126

6.1.2 Practical Implementation of a WFS system 127

6.2 Test system . 129

6.2.1 System Setup . 130

6.2.2 Computational kernels implemented on GPU 133

6.3 Performance and results . 140

6.4 Conclusion . 141

7 Sound Source Localization 143

7.1 Introduction . 146

7.2 Sound Source Localization using SRP-PHAT Algorithm . . 146

7.2.1 SRP-PHAT Implementation 149

7.2.2 Computational Cost 149

7.3 Algorithm Parallelization for real-time GPU implementation 151

7.3.1 Considerations in code of CUDA kernels 23 and 24 . 158

7.3.2 Multi-GPU Parallelization 159

7.3.3 Basic Implementation using two GPUs 160

7.4 Experiments and Performance 161

7.4.1 Localization Performance 163

7.4.2 Computational Performance 166

7.5 Conclusion . 167

8 Multichannel IIR Filtering 169

8.1 Definition of the problem 171

8.1.1 Fixed-pole parallel filters 172

8.1.2 Filter design . 173

8.2 Implementations on Many-core architectures (GPU and multi-
cores) . 174

8.2.1 GPU-based parallel implementation 175

8.2.2 Multicore-based parallel implementation 175

8.3 Results . 179

8.4 Conclusion . 182

xviii Acknowledgements

9 Massive Multiple Allpass filtering 183
9.1 Definition of the problem 185
9.2 Test Setup . 187
9.3 GPU-based Implementation 188
9.4 Results . 192

9.4.1 Computational Performance 192
9.5 Conclusion . 195

10 Conclusion 197
10.1 Main Contributions . 199
10.2 Further Work . 201
10.3 List of Publications . 203
10.4 Institutional Acknowledgements 207

Bibliography 208

A Appendix 225
A.1 Alternative Multi-GPU Parallelization strategy 227

A.1.1 Basic Implementation using two GPUs 228
A.1.2 Comparison between strategies 228

List of Figures

1.1 Relation among objectives, computational kernels on GPU,
and applications to develop through this dissertation. 9

2.1 Sound wave that is captured by a transducer and converted
to an electrical signal. 14

2.2 Signal x(t) and the samples signal x(kTs). 15

2.3 The square periodic signal g(x) can be decomposed in mul-
tiple sum of sines and cosines. 17

2.4 Measure of the reflection coefficient using a probe that emits
a step signal. 19

2.5 Overlap-save: Split the signal x in blocks of size lo. 23

2.6 Overlap-save: Each block xi together with h are Fourier
transformed and element-wise multiplied. 23

2.7 Overlap-save: To configure output signal y, the first lh − 1
of every block yi are discarded. 24

2.8 Overlap-add: To configure output signal y, the last lh − 1
samples of block yi must be added to the first lh−1 samples
of the block yi+1. 25

2.9 An application composed of four inputs and two outputs. . 27

2.10 Block diagram of the FPGA Virtex IV. 29

2.11 Evolution of the different Nvidia architectures through the
time line. 31

2.12 A GPU has multiple Stream Multiprocessor (SM) that are
composed of multiple pipelined cores (SP). The number of
SPs depends on the compute capability and the number of
SMs depends on the kind of the device. A GPU device has
off-chip device memories and on-chip memories *(in devices
with compute capability 2.x and 3.x) **(only in devices with
compute capability 3.x). 33

2.13 Distribution of the threads inside the cuda grid. 34

2.14 CUDA features that depend on the capability of the GPU
device. 34

xx LIST OF FIGURES

2.15 The UVA feature reduces data-transfer time among GPUs
by using peer-to-peer communication (bottom). 37

2.16 http://www.steinberg.net/en/company/developer.html . . . 40

4.1 Matrix S is built from signal blocks. 55

4.2 P FFTs are applied to matrices S and H. Afterwards, both
matrices are element-wise multiplied. 57

4.3 Matrices S is composed of samples of four different signals,
and H is composed of coefficients of two different filters. . . 58

4.4 Four matrices are needed in order to carry out a pipelined
algorithm. 59

4.5 Crosstalk canceller filters. 61

4.6 Measurement of the transmission path filters. 62

4.7 Acquired signals in the left ear: 1) only direct path (signal
goes through filters fLL and fRL), and 2) only the cross path
(signal goes through filters fLR and fRR). 63

4.8 Matrices S, F, Sres used in CUDA kernel 2 and CUDA kernel
3. 66

4.9 Required operations on a application that performs a crosstalk
cancelation by using the CPU and the GPU. 67

4.10 Task Manager on Windows operating system in both cases:
a) GPU-based implementation, and b) CPU-based imple-
mentation. 68

4.11 2 · Z desired signals are set to each ear of Z listeners in a
room. Cross paths and room effects are canceled by means
of the use of the Crosstalk canceler and Equalizer block. . . 69

4.12 The signal at loudspeaker yn is composed of a combination
of all the sources xm filtered through their respective fmn. . 70

4.13 (a) shows Scheme 1 where matrix S is located in global-
memory and matrix F in shared-memory ; (b) shows the
opposite case, Scheme 2 where matrix F is located in global-
memory and matrix S in shared-memory. 71

4.14 (a) shows matrices S and F in GPU. Then, frequency-domain
transform and element-wise multiplication are applied; (b)
shows that the resulting matrix is stored at the same memory
position. 73

4.15 Addition of all the planes to obtain the different outputs (in
this case, Y0 and Y1). 76

LIST OF FIGURES xxi

4.16 (a) shows matrices S and F in GPU. Then, frequency-domain
transform and element-wise multiplication are applied; (b)
shows that the resulting matrix Rv is stored in a different
memory position. 77

4.17 Element-wise sum between Rv and Rv−1. Row 0 of Rv is
element-wise sum with the row indicated by PointOut ; row 1
is element-wise sum with the row indicated by PointOut+1 ;
and so on. 78

4.18 Copy of the row indicated by PointOut in Rv to OV, which
is later set to 0. PointOut increases incrementally and gets
prepared for the next input-data buffer. 79

4.19 Important parameters in a real-time multichannel applica-
tion, with M=4, N=2 and Ctot=8. 81

4.20 tproc in a multichannel application fragmenting the input-
buffer in different overlap-save blocks: (a) for 2 loudspeakers;
(b) for 4 loudspeakers; (c) for 32 loudspeakers; and (d) for
64 loudspeakers. 84

4.21 tproc used by GPU in a GCCE for different values of sources
M and loudspeakersN , using a sampling frequency of fs=44.1
kHz with: tbuff=2.9 ms in (a), tbuff=5.8 ms in (b), tbuff=11.6
ms in (c), and tbuff=23.2 ms in (d). 85

5.1 The HRIR filtering allows a person to perceive a piano sound
as if it were located in a virtual position in the space given
by the coordinates (θ, φ, r). 92

5.2 L Core samples that are used to obtain the total energy. . . 96

5.3 Percentage of the energy out of the band when the different
fading vectors are applied. The right side of the figure cor-
responds to the percentage computed for the right channel,
whereas the left side corresponds to the percentage for the
left channel. 97

5.4 Percentage of preference obtained with the paired compari-
son test when RAMP, SQRT, TRI, FOURIER, and SIMPLE
fading vectors were compared. 99

5.5 The star represents the position to be synthesized in the el-
evation plane φS . This position is synthesized by combining
the two nearby azimuth positions using the weighted factors
wA and wB. 100

xxii LIST OF FIGURES

5.6 The percentage of preference obtained when melodies that
switched from virtual positions that were separated by 1, 7,
15, 30, and 45 degrees were compared. 104

5.7 GPU diagram of a head-phone audio application. 106

5.8 Operations carried out by CUDA kernel 8 and CUDA kernel
9. Each thread is responsible for the computation of a sample.111

5.9 The number of filters is double in CUDA kernel 8. The
processing is carried out for the old position and for the new
position. 112

5.10 CUDA kernel 10 groups the buffers that belong to a position
and a source for the particular case M = 2. 112

5.11 Flowchart from a spatial audio application whose audio pro-
cessing is totally carried out on the GPU. Tridimensional
application processes are executed on the GPU and symbol-
ize the use of multiple threads that are launched in parallel. 116

5.12 Developed headphone-based spatial application running on
a notebook with the GPU GTS360M. 117

5.13 Number of sound sources that can be managed by our pro-
posed spatial sound application when all the sound sources
stay static in real time. 118

5.14 Number of sound sources that can be managed by our pro-
posed spatial sound application when all the sound sources
are moving in real time. 119

6.1 Geometry of a WFS system where it is appreciated the sound
source m, the N loudspeakers, and the different distances
among sound source, loudspeakers and a listener. 125

6.2 Multichannel inverse filter bank, where every driving signal
is convolved by N filters. The signal that is reproduced by
a loudspeaker is a combination of all the filtered signals. . . 127

6.3 Configuration of the array at the laboratory of the GTAC at
UPV . 131

6.4 Data structures used for storing in the global-memory of the
GPU: the delay factors and the amplitude factors in (a), and
the output-data buffers in (b). 132

6.5 Flowchart of the processing executed on the GPU. 132

LIST OF FIGURES xxiii

6.6 Processing time for different number of sound sources that
are rendered in a spatial audio system (WFS + RC) with-
out fading processing (a) and with fading processing (b) on
different GPUs. 142

7.1 Intersecting half-hyperboloids for M = 3 microphones. Each
half-hyperboloid corresponds to a TDOA peak in the GCC. 148

7.2 Accumulated SRP-PHAT values for a 2-D spatial grid (4 ×
6 m and M = 6 microphones) with different spatial resolu-
tions. (a) rsp = 0.01 m. (b) rsp = 0.1 m. 151

7.3 Computational cost when for different number of microphones
M and spatial resolutions rsp. 152

7.4 Operations that are carried out by CUDA kernel 21 in case
M=4. 154

7.5 Operations that are carried out by CUDA Kernel 22. 156

7.6 Operations that are carried out by CUDA kernel 23. 156

7.7 Steps of the GPU-based SRP-PHAT implementation using
two GPUs and openMP. 161

7.8 Microphone set-ups for M = 6, M = 12, M = 24 and M =
48. The black dots denote the actual active microphones in
each configuration. 163

7.9 Localization accuracy for different wall reflection factors (ρ ∈
{0, 0.5, 0.9}) as a function of the SNR and the number of mi-
crophones M . Each row presents results for different spatial
resolutions (rsp = 0.01 and rsp = 0.1 m). 165

7.10 Time tproc for different resolutions and number of microphones.167

8.1 Structure of the parallel second-order filter. 173

8.2 Structure of the second-order section used in Fig. 8.1 173

8.3 GPU-based Parallel Implementation of one IIR filter pro-
cessing. 175

8.4 Performance comparison between multi-core CPU and GPU
implementations for parallel filters composed of 1024 and 128
second-order sections with a buffer size of 32 samples. . . . 180

8.5 Maximum number of IIR filters that can be realized in real
time for the multi-core and GPU implementation for filters
composed of 1024 and 128 second-order sections. 181

9.1 Block diagram of the M parallel allpass filter chains. 187

xxiv LIST OF FIGURES

9.2 Two-dimensional CUDA grid configuration. One thread per-
forms an allpass filter using a delay line combination with a
coefficient combination. Col defines the delay-line lengths
and the Row determines the lookup in the coefficient table. 189

9.3 Maximum peak value obtained for the 28,966,400 combina-
tions for all the signals. 194

9.4 Waveforms of the five isolated musical sound, before and af-
ter being processed (the work in [1] and third test: 28,966,400
combinations). The horizontal dashed lines show the posi-
tive and negative peaks of the original waveform whilst the
solid horizontal lines show the positive and negative peaks
after processing. 195

10.1 Developed and future applications that require massive mul-
tichannel signal processing. 202

A.1 Distribution of the audio buffers in order to compute the
rows of the GCC matrix when NGPU is 1,2,3 and 4. 230

List of symbols

X Matrix
x Vector
p Scalar
(·)T Transpose
p Conjugation of complex value p
(·)H Conjugate transpose
| · | Absolute value
⊗ Element-wise convolution
a Coefficient of allpass filter 1 in the allpass filter chain.

Chapter 9
amn Amplitude factor that depends on the positions

of the sound source m, and the loudspeaker n
in a WFS system. Chapter 6

ar,2 Denominator coefficient 2 of the r-th second-order
section in IIR filtering. Chapter 8

b Coefficient of allpass filter 2 in the allpass filter chain.
Chapter 9

bm(t) Time domain signal extracted from microphone m
in a localization system. Chapter 7

br,1 Numerator coefficient 1 of the r-th second-order section
in IIR filtering. Chapter 8

c Coefficient of allpass filter 3 in the allpass filter chain.
Chapter 9

C Geometry dependent constant in a WFS system.
Chapter 6

Ctot Number of filters implemented in a GCCE application
d0 FIR path in IIR filtering. Chapter 8
d1 Embedded delay length of allpass filter 1 in the allpass

filter chain. Chapter 9
d2 Embedded delay length of allpass filter 2 in the allpass

filter chain. Chapter 9
d3 Embedded delay length of allpass filter 3 in the allpass

filter chain. Chapter 9

xxvi List of symbols

dmax Maximum delay length of an allpass filter. Chapter 9
dzL Desired signal of the listener z-th

(z is an integer value) at the Left ear. Chapter 4
dzR Desired signal of the listener z-th

(z is an integer value) at the Right ear. Chapter 4
f Fading Vector. Chapter 5 and Chapter 6
fs Sampled Frequency
fij Impulse Response of the filter implemented

between the i-th source and the j-th loudspeaker.
Chapter 4 and 6.

fm Vector of frequency bins obtained from audio
samples that are captured by microphone m in a
localization system. Chapter 7

g Fading Vector. Chapter 5 and Chapter 6
G Spatial Grid in a localization system. Chapter 7
h(t) Impulse Response in time domain
h Impulse Response in discrete time domain
hRL Impulse Response of the crossed path from

the Right Loudspeaker to the Left Ear. Chapter 4
hLR Impulse Response of the crossed path from

the Left Loudspeaker to the Right Ear. Chapter 4
hLL Impulse Response of the direct path from

the Left Loudspeaker to the Left Ear. Chapter 4
hRR Impulse Response of the direct path from

the Right Loudspeaker to the Right Ear. Chapter 4
hr(θ, φ, r) Impulse responses HRIRs corresponding to

position (θ, φ, r) for the Right Ear. Chapter 5
hl(θ, φ, r) Impulse responses HRIRs corresponding to

position (θ, φ, r) for the Left Ear. Chapter 5
h Column vector in IIR filtering
H Matrix of filters coefficients in Section 4
k Discrete time index
K Number of second-order sections in IIR filtering.

Chapter 8.
l Index of the microphone used in the SRP-PHAT

algorithm for the sound source localization.
Chapter 7

lf Length/size of filter/impulse response fij

xxvii

lh Length/size of filter/impulse response h
lo Length/size of the processing block. In chapter 4,

its size is equal to an overlap-save block.
In chapters 5,6 and 7, its size is 2L

lx Length/size of a discrete finite signal x
lx,ly,lz Dimensions of the shoe-box-shaped room used

in a localization system. Chapter 7
L Size of buffers composed of audio samples

and provided by audio cards
m Sound source index in Chapters 4,5 and 6; and

microphone index in Chapter 7
M Number of Inputs in the Audio system. In Chapter 5

and Chapter 6, M means virtual sound sources to be
rendered, but in Chapter 7, M means number of
microphones in a Localization system.

MA Number of Allpass filters chains in parallel.
Chapter 8

M Modeling matrix. It contains all-poles
transfer functions. Chapter 8

n Loudspeaker index
N Number of Loudspeakers
NGPU Number of GPUs that are presented in the

localization system. Chapter 7
Nf Number of frames which are composed of speech audio

samples that are used in the localization system.
Chapter 7

Np Number of positions that are tested in the localization
system. Chapter 7

OV Output vector in Chapter 4, scheme 2, FIR filtering
pr Pole of the r-th second-order section in IIR filtering.

Chapter 8
P Number of rows of matrices S and H
ρ Reflection factor in the walls of a room. Chapter 7
P x Number of points a given spatial grid G

in the dimension that is labeled as x-axis. Chapter 7
P y Number of points a given spatial grid G

in the dimension that is labeled as y-axis. Chapter 7
P z Number of points a given spatial grid G

xxviii List of symbols

in the dimension that is labeled as z-axis. Chapter 7
p Column vector in IIR filtering design. Chapter 8
Q Number of microphone pairs in a localization system.

Chapter 7
Qn(xm, ω) Driving Signal of the loudspeaker n generated

from virtual sound source m that is located in xm
in the frequency domain. Chapter 6

r Index inside Sum
rsp Spatial resolution in a given spatial grid G, Chapter 7
rxsp Spatial resolution in a given spatial grid G

in the dimension that is labeled as x-axis, Chapter 7
rysp Spatial resolution in a given spatial grid G

in the dimension that is labeled as y-axis, Chapter 7
rzsp Spatial resolution in a given spatial grid G

in the dimension that is labeled as z-axis, Chapter 7
R Specific listening point inside listening area in a

WFS system. Chapter 6
R(r) Complex factor that aims to virtualize distance

in the sound source. Chapter 5
Sc Number of processors in a multi-core computer.

Chapter 8
S Matrix of samples
tbuff Elapsed time between audio sample buffers provided

by the audio cards: Lfs s.

tproc Processing time since input-data buffers begin
to be processed till output-data buffers are available
in the application.

τmn Delay in samples that is proportional to
the distance between the virtual sound source m and
the loudspeaker n in WFS system. Chapter 6

Ts Sampling Interval
TL Duration in seconds of a block of the

signal bm(t). Chapter 7
TGPU A GPU buffer that is used to store audio

samples. Chapter 7
U Number of threads that configure a thread

block in IIR filtering. Chapter 8
v Reference to the v-th input-data buffer

xxix

ν Total number of functional evaluations in a localization
system based on SRP-PHAT algorithm. Chapter 7

ϑn Angular frequencies in IIR filtering. Chapter 8
w frequency (radians)
wn frequency bins (radians)
wA Weighting factor. Chapter 5
wB Weighting factor. Chapter 5
wC Weighting factor. Chapter 5
wD Weighting factor. Chapter 5
x(t) Time-domain signal
xa Discrete-Time signal labeled with a letter,

in this case a. Chapter 2
xj Discrete-Time signal that represents the signal in

the j-th virtual sound source/microphone.
xi Block i-th composed of samples of signal x

and i is an integer value.
x Discrete-Time signal (Input in a system)
xR Signal that is planned to be rendered through

the Right Loudspeaker. Chapter 4
xL Signal that is planned to be rendered through

the Left Loudspeaker. Chapter 4
xR Coordinates of the point R at a listening

area in a WFS system. Chapter 6
xm Coordinates of the virtual sound source m

in a WFS system. Chapter 6
xn Coordinates of the loudspeaker n

in a WFS system. Chapter 6
xbuffi Input Audio buffer composed of 2L samples

of the sound source i. Chapter 5 and Chapter 6
Xbuffi Input Audio buffer in frequency domain composed

of 2L frequency bins of the sound source i
y Discrete-Time signal (Output in a system)
yi Discrete-Time signal that belongs to

the i-th loudspeaker.
yR Signal that is reproduced by Right Loudspeaker

in an stereo system. Chapter 4
yL Signal that is reproduced by Left Loudspeaker

in an stereo system. Chapter 4

xxx List of symbols

ybuffi Output Audio buffer composed of 2L samples
of the sound source i. Chapter 5 and Chapter 6

y(θS , φS , rS) Output signal in time domain that represents
virtual sound source that is rendered at
position (θS , φS , rS) in a binaural system.
Chapter 5

Y(θS , φS , rS) Output signal in frequency domain of y(θS , φS , rS)
Z Number of listeners in a reproduction scenario.

Chapter 4

Abbreviations and Acronyms

FT Fourier Transform
iFT inverse Fourier Transform
DFT Discrete Fourier Transform
iDFT inverse Discrete Fourier Transform
FFT Fast Fourier Transform
iFFT inverse Fast Fourier Transform
HRIR Head Related Impulse Response
HRTF Head Related Transfer Function
FIR Finite Impulse Response
IIR Infinite Impulse Response
MAE Mean Absolute Error
SDR Signal to Distortion Ratio
SRP Steered Response Power
SSL Sound Source Localization
TDOA Time Delay Of Arrival
WFS Wave Field Synthesis
RC Room Compensation
DSP Digital Signal Processor
FPGA Field-Programmable Gate Arrays
GPU Graphics Processing Units
CPU Central Processing Unit
CPU Central Processing Unit
ALU Arithmetic and Logic unities
SIMD Single Instruction Multiple Data machine
SM Stream Multiprocessor
SMX Modern Stream Multiprocessor
CUDA Compute Unified Device Architecture
CUFFT GPU library that performs multiple FFTs concurrently
SDK Software development kit
UVA Unified Virtual Adressing
P2P peer-to-peer
PCI-E Peripheral Component Interconnect Express
ASIO Audio Stream Input/Output

xxxii Abbreviations and Acronyms

Introduction 1

2 Introduction

Introduction 1
1.1 Background

The field of multichannel audio signal processing has undergone major de-
velopment in recent years due to the increased complexity of current audio
processing applications. People want to collaborate through communica-
tion with the feeling of being together and sharing the same environment,
what is considered as Immersive Audio Schemes [2] [3]. In this phenomenon,
several acoustic effects are involved: 3D spatial sound [4], room compen-
sation [5], crosstalk cancelation [6], sound source localization [7], among
others. To achieve these amazing effects, the processing of multiple sources,
channels, or filters are required.

Everyday life is full of three-dimensional sound experiences. Natural
sounds are perceived in terms of their location, since they contain cues in all
three dimensions (width, height, depth) that help our brain to identify the
localization of the sounds [8]. We can define a spatial sound as a rendered
sound that contains the localization cues.

Attending to the transducer used for spatial sound rendering, we can
consider two kind of systems: headphone-based systems (binaural sound),

4 Introduction

and loudspeaker array-based systems. In this last case, there are mainly
two ways of achieving spatial sound: by using the Phantom effect [9], or by
Sound Field Synthesis [10].

Binaural sound is based on headphones and allows a listener to perceive
the virtual position of a sound source [11]. This kind of sound is obtained
by filtering sound samples through a collection of special filters whose coef-
ficients shape the sound with spatial information. In the frequency domain,
these filters are known as Head-Related Transfer Functions (HRTFs). The
response of HRTFs describes how a sound wave is affected by properties
of the body shape of the individual (i.e., pinna, head, shoulders, neck, and
torso) before the sound reaches the listeners eardrum [9] [12]. Each pair
of HRTF filters is related to a specific virtual position. A set of HRTFs of
different spatial fixed positions configure an HRTF database. When mul-
tiple sound sources in different spatial positions move around the scene,
fantastic audio effects that provide more realism to the scene are achieved.
These spatial sounds are usually added to video games, video conference
systems, movies, music performances, etc. However, if a CPU processor
were used to perform these tasks, the CPU processor would be overloaded
and the whole application would slow down. When this happens, spatial
sound information is usually avoided and, unfortunately, is not added to
the applications.

Regarding Sound Field Synthesis, one of the most popular systems is
the Wave Field Synthesis (WFS) [13], a spatial reproduction system capa-
ble of synthesizing an acoustic field in an extended area by means of loud-
speaker arrays. This makes the reproduced sound scene independent from
the listening position, and therefore the relative acoustic perspective per-
ceived by a listener changes as he or she moves. WFS systems require high
computational capacity since they involve multiple loudspeakers, such as
the WFS system at the Universitat Politècnica de València (UPV) (shown
in [14]) that has 96 loudspeakers, or the IOSONO WFS system (shown in
[15]) that has 120 loudspeakers. Realistic scenes are achieved with high
number of sound sources, which demands high computational needs. One
of the problems to put WFS in practise is related to the interaction of the
array with the listening room. The listening room introduces new echoes
that are not included in the signal to be reproduced, thus altering the syn-
thesized sound-field and reducing the spatial effect. One block that can
be added to the WFS system is a Room Compensation (RC) block. The

1.2. Motivation 5

purpose of this block is to minimize the undesirable interaction of the array
with the listening room. A common RC block is based on a multichannel
inverse filter bank that corrects the room effects at selected points within
the listening area, such as those in [16] and [17]. This formula is validated
by [18], where it is presented meaningful improvements in the acoustic field
when a RC block is applied to a WFS system. However, the application
of this spatial audio system (WFS + RC) in real environments (theaters,
cinemas, etc.) requires a real-time solution which requires even more com-
putational resources.

Sound source localization can be also considered as an important aspect
in the inmersive audio schemes. Realistic teleconferencing systems are able
to render accurate sound source localization. This indicates that sound
source positions must be previously computed to be lately transmitted. The
Steered Response Power with Phase Transform (SRP-PHAT) algorithm
is a well-known approach for sound source localization due to its robust
performance in noisy and reverberant environments [19]. This algorithm
analyzes the sound power captured by an acoustic beamformer on a defined
spatial grid, estimating the source location as the point that maximizes
the output power. Since localization accuracy can be improved by using
high-resolution spatial grids and a high number of microphones, accurate
acoustic localization systems require also high computational power.

1.2 Motivation

Taking into account the above context, the performance of the described
applications are totally dependent from the computational resources avail-
able.

In the last decade, explicitly parallel systems are being accepted in all
segments of the industry, including Signal Processing, in the form of multi-
core processors and many-core hardware accelerators. The triple hurdles
of power dissipation and consumption of air-cooled chips, little instruction-
level parallelism (ILP) left to be exploited, and unchanged memory latency,
combined with the desire to transform the increasing number of transistors
dictated by Moores Law into faster computers, has led the major hardware
manufacturers to design multi-core processors as the primary means of
increasing the performance of their products.

6 Introduction

Two interesting phenomena happened in the early twenty-first cen-
tury: the video game market was positioned among the most vibrant ones
and graphic processors were delivering an important computational perfor-
mance. Graphic processors are very specific hardware in design and func-
tionality. They yield high performance in applications for which they are
designed, but the initial programming techniques in this class of processors
were closely tied to the hardware. However, although graphic processors
were and are hardware devices specially designed to carry out video ren-
dering (vertex shader, primitive assembly, rasterizer, pixel shader, etc.),
many of their features can be extrapolated with high efficiency to other
applications.

When CUDA (Compute Unified Device Architecture) appeared in 2006
[20], the development of GPU (Graphics Processing Units) software changed
significatively, becoming more accesible to non-specialized developers. In
2007, the functional units of the GPU turned into more general-purpose
units. In the next years, a large number of applications were addressed
using GPU in a wide variety of fields [21]. Nowadays, GPUs have become
highly parallel programmable co-processors that provide massive computa-
tion when the needed operations are properly parallelized.

The conception of Signal Processing is intimately linked with the type
of computation required to perform the Processing. In 2009, José F.M.
Moura, president of the Signal Processing Society, noted in [22]: “As for
processing, it comprises operations of representing, filtering, coding, trans-
mitting, estimating, detecting, inferring, discovering, recognizing, synthe-
sizing, recording, or reproducing signals by digital or analog devices, tech-
niques, or algorithms, in the form of software, hardware, or firmware”.
Furthermore, some personalities from the Signal Processing Society have
recently highlighted in [23] the need for more application oriented works
connecting to other scientific domains such as Computer Science. For in-
stance, Professor Mos Kaveh (President, IEEE Signal Processing Society
2010-2011) stated: “Signal processing is thriving. Submissions to the pub-
lications and conferences of the IEEE Signal Processing Society have been
increasing, apparently with no end in sight. To more effectively brand what
we do, we have no choice but to connect with applications that are mean-
ingful to the public. And, to have real impact beyond our own circles, we
must actively engage and collaborate with domain experts, for example, in
biology, medicine, energy, and business.”

1.3. Objectives 7

In this context, Professor Li Deng (Editor-in-Chief of the IEEE/ACM
TASL and ICASSP 2013 General Chair), says in [23]: Within the next ten
years, I expect a great deal of and growing interplay between the community
of signal processing and those from artificial intelligence, machine learning,
computer science, and applied mathematics (e.g., optimization).

Analyzing, implementing, and performing multichannel audio signal
processing-based applications by using GPUs is a challenge that can change
the way in which processing is carried out in future audio systems.

1.3 Objectives

Considering all the motivation aspects, the main objective of this thesis is
as follows:

To analyze different multichannel audio signal processing-based appli-
cations that require high computational resources. To study the GPU ar-
chitecture in order to use it as co-processor that computes and accelerates
the massive processing tasks that demand the cited applications. To solve
possible application drawbacks both from the acoustic point of view as from
the computational point of view. To perform the GPU-based applications
focusing on the possibility of carrying out the application under real-time
conditions. Finally, To develop real prototypes of the applications.

As most of the audio applications are based on multichannel massive
filtering, some particular aims emerge from this main scope:

• To analyze and to implement on a GPU the operation that is mas-
sively carried out in an audio processing system: the convolution by
using filters with a Finite Impulse Response (FIR).

• To implement on GPU a multichannel filter bank that allows not
only to carry out multiple filtering concurrently, but also to be able to
combine their convolution results. To apply this filter bank to develop
the application: generalized crosstalk cancellation and equalization.

• To use the multichannel filter bank to develop a headphone-based
spatial sound application. In this context, different problems regard-
ing spatial sound rendering are studied and analyzed, in order to

8 Introduction

consequently propose solutions. A real prototype is designed and
proposed.

• To develop a Wave Field Synthesis system that aims to reduce the
room effects by applying a multichannel filter bank that plays the
role a Room Compensation block. A real prototype is designed and
proposed.

• To study the computational requirements of a sound source local-
ization system in order to implement it on a GPU and assess the
influence of the computational capacity in the localization accuracy
under real-time conditions. To this end, a computational kernel that
carries out multiple correlations must be also developed.

• To implement on GPU multichannel filtering for the case that the
filters present an Infinite Impulse Response (IIR) and are composed
of multiple second-order sections. To apply this massive filtering to
the application: Equalization of a WFS system.

• To implement on GPU multichannel filtering for the case that the
filters present an allpass infinite impulse response, and to apply this
massive filtering to the application: Dynamic Range reduction in the
audio signals.

Figure 1.1 shows how the above objectives are related. It can be ob-
served as most of the audio applications that demands high computational
needs are related with the massive multichannel filtering.

1.4 Organization of the Thesis

The remainder of this thesis describes the research that has been under-
taken to develop the aims stated above. It is important to remark that
this thesis involves two different disciplines: Audio Signal Processing and
Computational Science. Thus, we have dedicated chapter 2 of this dis-
sertation to introduce some concepts of the mentioned disciplines, which
could be considered fundamental concepts within a mono-disciplinary the-
sis. However, these concepts aims to help in the global understanding from
a multi-disciplinary point of view. The chapters are organized and pre-
sented as follows:

1.4. Organization of the Thesis 9

Filtering

FIR filtering IIR filtering

Multiple
convolutions
concurrently

Multiple
correlations
concurrently

Multiple
Parallel

2nd-order
sections

Multiple
allpass
filters
chains

Headphone-based
Spatial audio
 application

Wave Field
Synthesis

Generalized Crosstalk
Cancellation and

Equalization

Reduce
Dynamic Range in

audio signals

Multiple
Equalizations
concurrently

Sound
Source

Localization
system

Computational Kernels

Applications

Figure 1.1. Relation among objectives, computational ker-

nels on GPU, and applications to develop through this disser-

tation.

• Chapter 2: This chapter describes a large number of necessary con-
cepts for the understanding of this dissertation. It contains an intro-
duction to the topic of Multichannel Signal Processing and presents
the hardware and software tools that have been used to perfom the
audio applications.

• Chapter 3: This chapter deals with the state of the art of the devel-
oped applications through this dissertation. It overviews the advances
in these applications both acoustical aspect as computational aspect.

• Chapter 4: This chapter describes GPU-based implementations of
massive multichannel filtering. The chapter describes, firstly, the im-
plementation of a single convolution on a GPU; then this implemen-
tation is extrapolated to carry out multiple convolutions. Finally, it is
presented an application that requires a large number of concurrent
filtering: generalized crosstalk cancellation and equalization. Two
common situations are properly managed in this application: size of
buffers that are much larger than the size of the filters and size of
buffers that are much smaller than the size of the filters.

• Chapter 5: This chapter deals with a headphone-based spatial audio
application that aims to recreate a multisource spatial sound scene.
The first part of the chapter describes the problems that arise when
a total rendering in the space is intended. Objective and subjective
analysis are carried out to solve the problems. Computational per-

10 Introduction

formance of this application in different GPU architectures is also
presented. Furthermore, a real prototype of this application is devel-
oped in a notebook GPU.

• Chapter 6: In this chapter, an overview of the fundamentals of a
wave field synthesis system is presented. Some concepts involving the
wavefront generation are also discussed. Two aspects are considered
when the Computational performance is assessed in different GPU
architectures: a WFS system with a multichannel filter bank that
plays the role of Room Compensation block, and without it.

• Chapter 7: This chapter develops a GPU-based sound source local-
ization system. Firstly, a description of the SRP-PHAT algorithm
(used for the sound source localization) is presented. Sound source
localization accuracy is assessed when different levels of reverbera-
tion and noise are given in a room. A multi-GPU implementation is
presented.

• Chapter 8: This chapter deals with multichannel filtering when the
filters are composed of second-order IIR filters. Parallelization of this
kind of filters is analyzed and studied. Implementations on GPU and
on a multicore CPU are assessed.

• Chapter 9: This chapter deals with multichannel filtering when the
filters are composed of allpass filter chains. The GPU is used in this
case for launching multiple allpass filter chains concurrently in order
to reduce dynamic range of the audio signals. A comparison with a
multicore CPU is also assessed in this chapter.

• Chapter 10: Finally, the conclusions obtained throughout this thesis
are presented, including some guidelines for future research lines. A
list of published work related to this thesis is also given.

Preliminaries and Tools 2

12 Preliminaries and Tools

Preliminaries and Tools 2
This chapter describes many necessary concepts for the understanding of
this dissertation. It contains an introduction to the topic of Multichannel
Signal Processing and presents the hardware and software tools that have
been used to perform audio applications. Some of these concepts could be
considered as fundamental concepts. However, they are included in this
thesis because of its multi-disciplinary nature.

2.1 Introduction

What do we mean by signal?. Ages ago, signal referred to some physical
manifestation of information that changed with time and/or space. By sig-
nal we may still be referring to a physical manifestation but we might also
be dealing with other symbolic or abstract attributes of sequenced infor-
mation: cold, hot, high, low [22]. Examples of signals include audio, video,
speech, language, image, multimedia, sensor, communication, geophysical,
sonar, radar, biological, among others. In this dissertation we focus on the
audio signal.

An audio signal is obtained if we capture the vibrations of a mechanical
wave of pressure and displacement. This capture can be easily carried out

14 Preliminaries and Tools

by a microphone which acts as an acoustic-to-electric transducer or sensor
that converts sound into an electrical signal. Figure 2.1 shows this process.

Mechanical Vibration
Pressure waves

in air Sensor
Voltage

varying with
time

Figure 2.1. Sound wave that is captured by a transducer and

converted to an electrical signal.

Multiple operations can be performed with this electrical signal, such
as: storage, level compression, data compression, transmission, enhance-
ment (e.g., equalization, filtering, noise cancelation, echo or reverb removal
or addition, etc.). These operations are very common at the field Audio
Signal Processing.

Historically, this processing was carried out analogically, i.e. altering
the continuous signal by changing the voltage or current or charge via var-
ious electrical means. However, as computers and software became more
advanced, audio signal processing tasks started to be carried out by com-
puters and dedicated digital devices such as microprocessors. These devices
use digital circuits, what implies that the analogical audio signal has to be
previously converted to a digital signal. This is achieved by sampling the
continuous signal.

Let x(t) be an audio signal to be sampled, and let sampling be per-
formed by measuring the value of the continuous function every Ts s, which
is called the sampling interval. Thus, the sampled function is given by the
sequence x(kTs), where k is an integer value. The sampling frequency or
sampling rate fs is defined as the number of samples obtained in one second
(samples per second), thus fs = 1/Ts. Figure 2.2 illustrates the continuous
and the sampled signal.

Along with discretization of the audio signal, a quantization must be
carried out. This means to approximate the discrete sample values by

2.2. Frequency domain 15

−60

−40

−20

0

20

40

60

80

x(kTs)
x(t)

Ts

Figure 2.2. Signal x(t) and the samples signal x(kTs).

values from a finite set that use usually any computational device. In this
dissertation, we assume that the quantification is ideally performed and
there is not any error in this process.

Mathematically, we obtained a vector of samples that ideally has an
infinite length. Thus, the values x(kTs) are Fig. 2.2:

x = [· · · − 10.253 − 10.162 − 10, 345 − 10, 742 − 11, 413 · · ·].

2.2 Frequency domain

There are different domains in which a digital signal can be studied. The
above presented domain is called the time domain, but there are other
domains where the signal can offer more interesting information such as
the frequency domain.

To connect the time domain and the frequency domain, we use the
Fourier transform [24]. This transform comes from the study of Fourier
series. In this study, periodic functions f(x) with period 2π (f(x) = f(2π+
x)) are written as an infinite sum of sines and cosines.

f(x) =
a0

2
+
∞∑
m=1

(am cos(mx) + bm sin(mx)). (2.1)

16 Preliminaries and Tools

To find the coefficients am, bm, and a0, it is necessary to multiply
the above equation by cos(mx) or sin(mx) and integrate it over interval
−π < x < +π. By the orthogonality relations of sin and cos functions [25],
we can get

am =
1

π

∫ +π

−π
f(x) cos(mx)dx, (2.2)

bm =
1

π

∫ +π

−π
f(x) sin(mx)dx, (2.3)

a0 =
1

π

∫ +π

−π
f(x)dx.

Figure 2.3 shows how the square periodic signal g(x)

g(x) =

{
1 0 < x < π
−1 −π < x < 0

can be decomposed in multiple sum of sines and cosines. Thus, signal g(x)
can be also written with its Fourier coefficients such as

g(x) =
4

π
(
sinx

1
+

sin 3x

3
+

sin 5x

5
+ · · ·). (2.4)

In case of using any function f(t) with arbitrary period T , Fourier
series decomposition can be also carried out. To this end, a simple change of
variables can be used to transform the interval of integration from [−π,+π]
to [−T/2, T/2] as

x =
2π

T
t dx =

2π

T
dt (2.5)

The f(t) can be described by Fourier series as

f(t) =
a0

2
+

∞∑
m=1

(am cos(
2πmt

T
) + bm sin(

2πmt

T
)). (2.6)

Taking into account the Euler formulae

eix = cosx+ i sinx,

e−ix = cosx− i sinx,

}
⇒

cosx =
(eix + e−ix)

2
,

sinx =
(eix − e−ix)

2
,

(2.7)

2.2. Frequency domain 17

Figure 2.3. The square periodic signal g(x) can be decom-

posed in multiple sum of sines and cosines.

and denoting w=2π
T , equation (2.1) can be rewritten as

f(t) =

∞∑
k=−∞

cke
ikwt. (2.8)

where

ck =
2

T

∫ +T/2

−T/2
f(t)e−ikwtdt. (2.9)

In case of a non-periodic function, we can rewrite (2.8) assuming that T →
∞

f(t) =

∞∑
k=−∞

(
2

T

∫ +T/2

−T/2
f(ξ)e−ikwξdξ)eikwt (2.10)

Considering T=2π
w , (2.10) can be written as

f(t) =
1

π

+∞∑
k=−∞

w

∫ +T/2

−T/2
f(ξ)e−ikw(t−ξ)dξ =

1

2π

∫ +∞

−∞
eiwtdw

∫ +∞

−∞
f(ξ)e−iwξdξ.

(2.11)

18 Preliminaries and Tools

Analyzing (2.11), we can define the Fourier Transform (FT) F (w) of f(t)
as

F (ω) =

∫ +∞

−∞
f(t)e−iωtdt. (2.12)

whilst f(t) can be also obtained as the inverse Fourier Transform (iFT) of
F (w) by the following equation

f(t) =
1

2π

∫ +∞

−∞
F (w)e−iωtdw. (2.13)

2.2.1 Discrete Fourier Transform

When digital devices are being used to perform the Fourier analysis, we
need to use the Discrete Fourier Transform (DFT). In this case, both the
time and the frequency variables are discrete. Discrete Fourier Transform
can be defined as a numerical approximation to the Fourier transform.

To convert the integral Fourier Transform (FT) into the Discrete Fourier
Transform (DFT), we can do following steps:

1. Taking a T s. from the signal x(t), and the number of sampling points
lx, the sample interval Ts=

T
lx

.

2. This Ts allows to define tk=k · Ts for k = 0, 1, . . . , N − 1, and the
signal values at these points sk=s(tk).

3. Define the frequency sampling points ωn=2πn
T , where 2πn

T is termed
as the fundamental frequency and n is an integer value.

4. Considering the problem of approximating the FT of f at the points
ωn=2πn

T , we obtain

F (ωn) =

∫ +∞

−∞
f(t)e−iωntdt, n = 0, 1, . . . , N − 1, (2.14)

5. Finally, Discrete Fourier Transform (DFT) is obtained by approxi-
mating the previous integral by Riemann sum approximation using
the points tk since f 6= 0 for t > T

F (ωn) =
N−1∑
k=0

f(tk)e
−iωntk . (2.15)

2.3. Convolution 19

The inverse Discrete Fourier Transform (iDFT) is defined as

f(tk) =
1

lx

N−1∑
n=0

F (wn)e−iωntk . (2.16)

2.2.2 Fast Fourier Transform

Fast Fourier Transform (FFT) is an effective algorithm for computing the
Discrete Fourier Transform. It was developed by Cooley and Tukey in 1965
[26]. This algorithm reduces the computation time of DFT for lx points
from l2x to lx log2(lx). It is also called the Butterfly algorithm and is based
on divide-and-conquer algorithms. It consists of dividing the transform into
two pieces of size lx

2 recursively, and is therefore limited to power-of-two
sizes. In case lx is not a power of two, a zero padding at the end of the
data can be carried out in order to employ more efficiently the algorithm.
The inverse Fast Fourier Transform (iFFT) corresponds to the effective
algorithm of the inverse Discrete Fourier Transform.

2.3 Convolution

One of the most important concepts in Signal Processing is the convolution
concept. For example, if we want to measure the reflection coefficient of
a porous medium, we can use an oscilloscope that is connected to a probe
that emits a step signal. The own probe collects an output signal whose
waveform is determined by the reflection coefficient of this medium. Fig. 2.4
shows this example.

Picture from Prof. Dr. Lanbo Liu,
University of Connecticut

Figure 2.4. Measure of the reflection coefficient using a probe

that emits a step signal.

An input signal, x(t) (step signal), is passed through a system char-

20 Preliminaries and Tools

acterized by an impulse response, h(t) (probe in porous medium + probe
in handle), to produce an output signal, y(t) (reflection coefficient). This
operation is called convolution and can be written in the familiar mathe-
matical equation

y(t) = x(t) ∗ h(t) (2.17)

Mathematically, the convolution is defined as the integral over the time of
one function at τ times another function at t − τ [27]. The integration
is taken over the variable τ , typically from minus infinity to infinity. The
following equation shows the convolution operation.

y(t) =

∫ +∞

−∞
x(τ)h(t− τ)dτ (2.18)

Using discrete signals, the convolution is defined as

y[k] =
+∞∑
r=−∞

x[r]h[k − r] (2.19)

where y[k] is the k-th sample of the output signal y.

As can be appreciated, discrete convolution consists of multiple samples
multiplications and sums. In case of signals with limited lengths, the output
signal y has a length of lx + lh− 1, where lx and lh are the lengths of x and
h, respectively.

Related to the convolution concept is the circular convolution. This
one is obtained when two periodic sequences xa and xb, with period lx, are
convolved using the following expression

y[k] =

N−1∑
k=0

xa[r]xb[k − r] (2.20)

It is important to note that the length of the signal y is also lx. To difference
both kind of convolution, (2.19) is also called linear convolution, since it
represents a linear system response.

2.3.1 Convolution Theorem

The convolution theorem states that the circular convolution of two periodic
sequence can be computed by using the Discrete Fourier Transform [27].

2.3. Convolution 21

This theorem states that sequence y is obtained as the inverse discrete
Fourier transform of Y , which is obtained as the element-wise multiplication
of the DFTs of xa and xb, Xa and Xb.

y = iDFT(Y) (2.21)

Y = Xa ⊗Xb,

Xa = DFT(xa),

Xb = DFT(xb),

where ⊗ represents element-wise multiplication.

According to (2.19), this operation requires lx arithmetic operations per
output value and l2x operations for N outputs, being its complexity O(l2x).
With the help of the convolution theorem and the Fourier Transform, the
complexity of the circular convolution is reduced to O(lxlog(lx)).

Convolution theorem is also applied to linear convolution in (2.19). To
this end, both sequences, x and h must be zero-padded up to a size of
lx + lh − 1 as a minimum. In this case, the result of the linear convolution
matches with the result of the circular convolution. If we want to apply FFT
to the sequences, then the zero-padded must be increased from lx + lh − 1
to the following power of two [27].

2.3.2 Convolution in Audio Signals

Convolution is used in audio signals to add/delete acoustical effects in the
signals. As was mentioned in Section 2.2, a signal can be expressed as a sum
of sinusoids, which resulted in a function called the Discrete Fourier trans-
form, whose values depending on ωn . These ωn variables are related with
the signal frequencies. Specifically, ωn = 2πfn where fn is the frequency of
the sinus or cosinus and is measured in Hz.

The human hearing range is on average from 20 to 20,000 Hz, although
there is considerable variation between individuals, especially at high fre-
quencies, where a gradual decline with age is considered normal. Range of
frequencies between 16 Hz and 256 Hz produce bass sounds, whilst treble
sounds corresponds to a frequency higher than 2 kHz. Between 256 Hz
and 2 kHz are the middle frequencies. A common use of the convolution
operation in music consists of filtering an specific range of frequencies. In
case we are interested in bass sound, we must remove frequencies higher
than 256 Hz by using a low frequency filter. To this end, we must only

22 Preliminaries and Tools

convolve the audio signal x(t) with the low pass filter whose coefficients are
given by an impulse response h(t).

Convolution allows also to add different effects to audio signals. For
example, we can add a room effect. To this end, it is measured the impulse
response of a room [28], which takes the role of h(t) in Eq.(2.17). Then,
an audio signal x(t), that has been previously recorded under anechoic
conditions, is convolved through this impulse response h(t). The resulting
signal y(t) is composed of audio signal x(t) plus the room effects.

2.3.3 Convolution with long sequences

Up to now, we have been dealing with finite sequences of signals, but when
these sequences are long, it is required a large-scale memory to store all the
samples in order to do first the FFT, the element-wise multiplications and
the iFFT. To deal with inefficiently long FFT sizes two methods exists for
splitting up the signal into blocks and perform the convolution operations
in blocks: Overlap-save and Overlap-add.

2.3.4 Overlap-save

Considering that h and x have a size of lh and lx samples, respectively with
lx � lh, we can convolve both sequences by breaking the long signal into
blocks of lo samples with the peculiarity that each block has an overlap of
lh− 1 samples with the previous block. The size lo is the first power-of-two
integer that is lo ≥ lx + lh− 1, as mentioned in Section 2.3.1. First block of
x will be zero-padded at the beginning with with lh− 1 samples. Although
we take lo = lx+ lh−1 and an overlap of lh−1 samples, most of the authors
in literature take a value of lo = 2lh with an overlap of lh samples, which
gives a better efficiency [29]. Figure 2.5 illustrates this block division where
xi represents the block i-th of signal x.

Sequence h is also zero-padded up its size is lo. Thus, each block xi

and h have the same size. The FFT is applied to each block xi and the
sequence h, then each block is element-wise multiplied by the H (Fourier
transformed of h) and gives as a result another block Y i composed of lo
samples. Figure 2.6 illustrates these operations where Xi and Y i denote
the Fourier transforms of the blocks xi and yi, respectively.

Finally, the first lh − 1 samples of every block yi are discarded. To

2.3. Convolution 23

x
Zero

Padding

lh -1lh -1 lh -1 lh -1

lo
lo

lo
x 0 x2

x1

Figure 2.5. Overlap-save: Split the signal x in blocks of size

lo.

h H

X =FFT(x) Y =X H y =iFFT(Y)

H=FFT(h)

lo

lo lo

lo

x 0

x1

x2

0 0 0 0 0 0

X =FFT(x) Y =X H y =iFFT(Y)1 1 1 1 1 1

X =FFT(x) Y =X H y =iFFT(Y)2 2 2 2 2 2

y 0

y1

y2

Figure 2.6. Overlap-save: Each block xi together with h are

Fourier transformed and element-wise multiplied.

configure the output signal y, all the blocks are afterwards concatenated,
as is shown in Fig. 2.7.

2.3.5 Overlap-add

Overlap-add works also in blocks of size lo, but with the peculiarity that
the last lx − 1 samples of the block are zero padded. Thus, each block xi

is configured by lo − lh + 1 samples of the signal x and lh − 1 zeros. The
sequence h is again zero-padded up its size is lo. Fourier transforms and
element-wise multiplications between the blocks xi and the sequence h are
carried out in the same way as in overlap-save, as shown in Fig. 2.6.

However, to concatenate all the resulting yi blocks, the last lh − 1
samples of block yi must be added to the first lh − 1 samples of the block

24 Preliminaries and Tools

y

Zero
Padding

Elements
to

discard

x

lh -1lh -1 lh -1 lh -1

lo
lo

lo
x 0 x2

x1

y 0

y1

y2

Figure 2.7. Overlap-save: To configure output signal y, the

first lh − 1 of every block yi are discarded.

yi+1. Figure 2.8 shows this processing.

Computational Cost

According to [30],the computational cost for computing the circular convo-
lution of the described methods are:

• Direct Method in (2.20): O(l2x).

• Using the convolutions theorem, the computational cost scale with
(2.21): O(lxlog(lx)).

• Using the overlap methods, the computational cost scale with: O(lxlog(lo))

Overlap methods are faster for larger problems but not for small prob-
lems, since the computation overhead produced by splitting the signal can
be more meaningful. They are mainly used when the length of the signal
is not known, and can not be previously stored. Besides, these methods
allow to reduce the latency of the system, i.e, it is not necessary to know
all the signal to compute first samples of the output signal.

Overlap-save and overlap-add only compute lo − lh + 1 elements per
processed block of length lo, but overlap-add has two additional steps: One

2.3. Convolution 25

y

Zero
Padding

lo lh +1

lo

lo

 -lo lh +1 -lo lh +1 -

lh -1

lh -1

y 0

y1

y2

x 0

x2

x1

Figure 2.8. Overlap-add: To configure output signal y, the

last lh−1 samples of block yi must be added to the first lh−1

samples of the block yi+1.

of zero-padding the input, and one of summing up with the overlap from the
previous iteration. In practice, this will always result in worse performance
for the overlap-add algorithm. Therefore, the overlap-save method should
be preferred in real-time processing.

2.3.6 Other operations in Digital Signal Processing

There are other operations that can be carried out with signal samples.

Cross-Correlation

Cross-correlation is a measure of similarity of two signals. It is used for
finding relevant characteristics of one signal inside the other signal. Math-

26 Preliminaries and Tools

ematically, it is similar to the convolution but the inversion of one of the
signals is not carried out. Equation (2.22) computes the cross-correlation
between signals f and g, where ′ denotes the complex conjugate of f . Note
that an audio signal is composed of real samples. Thus, the complex con-
jugate has not effect in this case.

y =
+∞∑
r=−∞

f ′[r]g[k + r] (2.22)

As in the convolution case, cross-correlation can be also computed through
the convolution theorem by using the DFTs: DFT(f ′) and DFT(g). In
this case, the complex conjugate operator is important, since DFT has as
a result a complex value.

Autocorrelation

Autocorrelation is the cross-correlation of a signal with itself. It is a math-
ematical tool for finding repeating patterns, such as the presence of a peri-
odic signal obscured by noise. In an autocorrelation, there will always be
a peak at a lag of zero unless the signal is a trivial zero signal.

Scaling and Delay

Two common operations in digital signal processing is scaling and delay.
By scaling, we mean to weight the value of a samples or samples of signal
by a factor α. To make a delay of γ samples in a signal implies that
the value of signal in the sample index k=0 will be now in the sample
index k = γ. In time domain, a delay of γ samples is expressed as the
convolution of a discrete signal x with the delta function δ[k−γ] [27]. In the
frequency domain, this convolution is converted to a complex exponential
whose exponent is -iωnγ. Equation (2.23) shows the equivalence of a signal
when it is scaled and delayed in both domains. Note that index k in the
time domain and the index ωn in the frequency domain are not related.

y = α ·X ⇒ Y = α ·X, (2.23)

y = x ∗ δ(k − γ) ⇒ Y = e−iωnγ ·X.

2.3. Convolution 27

Signals addition

In the audio signal processing field, the addition of the signals is very impor-
tant, since the sound is additive. This means that, if we have two separated
recorded sounds, we can sum up both signals and reproduce only the re-
sulting signal for listening both sounds at the same time. This operation
works in both time domain and frequency domain.

y = xa + xb ⇒ Y = Xa +Xb. (2.24)

2.3.7 Real-time processing

In applications where multiple inputs and multiple outputs are involved,
the time used for processing takes an important role.

Digital Signal
Processing

ya

y b

x a

x b

x c

x d

Figure 2.9. An application composed of four inputs and two

outputs.

Figure 2.9 shows an application composed of four input signals and
two outputs signals. Audio samples are provided by audio cards that dig-
itize the signal from the gramophones. These ones symbolize the audio
sound sources that could be obtained from an audio file, or directly from a
microphone.

Most common audio cards work with “data buffers” instead of “sample
by sample” acquisition. If each audio card provides L samples at sample
frequency fs, this means that each L

fs
s., a new buffer with L samples ar-

rives. Focusing on Fig. 2.9, four input-data buffers arrive to be processed

28 Preliminaries and Tools

every tbuff = L
fs

s . In the block Digital Signal Processing, multiple oper-
ations are performed with the audio buffers such as, convolution, scaling,
sum of samples, among others. Let tproc denotes the processing time since
the four input-data buffers are processed and resulted in two output-data
buffers, which will be afterwards reproduced through the loudspeakers. As
long as tproc < tbuff , the application works in real time. If this does not
happen, audio samples would be lost and processing would not be properly
computed.

2.4 Traditional Hardware for Digital Signal Process-

ing

In the block Digital Signal Processing of Fig. 2.9, different operations are
performed with audio samples. These operations have been traditionally
performed by DSPs (Digital Signal Processors) and, more recently, by FP-
GAs (Field-Programmable Gate Arrays). In the last decade, Programmable
Graphics Processors (GPUs) have emerged as a low-cost, high-performance
solution for general-purpose computations. In this section, we present an
overview of the hardware that has been traditionally used for digital signal
processing.

2.4.1 Digital Signal Processors

A Digital Signal Processor (DSP) is a specialized microprocessor that can
process data in real time, making it ideal for applications that can not
tolerate delays. A DSP has an architecture which is optimized for the
fast operational needs of digital signal processing. A DSP is composed
mainly of: a fast functional unity that allows to multiply and accumulate
in the same clock cycle; various units that allow to carry out multiple
operations in parallel including the address memory access computations
and its corresponding access; Arithmetic and Logical Unities (ALU) that
have their own registers; and various data buses.

2.4.2 Field-Programmable Gate Arrays

A field-programmable gate array (FPGA) is an integrated circuit designed
to be configured by a customer or a designer after manufacturing. A FPGA

2.5. Multi-core Architectures and Graphic Processing Units (GPUs) 29

contains programmable logic components called logic blocks, and a hierar-
chy of reconfigurable interconnections that allows the blocks to be wired
according to the application to be developed/run. The number of intercon-
nections depends on the different FPGA architectures. Figure 2.10 shows
the block diagram of the FPGA Virtex IV of the company xilinx [31].

Figure 2.10. Block diagram of the FPGA Virtex IV.

2.5 Multi-core Architectures and Graphic Processing

Units (GPUs)

The development of multichannel audio application is demanding high com-
putational needs, even more when real-time conditions are required. Last
section described the traditional hardware used for audio digital signal pro-
cessing. However, this kind of hardware is mainly included in consumer
audio hardware that is composed generally of fixed-function pipelines, that
often evolved at a slower pace [32]. Nowadays, custom audio hardware is
disappearing from console or PC architectures, and audio processing tasks
are left to the multiple CPU cores and the powerful GPUs that have the

30 Preliminaries and Tools

new workstations.

2.5.1 Multi-core and GPUs Origin

One of the historical laws about the increase in central processing unit
(CPU) performance is the Moore’s law [33] that states that the number of
transistors in a chip doubles every one to two years. This law continues
being valid if we refer to it as a computational capacity measure: not
only taking into account the capacity of a single processor, but also the
speed gain that is obtained by increasing the number of processing units,
i.e expanding parallelism in computing [34]. In fact, actual CPUs are dual-
core, quad-core, hexa-core, among others. The same is happening to the
graphics processing units (GPUs) that owns now thousands of computing
cores.

The massive development of the computational capacities of the GPUs
was produced inside the computer game industry, in which there is a consis-
tent demand to improve the visual appearance of games. In 1995, the games
moved to three dimensions and the computing power increased greatly re-
quiring specific-purpose hardware accelerator. The first GPUs had a fixed-
function pipeline optimized for graphics that was difficult to use for other
purposes. In 2001, programmable shaders were introduced in [35] being
this a meaningful improvement, since it allowed to use the GPU compu-
tational capacities for nongraphics applications. Around 2003-2004 the
GPUs enabled to process floating-point texture data. The final step of
the evolution of GPUs into general-purpose programmable processors was
produced when the programmable vertex and other processors were uni-
fied into a large collection of general-purpose stream processor units that
allowed general-purpose C code to be compiled into GPU executable code.

But the breakthrough in the development of GPUs occurred in 2006,
when Nvidia, one of the main manufacturers of GPUs, launches to the
market a GPU with the G80 architecture that featured a total of 128 cores.
Two years later, the GT200 architecture (also known as Tesla architecture)
appeared with 240 cores and additional double precision units. In 2010,
Nvidia launched the Fermi architecture that exhibited a total of up to 480
cores per chip. Kepler architecture appeared in 2012 and grouped more
than 2000 cores. In March 2013, Nvidia announced that the successor to
Kepler would be the Maxwell architecture. It is planned for release in
2014. Figure 2.11 shows the evolution of the different Nvidia architectures

2.6. GPU and CUDA 31

through the time line and with large-scale computational capacity.

Figure 2.11. Evolution of the different Nvidia architectures

through the time line.

All Nvidia architectures have a hardware common structure and works
with the same programming paradigm. Thus, the same source code could
be compiled for different architectures and be run in any of them. However,
as every architecture has special features, it is not assured that using an
architecture with more cores gives a better performance than other that
has a less number of cores.

2.6 GPU and CUDA

Following Flynn’s taxonomy [36], from a conceptual point of view, a GPU
can be considered to be a Single Instruction Multiple Data machine (SIMD),
i.e, a computer in which a single set of instructions is executed on different
data sets. Implementations of this model usually work synchronously, with
a common clock signal. An instruction unit sends the same instruction
to all of the processing elements, which execute this instruction on their

32 Preliminaries and Tools

own data simultaneously. The last generations of GPUs are composed
by multiple Stream Multiprocessor (SM), where each SM consists of eight
pipelined cores (SP) if compute capability is 1.2 or 1.3 (Tesla architecture),
or 32 pipelined cores if it is 2.0 (Fermi architecture), or even 192 pipelined
cores if it is 3.0 or 3.5 (Kepler architecture [37]).

A GPU device has a large amount of off-chip device memory (global-
memory) and a fast on-chip memory (shared-memory, registers). The
shared-memory is normally used when multiple threads must share data.
There are also read-only cached memories called constant-memory and
texture-memory. The first memory is optimized for broadcast i.e. when
all the threads read the same memory location while the second one is
more oriented to graphics.

GPU devices of compute capability 2.x and greater come with an L1/L2
cache hierarchy that is used to cache global-memory. Cache of level L1 is
located on-chip memory. The same occurs to the read-only cache that is
only present in GPU devices of compute capability 3.x. Fig. 2.12 shows
how the GPU architecture is organized.

CUDA (Compute Unified Device Architecture) technology is an envi-
ronment based on C language which allows the development of software
intended to solve high complexity computational problems efficiently [20].
This software takes profit from the high amount of execution threads which
are available on GPU. In CUDA, the programmer defines the kernel func-
tion where the code to be executed on the GPU is written. A grid configu-
ration, which defines the number of threads and how they are distributed
and grouped, must be built into the main code. Threads are grouped into
thread blocks, and thread blocks configure a grid. Both thread blocks and
grid are organized in three dimensions. Thus, a thread identification will
be defined by a position within a block (ThreadIdx.x, ThreadIdx.y, and
ThreadIdx.z), and this block will be defined within a grid (BlockIdx.x,
BlockIdx.y, and BlockIdx.z). Parameters BlockDim.x, BlockDim.y, and
BlockDim.z indicate the dimensions of blocks in the same way as gridDim.x,
gridDim.y, and gridDim.z indicate the dimensions of grid. Fig. 2.13 shows
a cuda kernel configured by a unidimensional grid composed of 3 blocks,
and each block composed of 5 threads unidimensional. The compute capa-
bility of the GPU limits the maximum size in each dimension of the grid
and the blocks in each cuda kernel. Figure 2.14 shows a table that is taken
from the Nvidia CUDA programming guide [20] that outlines some CUDA

2.6. GPU and CUDA 33

SP SP SP SP
SP SP SP SP

SP SP SP SP

SM
GPU

Shared M. /*L1 Cache
Reg./**Read-only

SP SP SP SP
SP SP SP SP

SP SP SP SP

SM

Shared M. /*L1 Cache
Reg./**Read-only

SP SP SP SP
SP SP SP SP

SP SP SP SP

SM

Shared M. / *L1 Cache
Reg./**Read-only

Constant Memory/Texture Memory

*L2 Cache

Global Memory

Figure 2.12. A GPU has multiple Stream Multiprocessor

(SM) that are composed of multiple pipelined cores (SP). The

number of SPs depends on the compute capability and the

number of SMs depends on the kind of the device. A GPU

device has off-chip device memories and on-chip memories *(in

devices with compute capability 2.x and 3.x) **(only in devices

with compute capability 3.x).

features that depend on the capability of the GPU device. In [38], the
reader can find all the GPU devices that allow CUDA technology with its
corresponding capability. Together with CUDA technology, Nvidia made
available to the GPU developers a Nvidia GPU Computing SDK (Software
development kit) [20]. A new SDK appeared with a new CUDA version
release. The SDK collected different CUDA projects that could be taken
as examples for the GPU developers.

An important aspect when accessing global-memory is to do it in a
coalesced way. Coalescing means that the threads are writing into a small
range of memory addresses having a certain pattern. For example, consider-
ing an array pointer to global-memory (array) and idx as the identification
of a thread, if thread idx writes to address array[idx] and thread idx+1

to address array[idx+1], we achieve good coalescing.

In the CUDA model, the programmer defines the kernel function where
the code to be executed on the GPU is written. A grid configuration,

34 Preliminaries and Tools

0 1 2 3 4

0

0 1 2 3 4

1

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

int idx = blockIdx.x blockDim.x + threadIdx.x*

blockIdx.x

Threads of blocks
blockDim.x = 5

Grid of Blocks
gridDim.x = 3

threadIdx.x

of Thread Idx
global Identi�er

Figure 2.13. Distribution of the threads inside the cuda grid.

Figure 2.14. CUDA features that depend on the capability

of the GPU device.

which defines the number of threads and how they are distributed and
grouped, must be built into the main code (threads are grouped in thread
blocks). The total number of threads launched in a kernel by means of
thread blocks can exceed the number of physical cores. At runtime, the
kernel distributes all the thread blocks among SMs. Each SM can host up

2.6. GPU and CUDA 35

to 8 or 16 thread blocks depending on the CUDA capability. If there is
more blocks than GPU resources can host, these blocks wait until other
blocks finish in order to be hosted later. Grouping on thread blocks allows
to distribute multiple threads among SMs, however each SM manages all
the thread blocks jointly, and executes all the threads (regardless of the
block they belong to) in groups of 32 parallel threads called warps that get
scheduled by warp schedulers for execution.

It is important to have multiple warps in SMs, since it allows to hide
latency. This means that, in case all threads of a warp must carry out
a memory access whose access time lasts several clock cycles, the warp
schedulers select other warp that is ready to execute in order to hide latency.
The warp schedulers are responsible to switch among different warps in
order to try full utilization of SMs. Depending on the CUDA capability, a
GPU will have 1, 2 or 4 warp schedulers per SM.

2.6.1 Streams on GPU

Streams are virtual work queues on the GPU. They are used for asyn-
chronous operation (i.e, the control of the program returns to the CPU
immediately). Operations assigned to the same stream are executed in
order and sequentially. Multiple streams can be defined on CUDA pro-
gramming; however, up to 32 streams are available to be independently
run on the GPU thanks to the Hyper-Q technology that is presented in
hardware with 3.5 capability [39].

Different streams may execute their assigned operations out of order
with respect to one another or concurrently. Thus, when a launched kernel
does not require all the GPU resources, these could be used for another
kernel that was launched from a different stream. Hence, streams allows
multiple kernels to be launched concurrently. Following this idea, data
transfer between CPU and GPU can also be overlapped with kernel com-
putations and other transfers whenever they are carried out in different
streams. If the data transfers are not assigned to any stream queue, they
are executed synchronously and in an isolated way,(i.e. the CPU waits
until all the previous operations have finished). GPU kernels are always
launched asynchronously by the CPU (regardless of whether or not they
are scheduled on a stream queue or not). Thus, data transfers are usually
used as a synchronization barrier.

36 Preliminaries and Tools

Although the streams appeared as a CUDA feature in devices with
compute capability 1.3, their computational efficiency in the GPU imple-
mentations has been uncertain. In fact, most of the implementations did
not use it, since there was an overhead time in configuring the streams that
penalized the performance. It was not till the apparition of compute capa-
bility 3.5 when the streams began to play an important role in the CUDA
implementations.

2.6.2 Multi-GPU programming with multicore

One of the standards that allows for multicore processing is openMP [40].
This standard works by using a fork/join pattern, that is, parallel regions
are specified by the programmer. The CPU code runs sequentially and
at some point hits a section where work can be distributed into several
processors that perform the computations (CPU core spans several CPU
threads). Afterwards, when all the computations are completed, all the
CPU threads converge to a single thread again, which is called the master
thread.

If a machine has a multicore processor and several GPUs, the paral-
lelization can be achieved by defining a number of threads in the parallel
region equal to the number of GPUs. In this sense, each CPU thread deals
with a GPU. This is very important since a CPU thread is bound with a
GPU context. Thus, all subsequent CUDA calls (e.g. cudaMalloc) allocate
memory only in its corresponding GPU context [39].

Recent CUDA releases (beyond 2.x capability and CUDA SDK 4.x)
allow the time employed in data transfers among GPUs to be reduced
by using the UVA (Unified Virtual Addressing) feature. That means that
inter-GPU communication (peer-to-peer, P2P) can also be performed with-
out routing the data through the CPU, saving PCI-E bandwidth. Before
the appearance of these recent features, communication among GPUs had
to be carried out through memory space in the CPU, as shown in Fig. 2.15.

2.7 Tools used for the development of the thesis

These are the features of the different Nvidia GPU and multi-core architec-
tures devices together with their specifications that are used for performing

2.7. Tools used for the development of the thesis 37

PCI-E

GPU 0
Communication

through
CPU memory

space
GPU 1

CPU
Memory
space

PCI-E

GPU 0

GPU 1

Memory
space
CPU

Peer-to-Peer
Communication

Figure 2.15. The UVA feature reduces data-transfer time

among GPUs by using peer-to-peer communication (bottom).

all the implementations in this dissertation:

Parallel Multi-core computer: Golub

• CPU: Intel multi-core (4 physical cores).

• Operative System: Linux.

• GPU: Nvidia Quadro FX 5800

• Compute Capability: 1.3

• Cuda SDK: 2.3

• Architecture: Tesla

• Number of cores: 30 (SM) x 8 cores = 240 cores.

Parallel Multi-core computer: EleanorRigby

• CPU: Intel i7 processor.

38 Preliminaries and Tools

• Operative System: Linux.

• GPU: Tesla C2070.

• Compute Capability: 2.0

• Cuda SDK: 2.3

• Architecture: Fermi

• Number of cores: 14 (SM) x 32 cores = 448 cores.

Parallel Multi-core computer: Notebook

• CPU: Intel i7 processor.

• Operative System: Windows (Visual Studio 2008).

• GPU: GTS 360M.

• Compute Capability: 1.2

• Cuda SDK: 3.0

• Architecture: Tesla

• Number of cores: 12 (SM) x 8 cores = 96 cores.

Parallel Multi-core computer: SalaWFS

• CPU: Intel i7 processor.

• Operative System: Windows (Visual Studio 2010).

• GPU: GTX-590.

• Compute Capability: 2.0

• Cuda SDK: 4.0

• Architecture: Fermi

• Number of cores: 16 (SM) x 32 cores = 512 cores.

Parallel Multi-core computer: GpuDSIC

• CPU: Intel multi-core.

• Operative System: Linux.

• GPU1: K20c.

2.7. Tools used for the development of the thesis 39

• GPU2: K20c.

• Compute Capability: 3.0

• Cuda SDK: 5.0

• Architecture: Kepler

• Number of cores: 13 (SM) x 192 cores = 2496 cores.

Parallel Multi-core computer: Turbotron

• CPU: Two SMPs (Symmetric Multi-Processing) Intel Xeon CPU
X5680 (Two hexacores).

• Operative System: Linux.

• GPU: GTX-690 (internally, this device is composed of two GPUs).

• Compute Capability: 3.0

• Cuda SDK: 5.0

• Architecture: Kepler

• Number of cores: 8 (SM) x 192 cores = 1536 cores.

2.7.1 ASIO protocol

An important feature to develop audio applications is how to communicate
the computer with the audio card that capture and reproduce the audio
signals. To this end, we employ throughout this dissertation the ASIO
protocol.

Audio Stream Input/Output (ASIO) is a computer sound card driver
protocol for digital audio specified by Steinberg [41], providing a low-latency
and high fidelity interface between a software application and the sound
card of the computer. ASIO allows musicians and sound engineers to access
external hardware directly.

Steinberg developed a SDK that can be freely downloaded from the
web site of his company, as shown in Fig. 2.16. This SDK allows to develop
multichannel applications that manipulate output and input audio buffers
of any audio card that works with ASIO drivers.

However, not all the personal computers use ASIO drivers. In fact,
Windows uses its own protocol to communicate applications with the com-
puter audio card. To solve this limitation, there are specific drivers called

40 Preliminaries and Tools

Figure 2.16. http://www.steinberg.net/en/company/developer.html

ASIO4ALL [42] that work as an intermediate layer between the program-
mer and the proprietary protocol of the operative system.

ASIO specifications work with four audio buffers, two input buffers (A
and B) and two output buffers (A and B). Input buffers are related to
microphones whereas output buffers with the loudspeakers. This allows to
the programmer to write in a output buffer A and/or read from input buffer
A, while audio card reproduces what it was previously written in output B
and/or captures new audio samples that are stored in input buffer B. After
an elapsed time, the audio card interrupts and exchanges the two buffers
A for two buffers B, and so on.

State-of-the-Art 3

42 State-of-the-Art

State-of-the-Art 3
As described in chapter 1, among the effects that are related to participate
in the immersive audio schemes, we have dealt in this dissertation with:
the generalized crosstalk cancelation and equalization that requires to per-
form massive filtering; the rendering of spatial audio both with headphones
and with loudspeakers; and sound source localization. In all cases, high
computational needs are required, since multichannel audio involves the
processing of multiple sources, channels, or filters, sometimes in real time.
The following sections overview the state-of-the-art of these effects and how
they have been computed up to now.

3.1 Generalized crosstalk cancellation and equaliza-

tion (GCCE)

Many applications such as computer gaming and multi-party teleconfer-
encing make use of spatial audio systems over the IP networks [2]. The
participants of this applications need to differentiate competing sounds or
voices, but as Huang noted in [6]: “wearing a tethered headphone to enjoy
spatial audio is anyway inconvenient and undesirable, if not cumbersome”.
Here arises the challenge of the reproduction of binaural audio without the

44 State-of-the-Art

use of headphones. However, this is not straightforward, since binaural sig-
nals are distorted by room reverberation when arriving at the listener’s two
ears, which leads to the need for a generalized crosstalk cancellation and
equalization (GCCE). This concept was introduced by Atal and Schroeder
[43] and Bauer [44] in the early 1960’s. Since then, sophisticated algo-
rithms have been proposed, using two or more loudspeakers for rendering
the binaural sounds. Most of these algorithms are based on least-squares
techniques [45] [46]. One of the recent research where crosstalk cancelation
takes an important role is in the format for future TV broadcasting, where
it is being analyzed the Binaural Reproduction of 22.2 Multichannel Sound
over Frontal Loudspeakers [47].

Up to now, most of the implementations of crosstalk cancelations were
carried out with few number of loudspeaker, since the required computa-
tional capacity increased as the number of sources and loudspeakers in-
crease [48] [49]. The use of the GPU as co-processor that carries out all
audio processing is a challenge that is addressed in this dissertation. To
audio engineers, it is important to know how the GPU can deal with the
audio samples, and how the required operations can be parallelized in order
to obtain maximum utilization of the GPU computational resources. Up to
date, there are some publications that focus on the convolution operation
and implement it on GPU, but none of them combines the result of multiple
real-time convolutions.

Cowan and Kapralos were apparently the first ones to implement a
convolution algorithm on GPU using the OpenGL shading language [50] in
[51], but they do not take into account the time spent in data transfer GPU
⇔ CPU, which can be critical in a real-time application. The convolution
algorithm shown in [52] has the feature of reducing the latency of the sys-
tem. This is achieved by subdividing the filters into several subfilters of
equal length. Their GPU-implementation is able to convolve 352 channels
with filters of 44100 coefficients in a time of 10.53 ms. Moreover, the study
of [53] reveals that at a buffer size of 1024 samples, the maximum length
for a single channel FFT on a GPU was around 4 million samples. The
last two references offer excellent results for GPU performances; however,
neither of them goes into the analysis of GPU-parameters.

Chapter 4 presents a complete study that extrapolates the implemen-
tation of multiple convolutions to a GCCE application on a GPU attending
to different and common situations: the size of data buffers that are much

3.2. Headphone-base spatial audio 45

larger than the size of filters and the size of data buffers that are much
smaller than the size of filters.

3.2 Headphone-base spatial audio

There are other applications where spatial sound is required to be ren-
dered by using headphones, specially when somebody tries to be isolated
from outside. This common situation can occur for example during console
gaming in public transport such as busses, trains or also in airplanes.

Spatial sound by using headphones is also called binaural hearing, and
offers a number of important advantages over monaural hearing. This is due
to the fact that binaural hearing provides additional information, which is
encoded in the differences of the input signals to the two ears [54]. Among
other features, binaural sound allows to locate the position of a sound
source.

Powerful gaming effects require to use binaural sound to give more
realism to scene rendered by the 3D graphics and to transmit an immersive
feeling inside the game. Moreover, gaming in network is becoming popular
and communication among the participants is necessary to achieve the game
target. Binaural sound offers the possibility to focus attention to the ear
with a better signal-to-noise ratio [9] and thus, to understand better the
conversations among participants during gaming.

To synthesize a binaural sound from a simple mono recording, it is
necessary to use special filters that are known as Head-Related Transfer
Functions (HRTFs). The response of HRTFs describes how a sound wave is
affected by properties of the body shape of the individual (i.e., pinna, head,
shoulders, neck, and torso) before the sound reaches the listeners eardrum
[9]. Individualized HRTFs are traditionally obtained either through mea-
surements and extrapolations [55] or through numerical simulation [56].
Recently, in [57], Enzner presented a specific dynamical measurement based
on adaptive filtering that allows a quasi-continuous HRTF representation
to be obtained. A set of HRTFs of different spatial fixed positions configure
a HRTF database. There are multiple databases of HRTFs or HRIRs on
Internet such as, [58] or [59].

Spatial sound through HRTFs has also made use of GPUs. The first

46 State-of-the-Art

studies date from 2004. In [60], the use of the GPU for carrying out spatial
audio processing is studied. In [61], the GPU is used for delay, gain, air
absorption, and HRTF filtering in real-time auralization. An implementa-
tion using the OpenGL shading language [50] is presented in [62], where
the accuracy of the filtered spatial audio signal on GPU using HRTFs is
assessed. Until now, the related works have focused on evaluating the GPU
performance for different environments; however, none of the previous work
presented a real-time application whose audio processing is totally carried
out on a GPU.

Chapter 5 describes the designing and the implementation of a binaural
spatial sound application that runs on a notebook with the GPU GTS360M,
ideal for computing gaming in public transport. This application interacts
with a user who selects, changes, and moves the sound sources in real time.
The described application faces two common problems when we deal with
a HRTF database composed of a limited number of spatial fixed positions:
render sound sources at any position of the space and virtualize movements
of the sound sources.

3.3 Wave Field Synthesis

In the last decades, there has been increasing the interest in listening expe-
rience and more specifically in spatial audio rendering. One of the spatial
audio systems available today is the Wave Field Synthesis (WFS), where
sound field is synthesized in a wide area by means of arrays of loudspeakers,
which are referred to as secondary sources. WFS is usually implementing
discrete-time signal processing and is able to reproduce complex auditory
scenes consisting of multiple acoustic objects, which are generally denoted
as primary or virtual sources. WFS concept was introduced at the Delft
University of Technology around 80’s and 90’s decades. Berkhout carried
out first researchers in this field [63, 13], which were followed by different
dissertations such as [64, 65, 66, 67, 68].

One of the problems to put WFS in practise is related to the interac-
tion of the array with the listening room. The listening room introduces
new echoes that are not included in the signal to be reproduced, thus alter-
ing the synthesized sound-field and reducing the spatial effect. One block
that can be added to this system is a Room Compensation (RC) block.

3.4. Sound source localization 47

The purpose of this block is to minimize the undesirable interaction of the
array with the listening room. A common RC block is based on a multi-
channel inverse filter bank that corrects the room effects at selected points
within the listening area, such as those in [16] and [17]. This formula is
validated by [18], where it is presented meaningful improvements in the
acoustic field when a RC block is applied to a WFS system. However, the
application of this spatial audio system (WFS + RC) in real environments
(theaters, cinemas, etc.) requires a real-time solution which demands high
computational capacity.

Up to now, there were different researches that aimed to implement
a WFS system. In [69], it is presented a WFS implementation that ben-
efited of a time invariant preprocessing in order to reduce CPU load. In
[70], Theodoropoulos et al. propose a minimalistic processor architecture
adapted to WFS-based audio applications. They estimated that their sys-
tem could render in real time up to 32 acoustic sources when driving 64
loudspeakers. The same authors presented in [71] a WFS implementation
on different multi-core platforms, including a GPU-based implementation
that achieved more than 64 sources when driving 96 loudspeakers. They
concluded that GPUs are suitable to build inmersive-audio real-time sys-
tems.

None of the previous implementations has approached computationally
the problem of the interaction of the WFS with the listening room. Chapter
6 is devoted to design, implement and assess a spatial audio system of these
characteristics. The main feature of this implementation is that all audio
processing is carried out by a GPU.

3.4 Sound source localization

Microphone arrays are commonly employed in many signal processing tasks,
such as speech enhancement, acoustic echo cancellation or sound source
separation [72]. The localization of broadband sound sources under high
noise and reverberation is another challenging task in multichannel signal
processing, making it being a very active research topic for applications
in human-computer interfaces, teleconferencing or robot artificial audition.
Algorithms for sound source localization can be broadly divided into indi-
rect and direct approaches [7]. Indirect approaches usually follow a two-step

48 State-of-the-Art

procedure: they first estimate the Time Difference Of Arrival (TDOA) [73]
between microphone pairs, and, afterwards, they estimate the source posi-
tion based on the geometry of the array and the estimated delays. On the
other hand, direct approaches perform TDOA estimation and source local-
ization in one single step by scanning a set of candidate source locations
and selecting the most likely position as an estimate of the real source loca-
tion. Although the computation of TDOAs usually requires time synchro-
nization, new approaches are being developed to avoid this limitation [74].
Most localization algorithms are based on Generalized Cross-Correlation
(GCC) [75], which calculates the cross-correlation function of the received
signals by using the inverse Fourier transform of the cross-power spectral
density of the signals, which is suitably weighted.

The Steered Response Power - Phase Transform (SRP-PHAT) algo-
rithm is a direct approach that has been shown to be very robust in ad-
verse acoustic environments [19]. The algorithm is usually interpreted as a
beamforming-based approach that searches for the candidate position that
maximizes the output of a steered delay-and-sum beamformer. Since lo-
calization accuracy can be improved by using high-resolution spatial grids
and a high number of microphones, accurate acoustic localization systems
require high computational power.

The use of GPUs for implementing sound source localization algorithms
has also recently been tackled in the literature. The time performances of
different localization algorithms implemented on GPU were reported in [76]
and [77]. In fact, although different implementations of the SRP-PHAT in
the time-domain and frequency-domain are analyzed in [76], their results
mainly focus on pure computational issues and do not discuss how local-
ization performance is affected by using different numbers of microphones
or a finer spatial grid.

Chapter 7 is aimed at demonstrating how localization systems using a
high number of microphones distributed within a room can perform real-
time sound source localization in adverse environments by using GPU mas-
sive computation resources. We discuss how massive signal processing for
sound source localization can be efficiently performed by Multi-GPU sys-
tems, analyzing different performance aspects on a set of simulated acoustic
environments.

3.5. GPU computing in other research inside audio field 49

3.5 GPU computing in other research inside audio

field

GPU computing has already been applied to different problems in acoustics
and audio processing. Excellent survey on audio-related topics that can be
performed on GPU have been presented earlier by Tsingos in [32]. Studies
of computing room acoustics were carried out by Webb and Bilbao in [78],
Savioja in [79], Southern in [80], and Hamilton in [81] as well as geomet-
ric acoustic modeling like ray-tracing [82] [83]. Computer-music synthesis
using additive synthesis and sliding phase vocoder was developed on GPU
in [84] and in [85], respectively. Parallel implementations of beamforming
design and filtering using GPUs were also presented in [86].

3.6 Conclusion

As can be appreciated in this chapter, we have reviewed different effects
that are related to the immersive audio schemes. The impact of these effects
within the audio schemes can increase meaningfully when they are brought
to the multichannel field and can be also performed in real time. The com-
putational development of the GPUs has opened a new paradigm where
the massive required processing by multichannel field effects can be carried
out by the GPU. The present dissertation aims to implement applications
that make use of these effects in order to assess their performances. These
performance results will be helpful to audio engineers that will be able to
know which are the limits of these applications. Moreover, detailed infor-
mation about GPU implementation can be extracted from this dissertation
that can be used in applications that use similar audio processing.

50 State-of-the-Art

Massive Multichannel Filtering 4

52 Massive Multichannel Filtering

Massive Multichannel Filtering 4
This chapter describes GPU-based implementations of massive multichan-
nel filtering whose filters present a Finite Impulse Response (FIR). The
chapter describes firstly the implementation of a single convolution on a
GPU, then this implementation is extrapolated to carry out multiple convo-
lutions. Finally, it is presented an application that requires a large number
of concurrent convolutions: generalized crosstalk cancellation and equal-
ization. Two common situations are properly managed in this application:
size of buffers that are much larger than the size of the filters and size of
buffers that are much smaller than the size of the filters.

4.1 Convolution

The key operation in a multichannel filtering block is the convolution.
Together with CUDA technology, Nvidia made available to the GPU de-
velopers a Nvidia GPU Computing SDK (Software development kit) [20].
First approaches to develop the convolution on the GPU were taken from
the CUDA 2.3 SDK release (in 2010). This SDK collected different cuda
projects that could be taken as examples for the GPU developers. Among
them, there was an example of convolution. This example made use of the

54 Massive Multichannel Filtering

CUFFT library [87] to carry out the FFT of two vectors, which were after-
wards element-wise multiplied. Finally, CUFFT library was used again to
carry out the iFFT of the resulting vector of the element-wise multiplica-
tion.

However, the implementation in the SDK has large-scale limitations.
The convolution is applied to the whole signal. Thus, it requires that the
whole signal and the filter are first sent to the GPU, and after the convolu-
tion, the whole output signal is also transferred back to the CPU. From the
signal processing point of view, this implementation prevents to carry out
a real-time application. In fact, the length of the signal to convolve is not
known most of the times. Besides, from an audio perspective, the latency
of the system increases meaningfully, since the output signal begins to be
reproduced after the convolution operation which can take several seconds.

First contribution of this thesis consists of developing a real-time con-
volution on the GPU. This main advantage of this implementation is that
the reproduction of the convolved signal can start without having to wait
for the processing of the whole signal. To this end, and attending to the
mentioned in Section 2.3.5, we use the described technique in Section 2.3.4:
Overlap-save. This first development aims to demonstrating that GPUs
are valid for real-time audio applications.

First step in this implementation consisted in configuring a matrix of
samples that is denoted in the following as S. This matrix is composed
of signal blocks that arise from the overlap-save technique. Figure 4.1
illustrates how matrix S is configured from signal blocks, where xi are
the overlap-save blocks of size lo that are obtained from signal x. The
convolution is carried out between signal x and a filter h whose size is lh
(lh � lo). In this implementation, the number of rows of matrix S in the
system is fixed to P . Previous to the processing, the filter h is transferred to
the GPU and its length is zero-padded to lo, then, the filter h is replicated P
times in the memory in order to configure a matrix H. Thus, convolution
operation is now reduced to an element-wise multiplication between the
matrices S and H. This design aims to parallelizing the largest number of
operations.

The GPU-based implementation uses firstly the CUFFT Nvidia FFT
library that allows to execute multiple FFTs in one dimension at the same
time. Therefore, it is possible to compute P FFTs concurrently. Thus,
matrices S and H are converted in two matrices composed of complex

4.1. Convolution 55

Matrix S

P

x
Zero

Padding

lh -1lh -1 lh -1 lh -1

lo
lo

lo

lh -1 lh -1

x 0
x2

x1

x 0

x 1

x 2

x 3

xP-1

Figure 4.1. Matrix S is built from signal blocks.

numbers. All the operations in matrix H are performed previous to the
real-time processing, which can be summarized in:

1. Configuration of matrix S.

2. Transfer of matrix S from CPU to GPU.

3. A FFT is applied to each row of the matrix S.

4. A CUDA kernel element-wise multiplies matrices S and H. To this
end, we launch a CUDA kernel composed of lo · P threads and each
thread perfoms a simple complex multiplication (see CUDA kernel
1). The result of the multiplication is stored again in S. Figure 4.2
illustrates these operations.

5. An iFFT is applied to each row of the matrix S.

6. Transfer of matrix S GPU to CPU.

7. Output signals are built by discarding first lh−1 samples of each row
of the matrix S, as overlap-save technique indicates in Section 2.3.4.

56 Massive Multichannel Filtering

CUDA Kernel 1

In CUDA Kernel 1, it must be pointed out that number of blocks launched
in this kernel is lo

128 ×
P
2 × M , being BlockDim.x=128 and BlockDim.y=2.

CUDA Kernel 1 Element-wise multiplication

Input: H,S, lo
Output: S

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: // Global Thread -> Idx;

4: int idx = Row * lo + Col;

5: // Complex Multiplication between two complex elements

6: S[idx] = ComplexMultiplication(S[idx],H[idx]);

7: // Scaling the multiplication

8: S[idx] = ComplexScale(S[idx], 1/lo);

In order to perform the implementation we use the Golub machine (see
Section 2.7) which includes an Nvidia Quadro FX 5800 and, one of the
first CUDA devices. The described implementation is compared with the
implementation proposed in the Nvidia SDK by using a signal x composed
of 176400 samples, and a filter h composed of 220 coefficients. Parameters
P and lo where set to 32 and 512, respectively. This implementation is
approximately twice faster than the proposed implementation of the Nvidia
SDK. More details can be found in [88]

4.1.1 Pipelined algorithm in a multichannel system

Extending this first implementation to a multichannel system is achieved
by sharing the rows of the matrices S and H. Figure 4.3 shows how overlap-
save blocks of four different signals are filtered by two different filters.

The CUDA 2.3 SDK release introduced the concurrent copy and exe-
cution property that allows apparently to overlap memory transfers with
the computational operations that were carried out by the CUDA kernel.
This property introduced the CUDA concept of streams (see Section 2.6.1)
that allows to execute different task in parallel. The use of streams in the
implementation implies to use asynchronous operations Thus, it was de-
veloped a new GPU-based implementation following a four-stage pipelined

4.1. Convolution 57

Matrix S

P

Matrix S

Matrix H Matrix H

Zero-padding

P

P FFTs
are applied

Time-domain Frequency-domain

P FFTs
are applied

Element-wise
Multiplication

lh -1 lh -1

lh

x 0

x 1

x 2

x 3

xP-1

Figure 4.2. P FFTs are applied to matrices S and H. After-

wards, both matrices are element-wise multiplied.

model. This implementation is based on the following points:

1. Matrix H is configured and sent to the GPU.

2. First matrix S is configured and is referenced as the matrix A-S.

3. Using asynchronous transfer, while A-S is transferred to the GPU by
stream 1, another matrix, B-S is built simultaneously by stream 2.

58 Massive Multichannel Filtering

Matrix S Matrix H

Signal 1

Signal 2

Signal 3

Signal 4

Filter 1

Filter 2

Figure 4.3. Matrices S is composed of samples of four differ-

ent signals, and H is composed of coefficients of two different

filters.

4. Stream 1 executes the CUDA kernel 1 that element-wise multiplies
between the matrices H and A-S, while matrix B-S is transferred
from CPU to GPU by stream 2, and a new matrix C-S is built by
stream 3.

5. Finally, a new matrix D-S is built by stream 4, while matrix C-S
is transferred from CPU to GPU by stream 3, execution in GPU is
carried out on matrix B-S by stream 2, and matrix A-S is transferred
back to CPU by stream 1.

6. Once matrix A-S is received on the CPU, the outputs of the signals
are computed by discarding the first samples of each one of the rows,
as overlap-save technique indicates in Section 2.3.4. Afterwards, the
memory positions that allocated the matrix A-S are used again.

Thus, the four matrices S (A, B, C and D) are being used cyclically.
Figure 4.4 shows all the stages with the time required by each of them.
The test setup is the same as in the previous section: a signal x composed
of 176400 samples, a filter h composed of 220 coefficients, and the Golub
machine. It must be pointed out that the block called “Rebuilding Signals”
represents the last step in the previous enumeration and begins once the
whole matrix S is back to CPU, in order to avoid race conditions. Thus,
both operations are in the same step of the implementation.

Configuring both matrices (S and H) with lo=512 columns, and P=32
rows, the number of audio samples per row is 293 (512-220+1). If we use

4.1. Convolution 59

this model for performing a real-time system with a sample rate fs=44.1
kHz, the tbuff = 293

44.1 = 6.6 ms. Figure 4.4 indicates that the time tproc =
9.37 ms. This number comes from the sum of all the steps executed by one
stream taking into account some conflicts among adjacent streams when
more than a transfer between CPU and GPU exists simultaneously, as it
was documented in [89] for the release CUDA 2.3 .

configuration
Matrix H

Transfer H
CPU GPU

Transfer
CPU GPU

buffer

configuration
Matrix S

configuration
Matrix H

Execution
in GPU
buffer

Transfer
GPU CPU

buffer

Transfer H
CPU GPU

Rebuilding
Signals

0.055 ms

0.083 ms

0.052 ms

2.792 ms

0.083 ms

0.167 ms

0.083 ms

2.669 ms

Execution
in GPU

CUFFT of H

Different
Stages Time

Stream 0

9.37 ms

Ti
m

e

configuration
matrix A-S

Transfer A-S
CPU GPU
Execution in

GPU A-S

Stream 1

Transfer A-S
CPU GPU

+
Rebuilding

Signals
configuration

matrix A-S
Transfer A-S
CPU GPU
Execution in

GPU A-S
Transfer A-S
CPU GPU

+
Rebuilding

Signals

configuration
matrix B-S

Transfer B-S
CPU GPU
Execution in

GPU B-S

Stream 2

Transfer B-S
CPU GPU

+
Rebuilding

Signals
configuration
matrix B-S

Transfer B-S
CPU GPU
Execution in

GPU B-S

configuration
matrix C-S

Transfer C-S
CPU GPU
Execution in

GPU C-S

Stream 3

Transfer C-S
CPU GPU

+
Rebuilding

Signals
configuration
matrix C-S

Transfer C-S
CPU GPU

configuration
matrix D-S

Transfer D-S
CPU GPU
Execution in

GPU D-S

Stream 4

Transfer D-S
CPU GPU

+
Rebuilding

Signals
configuration
matrix D-S

Transfer D-S
CPU GPU

Figure 4.4. Four matrices are needed in order to carry out a

pipelined algorithm.

If one row of the S were dedicated to one signal, then the executing time
of 9.37 ms would be larger than the filling buffer time of 6.6 ms and thus
the application would not work properly in real time. In this case, some
of the incoming samples would not be processed because the matrix A-S
(Fig. 4.4) would not be available to be filled of samples. Table 4.1 shows
that this GPU implementation allows managing up to 16 audio channels
simultaneously using a matrix S with a size of 32× 512. More details can
be found in [90] and [91].

60 Massive Multichannel Filtering

Table 4.1. Number of possible audio channels in the applica-

tion using a matrix S with a size of 32× 512

Number of Occupacy of rows tbuff Use of GPU Availability

channels per channel (ms) (%)

1 32 212.6 4.4% Yes

2 16 106.3 8.8% Yes

4 8 53.15 17.6% Yes

8 4 26.9 35.2% Yes

16 2 13.2 70.5% Yes

32 1 6.6 141% No

4.2 Crosstalk Cancellation using a stereo signal

An improved implementation of the convolution on GPU was afterwards
developed to carry out not only multiple convolution, but also, to combine
them. This section presents a real application where multiple convolutions
are used, and that runs in a GPU of a notebook computer. This application
consists in a Crosstalk Cancellation of a stereo signal. The purpose of
this implementation is to know if a GPU can be used as a co-processor
that carries out all the audio processing. This is important, since the
CPU resources would be released and used for other tasks when an audio
application is running.

4.2.1 Definition of the problem

The general approach to a 3-D audio system is to reconstruct the acoustic
pressures in the listener’s ears that would result from the natural listening
situation. To accomplish this by using loudspeakers requires: 1) the ear
signals corresponding to the target scene are synthesized by appropriately
encoding directional cues (a process known as binaural synthesis), and 2)
these signals are delivered to the listener by inverting the transmission paths
that exist from the speakers to the listener (a process known as crosstalk
cancellation).

In a stereo system, the listener receives contributions to each ear from
both loudspeakers. Cross terms (hRL, hLR denote the impulse response of

4.2. Crosstalk Cancellation using a stereo signal 61

the crossed paths in Fig. 4.5) prevent virtual sound sources to be located
spatially and degrade the perception of speech by Haas Effect [92]. In order
to eliminate the cross contributions, a net of crosstalk cancelation as in [93]
is designed. To implement this net, four filters denoted as fLL, fLR, fRL and
fRR are computed using the fast deconvolution method with regularization,
[94]. These filters are used in order to correct the effect that produce the
cross paths hRL and hLR. Equation 4.1 shows the sound that comes to the

hLR hRL

hLL hRR

xL

Source Left Source Right

Left
Ear

fLL

xR

fRR
fRLfLR

Left
Loudspeaker

yL yR

Right
Ear

Right
Loudspeaker

Figure 4.5. Crosstalk canceller filters.

left ear, where xL and xR corresponds to the rendered signals, and hLL and
hRR are the direct paths. Figure 4.5 clarifies the rol of each variable:

Left ear⇒ (xL ∗fLL+xR ∗fRL)∗hLL+ (xL ∗fLR+xR ∗fRR)∗hRL. (4.1)

We can also write the previous equation in terms of the sound source as:

Left ear⇒ xL∗(fLL∗hLL+fRL∗hRL)+xR∗(fRL∗hLL+fRR∗hRL). (4.2)

62 Massive Multichannel Filtering

Figure 4.6. Measurement of the transmission path filters.

Considering the previous equations, the designed filters fRL, fLL, fRR, and
fLR must fulfill the following equations:

fLL ∗ hLL + fLR ∗ hRL = 1, (4.3)

fRL ∗ hLL + fRR ∗ hRL = 0. (4.4)

The previous analysis is analogously carried out for the right ear. In
the experiments, the coefficients values of hRR, hLL, hRL, and hLR were
measured using a dummy with microphones in both ears and computed
through MLS algorithm [95], as shown in Fig. 4.6. Afterwards, by using an
impulse response as input signal, we have simulated the acquired signal by
the microphone in the left ear in two situations: 1) The direct path (signal
goes through filters fLL and fRL), and 2) the cross path (signal goes through
filters fLR and fRR). Figure 4.7 shows how the contributions of the direct
path achieve a signal level around 1 dB, whereas the contributions of the
cross path hardly achieve 0.016 dB. The designed technique is sensitive
to the location of the listener because filters do not change in the actual
implementation. So, in order to sense the binaural sound, the listener must
be located as the dummy in Fig. 4.6.

4.2. Crosstalk Cancellation using a stereo signal 63

0 500 1000 1500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(ms)

1) Acquired signal in direct path direct

Amplitude
(dB)

0 500 1000 1500
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
2) Acquired signal in the cross path

Amplitude
(dB)

(ms)

Figure 4.7. Acquired signals in the left ear: 1) only direct

path (signal goes through filters fLL and fRL), and 2) only

the cross path (signal goes through filters fLR and fRR).

4.2.2 GPU Implementation

The multichannel reproduction system generates the signals yL and yR that
are reproduced through the loudspeakers. These signals are the sum of two
convolutions that have to be carried out in real time. Equation 4.5 shows

64 Massive Multichannel Filtering

the operations to implement on the GPU.

yL = fRL ∗ xR + fLL ∗ xL,
yR = fRR ∗ xR + fLR ∗ xL. (4.5)

The convolution operation is computed using the overlap-save technique
using overlap-save blocks of size lo. Thus, three kinds of operations are
carried out on GPU: FFT and iFFT transformations (computed by library
CUFFT [20] from NVIDIA), an element-wise multiplication of different
vectors, and a vector sum. The last two operations are performed by the
following CUDA kernels.

CUDA Kernel 2

In comparison with the previous implementations, we do not configure a
matrix H, i.e., filter coefficients are not any more replicated. We opt in this
implementation for using the shared-memory whose access time is around
10 times less than the access time to global-memory. To this end, filters
must be transferred first from CPU to GPU, then transferred from global-
memory to shared-memory. Matrix S is set to use 16 overlap-save blocks
(8 overlap-save blocks per signal).

The operations to carry out by CUDA kernel 2 consists of element-
wise-multiplying all the rows of the matrix S by its corresponding filters.
The results are stored in different memory positions that configure a matrix
with twice the size of S, denoted in CUDA kernel 2 as Sres. Matrix F in
CUDA kernel 2 is composed of 4 rows and lo columns, and stores the four
filters in the frequency domain FLL, FLR, FRL, and FRR.

The shared-memory allows that the same coefficient values can be used
by different CUDA threads that belong to the same block of threads.
Hence, this GPU implementation requires to set the CUDA parameters
BlockDim.x and BlockDim.y to 32 and 8, respectively. Thus, the number
of blocks that are launched is: lo

32 ×
16·2

8 , in a 2-D cuda grid. Figure 4.8
clarifies the setting of cuda parameters and how the threads of the different
blocks interact with matrices H and S in order to configure Matrix Sres,
which contains samples of the four convolutions.

4.2. Crosstalk Cancellation using a stereo signal 65

CUDA Kernel 2

CUDA Kernel 2 Element-wise multiplication with shared-memory

Input: F, S, lo
Output: Sres

1: __shared__ Complex Fs[32];

2: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

3: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

4: // Global Identification -> Idx

5: int idx = Row * lo + Col;

6: // Identification for accessing matrix S

7: int idxMod = idx & (16 * lo-1);;

8: // Filters to shared memory;

9: if(ThreadIdx.y== 0)

10: Fs[ThreadIdx.x] = F[Col + lo*BlockIdx.y];

11: end if

12: __syncthreads();

13: // Complex Multiplication between two complex elements

14: Sres[idx] = ComplexMult(S[idxMod],Fs[ThreadIdx.x]);

15: // Scaling the multiplication

16: Sres[idx] = ComplexScale(Sres[idx], 1/lo);

Last step of the implementation consists of carrying out the sums of
(4.5). To this end, it is launched CUDA kernel 3. This kernel has the
same settings regarding CUDA parameters, but with the half of threads,
in comparison with CUDA kernel 2. Thus, the number of blocks that are
launched is: lo

32 ×
16
8 , in a 2-D grid.

CUDA Kernel 3

CUDA Kernel 3 Element-wise Sum
Input: Sres

Output: Sres

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = 2 * BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: // Global Identification -> Idx

4: int idx = Row * lo + Col;

5: // Complex Multiplication between two complex elements

6: Sres[idx] = ComplexSum(Sres[idx],Sres[idx + 8*lo]);

66 Massive Multichannel Filtering

global-memory

FRL

FLR

XR

blockDim.x=32

blockDim.y=8

XL

FRR

FLL

XR x FRL

XL x FLL

global-memory

XR x FRR

XL x FLR

Matrix S

shared-memory
Matrix F

Matrix Sres

8

8

8

8

Figure 4.8. Matrices S, F, Sres used in CUDA kernel 2 and

CUDA kernel 3.

4.2.3 Test system and Results

The test system is a notebook Intel Core i7 running at 1.60 GHz with a GPU
Geforce GTS360M with 1.2 capability. The experiment that is performed
implements a crosstalk cancellation of two individual wav files (voice.wav
and piano.wav). The listener, situated at 90 cm from loudspeakers, per-
ceives in the left ear the voice signal and in the right ear the piano signal
without appreciable interference. The platform used to develop the soft-
ware is Microsoft Visual Studio 2008, joined to Steinberg’s ASIO interface
[41] for low-latency audio streaming. Figure 4.9 summarizes the real-time
operations of a crosstalk cancelation in an application that uses the CPU
and the GPU. To perform the GPU-based implementation, the algorithm
has also been developed on CPU. In this case, the same operations are car-
ried out sequentially. Our test consists in running both implementations
on the presented notebook, and observing the task Manager on Windows
operating system to see the % of resources that are being demanded by the

4.3. Multichannel massive audio processing for a GCCE application 67

voice.wav piano.wav
Signal matrix

CPUCPU GPUGPU

- FFT
- Element-wise Product
- Reduction
- iFFT

Signal matrix

Loudspeaker L Loudspeaker R

ASIO-Buffer

ASIO-Buffer

Figure 4.9. Required operations on a application that per-

forms a crosstalk cancelation by using the CPU and the GPU.

CPU during the application running. Figure 4.10 shows the task Manager
on Windows operating system in both cases: a) GPU-based implementa-
tion, and b) CPU-based implementation.

When all the processing is carried out on the CPU, the task Manager on
Windows operating system shows that up to a 20% of its capacity is used,
while the GPU-based implementation shows a percentage of use around
1%. It means that if a crosstalk application with only two signals is saving
20% of the CPU capacity, then in a theater, or maybe in a funfair where
more signals are required, the possible reduction in resources can be highly
significant. More details can be found in [96].

4.3 Multichannel massive audio processing for a GCCE

application

Previous section checked that the use of the GPU as a co-processor for
carrying out audio processing tasks has sense. In this section, we go a
step further and extrapolate the crosstalk cancellation using two signals
to a generalized crosstalk cancellation, which involves the processing of
multiple sources, channels, or filters.

68 Massive Multichannel Filtering

2
Audio Processing using GPUs

Figure 4.10. Task Manager on Windows operating system in

both cases: a) GPU-based implementation, and b) CPU-based

implementation.

4.3.1 Definition of the problem

One application, that is especially important in the context of multichan-
nel acoustic signal processing, is the reproduction of binaural audio without
the use of headphones. Generalized Crosstalk Cancellation and Equaliza-
tion (GCCE) plays an important role in this phenomenon by inverting the
transmission paths between loudspeakers and listeners. Assuming a repro-
duction scenario with Z listeners, each listener would receive contributions
from every loudspeaker at both ears. The aim of the GCCE is to create a
pair of desired signals that are not disturbed by these contributions at the
ears of the listeners. Figure 4.11 shows the placement of 2·Z desired signals,
one signal per ear (represented by dzR and dzL, z ∈ [0, Z − 1], L=Left ear
and R=Right ear) in a room. Let’s define M and N as the total number of
sources and loudspeakers, respectively, where xm is the m-th source, and
yn is the n-th loudspeaker signal.

An application example would be a scenario where there are several
people watching a movie in the same room and each of them is capable of

4.3. Multichannel massive audio processing for a GCCE application 69

Source 0

Loudspeakers

Source 1 Source 2 Source M-1

Crosstalk Canceler and Equalizer

x 0 x 1 x 2

d0L d0R d1L d (Z-1)Rd (Z-1)L

y 0 y 1 y 2 yN-1

d1R

xM-1

Figure 4.11. 2 · Z desired signals are set to each ear of Z

listeners in a room. Cross paths and room effects are canceled

by means of the use of the Crosstalk canceler and Equalizer

block.

listening to the audio in a different language without the use of headphones.
GCCE is mainly based on combining the output signals resulting from
convolution operations in such a way that a given special acoustic effect is
achieved. The block Crosstalk Canceler and Equalizer in Fig. 4.11 is a filter
bank with the structure shown in Fig. 4.12, where the filter implemented
between the m-th source and the n-th loudspeaker has an impulse response
given by fmn, with m = 0, . . . ,M − 1 and n = 0, . . . , N − 1. All operations
of the multichannel reproduction system are reflected in (4.6), where ∗
denotes the convolution operation.

yn =

M−1∑
m=0

(fmn ∗ xm). (4.6)

Moreover, parameter Ctot represents the number of filters involved in the
application. As there is a filtering path from every source to every loud-

70 Massive Multichannel Filtering

speaker, the number of filters implemented is Ctot = M ·N .

Source M-1

Loudspeaker 0

f (M-1)(N-1)fm(N-1)f 0(N-1)

x (M-1)

Source m
xm

Source 0
x 0

f (M-1)nfmnf0nf (M-1)0f m0f00

y
0 y

n y
(N-1)

Loudspeaker n Loudspeaker N-1

Figure 4.12. The signal at loudspeaker yn is composed of

a combination of all the sources xm filtered through their re-

spective fmn.

4.3.2 GPU data structure for efficient convolution

The most relevant operation in a Generalized Crosstalk Cancelation is con-
volution. For this application, we implement the convolution on GPU fo-
cusing on two different environments based on the size of the filter (lf
represents the size of the filter) and the size of the input-data buffer (L
represents the size of the input-data buffer). An implementation where the
size of the input-data buffer is much larger than the size of the filter (L �
lf) is described in Scheme 1 and is based on the the fragmentation of the
input-data buffer. On the other hand, Scheme 2 deals with the opposite
case, (L � lf) and is based on the fragmentation of the filter. The main
goal of fragmentation is to obtain the best performance from the resources
on the GPU, which maximally exploits the parallelism. Note that, although
both approaches are described independently here, the user does not have
to be aware of this issue since the system would choose the most efficient
one in a real application for the given task. The following subsections de-
scribe both schemes in the easiest situation, a simple convolution of one
source with one filter.

4.3. Multichannel massive audio processing for a GCCE application 71

Scheme 1: Fragmentation of the input-data buffer.

The implementation we present is based on the overlap-save technique [97].
A matrix S is configured using the samples within the input-data buffer.
Matrix S has P rows and lo columns. The value P indicates the number
of the overlap-save blocks that is configured from the L samples of the
input-buffer. The value lo is the size of the overlap-save blocks. In order to
exploit GPU resources, P must be properly selected; its value determines lo,
which also depends on L. The filter must have the same size as the overlap-
save blocks. Thus, the filter length will be zero-padded from lf to lo. In
this scheme, the filter is also considered to be a matrix, which we call F.
Hence, matrix F has 1 row and lo columns. The reason for configuring data
in a matrix structure is to allow the same operation to be executed with
different data portions and to allow data to be reused when an element-
wise multiplication is carried out between the overlap-save blocks and the
filter (Convolution Theorem, see Section 2.3.1). For this operation, matrix
S stays in global-memory and matrix F is moved to shared-memory on
GPU, since filter values are shared for all the overlap-save blocks during
the element-wise multiplication (see Fig. 4.13 (a)).

S matrix

 GPU

P

global-memory

shared-memory

 GPU

P

global-memory

shared-memory

L samples per input buffer L samples per output buffer

L samples per input buffer L samples per output buffer = L/P + (-1)

 = 2 L.

(a) (b)

P = /L

P is set in the application

F matrix

F matrix
S matrix

lo

lo

lo lf

lo

lo

lo
lf

Figure 4.13. (a) shows Scheme 1 where matrix S is located in

global-memory and matrix F in shared-memory ; (b) shows the

opposite case, Scheme 2 where matrix F is located in global-

memory and matrix S in shared-memory.

Scheme 2: Fragmentation of the filter.

This scheme occurs in applications where latency plays an important role
and the filter size is much larger than the size of input-data buffer. There-

72 Massive Multichannel Filtering

fore, it is necessary to split the filter into blocks in order to obtain a fast
system response. Fragmentation could be done uniformly as in [98] and
[99] or non-uniformly as in [100]. For this implementation, the filter is
uniformly fragmented into blocks whose size is the same as the size of the
input-data buffer. The sizes of the matrices of Scheme 1 change in Scheme

2. Matrix F now has P rows and lo columns, where P =
lf
L is the number of

fragments obtained from the filter and lo is twice the size of the input-buffer
lo = 2 · L, that is, each subfilter is zero-padded to length lo. In this case,
matrix S has one row and lo columns and contains samples of the current
input-data buffer and the previous one.

One of the operations of this algorithm refers to an element-wise mul-
tiplication in the frequency domain between all the fragments of the filter
and the input-data buffer. Matrix F stays in global-memory and matrix
S is moved to shared-memory for this operation since input samples are
shared for all the element-wise multiplications with the filter fragments
(see Fig. 4.13 (b)).

The way to partition the filter and convolve it with an input-data buffer
is developed in [52], where the convolution algorithm is detailed. They also
implement the algorithm on GPU apparently without using the resources
of the shared-memory and, they carry out the necessary FFTs on CPU.

4.3.3 GPU data structure for GCCE applications

This section analyzes and describes in detail the implementation of the two
schemes on GPU extrapolating to a multichannel system. In the case of
a GCCE application, tridimensional structures are used. The implementa-
tions are generalized for any value of sources M and loudspeakers N . In
order to make the configuration and the implementation on GPU more un-
derstandable, the figures presented throughout this section illustrate a mul-
tichannel application with M=4 sources, N=2 loudspeakers and, therefore,
Ctot=8 different filters. Thus, the output signals in the two loudspeakers
are:

y0 = f00 ∗ x0 + f10 ∗ x1 + f20 ∗ x2 + f30 ∗ x3, (4.7)

y1 = f01 ∗ x0 + f11 ∗ x1 + f21 ∗ x2 + f31 ∗ x3.

As in Section 4.3.2, we distinguish two schemes, but now the fragmenta-

4.3. Multichannel massive audio processing for a GCCE application 73

tion will be carried out in every input-data buffer (Scheme 1: Fragmentation
of multiple input-data buffers) and every filter (Scheme 2: Fragmentation
of multiple filters).

Scheme 1: Fragmentation of multiple input-data buffers.

Matrix S turns into a tridimensional matrix whose dimensions will be (P
× lo × M) for multichannel convolution, where overlap-save blocks from
the M input-data buffers are located in different layers, see Fig. 4.14 (a).
The matrix F also turns into a tridimensional structure whose dimensions
are (1 × N · lo × M). Filters f00 and f01 are placed on the same layer
because their respective operations refer to different outputs. In contrast,
filters f00, f10, f20, and f30 are located on different layers because they
take part in calculating the output y0. The same occurs with the output
y1. This can be checked in (4.7) and Fig. 4.14 (a).

X0F00

 GPU

X3F30

X1F10

F00
F01

F02
F03

F10
F11

F12
F13

X2F20

shared-memory

global-memory

P
X3F31

X2F21
X1F11

X0F01

x0

 GPU

x3

x1

f00
f10

f20
f30

f01
f11

f21
f31

x2M

global-memory

P

M

(a) (b)

lo lo

lo lo

lo lolo

Figure 4.14. (a) shows matrices S and F in GPU. Then,

frequency-domain transform and element-wise multiplication

are applied; (b) shows that the resulting matrix is stored at

the same memory position.

Following the overlap-save technique, the FFT of each overlap-save
block in matrix S must be carried out (Xm represents samples of xm in

74 Massive Multichannel Filtering

the frequency domain). The same occurs with the filters fmn, which are
transformed into Fmn in the frequency domain. There are some recent
publications about FFT in GPU as in [101], but the NVIDIA FFT library,
CUFFT [87], is used for our application. This GPU library allows multiple
one-dimesional FFTs to be obtained simultaneously. Thus, M · P FFTs
are calculated for each new input-data buffer while Ctot FFTs of filters
will be executed (one for each filter) only once at the beginning of the
algorithm. Two different CUDA kernels are launched to carry out the rest
of the algorithm.

CUDA Kernel 4

Once the data are in the frequency-domain, the placement of matrix F in
the shared-memory allows each overlap-save block to be simultaneously
element-wise multiplied by its corresponding filter. This CUDA kernel
launches M · P · N · lo threads. Each thread will only make a complex
multiplication between a value of matrix S and its corresponding complex-
component in matrix F. Each component of the filter is accessed P times,
while each component of an overlap-save block is accessed N times. The re-
sults of the multiplications are stored at different memory positions, which
are denoted as matrix Sres. Note that the BlockDim.y=BlockDim.z=1, and
the number of blocks launched in this CUDA kernel is lo·N

128 × P ×M , being
BlockDim.x=128.

CUDA Kernel 4 Element-wise multiplication with Matrix F to shared-memory

Input: F, S, lo, N

Output: Sres

1: __shared__ Complex Fs[128];

2: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

3: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

4: int High = BlockIdx.z * BlockDim.z + ThreadIdx.z;

5: // Global Identification -> Idx

6: int idx = High*P*N*lo + Row *lo*N + Col;

7: // Identification for accessing matrix S

8: int idxMod = idx & (lo-1);

9: idxMod = idxMod + Row*lo + High*P*N*lo;

10: // Filters to shared memory;

11: if(ThreadIdx.y== 0)

12: Fs[ThreadIdx.x] = F[Col + N*lo*High];

4.3. Multichannel massive audio processing for a GCCE application 75

13: end if

14: __syncthreads();

15: // Complex Multiplication between two complex elements

16: Sres[idx] = ComplexMult(S[idxMod],Fs[ThreadIdx.x]);

17: // Scaling the multiplication

18: Sres[idx] = ComplexScale(Sres[idx], 1/lo);

CUDA Kernel 5

The next step consists of adding up all the layers in order to calculate the
outputs in the frequency domain Yn according to the multichannel system
in (4.7). In this case, we use a bidimensional grid configuration where a
thread processes an output sample. Thus, P · N · lo threads are required
to sum the layers. Each thread will make M complex sums reducing all
the layers to one layer (see Fig. 4.15). The result matrix Sres has now two
dimensions: (P × N · lo). Note that the number of blocks launched in this
CUDA kernel is lo·N

128 × P , being BlockDim.x=128, as in CUDA kernel 4.

CUDA Kernel 5 Tridimensional Element-wise Sum
Input: Sres,M ,N ,lo
Output: Sres

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: // Global Identification -> Idx

4: int idx = Row*lo*N + Col;

5: // Complex Sum between two complex elements

6: for k = 1, . . . ,M − 1 do

7: Sres[idx] = ComplexSum(Sres[idx], Sres[idx + lo*k*P*N]);

8: end for

Finally, the CUFFT library is applied again N · P times in order to
obtain iFFT from all the output overlap-save blocks of all the outputs yn.
All the overlap-save blocks in the time domain are then sent back to the
CPU to be reproduced.

Scheme 2: Fragmentation of multiple filters.

In this scenario, the size of the input-data buffers is much smaller than
the size of filters. Hence, the filters fmn are split into P fragments (as

76 Massive Multichannel Filtering

X0F00

X3F30

X1F10
X2F20

M

Layer reduction to calculate
 the outputs

Y0 Y1

P
P

X0F01

X3F31

X1F11
X2F21

lo lo
lo lo

Figure 4.15. Addition of all the planes to obtain the different

outputs (in this case, Y0 and Y1).

in Scheme 2 of section 3), each of which has the same size as the input
buffers. As in Scheme 1, matrix F turns into a tridimensional matrix with
dimensions (P × N · lo × M). All the fragments that belong to the same
filter are placed within the same layer. The filters used for calculating the
same output yn remain in different layers. Matrix S configures another
tridimensional structure with dimensions (1 × lo × M). Figure 4.16 (a)
clarifies the setting of data on GPU.

In this scheme, M FFTs are carried out every time the input-data
buffers are transferred to GPU. At the beginning of the processing, N · P
FFTs are executed in matrix F only once. As in the previous scheme, two
different CUDA kernels are executed on GPU.

CUDA Kernel 6

Once the data are in the frequency-domain, the placement of matrix S in
the shared-memory allows every fragment in matrix F to be simultane-
ously element-wise multiplied by its corresponding input-data buffer, thus
obtaining a resulting matrix R with the same structure as matrix F. If
the processing in GPU is carried out on the v-th input-data buffer, the
resulting matrix R is called Rv (see Fig. 4.16 (b)). This matrix Rv must
be accumulated with the previous one, Rv−1, which was obtained from the
(v−1)-th input-data buffer. However, this element-wise sum is not straight-
forwardly carried out but depends on a parameter that we call PointOut
∈ [0, P − 1]. This parameter is a modular counter that increases incremen-
tally with each new input-data buffer. It indicates that the row 0 of Rv

4.3. Multichannel massive audio processing for a GCCE application 77

x0

 GPU

P

x3

x1

f00

f10
f20

f30

f01
f11

f21
f31

x2

M

global-memory

global-memory

X0F00

 GPU

X3F30

X1F10
X2F20

M

P
X3F31

X2F21
X1F11

X0F10

X0

X3

X1
X2

shared-memory

 (a) (b)

Rk matrixF matrix

lo

lo lo lo lo

lo

Figure 4.16. (a) shows matrices S and F in GPU. Then,

frequency-domain transform and element-wise multiplication

are applied; (b) shows that the resulting matrix Rv is stored

in a different memory position.

must be element-wise sum with the row PointOut of Rv−1, the row 1 of
Rv must be element-wise sum with the row PointOut+1 of Rv−1, and so
on (Fig. 4.17). For these operations, M · P ·N · L threads are used. Each
thread performs a complex multiplication between a value of matrix F and
its corresponding complex component in matrix S, and then accumulates
the result with the corresponding value in Rv−1. As a thread per sample
of every fragment is used, the same grid configuration as CUDA kernel 4
from Scheme 1 is applied.

CUDA Kernel 6 Element-wise multiplication with Matrix S to shared-memory

Input: F, S,lo,N ,P ,PointOut

Output: Rv

1: __shared__ Complex Ss[128];

2: Complex cReg;

3: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

4: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

5: int High = BlockIdx.z * BlockDim.z + ThreadIdx.z;

78 Massive Multichannel Filtering

6: // Global Identification -> Idx

7: int idx = High*P*N*lo + Row *lo*N + Col;

8: // Identification for accessing matrix Rv

9: int ColMod = Col & (lo-1);

10: int RowMod = (Row + PointOut)%P;

11: idxMod = idxMod + Row*lo + High*P*N*lo;

12: int idx_gl_RowMod = Col + RowMod*N*lo + High*N*lo*P;

13: // Matrix S to shared memory;

14: if(ThreadIdx.y== 0)

15: Ss[ThreadIdx.x] = S[ColMod + lo*High];

16: end if

17: __syncthreads();

18: // Complex Multiplication between two complex elements

19: cReg = ComplexMult(F[idx],Ss[ThreadIdx.x]);

20: cReg = ComplexScale(cReg,1/lo);

21: Rv[idx_gl_RowMod]=ComplexAdd(Rv[idx_gl_RowMod],cReg);

 GPU

PointOut

Element-wise sum

Rv matrix Rv-1 matrix

P

lo lo lo lo

Figure 4.17. Element-wise sum between Rv and Rv−1.

Row 0 of Rv is element-wise sum with the row indicated by

PointOut ; row 1 is element-wise sum with the row indicated

by PointOut+1 ; and so on.

CUDA Kernel 7

The next step consists of adding up all the layers; however, in this case,
only the values on the row indicated by PointOut are used. The resulting
vector is copied to other memory positions denoted as OV. This vector rep-
resents the output-data buffers in the frequency-domain. After the iFFTs
are applied, the outputs yn are obtained, and are sent back to the CPU.
The matrix Rv takes the role of matrix Rv−1 for the next input-data buffer.

4.3. Multichannel massive audio processing for a GCCE application 79

Nevertheless, to take this role, the row indicated by PointOut will be set
to 0 and the parameter PointOut will be increased incrementally after the
copy to OV from the matrix Rv. Figure 4.18 reflects all these operations.
This CUDA kernel launches N · lo threads. Each thread sums M complex
values, saves the result in OV, and sets its corresponding elements to 0 on
all layers of the row marked by PointOut. In this case, a unidimensional
grid configuration is used where there is one thread for each processing
sample. Note that the number of blocks launched in this CUDA kernel is
lo·N
128 × 1 × 1, being BlockDim.x=128, as previous CUDA kernels.

Y Y

OV

0 0 0 0 0 0 0 0 0 0 0 0 0
PointOut

PointOut

Rk matrix Rk matrix

 GPU

P

lo lo lo lo

lo lo

0 1

Figure 4.18. Copy of the row indicated by PointOut in Rv to

OV, which is later set to 0. PointOut increases incrementally

and gets prepared for the next input-data buffer.

CUDA Kernel 7 Special Tridimensional Element-wise Sum

Input: Rv, PointOut,M ,N ,lo,P

Output: OV

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int iCte = PointOut*lo*N;

3: // Complex Multiplication between two complex elements

4: for k = 0, . . . ,M − 1 do

5: OV[Col] = ComplexSum(OV[Col], Rv[Col + iCte + k*N*lo*P]);

6: Rv[Col + iCte + k*N*lo*P] = 0; // (Zero Complex)

7: end for

8: // PointOut is incremented at the main program;

80 Massive Multichannel Filtering

4.3.4 Performance and Results

Two different schemes have been presented depending on the size of both
the input-data buffer and the filter (L and lf , respectively). When the
input-data buffer is much larger than the filter size, it is fragmented into
different overlap-save blocks (Scheme 1). On the other hand, when the
input-data buffer is much smaller than the filter size, the filter is the one
that is fragmented (Scheme 2).

This second scheme aims to reduce the latency time by reducing the
time of response of the system tproc. Note that tproc contains not only the
execution time of the CUDA kernels but also the data transfers between
GPU and CPU and all the data overhead in order to carry out a real-time
application. The objective that is derived from scheme 2 is to know the
maximum number of filters that can be managed by a GPU in a GCCE
application for different environments. To support these results, it has been
measured two different audio parameters: Latency and Throughput.

Regarding scheme 1, we have proposed a GPU implementation that
profits from the computational resources of the GPU by distributing the
audio samples among P overlap-save blocks. The results from this scheme
look for the most efficient number of blocks P in order to exploit GPU
parallelism.

For performing the implementations, we used the Eleanorrigby machine
that is composed of Nvidia TESLA C2070 GPU with 2.0 CUDA capability.
Because there are variables that are used by multiple threads, the selected
configuration for L1 cache is 16 kB and 48 kB for shared-memory. The
CUDA toolkit and SDK version is 4.0. The following subsection describes
the computed tests for both schemes.

Scheme 1 : L � lf

In this case, the input-data buffer is divided into P overlap-save blocks.
Among the different configurations tested in a multichannel application,
we selected the one that fixes a tbuff = 92.86 ms (4096 samples) and a filter
size of 129 coefficients. Figure 4.20 shows tproc in multichannel applications
with 2, 4, 32, and 64 loudspeakers. In each implementation, a sweep of
number of sources was carried out dividing the input-data buffer into a
different number of overlap-save blocks (2, 4, 8, 16, and 32). The best
performances, which exploit the maximum GPU resources, are obtained

4.3. Multichannel massive audio processing for a GCCE application 81

 GPU

Latency

Throughput = L M / tproc(Ctot,L)

tbuff

tproc(Ctot,L)

IN

OUT

time

 GPU

L samples per input buffer

tbuff = L (1/fs)

Latency = tbuff + tproc(Ctot,L)

M

N

Ctot = M N

L samples per output buffer

.

.
.

Figure 4.19. Important parameters in a real-time multichan-

nel application, with M=4, N=2 and Ctot=8.

when the input-data buffer is divided into P=4 overlap-save blocks, as
Fig. 4.20 shows in (a), (b), (c), and (d).

Scheme 2 : L � lf

The most significant test in the presented work revolves around the maxi-
mum number of filters Ctot that a GPU, given a specific latency time tbuff ,
can manage in a real-time multichannel GCCE. Among the different tests,
we detail the time tproc used by the GPU to process a system configured
with a different number of sources M combined with a specific number
of loudspeakers N (2, 4, 8, 16, 32, 64, and 96) using filters whose size is
lf=2048 coefficients.

The first test was done setting an input-data buffer size L of 128 sam-
ples, with tbuff = 2.9 ms. The results in Fig. 4.21 (a) show that the obtained
tproc times increase linearly as the number of sources increases. Focusing on
real-time applications, the maximum number of filters of this size that this
implementation can manage is 1408 filters, which is obtained when M=22
and N=64.

The system can also carry out applications involving more filters, but
they would not satisfy the real-time condition tproc < tbuff . Therefore, the

82 Massive Multichannel Filtering

configurations below the dotted line (tbuff) in Fig. 4.21 (a),(b),(c), and (d)
allow real-time applications to be carried out. Figure 4.21 (a) also shows the
maximum number of filters that can be achieved with a specific number of
loudspeakers, 1344 filters for 96 sources and 32 loudspeakers among others.
In any case, every configuration would work for off-line processing; even
the ones that are above the dotted line. For example, as Fig. 4.21 (a)
shows, for a M=38, N=64, Ctot=2432, the processing time tproc is 4.830
ms. This means that using M=38 audio wav file sources of mono systems
of 2 MB each (a mono audio wav file is composed of audio samples of short
int, 2 bytes), the time spent to process 38 audio wav file sources with 64
loudspeakers using buffers of 128 samples would be 158.27 s. This time
could be used as a processing reference for other kinds of applications that
do not require real-time.

If we increase the number of input-data buffer samples to 256, as
Fig. 4.21 (b) shows, the maximum number of filters increases to 3136,
obtained when M=98 and N=32. By doubling the input-buffer size, the
limit is achieved with 6336 filters (see Fig. 4.21 (c)).

Figure 4.21 (d) shows the maximum number of filters with input-data
buffer sizes of 1024. The maximum number of filters is obtained using
N=96, which achieves up to 12480 filters in a GCCE.

Figure 4.19 shows a temporal evolution of a real-time multichannel
application, with M=4, N=2 and Ctot=8. Table 4.2 shows the latencies
and throughputs from the maximum number of configurations. The la-
tencies are calculated as tproc + tbuff , where tbuff= L

44.1 ms. It can be ob-
served that the latency values are approximately double the tproc. Gen-
erally, the greater the number of sources M , the greater tproc, and the
greater throughput, whose values revolve around 1 and 10 million samples
processed per second. When the input-buffer is 128 samples, maximum
throughput achieves 9.977 · 105 samples/s; when the input-buffer is 2048
samples, maximum throughput achieves 8.185 · 106 samples/s.

4.3.5 Conclusions

The algorithm implemented on GPU responds to a massive convolution
or a generalized crosstalk cancellation and equalization. The placement
of data inside the GPU changes depending on the size of the input-data
buffer and the size of the filters. When the size of filters is much larger than

4.3. Multichannel massive audio processing for a GCCE application 83

Table 4.2. Latencies and Throughputs from the maximum

number of Ctot that are obtained under real-time conditions.

Input-data Ctot tproc Latency Throughput

buffer size (ms) (ms) (input samples/s)

128 1408 2.822 5.724 9.977 · 105

512 6336 11.551 23.159 2.925 · 106

256 3136 5.625 11.429 4.459 · 106

1024 12096 22.531 45.745 8.271 · 106

2048 17472 45.537 91.966 8.185 · 106

the size of input-data buffer, the filters are fragmented and the parallelism
is exploited by the element-wise multiplication of the fragments with the
input-data buffer. The evaluated tests show that, with only an input-data
buffer of 128 samples, it is possible to achieve up to real-time multichannel
applications with 1408 filters of 2048 coefficients. This number gets larger
as the input-data buffer increases. Otherwise, when the size of the filters
are much smaller than the size of the input-data buffers, these buffers are
fragmented into ovelap-save blocks. In this case, parallelism is exploited
by the element-wise multiplication of the overlap-save blocks with the filter
in the frequency domain. The figures shown for this test indicate that
when the input-data buffers are fragmented into four overlap-save blocks,
minimun tproc time is achieved.

The selection of the correct placement of data in the different GPU
memories is crucial to achieving good performance. This chapter describes
an efficient way to do it by exploiting parallelism and taking advantage
of shared-memory. As a result of the good performances offered by these
implementations on GPU, it has been demonstrated that a GPU can be
used as a co-processor. This co-processor carries out audio processing tasks,
even in a real-time environment, freeing up CPU resources in the same way
the GPU is currently used for graphic tasks. More details of the presented
work can be found in [102], and in [103].

84 Massive Multichannel Filtering

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

 P = 32
 P = 16
P = 8
P = 4
P = 2

Performance for 2 loudspeakers

tp
ro

c(
m

s)

Sources
(a)

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

Performance for 4 loudspeakers

 P = 32
 P = 16
P = 8
P = 4
P = 2

tp
ro

c(
m

s)

Sources
(b)

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Performance for 32 loudspeakers

tp
ro

c(
m

s)

Sources

 P = 32
 P = 16
P = 8
P = 4
P = 2

(c)

10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

Performance for 64 loudspeakers

Sources

tp
ro

c(
m

s)

 P = 32
 P = 16
P = 8
P = 4
P = 2

(d)

Figure 4.20. tproc in a multichannel application fragment-

ing the input-buffer in different overlap-save blocks: (a) for 2

loudspeakers; (b) for 4 loudspeakers; (c) for 32 loudspeakers;

and (d) for 64 loudspeakers.

4.3. Multichannel massive audio processing for a GCCE application 85

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

2 Loudspeakers
4 Loudspeakers
8 Loudspeakers
16 Loudspeakers
32 Loudspeakers
64 Loudspeakers
96 Loudspeakers
t
buff

=2.9ms

Input-data buffer size L = 128

t
buff

tp
ro

c(
m

s)

Sources

1408 filters
1344 filters

1344 filters

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

2 Loudspeakers
4 Loudspeakers
8 Loudspeakers
16 Loudspeakers
32 Loudspeakers
64 Loudspeakers
96 Loudspeakers
t =5.8msbuff

Sources

t
buff

tp
ro

c(
m

s)

Input-data buffer size L = 256

2880 filters 2944 filters

3136 filters

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

2 Loudspeakers
4 Loudspeakers
8 Loudspeakers
16 Loudspeakers
32 Loudspeakers
64 Loudspeakers
96 Loudspeakers
t =11.6ms
buff

Input-data buffer size L = 512

buff

tp
ro

c(
m

s)

t
buff

Sources

6336 filters

6272 filters

20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

2 Loudspeakers
4 Loudspeakers
8 Loudspeakers
16 Loudspeakers
32 Loudspeakers
64 Loudspeakers
96 Loudspeakers
t =23.21ms
buff

Input-data buffer L = 1024

t
buff

tp
ro

c(
m

s)

Sources

12096 filters

11648 filters

(a)

(b)

(c)

(d)

Figure 4.21. tproc used by GPU in a GCCE for different

values of sources M and loudspeakers N , using a sampling

frequency of fs=44.1 kHz with: tbuff=2.9 ms in (a), tbuff=5.8

ms in (b), tbuff=11.6 ms in (c), and tbuff=23.2 ms in (d).

86 Massive Multichannel Filtering

Headphone-based spatial sound system 5

88 Headphone-based spatial sound system

Headphone-based spatial sound system 5
Multichannel audio signal processing has undergone major development in
recent years. The incorporation of spatial information into an immersive
audiovisual virtual environment or into video games provides a better sense
of “presence” to applications. In a binaural system, spatial sound consists
of reproducing audio signals with spatial cues (spatial information embed-
ded in the sound) through headphones. This spatial information allows
the listener to identify the virtual positions of the sources corresponding
to different sounds. Headphone-based spatial sound is obtained by filter-
ing different sound sources through a collection of special filters (whose
frequency responses are called Head-Related Transfer Functions) prior to
rendering them through headphones. These filters belong to a database
composed by a limited number of spatial fixed position. A complete au-
dio application that can render multiple sound sources in any position of
the space and virtualize movements of sound sources in real time demands
high computing needs. This chapter presents the design of a headphone-
based multisource spatial audio application whose main feature is that all
required processing is carried out on the GPU. To this end, two solutions
have been approached in order to synthesize sound sources in spatial posi-
tions that are not included in the database, and to virtualize sound sources
movements between different spatial positions.

90 Headphone-based spatial sound system

5.1 Introduction

The growing need to incorporate new sound effects and to improve the
listening experience have increased the development of multichannel au-
dio applications [3]. A spatial audio system based on headphones allows
a listener to perceive the virtual position of a sound source [11]. These
effects are obtained by filtering sound samples through a collection of spe-
cial filters whose coefficients shape the sound with spatial information. In
the frequency domain, these filters are known as Head-Related Transfer
Functions (HRTFs). The response of HRTFs describes how a sound wave
is affected by properties of the body shape of the individual (i.e., pinna,
head, shoulders, neck, and torso) before the sound reaches the listeners
eardrum [9]. Each pair of HRTF filters is related to a specific virtual posi-
tion. A set of HRTFs of different spatial fixed positions configure a HRTF
database. When multiple sound sources in different spatial positions move
around the scene, fantastic audio effects that provide more realism to the
scene are achieved. These spatial sounds are usually added to video games,
video conference systems, movies, music performances, etc. However, if a
CPU processor were used to calculate these tasks, the CPU processor would
be overloaded and the whole application would slow down. When this hap-
pens, spatial sound information is usually avoided and, unfortunately, is
not added to the applications. This resource problem can be solved if these
computational tasks are carried out by Graphics Processing Units (GPUs).

In order to develop a complete multisource spatial application, it is nec-
essary to be able to render sound sources at any position of the space and
virtualize movements of the sound sources. We deal with these two com-
mon situations by taking maximum profit of the computational resources of
GPUs: GPU capacity for executing multiple convolutions concurrently. To
this end, we present interpolation and switching techniques that are based
on weighting and combining different convolutions that are computed si-
multaneously. These techniques allow us to synthesize sounds in virtual
positions that do not belong to the collection of the filters, and to virtual-
ize sound sources movements. To support the adopted solutions to these
problems, subjective and objective analyses are also presented for both
techniques.

5.2. Processing Head-Related Transfer functions 91

5.2 Processing Head-Related Transfer functions

Head-Related Transfer functions represent the frequency response of head-
related impulse response (HRIR) filters, which are in the time domain. As
stated in Section 3.2, there are multiple database of HRTFs or HRIRs on
internet such as, [58] or [59]. In our case, for the application described
throughout this section, we use the HRIR measures from G. Vandernoot
and F. Lienhart [58]. These measures belong to a tall male with short
hair. The values of the filters can be found under measures IRC 1007 in
the website in [58].

This HRIR database adds spatial information from specific different
positions in the space to the audio wave. Two filters specify each virtual
position since there is a filter for each ear. Figure 5.1 shows a sound source,
for instance a piano that is located in the virtual position (θ, φ, r), where
φ represents the elevation coordinate, φ ∈[-90 ◦, +90 ◦], θ represents the
azimuth coordinate, θ ∈[0 ◦, +360 ◦], and r is the distance between the
virtual position and the user, r ∈[0, ∞]. The spatial effect is achieved
by convolving natural monophonic sounds that are recorded in an anechoic
environment with the pair of filters that corresponds to the virtual positions
and reproducing them through head-phones.

In a real-time processing system, the audio card provides L audio sam-
ples of every sound source with a rate of L

fs
sec (fs represents the sampling

frequency). The convolution is carried out by using blocks of samples of
size 2L with a 50% overlap. Thus, for the audio processing, we define xbuff

as an input-data buffer that is composed of lo = 2L audio samples from
sound source x.

The impulse responses HRIRs corresponding to position (θ, φ, r) in the
time domain are denoted as hr(θ, φ, r) and hl(θ, φ, r) for the right and left
ear, respectively. There are as many input-data buffers as number of sound
sources in the application. Thus, considering a system that is composed
of M sources, the input-data buffer xbuffm represents the buffer of the
samples of source m where m ∈ [0,M − 1]. The output-data buffers (ybuffl

and ybuffr) are calculated as shown by (5.1) in the time domain, where *
denotes the convolution operation.

92 Headphone-based spatial sound system

.

Figure 5.1. The HRIR filtering allows a person to perceive

a piano sound as if it were located in a virtual position in the

space given by the coordinates (θ, φ, r).

ybuffl =

M−1∑
m=0

(hl(θm, φm, rm) ∗ xbuffm), (5.1)

ybuffr =

M−1∑
m=0

(hr(θm, φm, rm) ∗ xbuffm).

This HRIR database has an azimuth resolution and an elevation res-
olution that is denoted by ∆θ and ∆φ. Resolutions ∆θ and ∆φ represent
the minimum separation in degrees between two positions of the database
in azimuth and in elevation, respectively. For our HRIR database, the
resolution in both the azimuth and the elevation is 15 ◦ (∆θ = 15 ◦ and
∆φ = 15 ◦). This database indicates that all HRIR measures were carried
out to a distance r0 of 1.95 m from the center of the head, and that all of
the HRIR filters have been windowed to a length of L=512 coefficients.

Thus, as it was described, the number of filters in databases limits the
virtual positions to render. One important aspect in this context is the

5.3. Switching technique 93

synthesis of sound in virtual positions that do not belong to the collection
of the filters. Another particular situation occurs when the sound moves,
which in practice means to filter through another HRIR. If the switch be-
tween HRIRs is not properly carried out, multiple audio clipping effects
could be generated. To solve both situations, two audio techniques are
designed taking into account the GPU capacity of carrying out multiple
convolutions concurrently: 1) an interpolation technique that allows us to
interpolate any position of the space, and 2) a switching technique that
allows us to switch properly between positions in the space.

The following sections describe the two designed techniques that allow
us, by using the massive computational GPU resources, to render sound
sources in any position of the space and virtualize any movement of them.
We also present subjective and objective analyses of both techniques in
order to verify that both of them meet the requirements of this headphone-
based spatial application.

5.3 Switching technique

This technique is used mainly for the virtualization of source movements,
which is carried out in this application by varying smoothly the virtual
positions of sound sources over time. For example, let us suppose the
sound source xm moves from one position, which we call the old position
(θold, φold, rold), to a new position (θnew, φnew, rnew). In practice, this means
to switch the rendering from the old position to the new position. However,
this switching could produce multiple audible clipping effects if it is not
properly executed. The switching technique that we employ to reduce the
possible artifacts is based on [104]. They suggested carrying out a fading,
which is a gradual increase in the sound filtered by the new position while
the sound filtered by the old position decreases in the same way. To this end,
the current input-data buffer xbuffm must be convolved with the filters of
the old positions, h(θold, φold, rold), and with the filters of the new position,
h(θnew, φnew, rnew). The fading is carried out by element-wise multiplying
the results of the two convolutions by two fading vectors, called f and g,
respectively.

Finally, the output-data buffer ybuff is obtained by element-wise sum-
ming the two previous multiplications. Equation (5.2) shows the fading

94 Headphone-based spatial sound system

operations to execute with the input-data buffer when a switching is pro-
duced, where symbol ⊗ represents element-wise multiplication.

ybuff = ((h(θold, φold, rold)∗xbuffm)⊗f)+((h(θnew, φnew, rnew)∗xbuffm)⊗g).
(5.2)

Both f and g are complementary fading vectors and therefore must
satisfy

f [s] = g[2L− 1− s], (5.3)

and the following boundary conditions,

f [L] = g[2L− 1] = 1, (5.4)

f [2L− 1] = g[L] = 0.

where s ∈ [L, 2L − 1]. As there is 50% overlap and fading is applied to
current audio buffer, the first L values of both vectors are a constant equal
to 0.

f [s] = g[s] = 0, (5.5)

where s ∈ [0, L− 1].

Table 5.1 presents several possible values for fading vectors f [s] and g[s]
that fit with the conditions shown in (5.3) and in (5.4). We denote each
pair of vectors as indicated in the first column of Table 5.1. It is important
to point out that the fifth vector, which we call SIMPLE, represents the
option in which a fading does not apply. The change from the old position
to the new position for the fading vector SIMPLE consists in changing only
the filters. Thus, all of the values of fading vector f [s] are a constant equal
to 0, and all of the values of vector g[s] are a constant equal to 1.

On the other hand, the fourth vector, FOURIER, comes from a Fourier
series expression where not only have the previous boundary conditions
been assumed, (5.4), but also, the following sum-square-constant condi-
tions,

f [L+
L

2
] = g[L+

L

2
] =
√

2/2, (5.6)

f2[L+
L

4
] + g2[L+

L

4
] = 1.

5.3. Switching technique 95

Thus, the first four coefficients are used, as it is also shown in [104].

Their values are: a0 = 1+
√

2
4 , a1 = 1

4(1 +

√
5−2
√

2
2), a2 = 1−

√
2

4 , and

a3 = 1
4(1−

√
5−2
√

2
2). This is the reason why summation index varies from

0 to 3 in Table 5.1.

Table 5.1. Fading vectors of f [s] and g[s] with s ∈ [L, 2L−1].

VECTORS f [s] g[s]

RAMP s−L
L−1 1− s−L

L−1

SQRT
√

s−L
L−1

√
1− s−L

L−1

TRIG sin(π·(s−L)
2·(L−1)) cos(π·(s−L)

2·(L−1))

FOURIER
∑3

r=0 ar · cos(r·π·(s−L)
L−1)

∑3
r=0 ar · cos(r · π · (1− (s−L)

L−1))

SIMPLE 0 1

5.3.1 Evaluation of the switching technique

When a switch in the source virtual position is carried out, non-linear
artifacts appear in the signal due to the doppler effect and the arising
discontinuity when the filter HRIR is changed. This evaluation is intended
to assess if the proposed post-processing carried out by (5.2) helps to reduce
the non-linear artifacts. To this end, two kinds of analyses have been carried
out: objective and subjective.

The objective analysis focuses on measuring the percentage of the en-
ergy that is out of band when a switch between virtual positions is carried
out. For this purpose, a signal composed of three representative tones
(859.65 Hz, 4298 Hz, and 8596 Hz) was used to determine the behavior of
the energy for these tones in the switching interval. This signal has three
equally spaced tones that are sufficiently separated in the audible spectrum.
The sample frequency fs used in the test was 44.1 kHz.

To measure the percentage of the energy out of the bands, we calculated
the FFT of the L “core samples” shown in Fig. 5.2. Note that Fig. 5.2 is
composed by three buffers ybuff composed of L audio samples. This occurs
because the first L samples of the 2L initial samples have been already

96 Headphone-based spatial sound system

discarded after the processing. The result of FFT was Ycore, which is
composed of L samples. After that, we obtained the total energy Etot
through

yfadding

L L L

L core samples

L/2 L/2

xbuffm*h(, ,)new new newθ φ rxbuffm*h(, ,)old old oldθ φ r

Figure 5.2. L Core samples that are used to obtain the total

energy.

Etot =
L∑
r=0

|Ycore(r)|2. (5.7)

Then, we calculated the contributions of the energy at the tones men-
tioned above through

Etones = |Ycore(f = 859.65)|2 + |Ycore(f = 4298)|2 + |Ycore(f = 8596)|2.
(5.8)

Finally, we calculated the percentage of the energy that was out of
band as:

100 · Etot − Etones
Etot

(%). (5.9)

Figure 5.3 represents the percentage of the energy out of the band
when the different fading vectors were applied. The represented transitions
have an elevation φ=0 ◦ and go from initial position θ=0 ◦ to the position
indicated on the horizontal axis. The right side of the figure corresponds
to the percentage computed for the right channel, whereas the left side
corresponds to the percentage for the left channel. Thus, for example,

5.3. Switching technique 97

when the horizontal axis is 60 ◦, the value in the vertical axis represents the
percentage of the energy generated in the transition from 0 ◦ to 60 ◦ for the
left ear, on the left side, and for the right ear, on the right side.

0º 15º 30º 45º 60º 75º 90º 105º 120º 135º 150º 165º 180º 195º 210º 225º 240º 255º 270º 285º 300º 315º 330º 345º 0º

10

20

30

40

50

60

RIGHT EAR

0º 15º 30º 45º 60º 75º 90º 105º 120º 135º 150º 165º 180º 195º 210º 225º 240º 255º 270º 285º 300º 315º 330º 345º 0º

10

20

30

40

50

60

70
LEFT EAR

RAMP
SQRT
TRIG
FOURIER
SIMPLE

%

10

20

30

40

50

60

70

%

θθ

Figure 5.3. Percentage of the energy out of the band when

the different fading vectors are applied. The right side of the

figure corresponds to the percentage computed for the right

channel, whereas the left side corresponds to the percentage

for the left channel.

Thus, we can appreciate in Fig. 5.3 that the number of non-linear arti-
facts decreases significantly when a switching technique is used. The fading
vector SIMPLE (absence of fading processing) generates more artifacts in
the signal during the switch than any of the other fading vectors, which
present very similar results. The SQRT, TRI, and FOURIER fading vec-
tors exhibit a few greater percentage of energy out of the bands than the
RAMP fading vector as can be observed more clearly in any transition that
is computed from position θ=0 ◦ up to position θ=120 ◦ for the left channel.
The same happens to transitions from position θ=240 ◦ up to θ=0 ◦ for the
right channel. For the rest of the transitions, the difference among SQRT,
TRI, FOURIER, and RAMP fading vectors are not meaningful. The per-
formance shown in this analysis indicates that if a switching technique were
not employed, the quantity of the artifacts would be remarkably high dur-
ing the rendering. Thus, we employ this technique for the spatial audio
rendering of our application.

The subjective analysis is carried out in order to decide which fading
vector is used for the developing application, i.e, which fading vector pro-
duces the smoothest switch, taking into account the perception of the users.
To verify this, we carried out a test with five sounds. All of the sounds con-
sisted of a musical note. The person used a headphone and the musical note
began to be heard at the virtual position (90 ◦, 0 ◦) (the left ear). After a

98 Headphone-based spatial sound system

while, it was moved 15 ◦ in azimuth and so on until it reached the virtual
position (270 ◦, 0 ◦) (the right ear). For each sound, the processing applied
during the switch corresponded to each fading vector shown in Table 5.1.
We used a paired comparison test using a hidden reference paradigm [105]
to analyze the most continuous movement among the different configura-
tions. The five sounds were compared in pairs in a test of 10 questions.
The audio files used for the tests are available in the section Melodies used
for assessing the different fading vectors of a switching technique between
HRIRs from the web page referenced in [14].

A total of 20 people participated in the listening experiment; their ages
were between 23 and 35 years old. The hearing of all of the test subjects
was tested using standard audiometry. None of the people had reportable
hearing loss that could affect the results. Once the results were collected,
the mathematical transformations based on Bradley-Terry model [105] were
applied. The result of this post-processing is a percentage of the preference
of each sound as Fig. 5.4 shows. Test results indicate that most people
felt more natural when the FOURIER fading vector was applied, followed
closely by the RAMP fading vector. The TRI fading vector was also very
close to the preferences of the RAMP fading vector. The SIMPLE and
SQRT fading vectors showed the worst results. Thus, both FOURIER and
RAMP are suitable fading vectors for the spatial audio rendering of our
application.

5.4 Interpolation technique

The objective of this technique is to synthesize sound sources in virtual posi-
tions that do not belong to the used HRIR database. Until now, most of the
interpolation techniques used in the literature, such as [106] and [107], re-
duced the coefficients of HRIR filters using the principal component analysis
(PCA) since real-time processing of HRIR filters was computationally ex-
pensive. In [106], the authors propose a binaural impulse-response interpo-
lation algorithm based on the solution for the rational minimal state-space
interpolation problem and compare it with other interpolation techniques:
the bilinear method [108], the DFT method [109], and the spline-function
method [110]. The interpolation technique presented herein is based on
combining the audio rendering of nearby positions in the HRIR database.

5.4. Interpolation technique 99

0

10

20

30

40

50

60

70

80

90

FOURIER

%

RAM
P

TRI
SIM

PLE

SQRT

Figure 5.4. Percentage of preference obtained with the paired

comparison test when RAMP, SQRT, TRI, FOURIER, and

SIMPLE fading vectors were compared.

Unlike [106] and [107], we do not reduce the length of HRIR filters.

A generic position to render is (θS , φS). Focusing on the specific eleva-
tion plane φS , the azimuth position to render θS is obtained by combining
the rendered sound from the two nearby azimuth positions as shown in
Fig. 5.5. Both positions are weighted by wA and wB, respectively. These
weighted factors are calculated as shown in (5.10):

wA =
θS − θ1

∆θ
, (5.10)

wB =
θ2 − θS

∆θ
.

Equation (5.11) shows the computation of y(θS):

y(θS) = wB · y(θ1) + wA · y(θ2). (5.11)

In the same way, focusing on the specific azimuth plane θS , the elevation
position to render φS is also obtained by combining the rendered sound from

100 Headphone-based spatial sound system

Aw

Bw

θ1

θS
θ2

Δθ

r0

Figure 5.5. The star represents the position to be synthesized

in the elevation plane φS . This position is synthesized by com-

bining the two nearby azimuth positions using the weighted

factors wA and wB .

the two nearby elevation positions. Equation (5.12) shows the rendered
y(φS), where wC and wD are the weighted factors that are computed in
(5.13). Figure 5.5 is also available for rendering a position with elevation
φS , by substituting θ for φ and the resolution ∆θ for ∆φ.

y(φS) = wD · y(φ1) + wC · y(φ2). (5.12)

wC =
φS − φ1

∆φ
, (5.13)

wD =
φ2 − φS

∆φ
.

Combining (5.11) and (5.12), the rendered sound at virtual position

5.4. Interpolation technique 101

(θS , φS) is as follows,

y(θS , φS) = wD ·(wB ·y(θ1, φ1)+wA ·y(θ2, φ1))+wC ·(wB ·y(θ1, φ2)+wA ·y(θ2, φ2)).

(5.14)

Another important aspect in spatial sound is related to distance vir-
tualization. This consists in the fact that the rendered sound either gets
closer or moves away. The way we carry out this change in distance is
to vary the amplitude of the sound and delay it for a number of samples.
We perform this effect by element-wise multiplying the output signal in
the frequency domain, Y(θS , φS , r0), by a complex factor R(r) as shown
in (5.16), where fs is the sample frequency, vs is the speed of sound (343.2
m/sec), lo = 2L is the number of samples of the processing block xbuffm ,
and k is the k-th sample inside the block.

R(r) =
1

(1 + fs
vs
· (r − r0)2)

· exp(−j · 2 · π · fs
vs
· (r− r0) · 1

lo
· [0..k..(lo − 1)]).

(5.15)

Y(θS , φS , rS) = Y(θS , φS , r0)⊗R(rS) (5.16)

5.4.1 Evaluation of the interpolation technique

In the literature, there are multiple works that look for criteria that objec-
tively measure the HRIR interpolation. Different techniques can be applied
depending on the features of the database. In [111], multiple interpolation
techniques are enumerated. They indicate that the signal-to-distortion ra-
tio (SDR) can be regarded as a good predictor for estimating the differences
in perceptual directions between the stimuli from the measured HRIRs and
the stimuli from the approximated HRIRs. The signal-to-distortion ratio
(SDR) was computed according to the (5.17), where y(k) comes from the
convolution of an input signal with a HRIR filter, and the other output
signal ŷ(k) is synthesized by combining the convolutions of the input signal
with HRIR filters of the four adjacent positions (two from the azimuth posi-
tion and two from the elevation position). In order to compare both results,
3 · L samples of both configurations were obtained. Variable k denotes the
k-th sample of signals y and ŷ.

102 Headphone-based spatial sound system

SDR = 10 · log

3·L−1∑
k=0

y(k)2

3·L−1∑
k=0

(y(k)− ŷ(k))2

. (5.17)

To this end, we used five different input signals. All of them were gen-
erated from gaussian white noise of zero mean. Each signal was obtained by
low-pass filtering of the generated noise: the first signal up to 250 Hz, the
second signal up to 500 Hz, the third signal up to 1000 Hz, the fourth signal
up to 2000 Hz and the fifth signal up to 4096 Hz. For instance, an output
signal was obtained by convolving an input signal with the HRIR position
(15 ◦, 0 ◦), which is in the HRIR database, and also by using the interpo-
lation technique with the four adjacent positions (0 ◦,+15 ◦), (0 ◦,−15 ◦),
(30 ◦,+15 ◦), and (30 ◦,−15 ◦). As the given example shows, it is important
to point out that for synthesizing the signal ŷ(k), the two adjacent positions
in the azimuth and the two for elevation are separated at twice the initial
resolution (30 ◦ for this HRIR database. Thus, wA=wB=wC=wD=0.5).

The positions that are rendered in this application use the adjacent
positions that are separated less than 15 ◦ (resolutions of HRIR database).
Thus, the results obtained in the comparisons under normal conditions are
better than the ones obtained in these experiments. Table 5.2 and Table 5.3
show the SDR values obtained from a selection of different virtual positions
for the left and right ear.

Table 5.2. SDR for left/right ear

Left / Right 250 Hz 500 Hz 1000 Hz

(15 ◦,0 ◦) 17,35 / 20,17 dB 14,04 / 16,79 dB 11,45 / 12,96 dB

(345 ◦,0 ◦) 20,22 / 18,14 dB 16,71 / 14,85 dB 13,27 / 12,51 dB

(0 ◦,0 ◦) 18,37 / 18,89 dB 15,04 / 15,63 dB 11,40 / 12,00 dB

(180 ◦,0 ◦) 22,14 / 23,01 dB 18,21 / 19,38 dB 15,28 / 16,61 dB

In Table 5.2 and Table 5.3, it is important to note the concordance
between the 20.22 dB achieved in the position (345 ◦, 0 ◦) for the left ear
and the 20.17 dB obtained for the right ear in the position (15 ◦, 0 ◦) for

5.4. Interpolation technique 103

Table 5.3. SDR for left/right ear

Left / Right 2000 Hz 4096 Hz

(15 ◦,0 ◦) 11,30 / 7,01 dB 8,43 / 6,25 dB

(345 ◦,0 ◦) 10,92 / 16,51 dB 8,73 / 7,62 dB

(0 ◦,0 ◦) 10,88 / 9,01 dB 6,91 / 5,63 dB

(180 ◦,0 ◦) 16,63 / 15,97 dB 11,39 / 11,63 dB

the first signal. Moreover, the values obtained in position (0 ◦, 0 ◦) are
approximately the same for both the right and the left ear. This ocurrs
because of the symmetry of the head. These values are a little different
when we compare them with the ones in position (180 ◦, 0 ◦) since the head
and the pinnae are not affected in the same way. In any case, it is clear
that as the bandwidth of the signal increases, SDR values decrease. Low-
frequency signals are better interpolated.

On the other hand, the results shown in Table 5.2 are in agreement with
the results shown in [107], in which HRTF interpolation is the hot research
topic. Thus, the interpolation technique proposed can be considered to be
a suitable interpolation for the spatial audio rendering of our application.

Using the previously described switching technique, we can reduce the
non-linear artifacts when a switching in the virtual position is carried out.
The question that arises is whether the proposed interpolation technique
can be also leveraged to obtain better movement virtualization. The fol-
lowing subjective analysis is intended to assess a sound source trajectory
that is rendered in different ways. To this end, we asked people to listen to
five different sounds. The person used a headphone and the melody began
to be heard at the virtual position (90 ◦, 0 ◦) (the left ear); after a while, it
switched to the new virtual position ((90 + j) ◦, 0 ◦), where j takes 1 ◦, 7 ◦,
15 ◦, 30 ◦, and 45 ◦ for the first, second, third, fourth, and fifth sound, re-
spectively. The melody switched among the different virtual points until it
reached the virtual position (270 ◦, 0 ◦) (the right ear). The switch between
positions was performed by using the RAMP fading vector f and g. The
time used by the melody to move from the left ear to the right ear was the
same in the five cases. Thus, the time that the melody remained in each
virtual position was the maximum for the case that j=45 ◦. The audio files

104 Headphone-based spatial sound system

used for the tests are available in the section Melodies used for assessing
the necesity of a interpolation technique in order to render sound sources
movements from the web page referenced in [14].

As in the evaluation of the switching technique, the same 20 people
had to assess by 10 comparisons which configuration most accurately rep-
resented the movement of the melody from the left ear to the right ear.
Once the results were collected, the mathematical transformations based
on Bradley-Terry model [105] were applied again. Figure 5.12 shows the
percentage of the preferences. The subjects preferred to listen a melody
that changes between close positions. This study demonstrates that not
only can the interpolation technique be used for synthesizing virtual posi-
tions, but also for virtualizing a sensation of continuous movement of the
sound, especially if there is no HRIR database with fine resolutions avail-
able.

0

10

20

30

40

50

60

70

80

90

100

1 degree

%

7 degrees

15 degrees

30 degrees

45 degrees

Figure 5.6. The percentage of preference obtained when

melodies that switched from virtual positions that were sepa-

rated by 1, 7, 15, 30, and 45 degrees were compared.

5.5. GPU-based implementation of a head-phone audio application 105

5.5 GPU-based implementation of a head-phone au-

dio application

This section presents the design of a complete head-phone audio application
that renders multiple sources simultaneously and is capable of virtualizing
their continuous movements. Two main features of this application are: 1)
all audio processing is totally carried out on a GPU, and 2) its implemen-
tation is totally portable and, thus it adapts to any GPU-device.

One important aspect lies on the data-flow management by the GPUs.
Figure 5.7 shows an execution diagram of the head-phone audio application
in real time. The application works with three large audio buffers: A-
buffer, B-buffer, and C-buffer. A-buffer accumulates the samples from the
M sources; B-buffer is on the GPU; and C-buffer is a fixed buffer that
accumulates the processed samples that are sent from the GPU to the
CPU. A-buffer is composed of all the input-data buffers xbuffm , whereas
C-buffer is composed of the output-data buffers (ybuffr and ybuffl) that are
subsequently rendered through the right and left headphone, respectively.
Three tasks occur simultaneously in this environment.

1. A-buffer gets filled by the incoming audio-samples.

2. B-buffer is processed on the GPU.

3. Samples from C-buffer are reproduced by the loudspeakers.

When tasks 1) and 2) are over, A-buffer becomes B-buffer and B-buffer
becomes A-buffer. In order to achieve the real-time performance of the ap-
plication, the processing tasks of B-buffer must end before the filling tasks
of A-buffer. The time to fill the input buffer (A-buffer or B-buffer) tbuff is
calculated as L

fs
, and it is independent of the number of sources since each

source has its own buffer. In contrast, the processing time tproc depends
on the number of sources M . Therefore, it is important to develop an effi-
cient implementation on the GPU that achieves maximum M that satisfy
tproc < tbuff . As it was analyzed, the processing to be executed on the GPU
consists mainly of convolving the input-data buffers with the filters. The
technique employed to develop massive convolutions is overlap-save with a
50% overlap in the frequency domain [97]. Before beginning the processing,

106 Headphone-based spatial sound system

x

PROCESSING on GPU

A-buffer B-buffer
interchange

CPU GPU
Transactions

CPU GPU

C-buffer receives the
processed samples

from the GPU

buff0

xbuff1

xbuffM-1

ybuff l

ybuff r

B-buffer

A-buffer is composed
of M input-data buffers

Figure 5.7. GPU diagram of a head-phone audio application.

all the HRIRs are transferred from the CPU to the GPU. All the process-
ing is carried out in the frequency domain. Thus, FFT transformations are
carried out on the GPU over all the filters converting HRIRs into HRTFs.
In the same way, when A-buffer is received by the GPU, a FFT transfor-
mation is applied to each input-data buffer xbuffi . NVIDIA has its own
FFT library [87] which is used for our application, and allows multiple one-
dimesional FFTs to be obtained simultaneously. Frequency domain means
that convolution is converted into an element-wise multiplication with the
corresponding HRTF filters. Executing multiple element-wise multiplica-
tions is the key operation between input-data buffers and their correspond-
ing location filters. However, to emulate the movement of the source and
the synthesis from any position in space, some post-processing is required.
Equation (5.18) represents the equation (5.14) in the frequency domain.

The following implementation presents two levels of parallelism. All
sound sources are simultaneously processed, and internally, every sample
of the audio buffers is also processed simultaneously.

5.5. GPU-based implementation of a head-phone audio application 107

Y(θS , φS , rS) = wD · wB ·Y(θ1, φ1, rS) (5.18)

+ wD · wA ·Y(θ2, φ1, rS)

+ wC · wB ·Y(θ1, φ2, rS)

+ wA · wC ·Y(θ2, φ2, rS).

Equation (5.19) shows the computation of Y(θ1, φ1, rS). The rest of
the components of (5.18): Y(θ2, φ1, rS), Y(θ1, φ2, rS), and Y(θ2, φ2, rS) are
computed in the same way.

Y(θ1, φ1, rS) = Xbuffm ⊗H(θ1, φ1, r0)⊗R(rS). (5.19)

Equation (5.18) exploits the commutative property from multiplication
and allows us to efficiently use the architecture of the GPUs. Therefore, for
the rendering of each sound in the worst case, eight convolutions are nec-
essary (four convolution per ear). Also, to emulate the movement between
two positions, sixteen convolutions (eight convolutions for the old position
and eight more for the new position) are required. Thus, the total pro-
cessing of a multisource application may require high computing capacity.
GPU code is written in a kernel function that launches multiple threads
that execute the same operation with multiple data. In order to carry out
the operations described in (5.18) in all sound sources simultaneously, the
following computational kernels are launched by means of 128-size thread
blocks [20]:

CUDA Kernel 8

This kernel is dedicated to execute all the element-wise multiplications that
require the computation of every summand of (5.18) concurrently for each
one of the sound sources. In order to determine the number of threads
launched in this kernel, we have to take into account the following aspects:

• the size of the complex buffer of Xbuffm , lo = 2L, since the overlap is
50%.

• the worst case is when the synthesis of the rendered sound is a com-
bination of 4 convolutions,

• the number of concurrently rendered M sources,

108 Headphone-based spatial sound system

• the number of output-buffers (in this case 2, Ybuffl and Ybuffr).

Hence, this kernel launches 8Mlo threads. Each thread takes an element
from Xbuffm , multiplies it by the corresponding element of H, then the
result multiplies it by the corresponding element of R and finally that result
multiplies it by the two corresponding weighted factors (two scalar values).
In total, each thread carries out two complex multiplications and two scalar
multiplications. The number of blocks that this kernel launches is 2lo

64 ×
M × 1, being the block size 64 × 4 × 1. A pseudocode of CUDA kernel 8
is presented below, followed by a detailed description of the variables that
are used in the CUDA kernel 8.

CUDA Kernel 8 Element-wise multiplication with HRTFs

Input: S, H,M ,N ,lo, w, P, A, B, d

Output: Sres

1: Complex cRet; //It computes R(rS)

2: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

3: int daux = BlockIdx.y * BlockDim.y; // Source Selection

4: int Row = daux + ThreadIdx.y;

5: float faux = (1.0/(1.0 + (1.0/128.0)*(d[BlockIdx.y])^2));

6: float faux1 = ((float)ColMod /((float)lo)) ;

7: faux1 = 2.0 * M_PI * (1.0/128.0);

8: int ColMod = Col & (lo-1);

9: // Distance Calculation;

10: cRet.x = faux *(__cosf(d[BlockIdx.y] * faux1);

11: cRet.y = (-1)*faux *(__sinf(d[BlockIdx.y] * faux1);

12: // Computation of output index

13: int outidx = Col + Row*2*lo + ThreadIdx.z*M*4*lo*2;

14: // Computation of index H

15: int hidx = Col + p[Row + ThreadIdx.z*4*M]*2*lo;

16: // Computation of index S

17: int sidx = ColMod + blockIdx.y*lo;

18: // Computation of output samples

19: Sres[outidx]= ComplexMult(H[hidx], S[sidx]);

20: // Scaling the output samples

21: Sres[outidx]= ComplexScale(Sres[outidx], 1/lo);

22: // Index of weight factors A

23: int indxA = daux + a[ThreadIdx.y] + ThreadIdx.z*4*M ;

5.5. GPU-based implementation of a head-phone audio application 109

24: // Index of weight factors B

25: int indxB = daux + b[ThreadIdx.y] + ThreadIdx.z*4*M ;

26: // Weighting the convolution

27: Sres[outidx]= ComplexMult(Sres[outidx], w[indxA];

28: Sres[outidx]= ComplexMult(Sres[outidx], w[indxB];

29: Sres[outidx]= ComplexMult(Sres[outidx], cRet);

Variables used in CUDA kernel 8

To clarify better the described code, here is the description of the cuda
variables that have been used in the CUDA kernel 8:

• Matrix S composed of M rows and lo columns. It contains audio
samples of theM sound sources. Thus, rowm of matrix S is composed
Xbuffm .

• Matrix H contains the HRTF filters. Each row of matrix H is assigned
to one spatial position. First lo columns correspond to frequency bins
of HRTF filters of the left ear, while the second lo columns corresponds
to frequency bins of HRTF filters of the right ear.

• Vector w is a column vector composed of 4M components. Each
group of 4 components is composed of the weighted factors of one
sound source [wA, wB, wC , wD]T. Thus, and in order to clarify the
reader, w[0] corresponds to the weighted factor wA of sound source
m = 0, while w[5] corresponds to the weighted factor wB of sound
source m = 1.

• Vector p is a column vector composed of 4M components. Each group
of 4 components points out each one of the filters, by the which sam-
ples of one sound source must be convolved. Each vector component
points out a row of the matrix H. For example, sound source m = 1
uses the components p[4],p[5],p[6], and p[7]. Then, if p[4] is 27, then,
the filters that are situated in the row 27 of the matrix H are used to
be convolved by the audio samples of sound source m = 1.

• Vector a and vector b are used to generate the four combinations
among the weighted factors that are shown in (5.18). Thus, a =
[0, 1, 0, 1], while b = [2, 2, 3, 3].

110 Headphone-based spatial sound system

• Vector d is a column vector composed of M components. Each com-
ponent represents the distance in meters that is computed by (rS−r0)
in (5.15) for each one of the sound sources.

• Matrix Sres is composed of 4M rows and 2lo columns. It contains the
convolved samples.

• The value 128 comes from the division between fs
vs

= 44100
343 , while

M_PI represents number π.

The code presented in CUDA kernel 8 could be considered that uses a
large number of registers, however, few of them are used in the real code.
Variables such as faux or faux1 are only used in this pseudocode in order to
make it more understandable. On the other hand, there are some references
to variable ThreadIdx.z which will be explained in Section 5.5.1.

CUDA Kernel 9

This kernel completes the computation of (5.18) by element-wise summing
all the summands computed in CUDA kernel 8 for each one of the two
outputs. The result is two complex vectors of size lo corresponding to
Ybuffl and Ybuffr (the left and right ear in the frequency domain). In this
case, 2lo threads are launched. Each thread performs four complex sums
for each source; in total, 4M complex sums are performed. The number
of blocks that this kernel launches is 2lo

128 × 1 × 1, being the block size
128× 1× 1.

Figure 5.8 shows the previously described operations that carry out
CUDA kernel 8 and CUDA kernel 9 for the particular case M = 2. After
them, two iFFTs are computed to obtain the final outputs ybuffl and ybuffr .

CUDA Kernel 9 Element-wise Sum from equation (5.18)

Input: Sres,M ,N ,lo
Output: Sres

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: for k = 1, . . . , 4 ·M − 1 do

3: Sres[Col] = ComplexSum(Sres[Col], Sres[Col + lo*k*2]);

4: end for

5.5. GPU-based implementation of a head-phone audio application 111

Xbuff0

H r 1 1 0θ φ r(), ,

H l 1 1 0θ φ r(), ,

R sr()

1 1 0

0

θ φ r(), ,

Y
l

1 1 0θ φ r(), ,

Xbuff1

H r 2 2 0θ φ r(), ,

H l 2 2 0θ φ r(), ,

R sr()

2 2 s

1

θ φ r(), ,

2 2 sθ φ r(), ,

0

Ybuffl

Ybuffr

CUDA kernel 8

CUDA kernel 9

 threads that compute the output in the left ear
 threads that compute the output in the right ear

buff

0
Y

r
buff

1
Y

l
buff

1
Y

r
buff

lo
lo

Figure 5.8. Operations carried out by CUDA kernel 8 and

CUDA kernel 9. Each thread is responsible for the computa-

tion of a sample.

Variables used in CUDA kernel 9

In this code, the first row of matrix Sres contains frequency bins of Ybuffl

(first lo columns) and Ybuffr (second lo columns).

5.5.1 Emulating a source movement

Emulating a source movement means carrying out the same operations
in two positions (the old position and the new position). The movement
is produced between them. The fading vectors (f and g) are applied to
both outputs. The worst case is considered to be when all the sources
move at the same time. Thus, for the rest of the subsection, we consider
the worst case. When this happens, CUDA kernel 8 launches double the
number of threads to execute, 16Mlo threads, as we have the double of
filters (see Fig. 5.9). The required processing is equivalent to doubling
the number of existing sources. In this case, the number of CUDA blocks
launched by CUDA kernel 8 is 2lo

32 ×M × 1, being the block size 32×4×2.
Note that ThreadIdx.z is now used in CUDA kernel 8. Afterwards, three
more kernels are launched. All of them replace the CUDA kernel 9 that is
described above.

112 Headphone-based spatial sound system

H r 1 1 0θ φ r(), ,

H l 1 1 0θ φ r(), ,

old position

old position

H r 1 1 0θ φ r(), ,

H l 1 1 0θ φ r(), ,
new position

new position

H r 1 1 0θ φ r(), ,

H l 1 1 0θ φ r(), ,

Figure 5.9. The number of filters is double in CUDA kernel

8. The processing is carried out for the old position and for

the new position.

CUDA kernel 10

This kernel performs an element-wise sum of the computed summands in
CUDA kernel 8 that belong to a position and a source. The result of this
kernel is 4M complex vectors of size lo. For this kernel, 4Mlo threads are
launched. Each thread carries out four complex sums (see Fig. 5.10). The
number of blocks that this kernel launches is 2lo

128 × 2M × 1, being the
block size 128 × 1 × 1. In this case, the results of the multiplications are
stored at different memory positions, which are denoted as matrix ˆSres.

Ybuff

Ybuff0r CUDA kernel 10old position

0l
old position

Ybuff

Ybuff0r
new position

0l
new position

Ybuff

Ybuff1r
old position

1l
old position

Ybuff

Ybuff1r
new position

1l
new position

Figure 5.10. CUDA kernel 10 groups the buffers that belong

to a position and a source for the particular case M = 2.

CUDA Kernel 10 Element-wise sum of the computed summands

Input: Sres,M ,N ,lo
Output: ˆSres

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int index1 = Col + Row*2*lo;

4: int index2 = Col + lo*k*2 + Row*4*2*lo;

5: for k = 0, . . . , 3 do

6: ˆSres[index1] = ComplexSum(ˆSres[index1], Sres[index2]);

7: end for

5.5. GPU-based implementation of a head-phone audio application 113

After CUDA kernel 10, 4M iFFTs of size lo are carried out in order to
obtain the result vectors ˆSres of CUDA kernel 10 in the time domain.

CUDA kernel 11

This kernel element-wise multiplies the corresponding fading vectors (f and
g) by the result vectors in the time domain obtained after iFFTs. Each
thread executes a multiplication. For this kernel, 4Mlo threads are required.
The number of blocks that this kernel launches is 2lo

64 × M × 1, being the
block size 64× 1× 2.

CUDA Kernel 11 Application of the fading vectors

Input: ˆSres, s, ch

Output: ˆSres

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int index1 = Col + Row*2*lo + ThreadIdx.z*M*2*lo;

4: int index2 = Col + ThreadIdx.z*2*lo;

5: if(s[Row])

6: ˆSres[index1] = ComplexMult(ˆSres[index1],ch[index2]);

7: end if

Variables used in CUDA kernel 11

• Vector ch is composed of 2lo elements and contains both fading vec-
tors f and g. First lo elements of ch correspond to elements of vector
f while the seconds lo elements correspond to g, i.e ch = [f g].

• Vector s is composed of M elements and its values can take only two
values: 0 and 1. When s[2]=0, it means that sound source labeled as
m = 2 has not been moved and stays in the same place. Thus, fading
must not be applied. Otherwise (s[2]=1), fading must be applied.
Values of vector s are modified by the user from the main program
and are transferred asynchronously to the GPU.

CUDA kernel 12

This kernel launches 2lo threads in order to element-wise sum the result
vectors obtained after CUDA kernel 11 for each output. The number of
blocks that this kernel launches is 2lo

128 × 1 × 1, being the block size 128×
1× 1.

114 Headphone-based spatial sound system

CUDA Kernel 12 Element-wise Sum Application of the fading vectors

Input: ˆSres, s

Output: ˆSres

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int index = Col + M*2*lo;

3: if(s[0])

4: ˆSres[Col] = ComplexSum(ˆSres[Col], ˆSres[index]);

5: end if

6: for k = 1, . . . ,M − 1 do

7: ˆSres[Col] = ComplexSum(ˆSres[Col], ˆSres[Col + k*2*lo]);

8: if(s[k])

9: ˆSres[Col] = ComplexSum(ˆSres[Col], ˆSres[index + k*2*lo]);

10: end if

11: end for

Variables used CUDA kernels 11 and 12

• Output-buffers ybuffl and ybuffr are contained in Matrix ˆSres.

• Regarding implementation details, it is important to remark that all
data were hosted in the GPU global-memory while the constant vari-
ables, such as lo, M , N , etc were hosted in constant-memory. The
resources of the shared-memory were used as a L1 cache memory in
order to reduce memory access times to global-memory.

5.5.2 Interaction with the user

Figure 5.11 shows the flowchart from this spatial audio application whose
processing is executed on the GPU. Firstly, the correct initialization of
the application is performed (both audio and computational parameters).
Then, the user introduces the Hearing Position of each source. This posi-
tion is given in degrees for the azimuth θ and the elevation φ, and in meters
for the distance r. Then, the nearby positions (φ1, φ2, θ1, θ2) that belong
to the database, together with their weighted factors wA, wB, wC , and
wD for each Hearing position, are calculated. The filters from the HRIR
database, the positions, and the weighted factors are transferred to the
GPU. The application starts with the acquisition of the first audio samples
from different sources. When all the buffers xbuffm are full, they are sent
to the GPU. Then, the processing begins by launching first CUDA kernel 8

5.6. Results 115

and then CUDA kernel 9 when the locations of the all the sound sources do
not move, or launching CUDA kernel 8, then CUDA kernel 10, then CUDA
kernel 11, and then CUDA kernel 12, if any of the sources has changed
its position. These four kernels are launched independently of the number
of sources that changed their positions since they are designed to give a
response to the worst case, which is when all the sources move at the same
time. When the processing ends, two output-buffers, ybuffr and ybuffl , are
sent back to the CPU. Whenever a sound source moves, the new nearby
positions (φ1, φ2, θ1, θ2), together with the new weighted factors wA, wB,
wC , and wD of that sound source, are calculated. It is important to note the
tridimensionality of application processes that are executed on the GPU,
such as FFT, CUDA kernel 8, CUDA kernel 9, etc (see Fig. 5.11). This
symbolizes that all of them make use of multiple threads that are launched
in parallel.

5.6 Results

The main result of this chapter is a headphone-based multisource spatial
audio application whose audio processing is carried out on the GPU. The
application is being used on a notebook Intel Core i7 at 1.60 GHz with a
GPU Geforce GTS360M with 1.2 capability, see Fig. 5.12. Sound exam-
ples recorded with this application are available in the section Examples of
binaural sounds generated by our GPU-based binaural application from the
web page referenced in [14].

We explore also the computational performance of the application for
two different cases. On the one hand, we consider that the application
managed M sources and all sound sources stay fixes (the path executed by
FFTs, CUDA kernel 8 and CUDA kernel 9 in flowchart of Fig. 5.11), and on
the other hand, all sound sources were moving at the same time in order to
execute the maximum number of operations (CUDA kernels 8, 10, 11, and
12, the other path in flowchart of Fig. 5.11). The computational experiment
consisted of launching the application and gradually increasing the number
of sources. Each time, the time tproc was measured and compared with
the fixed time tbuff . The application always works in real time as long as
tproc < tbuff . When this condition is no longer valid, the number of sources
reaches the maximum value of M . However, this does not mean that the

116 Headphone-based spatial sound system

Application
Init

CUDA Settings
Audio Settings

Positions
Weight factors

CUDA Settings:
GridSize,BlockSize,..

Audio Settings:
Number of Sources to render, Size of filters, ...

Correct
Values?

Audio sample acquisition
from different sourcesConfiguration of input-buffers

Transfer CPU GPU input-buffers

No

Yes

Insert Hearing Position Calculation of Positions=f(Hearing Position)
Calculation of Weight Factors=f(Hearing Position)

Hearing
Position
Change?

End of
Processing?

Insert New Hearing Position

Calculation of:
Positions=f(New Hearing Position)

Weight Factors=f(New Hearing Position)

New Position?

No

Yes

CUDA kernel 8

CUDA Kernel 8: double
the number of threads

CUDA kernel 10
CUDA kernel 11

Direct FFT to input-buffers

Inverse FFT

CUDA Kernel 12
output-buffers

No

Yes

Application
Finished

End of
Processing?

No

Yes

No

Yes

Inverse FFT to obtain
 output-buffers

Transfer CPU GPU:
Positions and Weight factors

Transfer
CPU GPU:

xbuffi

buff
y

l buff
y

r
and

buff
y

l buff
y

r
and

buff
y

l buff
y

r
and

Transfer CPU GPU:
- Filters from HRIR filters

- Positions
- Weight Factors

HRIR
Filters

Data-Base

Multiple Direct FFT to HRIR HRTF

CUDA kernel 9

Figure 5.11. Flowchart from a spatial audio application

whose audio processing is totally carried out on the GPU.

Tridimensional application processes are executed on the GPU

and symbolize the use of multiple threads that are launched

in parallel.

application stops working, since it could work as an off-line application.
Figure 5.13 and Figure 5.14 show the evolution of tproc as a function of the
number of sources. The time tbuff , which symbolizes the border between
off-line applications and real-time applications, is also shown. Obviously, if
this application has to share GPU resources with other applications, peak

5.6. Results 117

Figure 5.12. Developed headphone-based spatial application

running on a notebook with the GPU GTS360M.

performance would decrease. Besides the performance analysis in GTS-
360M, we present also performances from other GPUs that are usually
employed in powerful computers. The GPU hardware used in the tests
have the characteristics shown in Table 5.4.

Table 5.4. Characteristics of the GPUs.

Cuda Device GTS-360M TESLA C2075 GTX-580

Architecture Tesla Fermi Fermi

CUDA Capability 1.2 2.0 2.0

Number of SM 12 14 16

CUDA Cores per SM 8 32 32

Cache Hierarchy L1/L2 No Yes Yes

Maximum number 512 1024 1024

threads per block

Warp Schedulers 1 2 2

per SM

Comparing both figures, it is clear that the path composed by only
two kernels computes faster than the path composed by four kernels. The

118 Headphone-based spatial sound system

maximum number of sources that can be rendered in real time is reduced
between 1.5 and 2.0 times when all sound sources move, since the added
processing is approximately twice (old positions and new positions). Ana-
lyzing both figures, it is appreciable as performances of TESLA C2075 and
GTX-580 outperform the performance of GTS-360M. This occurs because
their capabilities are different. GTS-360M has SMs composed by 8 cuda
cores, while the other have SMs composed of 32 cuda cores. This implies
that thread blocks can be processed faster, as the SMs has more physical
cores. On the other hand, as GTX-580 has two SMs more than TESLA
C2075, more thread blocks can be distributed at runtime. This explains
why performances of GTX-580 are better than TESLA C2075. Moreover,
capability 2.0 has two warp schedulers which reduce the latency times by
switching among different warps during execution, in contrast with GTS-
360M that has only one. Other advantage of capability 2.0 is that allows to
use shared-memory as a L1 cache, and this together to the L2 cache reduce
access times to the GPU global-memory.

200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

12

14

16

Number of Sources

tp
ro

c
(m

s)

tbuff(ms)

TESLA C2075

GTS-360M
GTX-580

485 Sources

1392 Sources

1856 Sources

Figure 5.13. Number of sound sources that can be managed

by our proposed spatial sound application when all the sound

sources stay static in real time.

5.7. Conclusions 119

200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

16

Number of Sources

tp
ro

c
(m

s)

tbuff(ms)

TESLA C2075

GTS-360M
GTX-580

850 Sources

1220 Sources

240 Sources

Figure 5.14. Number of sound sources that can be managed

by our proposed spatial sound application when all the sound

sources are moving in real time.

5.7 Conclusions

This chapter has presented a complete multisource spatial application in
a binaural system. Multisource applications require high computing re-
sources. The development of the GPUs has allowed that different engi-
neering problems can be approached. In this work, we have developed a
spatial audio application whose massive processing is carried out on the
GPU, without overload the CPU, and freeing its resources to be used for
other tasks.

To render a sound source in a specific spatial location with a binaural
system, it is necessary to convolve audio samples with HRIR filters that
provide spatial information. Two common problems have been resolved
during the design: synthesizing sound sources positions that are not in the
HRIR database, and virtualizing the movement of the sound sources be-
tween different positions. Both problems were approached by increasing the
number of convolutions which are later weighted and combined in different

120 Headphone-based spatial sound system

ways, taking maximum profit of the GPUs capacity for executing multiple
convolutions simultaneously. Both solutions were assessed by performing
different audio analyses.

Finally, the implementation of the headphone-based spatial sound ap-
plication on the GPU is described. The implementation is composed of
different computational kernels that are executed depending on the move-
ment of the sound sources, and the characteristics of the database. The
development of this application on GPU hardware has allowed us to manage
multiple sources without overloading the CPU because of its huge capacity
for parallel computation. The results show that this application can man-
age up to 240 sources simultaneously when all the sources are moving at
the same time. It is important to remark that this application is totally
portable and can be run on different GPUs. Depending on the GPU re-
sources, such as the number of SMs, warp schedulers, etc, the number of
sources rendered in real time can vary. Thus, this chapter demonstrates
that the use of the GPU hardware provides a suitable solution to build
multisource binaural sound applications that demand high computational
needs.

More details can be found in [112] and in [113].

Wave Field Synthesis system 6

122 Wave Field Synthesis system

Wave Field Synthesis system 6
Wave Field Synthesis (WFS) is a spatial audio reproduction system that
provides an accurate spatial sound field in a wide area. This sound field is
rendered through a high number of loudspeakers to emulate virtual sound
sources. WFS systems require high computational capacity since they in-
volve multiple loudspeakers and multiple virtual sources. Furthermore im-
provements of the spatial audio perception imply even higher processing
capacity, mainly to avoid artifacts when the virtual sources move, and
compensate the room effects at certain control points within the listening
area. In this chapter, we propose a GPU implementation of a WFS system
with Room Compensation that yields to render maximum number of sound
sources. This GPU implementation seeks maximum parallelism by adapt-
ing the required computations to the different GPU architectures (Tesla,
Fermi and Kepler).

6.1 Theory of a WFS system

Wave Field Synthesis is a sound reproduction method, based on funda-
mental acoustic principles [13], [63]. It enables the generation of sound
fields with natural temporal and spatial properties within a volume or area

124 Wave Field Synthesis system

bounded by secondary sources (arrays of loudspeakers, see Fig. 6.3). This
method offers a large listening area with uniform and high reproduction
quality.

The theoretical basis of WFS is given by the Huygens’ principle. Ac-
cording to this, the propagation of a wave front can be described by re-
cursively adding the contribution of a number of secondary point sources
distributed along the wave front. This principle can be used to synthesize
acoustic wave fronts of an arbitrary shape.

A synthesis operator for each loudspeaker can be derived. The general
3-D solution can be transformed into the 2-D solution, which is sufficient
for reconstructing the original sound field in the plane of listening [114],
[64], [65]. For that purpose a linear array of loudspeakers is employed to
generate the sound field of virtual sources.

Following a model-based rendering in which point sources and plane
waves are used [115], the field rendered by a sound source m at point
R within the area surrounded by the loudspeakers can be expressed as
equation

P (xR, ω) =
N−1∑
n=0

Qn(xm, ω)
e
−jω4r

c

4r
, (6.1)

where c is the speed of the sound, xm is the position of the virtual sound
m, xR is the position of the point R, and 4r is the distance between the
nth loudspeaker and the point R.

The driving signal of the nth loudspeaker in a rendering system com-
posed of N loudspeakers is represented by Qn(xm, ω), which is computed
as

Qn(xm, ω) = S(ω)

√
jω

2πc
C

1√
r

cos(θ)e
−jωr
c . (6.2)

where C is a geometry dependent constant, r =| xm − xn |, and xn is
the position of the loudspeaker n. Figure 6.1 shows the geometry of the
system, where θ is the angle between the line that connects xm and xn, and
the normal vector n of the loudspeaker n. The piano represents the sound
source m in Fig. 6.1. The driving signal (6.2) consists of several elements
that have different functionalities. The term S(ω) is the frequency-domain
characteristics of the source signal, while the term

H(ω) =

√
jω

2πc
, (6.3)

6.1. Theory of a WFS system 125

Loudspeaker 0

x

Sound Source

Loudspeaker N-1...Loudspeaker n

m

xn

xR

rθ

θ

Figure 6.1. Geometry of a WFS system where it is appreci-

ated the sound source m, the N loudspeakers, and the different

distances among sound source, loudspeakers and a listener.

represents a filtering operation that is independent of the position of the
virtual source. In [116], it is referred as a WFS pre-equalization filter that
represents a lowpass filter with a constant slope of 3 dB/octave if loud-
speaker is considered a monopole secondary source, while it forms a high-
pass with a magnitude increase of 3 dB/octave in case of dipole secondary
sources. An important contribution in (6.2) is

amn =
C√
r

cos(θ) (6.4)

that denotes an amplitude factor that depends on the positions of the sound

source m, and the loudspeaker n. Finally, the e
−jωr
c represents a time delay

that is proportional to the distance between the virtual sound source m and
the loudspeaker n, being τmn defined as:

τmn =
| xm − xn |

c
(6.5)

The driving signal shown in (6.2) is expressed also in time domain as

qmn = amn · sm ∗ h ∗ δ(t− τmn). (6.6)

where ∗ denotes the convolution operator, sm is the signal of sound source
m, h is the inverse Fourier transform of H(ω) in (6.3).

126 Wave Field Synthesis system

In a multi source system composed of M virtual sound sources, the
loudspeaker driving signal of the n loudspeaker is

qn =
M−1∑
m=0

qmn . (6.7)

In a discrete-time signal processing system with sampling frequency fs,
expressions (6.6) and (6.7) turn to

qn =
M−1∑
m=0

amn · sm ∗ h ∗ δ[k − τmn]. (6.8)

where k is the sample index k.

6.1.1 Room Compensation in a WFS system

As introduced in Chapter 3, the interaction of the driving signals with
the listening room can deteriorate the localization properties that a WFS
system has. The synthesized sound-field can be altered by new echoes that
are introduced by the listening room and that reduce the spatial effect.
Lopez et al. designed and validated in [18, 117] a multichannel inverse filter
bank that corrects these room effects at selected points within the listening
area. In a WFS system composed of N loudspeakers, this implies to add N2

filters to the system, increasing its computational demand. Equation 6.9
shows the operations that are carried out in a multichannel inverse filter
bank with every driving signal. The final signal to be reproduced by the
nth loudspeaker yn is a combination of all the filtered signals, as illustrated
in Fig. 6.2, where the filter f0n goes from the driving signal q0 to the
loudspeaker n.

yn =

N−1∑
j=0

qj ∗ fjn. (6.9)

The calculation of the inverse filters can be carried out in a setup
stage, since the main room reflections can be considered invariant for each
specific room. Different methods have been proposed to obtain the bank of
correction filters. There are methods that compute an approximate solution
in frequency domain using FFT [94]. However, we use in this work a method

6.1. Theory of a WFS system 127

Driving Signal N-1

Loudspeaker 0

f (N-1)(N-1)fj(N-1)f 0(N-1)

q (N-1)

Driving Signal j
q j

Driving Signal 0
q 0

f (N-1)nfjnf0nf (N-1)0f j0f00

y
0 y

n y
(N-1)

Loudspeaker n Loudspeaker N-1

Figure 6.2. Multichannel inverse filter bank, where every

driving signal is convolved by N filters. The signal that is

reproduced by a loudspeaker is a combination of all the filtered

signals.

that guarantees a minimal square error solution in time domain [118] for
computing the correction filters fjn. A detailed description of the operation
to carry out for the computation of the filters is achieved in [18].

6.1.2 Practical Implementation of a WFS system

To this end, processing audio buffers of size 2L with a 50% overlap in the
frequency domain were used. Thus, the processing of the audio buffers is
composed by the current input-data buffer and the previous one that comes
from the audio card. The filters of the RC block are also composed by L
coefficients. We denote xbuffm to the input-data buffer that is composed of
lo = 2L samples of the sound source xm, where m ∈ [0,M − 1]. The FFT
of size lo of this block of samples is denoted by Xbuffm . Expression (6.10)
shows the computation of Qm

buffn
, which is composed by lo frequency bins;

Qm
buffn

is equivalent to the expression (6.2) particularized for the sound
source m. We use ⊗ for representing an element-wise multiplication be-
tween vectors.

Qm
buffn = (Xbuffm ⊗ h⊗ e

−j2π[0...(lo−1)]τmn
lo) · amn. (6.10)

128 Wave Field Synthesis system

Vectors h and e−j2π[0...(lo−1)]τmn are also composed by lo frequency bins.
In a multisource system, Qbuffn is computed as

Qbuffn =
M−1∑
m=0

Qm
buffn . (6.11)

Expression (6.11) shows the computation of only a WFS rendering system.
The additional processing of a Room Compensation block is computed as

Ybuffn =
N−1∑
r=0

Qbuffr ⊗ Frn. (6.12)

where Frn is one of the N2 filters of the multichannel inverse filter bank
that composes the RC block. The subscript r indicates the rth input of
the block, while the subscript n indicates the nth output that fits in the
nth loudspeaker. Thus, the L samples of the output-data buffer of the nth
loudspeaker are extracted from the lo frequency bins of Ybuffn .

Movement Virtualization

For synthesizing moving sound sources, mathematical formulae were de-
rived by Jansen in [119]. He analyzed the doppler-effect impact and showed
that for slow moving sound sources the doppler effect is negligible and one
can resort to updating locations for each location and changing those in
time. Thus, we choose this approach in this system. However, this solution
generated artifacts in the rendered sounds.

To avoid these clicks, we duplicate the rendering of the sound source
and apply a fading, i.e a gradual increase in the sound rendered by the new
position (fade-in) while the sound rendered by the old position decreases
(fade-out) in the same way. When this occurs, more processing to obtain
the driving signal for each loudspeaker is required.

If source m shifts from position xmA to xmB (A and B represents two
arbitrary positions of the virtual sound source m whose coordinates are
xmA to xmB, respectively), two driving signals for the nth loudspeaker must
be computed according to Expression (6.2). The results are: QmA

buffn
and

QmB
buffn

. After that, iFFTs of size lo are applied to both buffers, obtaining

two buffers in time domain: qmAbuffn
and qmBbuffn

. To these two buffers, the

fading is applied. To this end, the buffer qmAbuffn
is element-wise multiplied

6.2. Test system 129

by a fade-in vector f , and the buffer qmBbuffn
is element-wise multiplied by

a fade-out vector g. Finally, the buffer qmbuffn
is obtained by element-wise

summing the two previous multiplications, as shown in

qmbuffn = (qmAbuffn ⊗ f) + (qmBbuffn ⊗ g). (6.13)

Both f and g are complementary vectors of size lo = 2L that must satisfy

f [s] = g[2L− 1− s], (6.14)

where s ∈ [L, 2L− 1]. As the fading is applied to current audio buffer, the
first L values of both vectors are a constant equal to 0

f [s] = g[s] = 0, (6.15)

where s ∈ [0, L − 1]. Different values of vectors f and g are presented in
[104].

In a multisource system, all audio buffers are later summed

qbuffn =
M−1∑
m=0

qmbuffn . (6.16)

Discarding the first L samples of the qbuffn , we have audio samples to
be rendered by the nth loudspeaker of the system. However, if a Room
Compensation block is applied in the system, more processing is required.
In order to apply expression (6.12) to Qbuffn , a FFT (size of FFT lo) of
qbuffn is needed.

Thus, processing a fading means to increase mainly the number of FFT
transformations to carry out in the system.

6.2 Test system

All measurements has been carried out at the laboratory of the Audio
and Communications Signal Processing Group (GTAC) [14] of the Univer-
sitat Politècnica de València (UPV). This laboratory is composed by 96
loudspeakers (N=96) that are positioned using an octogonal geometry (see
Fig. 6.3).

130 Wave Field Synthesis system

We use a standard audio card at the laboratory. The audio card uses
the ASIO (Audio Stream Input/Output) driver to communicate with the
CPU and provides 512 samples per channel every 11.61 ms (sample fre-
quency fs=44100 Hz). This time is called for us tbuff . Therefore, in our
system, L=512 which implies that filters F in RC block are composed by
512 coefficients. Observing Fig. 6.3, it is appreciated as our laboratory has
semi-anechoic characteristics. Thus, for this kind of room, the use of 512
coefficients is enough, [94] [120]. If a room presents more reverberations,
the necessary filter coefficients of the RC block will be longer. If this hap-
pens, two kind of solutions could be raised: 1) take the size of the buffer
L longer, which implies increasing the latency, or 2) carry out a partition
filtering [121].

One important aspect lies on the data-flow management by the GPU.
Firstly, the M input-data buffers are filled, then they are transferred from
the CPU to the GPU. After processing, N output-data buffers are sent
back from the GPU to CPU to be rendered by the N loudspeakers. We
define tproc as the processing time since the M input-data buffers are filled
till the N output-data buffers are received. The spatial audio system (see
Fig. 5.4) works in real-time as long as tproc < tbuff .

6.2.1 System Setup

All variables are stored at global-memory of the GPU. Before beginning
the real-time processing, values of filter h are transferred to the GPU,
together to the coordinates of the virtual sound sources. Then, the delay
and amplitude factors per loudspeaker and per source are computed. Each
one of them is stored in the memory space reserved for the position A inside
a tridimensional matrix whose size depends on: the number of loudspeakers,
the number of sources, and the two positions per source (position A and
position B), see Fig.6.4(a). Position A and position B are necessary in
order to carry out properly the fading. The resulting output-data buffers of
(6.10) are stored in the memory space reserved for Position A inside another
tridimensional matrix whose size depends on: the number of loudspeakers,
the number of sources, the number of samples in the output-data buffer (lo
samples) per loudspeaker, and the two positions per source (Fig.6.4(b)). All
output-data buffers are stored in consecutive memory locations in order to
achieve the coalescing access to the global-memory.

When a user introduces a new position for any of the sound sources, new

6.2. Test system 131

4.3 m

1.
45

 m

12
0º

Listener

Piano

Vocals
Drums

Guitar

Figure 6.3. Configuration of the array at the laboratory of

the GTAC at UPV

delay and amplitude factors are generated for all the sources. In this case,
they are stored in the corresponding memory spaces reserved for positions
B (Fig.6.4(a)). The next output-data buffers are computed by using delay
and amplitude factors of both positions (discontinuous path in Fig.(6.5)).
Memory spaces reserved for the position A and the position B are now used

132 Wave Field Synthesis system

for storing the output-data buffers (Fig.6.4(b)).

Afterwards, the following output-data buffers are computed by using
only delay and amplitude factors of position B, since the current delay and
amplitude factors are in this moment in position B. Thus, as positions of the
virtual sound sources change, storing and processing is swapped between
position A and position B. Only when the fading is applied, both positions
are used. Fig.(6.5) summaries this process.

N position A

position B

M M

Samples of Loudspeaker N-1

N

M

position A
position B

position A
position B

N

Output-data buffers Delay factors Amplitude factors

(a) (b)

lo

lo

Figure 6.4. Data structures used for storing in the global-

memory of the GPU: the delay factors and the amplitude fac-

tors in (a), and the output-data buffers in (b).

Transfer CPU GPU M input-data

Transfer GPU CPU N output-buffers

Change any
 Position?

Yes Processing in
 Position A

and
 Position B

xbuffm

No

Processing
 in Position A?

Previous
Processing in
 Position A?

Yes

Next
Processing in
Position B

Next
Processing in
Position A

NoProcessing in
Position B

Processing in
Position A

No

Insert Virtual
 Positions

Audio sample acquisition
from different sources

Yes

ybuffn

Figure 6.5. Flowchart of the processing executed on the

GPU.

6.2. Test system 133

The advantage of using two different memory spaces is to reduce the
number of accesses to the global-memory. Thus, we reduce intern data
copies within global-memory when a fading is carried out.

6.2.2 Computational kernels implemented on GPU

We employed for the implementations three different NVIDIA GPUs whose
characteristics are shown in Table 6.1. In order to map the described op-
erations, we launch the following CUDA kernels:

Table 6.1. Characteristics of the GPUs.

Cuda Device GTS-360M GTX-590 GTX-690

Architecture Tesla Fermi Kepler

Number of SM 12 16 8

Number of cores 96 512 1536

Warp Schedulers 1 2 4

per SM

CUDA kernel 13

In this kernel, each thread is devoted to compute xn − xm. Both position
are composed of two coordinates. Thus, the number of blocks that this
kernel launches is N

128 × 2 × M , being the block size 128× 1× 1.

CUDA Kernel 13 Difference in coordinates between Loudspeakers and Sound

Sources
Input: N , S, L, Select

Output: D

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int High = BlockIdx.z * BlockDim.z + ThreadIdx.z;

4: int index = Col + Row*N;

5: int index2 = index + High*N*2 + 2*Select*N*M;

6: int index3 = Row + High*2;

7: // Difference in coordinates Sound Sources - Loudspeaker.

8: D[index2] = L[index] - S[index3];

134 Wave Field Synthesis system

Variables used CUDA kernel 13

• Matrix S has a tridimensional structure with these dimensions: (1 ×
2 ×M). It has one column, two rows that indicate the coordinates of
the sound source, and the third dimension is devoted to the number
of sound sources in the system.

• Matrix L has a bidimensional structure with these dimensions: (N ×
2 × 1). It stores the coordinates of the N loudspeakers in the system.

• Matrix D has a 4-D structure with these dimensions: (N × 2 × M
× 2). First 3-D components (N × 2 × M × 1) stores the differences
xn−xm for all the sound sources in the Position A (see Section 6.2.1),
while the second 3-D components stores them for the Position B. The
selection between Position A and Position B is related to the fading,
i.e when a sound source is moving.

• Variable Select indicates if the differences must be stored in Position
A or in Position B. If Select=0, coordinate differences are stored in
Position A. In case Select=1, coordinate differences are stored in Po-
sition B (See Fig. (6.5)). This variable can only take these two kind
of values and is manipulated by the main program.

CUDA kernel 14

In this kernel, each thread is devoted to compute different parameters that
are necessary for the proper rendering in the system. The number of blocks
that this kernel launches is N

64 × 1 × M
2 , being the block size 64× 1× 2.

CUDA Kernel 14 Computation of Amplitudes and Delays Loudspeak-

ers/Source

Input: S, L, Select, D, N , G, Select

Output: A, T, mask

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int High = BlockIdx.z * BlockDim.z + ThreadIdx.z;

3: int index = Col + High*N + Select*N*M;

4: // Variable D has one dimension more:

5: int index2 = index + High*N + Select*N*M;

6: int index3 = index2 + N;

6.2. Test system 135

7: // Angle between positions: sound source and loudspeaker .

8: float fangle = atan2f(D[index3],D[index2]);

9: // The Geometry condition G and the angle: fangle

10: if(fangle <> G)

11: // ..determines if loudspeaker per source is ON or OFF

12: mask[index1] = 1.0;

13: end if

14: // Computation equation (6.4).

15: float faux = D[index3]*D[index3];

16: faux = faux + D[index2]*D[index2];

17: faux = sqrtf(faux); // Here is computed r

18: A[index] = C*cosf(P[index])/sqrtf(faux);;

19: // Computation equation (6.5).

20: T[index] = rintf(44100.0*faux/343.0);

Variables used in CUDA kernel 14

• Matrix A and Matrix T have a tridimensional structure: (M × N ×
2). Both structures contain all the amplitudes and delays values per
loudspeaker and sound source: amn and τmn. The third dimension is
devoted to select the storing of the computed parameters: Position A
or Position B. This selection is carried out by the variable Select, as
in CUDA kernel 13.

• Matrix mask has the same tridimensional structure as A and T. Their
values depend on the geometry of the WFS system and indicates if
a loudspeaker must reproduce a specific sound source in a specific
position. Its functionality is related with the correct build of the
wavefront within the geometry of the WFS system.

CUDA kernel 15

This kernel computes Qm
buffn

in (6.10). The number of blocks that this

kernel launches is lo
128 × N × M , being the block size 128× 1× 1.

136 Wave Field Synthesis system

CUDA Kernel 15 Computation of the Driving signals

Input: A, T, h, S, mask, lo, N , M , Select

Output: Q,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.x * BlockDim.x + ThreadIdx.x;

3: int High = BlockIdx.z * BlockDim.z + ThreadIdx.z;

4: int HighMod = High % M;

5: Complex cRet;

6: // Global Index;

7: int index = Col + Row*lo;

8: int indexTot = index + High*N*lo + Select*N*M*lo;

9: int indS = Col + HighMod*lo;

10: int indMask = Row + High*N + Select*N*M;

11: // Computation Delay in frequency-domain

12: float faux = 2.0*M_PI*T[indMask];

13: faux = faux*((float)Col /((float)lo)) ;

14: cRet.x = A[indMask]*(__cosf(faux));

15: cRet.y = (-1.0)*A[indMask]*(__sinf(faux));

16: Q[indexTot] = ComplexMult(S[indS],H[Col]);

17: Q[indexTot] = ComplexScale(Q[indexTot],1/lo);

18: Q[indexTot] = ComplexMult(Q[indexTot],cRet);

19: Q[indexTot] = ComplexScale(Q[indexTot],mask[indMask]);

Variables used in CUDA kernel 15

• Matrix S is composed of M rows and lo columns. Elements of the
row m are composed by the lo frequency bins of the buffer Xbuffm .

• Matrix Q has a 4-D structure with these dimensions: (N × lo × M
× 2). First two dimensions correspond to all the driving signals for
a sound source. The third dimension is devoted to the number of
sound sources M . Thus, the value m in the third dimension within
the row n stores the frequency bins of the driving signal Qm

buffn
. The

fourth dimension is devoted to select the storing of the driving signals:
Position A or Position B. This selection is carried out by the variable
Select.

• Vector h corresponds to lo frequency bins of the filter h, see (6.3).

• Note that variable HighMod is not relevant in this code. However, it

6.2. Test system 137

will have an important role when the fading is carried out.

CUDA kernel 16

This kernel computes Qbuffn in (6.11). The number of blocks that this
kernel launches is lo

128 × N × 1, being the block size 128 × 1 × 1. Each
thread carries out M sums of complex numbers.

CUDA Kernel 16 Computation of the Driving signals

Input: Q, lo, N , M , Select

Output: Q,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int index = Col + Row*lo + Select*N*M*lo;

4: for k = 1, . . . ,M − 1 do

5: Q[index] = ComplexSum(Q[index],Q[index + k*N*lo]);

6: end for

CUDA kernel 17

This kernel computes the element-wise multiplications of (6.12). The num-
ber of blocks that this kernel launches is lo

128 × N × N , being the block
size 128× 1× 1. Each thread carries out a complex multiplication.

CUDA Kernel 17 Element-wise Products using the Room Compensation filters

Input: Q, F lo, N , M , Select

Output: O,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int High = BlockIdx.z * BlockDim.z + ThreadIdx.z;

4: HighMod = High % (N); // N can not be power of two

5: int index = Col + Row*lo;

6: int indexTot = index + High*lo*N;

7: int index1 = index + HighMod*N*lo + Select*N*M*lo;

8: O[indexTot] = ComplexMult(Q[index1],F[indexTot]);

Variables used in CUDA kernel 17

• Matrix F has a tridimensional structure whose dimensions are (N ×
lo × N). This matrix stores the frequency responses of the N2 filters

138 Wave Field Synthesis system

that compose the inverse filter bank.

• Matrix O has the same tridimensional structure as matrix F and is
devoted to store the element-wise products of (6.12).

CUDA kernel 18

This kernel performs the accumulation of Ybuffn in (6.12). The number
of blocks that this kernel launches is lo

128 × N × 1, being the block size
128× 1× 1. Each thread carries out N sums of complex numbers. Matrix
O contains the frequency bins of Ybuffn in its first N · lo elements.

CUDA Kernel 18 Element-wise Sum using Room Compensation filters

Input: O, lo, N , M , Select

Output: O,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int index = Col + Row*lo;

4: O[index] = ComplexSum(O[index],O[index + k*lo*N]);

Movement virtualization in CUDA kernels

In case the fading is carried out, CUDA kernel 15 launches double number of
threads, since double of driving signals must be computed. This is achieved
by setting variable Select=0 and by using this CUDA grid: lo

128 × N × 2M ,
being the block size 128× 1× 1.

Additionally, CUDA kernel 16 is substituted by the following opera-
tions

• 2NM iFFTs of size lo are executed to obtain all qmAbuffn
and qmBbuffn

of
(6.13).

• CUDA kernel 19 computes the element-wise multiplications of (6.13).
To this end, 2NMlo threads are launched. Each thread performs a
multiplication.

• CUDA kernel 20 performs the accumulation of (6.13) and (6.16)
by using Nlo threads.

• N FFTs of size lo are carried out to obtain all Qbuffn .

6.2. Test system 139

Finally, CUDA kernel 17 and CUDA kernel 18 are launched. It is
important to point out that the necessary FFT and iFFT transformations
are carried out by the Nvidia FFT library CUFFT [20] on the GPU.

CUDA kernel 19

The number of blocks that this kernel launches is Nlo
64 × M × 1, being the

block size 64× 1× 2.

CUDA Kernel 19 Element-wise Sum using Room Compensation filters

Input: Q, lo, N , M , Select, ch

Output: O,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int ColMod = Col & (lo-1);

4: int index = Col + Row*lo*N + ThreadIdx.z*lo*M*N;

5: int index2 = ColMod + ThreadIdx.z*lo + 2*lo*Select;

6: if(s[Row])

7: O[index] = ComplexMult(O[index], ch[index2]);

8: end if

Variables used in code of CUDA kernel 19

• Vector ch is composed of 4lo elements and contains both fading vec-
tors f and g twice, i.e ch = [f g g f]. This kernel applies the
fading to the driving signals. Thus, in case the fading changes from
Position A to Position B, then Select=0. In case the fading changes
from Position B to Position A, then Select=1.

• Vector s is composed of M elements and its values can take only two
values: 0 and 1. It has the same role as in CUDA kernel 11.

CUDA kernel 20

The number of blocks that this kernel launches is Nlo
128 × 1 × 1, being the

block size 128× 1× 1.

140 Wave Field Synthesis system

CUDA Kernel 20 Application of the fading vectors

Input: O, s, Select

Output: O

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int index1 = Col + Select*N*M*lo;

3: int index2 = Col + N*M*lo - Select*N*M*lo;

4: if(s[0])

5: O[index1] = ComplexSum(O[index1],O[index2]);

6: end if

7: for k = 1, . . . ,M − 1 do

8: O[index1] = ComplexSum(O[index1], O[index1 + k*N*lo]);

9: if(s[k])

10: O[index1] = ComplexSum(O[index1], O[index2 + k*N*lo]);

11: end if

12: end for

6.3 Performance and results

Figure 6.6(a) presents the time tproc as the number of virtual sound sources
increases in a WFS system, with and without a RC block, and for three
different GPU accelerators. In the sequel, we refer to them by their architec-
tures name. Analyzing Fig. 6.6(a), it can be appreciated the performance
difference when a RC block is added. If RC block is not applied, all GPUs
achieve configurations that work in real time. The Tesla achieves rendering
in real time up to 50 sources, the Fermi up to 80 and the Kepler up to 300.
However, The Tesla can not achieve any configuration that works in real
time when a RC block is added. It is important to point out that this GPU
accelerator belongs to a notebook. For the Fermi and Kepler architecture,
the maximum number of rendering sound sources is 40 and 260, respec-
tively. The additional processing with the RC block affects noticeably to
Tesla and Fermi since they have less physical CUDA cores and less schedule
units, while Kepler performance is hardly affected.

On the other hand, Fig. 6.6(b) shows the achieved performance in case
a fading is carried out and all the sound sources move at the same time.
Comparing this illustration with Fig. 6.6(a), we can appreciate that the
influence of using a fading is more meaningful than simply adding a RC
block. If a RC block is not applied, the Tesla can render barely up to 8

6.4. Conclusion 141

sources in real time, the Fermi up to 14 sources and the Kepler up to 30
sources. Again, when a RC block is applied, the Kepler performance is
hardly affected and is able to render up to 28 sources in real time, while
the Fermi achieves up to 8 sources in real time.

The tasks assigned to each thread in the different kernels allow to
carry out a fine-grain parallelism. This kind of assignment benefits from
the number of cuda cores of the GPU. Thus, the Kepler achieves best
performance. Moreover, this architecture has four warp schedulers per SM,
what allows this GPU to execute more than one launched thread in one
physical core at the same time. This is because the warp scheduler overlaps
memory access times of some threads with the execution of others. As the
Tesla and Fermi have less warp schedulers, they cannot so easily overlap
these times.

6.4 Conclusion

The new emerging GPU architectures such as Nvidia Kepler has allowed us
to face up different computational problems in the audio processing that
had not been approached before. In this chapter, we have developed a WFS
rendering system that uses a Room Compensation block and that is able to
render up to 300 virtual sound sources in real time. The main feature of this
system is that all its audio processing was carried out by a GPU, while the
CPU could be being used for other tasks at the same time. Therefore, the
use of the Nvidia hardware provides a good solution to build multisource
spatial inmersive systems that require high computational capacity. More
details can be found in [122]

142 Wave Field Synthesis system

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

Number of Sources

(a)

tp
ro

c
(m

s)

Kepler

Kepler RC
Tesla

Tesla RC

Fermi

Fermi RC

tbuff(ms)

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

Number of Sources
(b)

tp
ro

c
(m

s)

tbuff(ms)

Kepler

Kepler RC
Tesla

Tesla RC

Fermi

Fermi RC

300 Sources

80 Sources

50 Sources

30 Sources

14 Sources

Figure 6.6. Processing time for different number of sound

sources that are rendered in a spatial audio system (WFS +

RC) without fading processing (a) and with fading processing

(b) on different GPUs.

Sound Source Localization 7

144 Sound Source Localization

Sound Source Localization 7
Sound source localization is an important topic in microphone array sig-
nal processing applications, such as automatic camera steering systems,
human-machine interaction, video gaming or surveillance systems. The
Steered Response Power with Phase Transform (SRP-PHAT) algorithm is
a well-known approach for sound source localization due to its robust per-
formance in noisy and reverberant environments. This algorithm analyzes
the sound power captured by an acoustic beamformer on a defined spa-
tial grid, estimating the source location as the point that maximizes the
output power. Since localization accuracy can be improved by using high-
resolution spatial grids and a high number of microphones, accurate acous-
tic localization systems require high computational power. GPUs offer mul-
tiple parallelism levels; however, properly managing their computational
resources becomes a very challenging task. In fact, management issues
become even more difficult when multiple GPUs are involved, adding one
level more of parallelism. In this chapter, the performance of an acoustic
source localization system using distributed microphones is analyzed over
a massive multichannel processing framework in a multi-GPU system. In
this context, we evaluate both localization and computational performance
in different acoustic environments, always from a real-time implementation
perspective.

146 Sound Source Localization

7.1 Introduction

Sound source localization plays an important role in a large-scale number of
applications such as human-computer interfaces, teleconferencing or robot
artificial audition. Localization becomes difficult when sound sources are
surronded by high noise and reverberation.

This chapter is aimed at demonstrating how localization systems using
a high number of microphones distributed within a room can perform real-
time sound source localization in adverse environments by using GPU mas-
sive computation resources. We discuss how massive signal processing for
sound source localization can be efficiently performed by Multi-GPU sys-
tems, analyzing different performance aspects on a set of simulated acoustic
environments. Specifically, the well-known SRP-PHAT algorithm is consid-
ered here. Coarse-to-fine search strategies have been proposed to overcome
many of the processing limitations of SRP-PHAT [123, 124, 125]. However,
while these strategies provide more efficient ways to explore the localization
search volume, they only provide better performance than the conventional
SRP-PHAT when the number of operations is restricted. Thus, the per-
formance of the conventional SRP-PHAT with fine spatial grids is usually
considered as an upper bound in these cases.

Relevant parameters that affect the computational cost of the algo-
rithm (number of microphones and spatial resolution) are analyzed, show-
ing their influence on the localization accuracy in different situations. We
also discuss the scalability of the algorithm when multi-GPU paralleliza-
tion issues are considered. The conclusions of this chapter highlights the
need for massive computation in order to achieve high-accuracy localization
in adverse acoustic environments, taking advantage of GPUs to fulfill the
computational demands of the system.

7.2 Sound Source Localization using SRP-PHAT Al-

gorithm

Consider the output from microphone m, bm(t), in an M microphone sys-
tem. The Steered Response Power (SRP) at the spatial point x = [x, y, z]T

7.2. Sound Source Localization using SRP-PHAT Algorithm 147

for a time frame r of length TL is defined as

Pr(x) ≡
∫ (r+1)TL

rTL

∣∣∣∣∣
M∑
m=1

wmbm (t− τ(x,m))

∣∣∣∣∣
2

dt, (7.1)

where wm is a weight and τ(x,m) is the direct time of travel from location
x to microphone m. DiBiase [126] showed that the SRP can be computed
by summing up the Generalized Cross-Correlations (GCCs) for all possible
pairs of the set of microphones. The GCC for a microphone pair (r,m) is
defined as

Rbrbk(τ) =

∫ ∞
−∞

Φrm(ω)Br(ω)B∗m(ω)ejωτdω, (7.2)

where τ is the time lag, ∗ denotes complex conjugation, Bm(ω) is the
Fourier transform of the microphone signal bm(t), and Φrml(ω) is a com-
bined weighting function in the frequency domain. The phase transform
(PHAT) [75] has been shown to be a suitable GCC weighting for time delay
estimation in reverberant environments. The PHAT weighting is expressed
as:

Φrm(ω) ≡ 1

|Br(ω)B∗m(ω)|
. (7.3)

Taking into account the symmetries involved in the computation of
(7.1) and removing some fixed energy terms [126], the part of Pr(x) that
changes with x can be isolated as

P ′r(x) =

M∑
r=1

M∑
m=r+1

Rbrbk (τrm(x)) , (7.4)

where τkl(x) is the inter-microphone time-delay function (IMTDF). This
function is very important, since it represents the theoretical direct path
delay for the microphone pair (r,m) resulting from a point source located
at x. The IMTDF is mathematically expressed as [127]

τrm(x) =
‖x− xr‖ − ‖x− xm‖

c
, (7.5)

where c is the speed of sound (≈ 343 m/s), and xr and xm are the locations
of the microphone pair (r,m).

148 Sound Source Localization

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Intersecting Half-Hyperboloids for a Point-Source

x [m]

y

[m

]

Mic 1

Mic 2

Mic 3

Figure 7.1. Intersecting half-hyperboloids for M = 3 micro-

phones. Each half-hyperboloid corresponds to a TDOA peak

in the GCC.

The SRP-PHAT algorithm consists in evaluating the functional P ′r(x)
on a fine grid G with the aim of finding the point-source location xs that
provides the maximum value:

xs = arg max
x∈G

P ′n(x). (7.6)

Figure 7.1 shows schematically the intuition behind SRP-PHAT local-
ization. In this figure, an anechoic environment is assumed so that the GCC
for each microphone pair is a delta function located at the real Time Differ-
ence of Arrival (TDOA). Each TDOA defines a half-hyperboloid of potential
source locations. The intersection resulting from all the half-hyperboloids
matches the point of the grid having the greatest accumulated value.

7.2. Sound Source Localization using SRP-PHAT Algorithm 149

7.2.1 SRP-PHAT Implementation

The SRP-PHAT algorithm is usually implemented on a grid by carrying
out the following steps:

1. A spatial grid G is defined with a given spatial resolution rsp. The
theoretical delays from each point of the grid to each microphone pair
are pre-computed using (7.5).

2. For each analysis frame, the GCC of each microphone pair is com-
puted as expressed in (7.2).

3. For each position of the grid x ∈ G, the contribution of the different
cross-correlations are accumulated (using delays pre-computed in 1),
as in (7.4).

4. Finally, the position with the maximum score is selected as in (7.6).

The SRP-PHAT localization performance depends on the selected spa-
tial resolution rsp. Figure 7.2 illustrates the algorithm performance when
considering different spatial grid resolutions. The accumulated SRP-PHAT
values for each spatial grid location are shown for a 2-D plane in a 4 × 6
m room with M = 6 microphones. Note how the location of the source is
more easily detected when finer spatial resolutions are used, as in the case
of rsp = 0.01 m.

7.2.2 Computational Cost

The SRP-PHAT algorithm is usually implemented by performing a frequency-
domain processing of the input microphone signals. Given M microphones,
the number of microphone pairs to process is Q = M(M−1)/2. For a DFT
size of L (equal to the time-window size), an FFT takes 5L log2 L arithmetic
operations that result from L

2 log2 L complex multiplications and L log2 L
complex additions. Note that one complex multiplication is equivalent to
four real multiplications and one real addition, while a complex addition is
equivalent to two real additions. As a result, the signal processing cost for
computing the GCC is given by:

• DFT: Compute M FFTs, then, M × 5L log2 L.

150 Sound Source Localization

• Cross-Power Spectrum: A complex multiplication for L points,
resulting in 6L operations (4 real multiplications and 2 real additions).
This is done for Q microphone pairs, resulting in a cost of 6QL.

• Phase Transform: Magnitude of the L points of the GCC, which
costs L operations. This is also done for Q pairs, resulting in QL
operations.

• IDFT: The IDFT for Q pairs must be performed, which requires
Q5L log2 L operations.

Moreover, for each functional evaluation, the following parameters must
be calculated:

• M Euclidean distances, ‖xm‖, requiring 3 multiplications, 5 additions
and 1 square root (≈ 12 operations): 20M operations

• Q TDOAs, requiring 2 operations (1 subtraction and 1 division by c)
per microphone pair: 2Q operations.

• The SRP requires truncating the TDOA values to the closest sample
according to the system sampling frequency, multiplying the cross-
power spectrum to obtain the phase transform for each microphone
pair and adding up all the GCC values: 5Q operations.

As a result, the cost of the SRP-PHAT (number of operations) is given
by:

Cost =

(
M +M2

2

)
5L log2 L+

7M(M − 1)

2
L + ν

(
20M +

7M(M − 1)

2

)
, (7.7)

where ν is the total number of functional evaluations. In the conventional
full grid-search procedure, ν equals the total number of points of the grid
G. Figure 7.3 shows the computational cost of the algorithm for different
spatial resolutions and number of microphones, considering a 3D grid search
space with a uniform spatial resolution of rsp meters.

7.3. Algorithm Parallelization for real-time GPU implementation 151

0 1 2 3 4

0

1

2

3

4

5

6

SRP-PHAT values with r = 0.01

0 1 2 3 4

0

1

2

3

4

5

6

SRP-PHAT values with r = 0.1
y

[m
]

y
[m

]

x [m] x [m]

(a) (b)
0.6 0.5 0.4 0.3 0.2 0.1

sp sp

Figure 7.2. Accumulated SRP-PHAT values for a 2-D spatial

grid (4 × 6 m and M = 6 microphones) with different spatial

resolutions. (a) rsp = 0.01 m. (b) rsp = 0.1 m.

7.3 Algorithm Parallelization for real-time GPU im-

plementation

The GPU-based implementation of the SRP-PHAT algorithm is applied to
Nvidia hardware devices with Kepler architecture GK110 [37].

Since the localization is carried out in three dimensions, three different
resolutions rxsp, r

y
sp, and rzsp define the spatial grid G. Taking a shoe-box-

shaped room as a model room with dimensions lx × ly × lz, the size of the
grid is ν = P x × P y × P z, where P x = lx

rxsp
, P y = ly

rysp
and P z = lz

rzsp
.

The real-time implementation of the SRP-PHAT algorithm uses pro-
cessing blocks of size lo = 2L with 50%. Also, the audio card provides
audio sample buffers of size L per each microphone each L

fs
s. These ML

samples are transferred to the GPU first. A GPU buffer (denoted here as
TGPU) stores the audio samples in consecutive memory positions as they
arrive to the GPU. One aspect that affects the performance for all audio

152 Sound Source Localization

Computational Cost

M (Number of microphones)

5 10 15 20 25 30 35 40 45
10

6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

= 0.05 m
= 0.1 m

= 0.01 m
= 0.005 m r

r
r
r

N
um

be
r

of
 o

pe
ra

ti
on

s

sp

sp

sp

sp

Figure 7.3. Computational cost when for different number

of microphones M and spatial resolutions rsp.

signal processing applications on GPU is the transfer of audio samples from
CPU to GPU. As mentioned in Section 2.6.1, in Chapter 2, streams can be
used to parallelize these transfers and overlap them with the computation.
The processing is carried out in blocks of size 2L which are composed of
the current audio-sample buffer and the previous one. Thus, a size of 2LM
is used for TGPU . Therefore the SRP-PHAT GPU implementation carries
out the following steps:

1. M streams are created (one stream for each microphone in the sys-
tem). The streams are launched consecutively in an asynchronous
way. Stream m transfers L samples captured by microphone m to
the GPU and stores them in TGPU , with m = 0, . . . ,M − 1. Then,
stream m launches CUDA kernel 21, which is responsible for group-
ing lo = 2L elements of microphone m (L samples from previous
buffers and L samples from current buffers). These lo elements are
also weighted using a Hamming window vector. For this purpose, the
stream launches a kernel that is composed of 128-size thread blocks in

7.3. Algorithm Parallelization for real-time GPU implementation 153

a CUDA grid of dimensions (lo
128 × 1) (i.e., it is composed of lo CUDA

threads). Each thread computes one element of the lo elements.

CUDA kernel 21

CUDA Kernel 21 Grouping lo elements and Multiply by Hamming Windows

Input: TGPU , w, lo, I

Output: F,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int ipos = (Col + I*L) & (lo-1);

3: // Element-wise multiplication by a Hamming Windows

4: F[Col].x = ((float)TGPU [ipos]*w[Col];

5: F[Col].y = 0.0;

The tasks carried out by CUDA kernel 21 are simple. Each thread
reads one value from global-memory, multiplies it by a float num-
ber (a value of Hamming window vector) and stores it in a different
position of global-memory. The accesses to global-memory are totally
coalesced, since audio samples are stored in consecutive memory po-
sitions both when reading and when writing (see Fig. 7.4). Also, L is
a power of 2 and is always larger than 1024. Thus, each thread block
reads and writes in 128 consecutive memory positions. The selection
of 128 for the block size was done experimentally between 64, 128,
256 and 512, with 128 being the one that requires less time.

Vector w is composed of lo elements that corresponds to a Hamming
window of size lo. Variable I points the audio samples to use from
TGPU . Matrix F has dimensions (M × lo) and stores the audio
samples of all the microphones once they have been multiplied by the
hamming window. Variable I and the access to the rows of matrix F
are manipulated from the main programm.

2. Once CUDA kernel 21 has finished, stream m uses the CUFFT li-
brary to perform a FFT of size lo using these lo elements. As a result
of the computation performed by all the streams, M vectors that are
composed of lo frequency bins (denoted as fm, m = 0, . . . ,M − 1 and
stored in matrix F) are obtained. The use of streams allows us to
overlap data transfers with computation. For example, while stream
1 is transferring samples from microphone 1, stream 0 can be exe-
cuting CUDA kernel 21. However, the next steps involve operations

154 Sound Source Localization
bl

oc
kD

im
.y

(ThreadIdx.x, ThreadIdx.y)

Grid of CUDA threads

blockDim.x

.

TGPU

L

ML elements from previous audio samples ML elements from current audio samples

f0

Hamming Vector

lo

Figure 7.4. Operations that are carried out by CUDA kernel

21 in case M=4.

among different channels. Thus, all the previous operations must fi-
nalize before continuing. This implies synchronization among all the
streams. The following steps are computed by only one stream.

3. The GCC matrix is computed by means of another kernel (CUDA
kernel 22). In this kernel, a GPU thread takes one value from each of
two different fm buffers that are at the same vector position. It con-
jugates one of the values and multiplies it by the corresponding value
of the other fm buffer. The phase of the complex number obtained
by the multiplication is stored in the corresponding position in the
GCC matrix.

CUDA kernel 22

CUDA Kernel 22 Configuration of GCC matrix

Input: F, Pairs, lo,

Output: GCC,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: Complex Caux;

4: int index;

5: int ind1;

6: while(Row < Q)

7: index = Col + Row*BlockDim.x*gridDim.x

8: ind1 = Col + Pairs[2*Row]*(blockDim.x)*(gridDim.x);

9: ind2 = Col + Pairs[2*Row + 1]*(blockDim.x)*(gridDim.x);

7.3. Algorithm Parallelization for real-time GPU implementation 155

10: Caux = ComplexMult(ind1 ,ind2);

11: GCC[index].x = cosf(atan2f(Caux.y, Caux.x));

12: GCC[index].y = sinf(atan2f(Caux.y, Caux.x));

13: Row = Row + gridDim.y;

14: end while

The accesses to the two fm buffers by GPU threads are totally coa-
lesced since consecutive threads access consecutive memory positions
(see Fig. 7.5). CUDA kernel 22 is limited by the instruction band-
width since GPU-native functions cosf, sinf, and atan2f are used
and all of them require several clock cycles. CUDA kernel 22 com-
putes Qlo values of the GCC matrix, where Q represents the number
of microphone pairs. In order to define the size and the number of
blocks to launch in CUDA kernel 22, different tests were executed.
Less execution time was achieved by using 128-size thread blocks in a
CUDA grid with size 32×16. This implies launching 65536 threads,
where each thread is responsible for computing Qlo

65536 values of the
GCC matrix. In this case, increasing the amount of work per thread
block in CUDA kernel 22 is more beneficial than launching more
blocks with fewer operations per GPU thread. Thus, the grid con-
figuration applied to CUDA kernel 22 achieves maximum occupancy
when 512 blocks are launched. This kernel does not require using
shared-memory but preferably a large number of registers. Thus, we
set L1 cache to 48 KB. As described in [37], cache L1 is used for reg-
ister spills, local memory, and stack, which are all private per-thread
variables.

Matrix Pairs has dimensions (Q × 2). Each row points out the com-
bination of pairs that are used in the operations. This matrix is fixed
and is stored at the GPU constant-memory.

4. Q inverse FFTs of size lo are carried out by using again the CUFFT
library. The GCC matrix is now composed of temporal (time delay)
values (i.e., Qlo real values).

5. The computation of a tridimensional matrix SRP storing the accu-
mulated SRP values is carried out by CUDA kernel 23. This kernel
also launches thread blocks of size 128 in a tridimensional CUDA grid
whose dimension depends on the number of points of the grid G (ν).

156 Sound Source Localization

bl
oc

kD
im

.y

(ThreadIdx.x, ThreadIdx.y)

Grid of CUDA threads
blockDim.x

.

.

.idx

f0

M
f1

fM-1

Q

GCC

Multiplication
and

Phase Computation

lo

Figure 7.5. Operations that are carried out by CUDA Kernel

22.

In total, ν threads are launched. In this kernel, each GPU thread
is devoted to the computation of the total value of the SRP at each
point of the grid. To this end, each thread computes and accumulates
Q GCC values (it takes a value from each row of the GCC matrix and
accumulates it). The computation of the SRP requires Q calculations
of the IMTDF (7.5) at each point of the grid. The IMTDF of a pair
of microphones specifies the column of the GCC matrix that should
be selected and then accumulated in the SRP. Figure 7.6 illustrates
these operations.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

bl
oc

kD
im

.y

(ThreadIdx.x, ThreadIdx.y, ThreadIdx.z)

Grid of CUDA threads

blockDim.x

.

.

.

.

.

.

.

.

blockDim.z

idx

SRP

Px

Py

GCC

Pz

A GCC value is accumulated
 from each Row.

This value corresponds to the column
 pointed out by the IMTDF.

Computation
of IMTDF Q

Figure 7.6. Operations that are carried out by CUDA kernel

23.

Since the value of the IMTDF can indicate any position of the column
of the GCC matrix, coalesced access to the global-memory is not
guaranteed. In fact, the most probable situation is that the accesses
will be quite disordered, so that the kernel employs most of its time in
memory accessing. However, this limitation can be reduced if we force
the compiler to use the Kepler read-only data cache with the GCC

7.3. Algorithm Parallelization for real-time GPU implementation 157

matrix, since this cache does not require aligned accesses. This read-
only cache memory has also been used in recent GPU-based audio
research such as [81] and [128]. Furthermore, as in CUDA kernel 22,
we set L1 cache to 48 KB to favor possible register spills. In the
accumulation loop of the SRP values, we have set a #pragma unroll

to accelerate the computation.

CUDA kernel 23

CUDA Kernel 23 Configuration of SRP matrix

Input: GCC, P x, P y

Output: SRP,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int Row = BlockIdx.y * BlockDim.y + ThreadIdx.y;

3: int High = BlockIdx.z * BlockDim.z + ThreadIdx.z;

4: float faux = 0.0;

5: int index = Col + (Row)*P x + High*P x*P y;

6: if(Col < (P x*P y)) do

7: index = Col + Row*BlockDim.x*gridDim.x

8: #pragma unroll

9: for k = 0, . . . , Q− 1

10: faux += GCC[TimeDelay(Col, Row, High, k) + k*lo].x;

11: end for

12: SRP[index] = faux;

13: end if

///---Code of GPU FUNCTION : TimeDelay---/////

Input: Col, Row, High, k, rxsp, rysp, Pos, Pairs, Dz

Output: out,

1: float fgx = rxsp/2 + Col*rxsp;

2: float fgy = rysp/2 + Row*rysp;

3: float fgz = Dz[High];

4: float x1 = Pos[3*Pairs[2*k]];

5: float y1 = Pos[3*Pairs[2*k] + 1];

6: float z1 = Pos[3*Pairs[2*k] + 2];

7: float x2 = Pos[3*Pairs[2*k + 1]];

8: float y2 = Pos[3*Pairs[2*k + 1] + 1];

9: float z2 = Pos[3*Pairs[2*k + 1] + 2];

10: faux1 = sqrtf((fgx - x1)^2 + (fgy - y1)^2 + (fgz - z1)^2);

158 Sound Source Localization

11: faux2 = sqrtf((fgx - x2)^2 + (fgy - y2)^2 + (fgz - z2)^2);

12: out = rintf(fs
c * (faux1 - faux2));

6. The grid position corresponding to the maximum SRP value has to be
searched. To this end, we launch CUDA kernel Reduction. This ker-
nel exactly follows the reduction example in Harris’ implementation
[129] that comes with the Nvidia GPU Computing SDK (Software
development kit), but it changes the sum operation for a maximum
operation. However, even though this code is optimized for finding
the maximum value, it does not indicate its position. Thus, after ob-
taining the maximum, we launch another kernel (CUDA kernel 24).
This kernel launches as many threads as elements of the SRP matrix
and only performs a comparison operation with the maximum. If the
comparison matches, the thread writes the value of its index in a vari-
able. We confirmed experimentally that the combination of these two
kernels is faster than storing the positions of different intermediate
SRP maximums.

CUDA kernel 24

CUDA Kernel 24 Localization of Maximum SRP value
Input: SRP, max, P x, P y, P z

Output: PosMax,

1: int Col = BlockIdx.x * BlockDim.x + ThreadIdx.x;

2: int p = P x*P y*P z;

3: if(SRP[Col] == max) && (Col < p) do

4: PosMax = Col;

5: end if

The code of CUDA kernel Reduction can be found at the SDK in the
webpage [20]. Part of this code will be used in the future code CUDA
kernel 25 which is shown in Chapter 8.

7.3.1 Considerations in code of CUDA kernels 23 and 24

The computation of the IMTDF could be carried out off-line since the grid
resolutions and the microphone locations are static. However, this would
imply storing a 4-dimensional data structure composed of ν · Q elements.

7.3. Algorithm Parallelization for real-time GPU implementation 159

If we use a standard room size (such as 6.0 × 4.0 × 3.0 m), a resolution
of rsp = rxsp = rysp = rzsp = 0.01 m, and M = 48 microphones, this data
structure would require using more than eight gigabytes of global-memory.
This exceeds the global-memory size of most available GPU devices at the
time of writing this dissertation. Thus, every IMTDF value is computed
for each group of processed buffers. These are the variables used in CUDA
kernel 23:

• Matrix Pos has dimensions (Q × 3). Each row points out the position
of each microphone inside the room. This matrix is fixed and is stored
at the GPU constant-memory, as Matrix Pairs

• Vector Dz has P z . We store the positions of the z-axis because the
resolution rzsp presents different values in comparison with rxsp and rysp
in the tests that will be described in Section 7.4.

• Variables fs and c represents the samples frequency and the speed of
the sound, respectively.

• Variables max and PosMax represents the maximum SRP value and
its position inside matrix SRP.

There are also other variables that are used to compute the values of
the GCC and SRP matrices, such as the room dimensions, the number of
microphones and their position. Since all of these read-only variables must
be available for all of the threads, they are stored in the constant memory
(with size 64 KB).

7.3.2 Multi-GPU Parallelization

Distributing the above processing tasks among different GPUs is not straight-
forward. The greatest computational load relies on Step 6, which consists
in computing the maximum value of the SRP matrix. Table 7.1 shows
the elapsed time corresponding to each step for M =48 microphones and a
spatial grid resolution of rsp =0.01 m.

The tasks from CUDA kernels 23, Reduction and 24 can be easily dis-
tributed among NGPU GPUs (the number of GPUs present in the system):
each GPU computes ν

NGPU
elements of the SRP matrix and locates the

maximum among its computed elements. To this end, NGPU CPU threads

160 Sound Source Localization

Table 7.1. Elapsed Time in each kernel with M=48 and

spatial grid resolution r=0.01.

Steps of the algorithm Time [ms]

Transfer + CUDA Kernel 21 + FFT (steps 1 and 2 in Section III) 1.416

CUDA Kernel 22 (step 3: Computation of GCC) 0.015

IFFT of GCC (step 4) 0.006

CUDA Kernel 23 (Computation of SRP matrix) 0.007

CUDA Kernel Reduction (Computation of Maximum SRP value) 121.267

CUDA Kernel 24 (Localization of the Maximum) 0.009

Total elapsed time 122.720

are created at the beginning of a parallel region by means of openMP (see
Section 2.6.2 in chapter 2 to know how openMP can deal with multiple
GPUs). This strategy is only focused on multi-GPU parallelization of the
SRP matrix.

In Appendix A.1, there is a description of an alternative strategy that
aims at parallelizing both the computation of the SRP matrix and of the
GCC matrix. This strategy uses also the UVA feature (Unified Virtual
Addressing, more details in Section 2.6.2, Chapter 2) for inter-GPU com-
munication. This strategy requires different synchronization points that
significantly penalize their performances, specially when compared to the
recently described parallelization.

7.3.3 Basic Implementation using two GPUs

As shown in Section 7.4, the performance of the SRP-PHAT algorithm is
assessed in a system that is composed of two GPUs. Using all the par-
allelization techniques previously presented, the SRP-PHAT algorithm is
implemented on two GPUs as follows:

1. A parallel region is created with two CPU threads. Each CPU thread
is bound with a GPU.

2. Since different audio buffers are received in the system, each CPU
thread independently and asynchronously sends all audio buffers to
its GPU by using stream parallelization. The CUDA kernels 21 and
the FFTs are computed for each channel inside the streams.

7.4. Experiments and Performance 161

3. As in step 2 of Section 7.3, stream synchronization is addressed. Only
one stream is used to compute the rows of the GCC matrix.

4. Since both of them have computed the GCC matrix, each GPU com-
putes ν/2 elements of the SRP matrix and locates a maximum value
among the computed elements.

5. Each GPU transfers back to the CPU its maximum value and its lo-
cation inside the SRP matrix. Then, a synchronization barrier for
both CPU threads is set followed by an openMP section that is only
executed by the master thread. This thread compares the two max-
imum values and chooses the greatest one, getting its location. This
location indicates the sound source position. Figure 7.7 illustrates
the computation of the SRP-PHAT when M = 12.

CPU master thread

CPU thread 0 CPU thread 1

Transfer L

Kernel 21
lo-FFT

Stream 0 Stream 1

Transfer L

Kernel 21
lo-FFT

Stream 10

Transfer L

Kernel 21
lo-FFT

Stream 11

Kernel 21
lo-FFT

Transfer L

Kernel 21
lo-FFT

Stream 0 Stream 1

Transfer L

Kernel 21
lo-FFT

Stream 10

Transfer L

Kernel 21
lo-FFT

Stream 11

Transfer L

Kernel 21
lo-FFT

Kernel 22 computes 66 rows of GCC matrix

Kernel 23 computes half elements of SRP

Kernel 22 computes 66 rows of GCC matrix

Kernel 23 computes half elements of SRP

Kernels 24 and 25 computes and locate the maximum of
 half elements of SRP matrix

Kernels 24 and 25 computes and locate the maximum of
 half elements of SRP matrix

Transfer maximum and localization to CPU Transfer maximum and localization to CPU

CPU master thread

Select Maximum value and its localization

GPU0 GPU1

Transfer L

Figure 7.7. Steps of the GPU-based SRP-PHAT implemen-

tation using two GPUs and openMP.

7.4 Experiments and Performance

To analyze both the computational and localization performance of the
above GPU implementations, a set of acoustic simulations using the image-
source method [130] have been considered. A shoe-box-shaped room with

162 Sound Source Localization

dimensions 4×6×3 m and wall reflection factor ρ [120] was simulated using
different numbers of microphones (M ∈ {6, 12, 24, 48}). The microphone
set-up for the considered systems are shown in Fig. 7.8. Note that the
microphones are located on the walls of the room and are placed on eight
different planes (z = {0.33, 0.66, 1.00, 1.33, 1.66, 2.00, 2.33, 2.66}) following
hexagon-like shapes. Moreover, different reflection factors (ρ ∈ {0, 0.5, 0.9})
were used to take into account different reverberation degrees. In all cases,
independent white Gaussian noise was added to each microphone signal in
order to simulate different Signal to Noise Ratios (SNR ∈ {0, 5, 10, 20}) (in
dB).

The audio card used in the real-time prototype uses an ASIO (Audio
Stream Input/Output) driver to communicate with the CPU and provides
2048 samples per microphone (L=2048) every 46.43 ms (sample frequency
of 44.1 kHz). This time is denoted by tbuff . The time employed for the
computation is denoted by tproc. This time takes into account all transfer
times and measures the time from the first audio sample transferred to the
GPU until the final source location is estimated (at each time frame). The
localization system works in real time as long as tproc < tbuff . Otherwise,
microphone samples would be lost and the localization would not be cor-
rectly performed. The simulations were carried out in the Nvidia GPU
K20c [37], which has the characteristics shown in Table 7.2.

Table 7.2. Characteristics of the GPU K20c.

Cuda Device Tesla K20c

Architecture Kepler

Capability 3.5

Number of SM 13

Total number of cores 2496

Max. dimension of a block 1024 x 1024 x 64

Max. dimension of a grid 231-1 x 65535 x 65535

Total amount of global memory 4 GB

Both computational and localization performances have been assessed
taking into account three spatial grid resolutions (rsp ∈ {0.1, 0.05, 0.01})
in the XY plane (resolutions rxsp and rysp are equal). The resolution rzsp is

7.4. Experiments and Performance 163

0.33 m (resulting from dividing the height of the room into eight slots).

M = 6 M = 12

M = 24 M = 48

x
y

6 m

4 m

3 m

Figure 7.8. Microphone set-ups for M = 6, M = 12, M =

24 and M = 48. The black dots denote the actual active

microphones in each configuration.

7.4.1 Localization Performance

The source signal used in this study was a 5-second male speech signal
with no speech pauses. Pauses were manually suppressed to evaluate lo-
calization performance only over frames where speech was present. The
processing was carried out by using 50% overlap in time windows of length
4096 samples (size lo = 2L), with sampling frequency fs = 44.1 kHz. For
each frame, a source location x̂ = [x̂, ŷ, ẑ]T was estimated. A total num-
ber of 107 frames (Nf=107) per 40 different positions (Np=40) that were
uniformly distributed over the room space were performed. Localization
accuracy was computed by means of the Mean Absolute Error, which is
given by:

MAE =
1

Nf

1

Np

Nf∑
i=1

Np∑
j=1

|eij |2, (7.8)

where eij=xij − x̂ij , with xij and x̂ij being the true and estimated source
locations at a given time frame i and source position j. Note that the above

164 Sound Source Localization

MAE was computed for each environmental condition (reflection factor
and signal to noise ratio), microphone setup and spatial grid resolution.
Figure 7.9 shows the results for different values of wall reflection factor ρ
taking into account different spatial resolutions and number of microphones.

It is important to point out that using a high number of microphones
helps to substantially improve localization accuracy under high noise and
reverberation. The error decreases as the SNR increases and/or reverber-
ation decreases (lower ρ). It is important to see how the spatial resolution
has an impact when the number of microphones is small. In this case, a
coarse spatial grid is not sufficient to correctly find the minimum of the
SRP search space, which is more easily detected when the SRP is enhanced
by the contributions of additional microphone pairs. In fact, when the
number of microphones is 12 or higher, the performance difference between
rsp = 0.01 and rsp = 0.1 is almost negligible. Accuracy differences among
different values of ρ are noticiable. It should be emphasized that, under
favorable acoustic conditions (high SNR and low ρ), the experimental error
is always below the maximum expectable error independently of the num-
ber of microphones. Note that the maximum error in anechoic conditions
is given by the largest diagonal of the cuboids forming the 3D grid (≈ 0.179
m for rsp = 0.1 and ≈ 0.165 m for rsp = 0.01). In all cases, the use of a
higher number of microphones helps significantly in reducing this error.

7.4. Experiments and Performance 165

SNR

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Accuracy =0.01 ρ=0.0

SNR

6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Accuracy =0.01 ρ=0.5

6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

Accuracy =0.01 ρ=0.9

0 5 10 15 20
0

0.5

1

1.5

2

2.5

SNR

6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.5

1

1.5

2

2.5
Accuracy =0.1 ρ=0.9

SNR

6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Accuracy =0.1 ρ=0.5

SNR

6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Accuracy =0.1 ρ=0.0

SNR

6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

Figure 7.9. Localization accuracy for different wall reflec-

tion factors (ρ ∈ {0, 0.5, 0.9}) as a function of the SNR and

the number of microphones M . Each row presents results for

different spatial resolutions (rsp = 0.01 and rsp = 0.1 m).

166 Sound Source Localization

7.4.2 Computational Performance

The spatial resolutions considered in this work result in large-scale SRP
matrices. While previous works had evaluated up to 360000 points [76],
we achieve 1920000 points. Table 7.3 shows the processing times tproc for
different combinations of rsp and M when using two GPUs. It can be
observed that the only that does not obtain a tproc lower than 46.43 ms
(tbuff) is the configuration composed of M = 48 and rsp = 0.01. Thus,
real-time processing is not possible in this case. However, by looking at the
results shown in Table 7.4, it is possible to observe that the influence of the
second GPU becomes relevant. In the case of M = 48, the processing time
is halved for any resolution. Real-time processing would be easily achieved
for M = 48 and rsp = 0.01 by adding an additional GPU. Figure 7.10 shows
more clearly the time differences among all the configurations by varying
the number of microphones and the grid resolutions rsp ∈ {0.1, 0.05, 0.01}.
Note that the time tbuff is marked by a solid black line.

Table 7.3. Processing time tproc using two GPUs.

rsp M = 6 M = 12 M = 24 M = 48

0.01 1.031 ms 3.578 ms 15,564 ms 60.108 ms

0.05 0.381 ms 0.758 ms 2.238 ms 6.433 ms

0.1 0.371 ms 0.650 ms 1.588 ms 4.588 ms

Table 7.4. Processing time tproc using one GPU.

rsp M=6 M=12 M=24 M=48

0.01 1.894 ms 6.731 ms 30.145 ms 122.720 ms

0.05 0.564 ms 1.132 ms 3.484 ms 11.203 ms

0.1 0.546 ms 0.926 ms 2.336 ms 7.493 ms

7.5. Conclusion 167

0,01 0,05 0,1
0

20

40

60

80

100

120

 One GPU

(m
s)

M=06
M=12
M=24
M=48

tbuff

0,01 0,05 0,1
0

20

40

60

80

100

120

Two GPUs

(m
s)

M=06
M=12
M=24
M=48
tbuff

sprspr

Figure 7.10. Time tproc for different resolutions and number

of microphones.

7.5 Conclusion

New emerging GPU architectures help to overcome different computational
problems in sound source localization, such as having very fine spatial res-
olutions or dealing with a high number of microphones. In this chapter, we
have proposed an scalable multi-GPU implementation of the well-known
SRP-PHAT algorithm and we have assessed its performance on a real-
time localization system. The results show that employing a high number
of microphones has a direct impact on localization performance in highly
reverberant environments. However, systems with a high number of mi-
crophones also require high computing capacity. The chapter highlights
the important role that GPU architectures and massive computation have
in acoustic localization tasks in adverse environments. In this context, we
have described in detail the most important implementation issues. More-
over, the SRP-PHAT algorithm has been analyzed considering localization
in three dimensions, which is a task that requires high computational re-
sources. Another important aspect to point out is that, since the massive
processing is carried out by the GPU, the CPU resources could be used for
other tasks. The presented work demonstrates that the use of the GPU
hardware provides a good solution for building real-time sound source lo-
calization systems. More details of this work can be found in [131] and in
[132].

168 Sound Source Localization

Multichannel IIR Filtering 8

170 Multichannel IIR Filtering

Multichannel IIR Filtering 8
In the audio signal processing field, multiple IIR filters are required in many
applications. Up to now, the use of the GPUs for implementing IIR filters
has not been clearly addressed in audio processing because of its feedback
loop that prevents its total parallelization. However, using the Parallel form
of IIR filters, this feedback is reduced, since every single sample is computed
in a parallel way. This chapter analyzes the performance of multiple IIR
filters using GPUs and compares it with a powerful multi-core computer.

8.1 Definition of the problem

Modeling or equalizing an acoustic or electro-acoustic transfer function by
digital filters is a typical task in audio signal processing. By taking into
account the properties of the human hearing, significant savings can be
achieved in the required computational power at a given sound quality. As
an example, the frequency resolution of the human auditory system has led
to the development of special filter design methodologies with a logarithmic
frequency resolution, as opposed to the linear frequency resolution of tra-
ditional FIR and IIR filters. These techniques include frequency warping
[133], Kautz filters [134], or fixed-pole parallel filters [135]. Typically, the

172 Multichannel IIR Filtering

required filter order is reduced by a factor of 5 compared to traditional IIR
filters (e.g., designed by the Steiglitz–McBride method [136]) with all the
above techniques. This advantage is slightly reduced in the case of warped
and Kautz filters, because they are implemented by special filter structures,
but not for fixed-pole parallel filters, since they are simply implemented as
a set of second-order sections.

One application that is specially important in the context of multichan-
nel acoustic signal processing using IIR filters is the equalization of a Wave
Field Synthesis (WFS) system. WFS systems require high computational
capacity since they involve multiple loudspeakers, such as the WFS system
at the Universitat Politècnica de València (UPV) (shown in [14]) that has
96 loudspeakers, or the IOSONO WFS system (shown in [15]) that has 120
loudspeakers. Equalizing a WFS system requires such a massive amount of
filtering that even when using parallel filters, a significant amount of CPU
time is taken for filtering, and in some cases, real-time operation is not
possible even in modern multi-core computers.

8.1.1 Fixed-pole parallel filters

Traditionally, the parallel second-order form of digital filters has been used
because of its lower sensitivity to coefficient quantization and better quanti-
zation noise performance compared to direct form IIR filters [137]. In these
applications, first a direct form IIR filter is designed and then factored to
a parallel form using the partial fraction expansion.

In fixed-pole parallel filters, the filter is designed directly in the second-
order form by first setting the poles to predetermined positions. The ad-
vantage of fixing the poles is that now the filter design reduces to a linear-
in-parameter problem which has a unique solution. Nevertheless, the most
important property of parallel filters is that the pole frequencies allow a
direct control of the frequency resolution: the more poles are placed in
a specific frequency range, the higher resolution is obtained. For exam-
ple, placing the poles according to a logarithmic frequency scale results
in a logarithmic frequency resolution, and the modeled response resembles
the fractional-octave smoothed version of the target [138]. For a thorough
comparison of pole positioning methods see [139].

The general form of the parallel filter consists of a parallel set of second-
order sections and an optional FIR filter path [140]. In this implementation,

8.1. Definition of the problem 173

the FIR part is reduced to a single signal path, and the following form is
used:

H(z−1) =

K∑
r=1

br,0 + br,1z
−1

1 + ar,1z−1 + ar,2z−2
+ d0, (8.1)

where K is the number of second-order sections. The filter structure and
the second-order section are depicted in Fig. 8.1 and Fig. 8.2, respectively.

Input

H (z)1

Output

H (z)2

H (z)r

d 0

Figure 8.1. Structure of the parallel second-order filter.

b r,0

b r,1

1−z

1−z

-a r,1

-a r,2
H (z)r

Figure 8.2. Structure of the second-order section used in

Fig. 8.1

8.1.2 Filter design

We can assume that the poles of the parallel filter pr are known (e.g., set
to a logarithmic scale). Then the denominator coefficients are determined

174 Multichannel IIR Filtering

by the poles (ar,1 = pr + pr and ar,2 = |pr|2), and the filter design problem
becomes linear in its free parameters (weights) br,0, br,1 and d0.

Using the substitution z−1 = e−jϑn in (8.1) and writing it in matrix
form for a finite set of ϑn angular frequencies yields [140]

h = Mp, (8.2)

where p = [b1,0, b1,1, . . . br,0, br,1, d0]T is a column vector composed of the
free parameters. The first column of the modeling matrix M contains the
all-pole transfer function of the first section 1/(1 + a1,1e

−jϑn + a1,2e
−j2ϑn)

for the ϑn angular frequencies, and the second column contains its delayed
version version e−jϑn/(1 +a1,1e

−jϑn +a1,2e
−j2ϑn) for all ϑn. The third and

fourth columns are the all-pole transfer functions for the second section
1/(1+a2,1e

−jϑn +a2,2e
−j2ϑn) and its delayed version e−jϑn/(1+a2,1e

−jϑn +
a2,2e

−j2ϑn) for all ϑn. The remaining part of matrix M is constructed
similarly, except the last column, which belongs to the constant gain path,
and it is 1 for all ϑn. Finally, h = [H(ϑ1) . . . H(ϑN)]T is a column vector
composed of the resulting frequency response.

The optimal parameters popt in the mean squares sense are found by
the well-known least-squares (LS) solution

popt = (MHM)−1MHht, (8.3)

where MH is the conjugate transpose of M, and ht is the target frequency
response. Note that (8.3) assumes a filter specification Ht(ϑn) given for
the full frequency range ϑn ∈ [−π, π]. Matlab code for parallel filter design
can be downloaded from http://www.mit.bme.hu/∼bank/parfilt.

8.2 Implementations on Many-core architectures (GPU

and multi-cores)

This section presents a multichannel GPU-based implementation of parallel
IIR filters that can be used for equalizing a WFS system and compares its
computational performance with the performance of a powerful multi-core
computer.

8.2. Implementations on Many-core architectures (GPU and multi-cores) 175

8.2.1 GPU-based parallel implementation

If we want to equalize a WFS system composed of N loudspeakers, we
need to carry out N IIR filter processes concurrently. Thus, we launch N
thread blocks to run the CUDA kernel. Each thread block of U threads
(U ∈ {128, 256, 512}) corresponds to one IIR filter that has K second-order
sections. A thread inside a thread block computes K

U sections, and stores
its result in the shared-memory. Then, a synchronization barrier is set in
order to wait that all the threads have finished. After that, the reduction
algorithm described by Harris [129] is implemented. It consists in summing
up in a parallel way all the values of a vector that is stored in the shared-
memory. Finally, the FIR coefficient d0 is executed at the end by only
one of the threads of the thread block. Figure 8.3 illustrates the described
operations for one parallel IIR filter process. Subsection CUDA kernel 25
shows the code used in this implementation.

H (z)1 H (z)2

d 0

Thread block

H (z)K
U

Shared
Memory

H (z)K +1
U

H (z)K +2
U

H (z)
(U-1)K

+1U

H (z)
(U-1)K

+2U

H (z)2K
U

Harris
Reduction
Algorithm

+ +

+ +

H (z)K

+ +

U
Threads

+ +

Timeline of Processing

Figure 8.3. GPU-based Parallel Implementation of one IIR

filter processing.

8.2.2 Multicore-based parallel implementation

In order to assess the computational performance achieved by the GPU
implementation, a comparison with a powerful multicore computer is re-
quired. To this end, we implement our algorithm using openMP [40]. This
programming framework allows us to parallelize our algorithm using all the

176 Multichannel IIR Filtering

cores that a computer owns. The multicore computers are more suited to
task-based parallelism, instead of the fine-grain parallelism, which can be
easily managed by a GPU. The advantage of a multicore implementation
is that data transferring from/to GPU to/from CPU is not needed.

The serial algorithm to carry out N IIR filters is composed by three
nested loops: number of filters, number of samples per filter, and number
of second-order sections. By using openMP, we implement our algorithm
by distributing the iterations of the most external loop among all the cores,
since each filter process is independently performed. In case that our mul-
ticore computer is composed of Sc processors, each processor is responsible
for carrying out N

Sc
filters.

Comparing to the GPU-based implementation, one CPU processor
computes at least the same operations as a thread block. However, one
thread block only computes one filter process, while one CPU processor
could compute more than one. GPU-based parallelization presents two
levels: concurrency in computing multiple filter processes, and concurrency
in computing multiple second-order sections inside one filter. In contrast,
the CPU-based parallelization presents only concurrency in multiple filter
processes.

CUDA kernel 25

CUDA Kernel 25 Multichannel IIR filtering

Input: A1, A2, B1, B2, V1, V2, Fir, S, K, U , L

Output: O,

1: __shared__ float sd[U];

2: int blq = K/U;

3: int iAux = 0;

4: float v1[blq]

5: float v2[blq];

6: float v0;

7: int i=0;

8: int index = BlockIdx.x*K + ThreadIdx.x;

9: // Initialization of the shared-memory

10: for j = 0, . . . ,blq−1 do

11: i = index + j*U;

12: v1[j] = V1[i];

8.2. Implementations on Many-core architectures (GPU and multi-cores) 177

13: v2[j] = V2[i];

14: end for

15: for t = 0, . . . , L− 1 do

16: sd[ThreadIdx.x] = 0.0;

17: for j = 0, . . . ,blq−1 do

18: i = index + j*U;

19: vo = (float)S[t + BlockIdx.x*L] - A1[i]*v1[j] - A2[i]*v2[j];

20: sd[ThreadIdx.x] = sd[ThreadIdx.x] + B1[i]*v0 + B2[i]*v1[j]

21: v2[j] = v1[j];

22: v1[j] = v0;

23: end for

24: __syncthreads();

25: if(U ≥512)

26: if(ThreadIdx.x < 256)

27: sd[ThreadIdx.x] += sdsdata[ThreadIdx.x + 256];

28: end if

29: __syncthreads();

30: end if

31: if(U ≥256)

32: if(ThreadIdx.x < 128)

33: sd[ThreadIdx.x] += sdsdata[ThreadIdx.x + 256];

34: end if

35: __syncthreads();

36: end if

37: if(U ≥128)

38: if(ThreadIdx.x < 64)

39: sd[ThreadIdx.x] += sdsdata[ThreadIdx.x + 256];

40: end if

41: __syncthreads();

42: end if

43: // now that we are using warp-synchronous programming (below)

44: // we need to declare our shared memory volatile so that

45: // the compiler doesn’t reorder stores to it and

46: // induce incorrect behavior.

47: if(ThreadIdx.x <32)

48: volatile float *smem = sd;

49: if(U ≥64)

50: smem[ThreadIdx.x] += smem[ThreadIdx.x + 32];

51: end if

178 Multichannel IIR Filtering

52: if(U ≥32)

53: smem[ThreadIdx.x] += smem[ThreadIdx.x + 16];

54: end if

55: if(U ≥16)

56: smem[ThreadIdx.x] += smem[ThreadIdx.x + 8];

57: end if

58: if(U ≥8)

59: smem[ThreadIdx.x] += smem[ThreadIdx.x + 4];

60: end if

61: if(U ≥4)

62: smem[ThreadIdx.x] += smem[ThreadIdx.x + 2];

63: end if

64: if(U ≥2)

65: smem[ThreadIdx.x] += smem[ThreadIdx.x + 1];

66: end if

67: end if

68: if(ThreadIdx.x == 0)

69: iAux = t + blockIdx.x*L;

70: O[iAux] = sd[0] + Fir[BlockIdx.x]*((float)S[iAux]);

71: end if

72: end for

73: // Storing values for the next block of samples

74: for j = 0, . . . ,blq−1 do

75: i = index + j*U;

76: V1[i] = v1[j];

77: V2[i] = v2[j];

78: end for

Variables used in CUDA kernel 25

• Vectors A1, A2, B1 and B2 have K elements and store the coefficients
ar,1, ar,2, br,1 and br,2 of every second-order, respectively with r ∈
[0,K − 1].

• Vectors V1 and V2 have K elements and store the intermediate values
in order to carry out the delay of the block z−1 in Fig. 8.2. Vector
Fir has also K values and stores the values d0 of every second-order
structure.

• Vectors S and O have the dimension (N × L), and stores the input

8.3. Results 179

samples and the output samples, respectively.

• Variable L is the size of the audio sample buffers

8.3 Results

We test our GPU-based implementation on an Nvidia Tesla K20c that
is based on the Kepler architecture and is composed of 13 SMXs, and
our multicore-based implementation on a computer composed of two SMPs
(Symmetric Multi-Processing) Intel Xeon CPU X5680 at 3.33 GHz, which is
a hexacore. Thus, our multicore computer is composed of 12 cores (Sc=12).

We use a standard audio card at the laboratory. The audio card uses
the ASIO (Audio Stream Input/Output) driver to communicate with the
CPU and provides (L ∈ {32, 64, 128}) samples per channel every 0.72 ms,
1.45 ms, and 2.90 ms, respectively (sample frequency fs=44100 Hz), which
we call buffer times tbuff . Assuming that our WFS system requires to
equalize N loudspeakers, we define tproc as the processing time since the N
input-data buffers are available till the N output-data buffers are totally
processed. Data transfer times in the case of GPU-based implementation
are included in tproc. The equalization of a WFS system works in real-time
as long as tproc < tbuff .

Figure 8.4 shows the results when a system is executed using a buffer
size of L=32 samples. Computational performance has been assessed by
assuming that all filters are composed of 128 second-order sections for the
first example, and with filters composed of 1024 second-order sections for
the second example. We execute the system by increasing N gradually and
by measuring each time tproc. Note that the maximum number of filters
that can be executed in real time are marked with a circle ◦ in Fig. 8.4, and
their values are shown in the legend of the figure for all cases. The proposed
GPU-based implementation can run 1256 filters in real time with 0.72 ms
latency when the filters are composed of 128 second-order sections. In case
of 1024 second-order sections, 272 equalization filters can be executed.

Very similar results are obtained if we increase the buffer size to L=64
and L=128 samples, as can be appreciated in Fig. 8.5. The number of
filter processes that can be achieved in real time increases slightly as the
buffer size does, in spite that transfer times between GPU and CPU in-

180 Multichannel IIR Filtering

0 500 1000 1500
0

0.5

1

1.5
Processing Time

Number of channels

(m
s)

CPU 1024; 52
GPU 1024; 272
CPU 128; 456
GPU 128; 1256
tbuff

tproc()

tbuff

Figure 8.4. Performance comparison between multi-core

CPU and GPU implementations for parallel filters composed

of 1024 and 128 second-order sections with a buffer size of 32

samples.

crease. This occurs because transfer time is still not significant compared
to the parallelization resources that GPUs offer. For filters composed of
128 second-order sections, GPU outperforms in 2.75, 2.6, and 2.55 times
the CPU, for buffer sizes of L=32, L=64 and L=128 samples, respectively.
Otherwise, for filters composed of 1024 second-order sections, GPU out-
performs in 5.23, 4.8 and 4.66 times the CPU for the same previous buffer
sizes. Thus, computing filters composed of 1024 second-order is more effi-
cient on GPU, since more computational resources of the GPU are utilized.
Note that the speed-up GPU/CPU decreases slightly as long as the buffer
size increases.

The CPU-based implementation runs on a powerful computer com-
posed of 12 cores, which is a fair comparison with the GPU. In all cases, the
GPU-based implementation outperforms the multicore-based implementa-
tion, which indicates that GPUs are well suited for performing massive IIR
filter processes, even more when the sample buffer sizes are very short.

8.3. Results 181

32 64 128
0

200

400

600

800

1000

1200

1400

Size of Buffer

Maximum number of IIR filters in real time

GPU 128
CPU 128
GPU 1024
CPU 1024

Figure 8.5. Maximum number of IIR filters that can be real-

ized in real time for the multi-core and GPU implementation

for filters composed of 1024 and 128 second-order sections.

Regarding GPU-based computational aspects, filters composed of 128
second-order sections require to launch a CUDA kernel composed of thread
blocks with U=128, where each thread performs one section. However,
filters composed of 1024 second-order sections first require to test different
values for U . Table 8.1 shows the maximum number of equalization filters
that can be executed in real time for different values of U . It can be noticed
that using the thread block size of 256 threads gives the best performance.

Table 8.1. Maximum number of real-time IIR filters for the

GPU implementation using different thread block sizes U and

buffer sizes of 32 and 64 samples. The best results are bolded.

SIZE U = 128 U = 256 U = 512 U = 1024

32 192 272 168 120

64 208 280 176 128

182 Multichannel IIR Filtering

As another performance measure, taking into the number of loudspeak-
ers of the WFS systems referenced previously, we have tested the maximum
number of second-order sections that an equalizer filter of these systems
can have by using the GPU. Regarding the WFS system at the Universitat
Politècnica de València (UPV), we have achieved to equalize the 96 loud-
speakers using filters composed of up to 2048 second-order sections under
real-time conditions. Otherwise, as IOSONO WFS system is composed of
120 loudspeakers, the massive equalization can be carried out also under
real-time conditions if we use up to 1536 second-order sections. Thus, GPUs
allow us to use high filter orders for equalizing large-scale WFS systems.

An additional advantage of the GPU-based implementation is that the
GPU can be used as a co-processor where all audio processing is being
carried out, while the CPU could be used for other tasks at the same time.

8.4 Conclusion

This work has demonstrated the power of the parallel form of IIR filters in
parallel computing. This form allows us not only the robust design of high-
order filters with logarithmic frequency resolution, but also a very efficient
implementation on GPUs. The proposed implementation can carry out up
to 1256 equalizers with a filter order of 256 in real time, which means 321536
total filter order, for a buffer size of 32 samples. Many applications can be
favored from this result, including a total equalization of a WFS system. In
addition, we have compared the proposed GPU-based implementation with
a multicore-based implementation in a powerful computer. Results show
that GPU outperforms the powerful multicore computer in all example
cases.

This work was conducted in fall 2013 when I was visiting the Aalto
University Department of Signal Processing and Acoustics. More details of
this work can be found in [141].

Massive Multiple Allpass filtering 9

184 Massive Multiple Allpass filtering

Massive Multiple Allpass filtering 9
Limiting dynamic range whilst maintaining sound quality has become an
important issue in audio signal processing. Previous works indicate that
an allpass filter chain can reduce the peak amplitude of an audio signal,
without introducing the distortion associated with traditional non-linear
techniques. However, selecting proper coefficients and delay-line lengths
for the allpass filters is a major challenge when the signal shape is not
predictable, since a large number of possibilities exists. Previously, the
selection of delay-line lengths was random and the filter coefficient values
were fixed, which does not necessarily ensure the best reduction. We pro-
pose a GPU-based implementation of multiple allpass filter chains that is
able to cover all relevant delay-line lengths and perform a wide search on
possible coefficient values in order to get closer to the optimal choice.

9.1 Definition of the problem

Dynamic range reduction in audio signals is important. This process con-
sists of restricting the dynamic range of an audio signal to a smaller space
[142], hence allowing maximization of loudness. Useful dynamic range re-
duction is achieved if the peak amplitude of a signal decreases with respect

186 Massive Multiple Allpass filtering

to its RMS amplitude.

Up to now, dynamic range reduction was achieved by using non-linear
techniques [143, 144]. Allpass filters were presented previously in [1] as a
method for reducing the peak to RMS amplitude ratio, since they present
a flat frequency response, but a non-linear phase response. By modifying
the phase of the signal, maximum peak level can be reduced without intro-
ducing new frequency content. Listening tests suggest that if the impulse
response length of the allpass filters is below 4 ms, the change is inaudible
[145].

The work presented in [1] analyzes in detail the behavior of a first-order
allpass filter. This analysis concludes that peak amplitude of the impulse
response is minimised when the allpass coefficient is equal to ±Φ, where
Φ is the inverse of the golden ratio. To three decimal places, the value of
the golden ratio is 1.618 and its inverse Φ is 0.618. This property was also
referenced in [146], without proof.

In addition, the work in [1] suggests that the unit delay in the first-order
allpass is replaced with a longer delay-line length whose maximum value
dmax is set to 30. This maximum is chosen in order to restrict the length
of the impulse response to the range in which the spreading of the signal is
inaudible. Similar allpass filters with a long delay line have previously been
used for artificial reverberation [147, 148] and for spectral delay in audio
processing [149, 150]. The authors in [1] propose the structure shown in
Fig. 9.1. This structure is composed of MA filters in parallel, where each
filter is made of a cascade of three allpass filters with three different em-
bedded delay-line lengths {d1, d2, d3}, and three coefficients {a, b, c} whose
values are set to a = −Φ, b = +Φ, and c = −Φ. Their test consists of
processing an input signal through 100 filters in parallel (i.e. in their tests,
MA = 100). Each one of the filters has its delay-line lengths {d1, d2, d3}
determined randomly, between 1 and the state dmax of 30. The output of
every filter is examined, and the one that produces the lowest peak ampli-
tude is selected as the one that offers best linear dynamic range reduction.
Note that the structure also contains a path that bypasses the processing,
since in rare cases the lowest peak amplitude produced by the allpass filters
could be higher than the input. In that case, the input itself is selected as
the output.

Their results show that even with such a small random selection of
delay line lengths, the dynamic range is generally reduced [1]. However, the

9.2. Test Setup 187

a

-a
d−z

b

-b

c

-c
1 d−z 2 d−z 3

a

-a
d−z

b

-b

c

-c
1 d−z 2 d−z 3

a

-a
d−z

b

-b

c

-c
1 d−z 2 d−z 3

Selection

of

Lowest

 Peak

Amplitude

Figure 9.1. Block diagram of the M parallel allpass filter

chains.

theoretical maximum dynamic range reduction is not achieved. Targeting
more delay-line length combinations in order to maximise the reduction
requires the use of more computational resources. This resource problem
can be vastly reduced by noticing that the process is intrinsically highly
parallel, and hence suitable for computation with a Graphics Processing
Unit (GPU). As commented in Section 9.1, a GPU can be considered to
be a Single Instruction Multiple Data machine (SIMD), i.e., a computer in
which a single set of instructions is executed on a large number of data sets
simultaneously. The analogy with the proposed parallel allpass structure
should be clear.

This work presents a GPU-based implementation of the structure that
aims to seek the maximum dynamic range reduction of a signal. To this
end, not only are all combinations of delay-line lengths examined, but also
different values of coefficients, in order to validate or reject the use of the
golden ratio as a unique coefficient.

9.2 Test Setup

Taking into account that the maximum delay-line length dmax of the all-
pass filter is chosen to be 30, it would be easy to think that we are
dealing with 27,000 possibilities. However, as an allpass filter cascade

188 Massive Multiple Allpass filtering

is a linear system and can be re-ordered freely, many of the possibilities
are redundant. Thus, starting with only three possible values for the
delay-line lengths {d1, d2, d3}, the ten possible combinations without re-
dundancy are:{d1, d1, d1}, {d1, d1, d2}, {d1, d1, d3}, {d1, d2, d2}, {d1, d2, d3},
{d1, d3, d3}, {d2, d2, d2}, {d2, d2, d3}, {d2, d3, d3}, and {d3, d3, d3}. These
combinations are obtained if we apply Multiset theory [151]. This theory
indicates that given p elements, the number of multisets of cardinality q is:

(p+ q − 1)!

q!(p− 1)!
. (9.1)

In our case, p=30 and q=3. Thus, combining all possible delay-line
lengths implies 4,960 combinations of interest. Additionally, there are also
the three different coefficients {a, b, c} that previously were fixed to Φ. How-
ever, as was mentioned in Sec.9.1, it was not proved that Φ offers maximum
reduction for general signals, only for impulses. Therefore, it may be ad-
vantageous to explore a larger coefficient space. If we vary the coefficients
between 0.3 and 0.7 in steps of 0.05, we have nine possibilities for each co-
efficient. As we have three coefficients, we have 729 possibilities more plus
one. We must also add the combination of the work in [1] (all coefficients
are equal to Φ). It is clear that a single allpass filter can have a coefficient
of ±a and maintain a stable impulse response. Therefore, we must also
consider the different combinations of the sign in the coefficients: ±a and
∓a, ±b and ∓b, and ±c and ∓c. This implies 8 sign-based combinations for
each {a, b, c} coefficient combination. In total, to tackle all the described
combinations, we must compute 28,966,400 allpass filter chains. Thus, it
makes sense to implement and perform the process on a GPU.

9.3 GPU-based Implementation

The hardware we use is a Nvidia Tesla K20c that is based on the Kepler
architecture and is composed of 13 SMXs. The implementation we propose
aims to launch as many threads as combinations we have. To this end, we
can divide the combinations in two: coefficients combinations and delay-
line lengths combinations. These combinations are stored in two matrices
at the GPU global-memory. The CUDA grid we launch is two-dimensional
and is composed of blocks of 256 threads. In this case, the identification of

9.3. GPU-based Implementation 189

CUDA grid
.

.

.

.

Col

Row

Delay-line length
combinations

Coefficient
combinations

0

4959

0

5839

1 1 1
1 1 2
1 1 3

0.3 0.3 0.3
0.3 -0.3 0.3

29 30 30
30 30 30

0.3 0.3 0.35

0.61 0.61 0.61
-0.7 -0.7 -0.7

Figure 9.2. Two-dimensional CUDA grid configuration. One

thread performs an allpass filter using a delay line combina-

tion with a coefficient combination. Col defines the delay-line

lengths and the Row determines the lookup in the coefficient

table.

a thread is given by two variables Col and Row.

Figure 9.2 shows how thread (Col, Row) performs the allpass filter chain
with coefficient combination Row and delay-line lengths combination Col.
Each thread has three vectors of size dmax whose role is to simulate the delay
lines. These 3dmax elements per thread are stored at the GPU registers. All
the samples of the input are processed by the thread, which only stores in
the shared-memory the maximum absolute value of the signal. Afterwards,
a synchronization barrier is set in order to wait for all the threads to finish.
Subsection CUDA kernel 26 shows the code used for implementing the
described operations. After that, the reduction algorithm described by
Harris [129] is implemented. It consists in looking at the minimum of
all stored values and identifying its combination Col and Row. The code
described by Harris can be found at the SDK in the webpage [20]. Part of
this code is used in CUDA kernel 25 which is shown in Chapter 8.

190 Massive Multiple Allpass filtering

CUDA kernel 26

CUDA Kernel 26 Multiple allpass filter chain concurrently

Input: s, C, D, Ccf , Cdy, dmax, ls
Output: o,

1: int Col = BlockDim.x*BlockIdx.x + ThreadIdx.x;

2: int Row = BlockDim.y*BlockIdx.y + ThreadIdx.y;

3: if(Col < Cdy)

4: int idx = Row*Cdy + Col;

5: int Col1 = C[3*Col];

6: int Col2 = C[3*Col + 1];

7: int Col3 = C[3*Col + 2];

8: float Row1 = D[3*Row];

9: float Row2 = D[3*Row + 1];

10: float Row3 = D[3*Row + 2];

11: // Three vectors of size dmax

12: float vec1[dmax];

13: float vec2[dmax];

14: float vec3[dmax];

15: for k = 0, . . . , dmax − 1 do

16: vec1[k] = 0.0;

17: vec2[k] = 0.0;

18: vec3[k] = 0.0;

19: end for

20: float out=0.0;

21: float MaxOut=0.0;

22: int ini1=0;

23: int fin1=1;

24: int ini2=0;

25: int fin2=1;

26: int ini3=0;

27: int fin3=1;

28: for j = 0, . . . , ls − 1 do

29: //------First Chain-------------------------%

30: vec1[ini1] = (float)s[j] - Row1*vec1[fin1];

31: out = vec1[fin1] + Row1*vec1[ini1];

32: //------Second Chain-------------------------%

33: vec2[ini2] = out - Row2*vec2[fin2];

34: out = vec2[fin2] + Row2*vec2[ini2];

9.3. GPU-based Implementation 191

35: //------Third Chain-------------------------%

36: vec3[ini3] = out - Row3*vec3[fin3];

37: out = vec3[fin3] + Row3*vec3[ini3];

38: out = abs(out);

39: //out to Global

40: if(out > MaxOut)

41: MaxOut = out;

42: end if

43: // New values for pointers ini.

44: ini1 = fin1;

45: ini2 = fin2;

46: ini3 = fin3;

47: //New values for pointers fin.

48: fin1=(fin1+1)%Col1;

49: fin2=(fin2+1)%Col2;

50: fin3=(fin3+1)%Col3;

51: end for

52: o[idx] = MaxOut;

53: end if

Variables used in code of CUDA kernel 26

• Matrix C has dimensions (Ccf × 3) where variable Ccf is the number
of combinations that are achieved varying the coefficients values.

• Matrix D has dimensions (Cdy × 3) where variable Cdy is the number
of combinations that are achieved varying the delay lengths.

• Vector s contains the audio signal and is composed of ls audio samples.

• Vector o has as many elements as the number of combinations that
have been launched. Each component stores the maximum value
that has been achieved in the audio signal after the filtering for each
combination.

• The number of blocks that this kernel launches is
Cdy
128 × Ccf × 1,

being the block size 128× 1× 1.

192 Massive Multiple Allpass filtering

9.4 Results

The described implementation was applied to five isolated clean musical
sounds, in the same way as in the work [1]. The sounds consist of single
drum hits recorded from a Roland TR-808, a single piano tone played at C3
and a single synthesised mallet-like sound. All input signals have a sample
rate of 44.1 kHz, and are normalized so that their peak amplitude is 1.

The work in [1] evaluated only 100 random possibilities. The first test
we have carried out consisted in evaluating all delay lines length combi-
nations using the same coefficients that were used previously (a = −Φ,
b = +Φ, c = −Φ), which means 4960 combinations. The second test intro-
duces three different variations in the sign of the coefficients but maintains
the same value, i.e 14880 combinations. Finally, third test launches the
28,966,400 combinations. Table 9.1 shows the results of the three tests and
includes: the maximum peak value of all the signals with its corresponding
delay-line lengths, and {a, b, c} coefficients for each test. It is noticeable
how the maximum reduction in every signal is improving as more combina-
tions are attempted. One important result to point out is that maximum
reduction is not necessarily achieved by using Φ as a coefficient.

Figure 9.3 presents in an increasing way the maximum peak value ob-
tained for the 28,966,400 combinations for all the signals. On the left are
the best results providing compressions whereas most of the random com-
binations would increase the dynamic range. Although it depends on the
signal, few combinations achieve to reduce the dynamic range meaningfully.
Thus, in case of using allpass filters for reducing dynamic range, many com-
binations must be tackled. Figure 9.4 compares the waveforms of the input
signal, the signal obtained after processing from work [1], and the signal
obtained after processing the third test: 28,966,400 combinations. It is
noticed that the improvement is remarkable.

9.4.1 Computational Performance

A real-time scenario could be given in studio situation where every signal
frame would have to be processed in a time of around 0.5 s, which implies
the need to process 22050 samples (sample frequency fs=44100 Hz) in less
than 0.5 s. In order to assess the computational performance achieved by
the GPU implementation, we have also performed the three tests in a pow-

9.4. Results 193

Table 9.1. Delay lines lengths, coefficient values and maxi-

mum peak value that offer maximum dynamic range reduction

obtained after the three tests for the five sounds. Maximum

reduction is bolded. PW, 1st, 2nd, and 3rd correspond to re-

sults from the work in [1], first test, second test, and third

test, respectively.

Sound d1 d2 d3 a b c Peak(out)

Bass PW 24 22 28 -Φ Φ -Φ 0.94

Bass 1st 29 29 29 -Φ Φ -Φ 0.89

Bass 2nd 13 28 30 -Φ -Φ -Φ 0.76

Bass 3rd 19 23 27 -0.4 -0.65 -0.7 0.74

Snare PW 21 14 26 -Φ Φ -Φ 0.77

Snare 1st 23 28 29 -Φ Φ -Φ 0.72

Snare 2nd 17 20 23 -Φ -Φ -Φ 0.71

Snare 3rd 20 21 30 -0.70 -0.65 0.60 0.69

Hi-hat PW 1 19 11 -Φ Φ -Φ 0.85

Hi-hat 1st 2 20 20 -Φ Φ -Φ 0.82

Hi-hat 2nd 1 8 18 Φ -Φ Φ 0.80

Hi-hat 3rd 11 24 26 0.55 -0.40 0.55 0.75

Piano PW 20 28 5 -Φ Φ -Φ 0.86

Piano 1st 16 16 26 -Φ Φ -Φ 0.85

Piano 2nd 14 28 30 Φ -Φ Φ 0.80

Piano 3rd 20 25 30 0.40 -0.70 0.55 0.77

Mallet PW 11 14 29 -Φ Φ -Φ 0.87

Mallet 1st 11 16 28 -Φ Φ -Φ 0.79

Mallet 2nd 3 30 30 -Φ -Φ -Φ 0.76

Mallet 3rd 5 30 30 -0.45 -0.70 -0.70 0.73

194 Massive Multiple Allpass filtering

0 5M 10M 15M 20M 25M
−4

−3

−2

−1

0

1

2

3

4

5
Maximum Reduction

Number of combinations

A
m

pl
it

ud
e

(d
B

)

Max Amplitude
Bass
Hi−hat
Snare
Piano
Synth

Figure 9.3. Maximum peak value obtained for the 28,966,400

combinations for all the signals.

erful multi-core computer that has one SMPs (Symmetric Multi-Processing)
Intel Xeon CPU X5680 at 3.33 GHz, which is a hexacore. Thus, our multi-
core computer is composed of six cores. We have tested all the combinations
in a sequential way (one core carries out all combinations), and in a parallel
way (distributing among the six cores all combinations) by using the pro-
gramming framework openMP [40]. Table 9.2 shows the required time in
processing 22050 samples for the three tests. As can be appreciated, only
the third test can not be performed in real time by the GPU implemen-
tation. In all cases, the GPU implementation outperforms the CPU-based
multicore implementation. Thus, employing a GPU as a computational
accelerator for reducing dynamic range has sense.

9.5. Conclusion 195

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Input Output previous work
Output third test:

28,966,400 combinations

B
as

s
Sn

ar
e

H
i-
ha

t
P

ia
no

M
al

le
t

Figure 9.4. Waveforms of the five isolated musical sound,

before and after being processed (the work in [1] and third

test: 28,966,400 combinations). The horizontal dashed lines

show the positive and negative peaks of the original waveform

whilst the solid horizontal lines show the positive and negative

peaks after processing.

9.5 Conclusion

The use of the GPU in large-scale audio processing is getting more widespread.
In this case, we have used its computational capacity for evaluating dynamic
range reduction in musical audio. The results show that the use of the in-
verse of the golden ratio as a coefficient in the allpass filter chains does not
necessarily give the maximum reduction. Moreover, we have verified that
the more combinations are tackled, the better reduction can be achieved,
but a reduction of more than 3 dB is achieved by few combinations. We

196 Massive Multiple Allpass filtering

Table 9.2. Processing time employed by the CPU and GPU

to process the three described tests.

Test 1st 2nd 3rd

Combinations 4960 14800 28,966,400

One core - CPU Time 1.35 s 4.08 s 7914 s

Six cores - CPU Time 0.23 s 0.71 s 1374 s

GPU Time 0.07 s 0.32 s 760 s

have proposed a GPU implementation based on a two-dimensional CUDA
grid that combines different coefficient values and delay-line lengths. In
total, 28,966,400 combinations have been computed in 760 s using a GPU-
based implementation, which is two times faster than performing the same
number of combinations in a six-core powerful computer.

This work was conducted in fall 2013 when I was visiting the Aalto
University Department of Signal Processing and Acoustics. More details
can be found in [132].

Conclusion 10

198 Conclusion

Conclusion 10
The overall aim of this research is to deepen into the Audio Signal Pro-
cessing algorithms that deal with immersive audio schemes, and evaluate
their potential when they are implemented on a Graphics Processing Units
(GPUs). The motivation of this research comes from the necessity of de-
veloping and accelerating immersive audio applications that require high
computational resources.

This chapter summarizes the findings of this research work, revisiting
the research objectives given in the introductory chapter. First, Section
10.1 reviews the contents of this study, outlining the main conclusions that
were extracted from each chapter. Recommendations for future research
are discussed in Section 10.2. Additionally, the final sections contain a list
of works published during the course of candidature for the P.h.D. degree,
and the projects and stipends that have funded the presented work.

10.1 Main Contributions

The first part of this dissertation presents the fundamental operations that
are carried out in audio signal processing, and also summarizes the main
features of the GPU architecture together with the tools that have been

200 Conclusion

used in this dissertation.

First implementations on GPU have been devoted to carry out mul-
tiple convolutions on GPU concurrently. As a result, it was developed an
application that requires to execute and combine multiple convolutions con-
currently: a Generalized Crosstalk Cancellation and Equalization (GCCE).
The selection of the correct placement of data in the different GPU memo-
ries is crucial to achieving good performance. It is described an efficient way
to do it by exploiting parallelism and taking advantage of shared-memory.
The evaluated tests for the developed application show that, with only an
input-data buffer of 128 samples, it is possible to achieve up to real-time
multichannel applications with 1408 filters of 2048 coefficients. This num-
ber gets larger as the input-data buffer increases.

Concurrent convolutions were used to develop a complete multisource
spatial application in a binaural system. To render a sound source in a
specific spatial location with a binaural system, it is necessary to convolve
audio samples with HRIR filters that provide spatial information. Two
common problems have been resolved during the design: synthesizing sound
sources positions that are not in the HRIR database, and virtualizing the
movement of the sound sources between different positions. Both problems
were approached by increasing the number of convolutions which are later
weighted and combined in different ways, taking maximum profit of the
GPUs capacity for executing multiple convolutions simultaneously. Both
solutions were assessed by performing different audio analyses. As a main
contribution of this dissertation, it must be highlighted the development of
a real headphone-based multisource spatial audio application whose audio
processing is carried out on the GPU.

Other spatial audio application that has been developed is a Wave
Field Synthesis system. This system uses an inverse filter bank in order
to reduce the room effects and thus, to facilitate the virtual sound source
localization within this spatial system. A realist demo is developed at
the WFS system, that is composed of 96 loudspeakers, at the Universitat
Politècnica de València. Thus, more than 9216 filters are involved in the
system. This demo allows to render smoothly movements of virtual sound
sources by executing multiple convolutions concurrently.

An scalable multi-GPU implementation of the well-known SRP-PHAT
algorithm is also covered in this dissertation. The results show that employ-
ing a high number of microphones has a direct impact on localization per-

10.2. Further Work 201

formance in highly reverberant environments. The SRP-PHAT algorithm
was analyzed considering localization in three dimensions. It is important
to point out the role that GPU architectures and massive computation have
in acoustic localization tasks in adverse environments.

In case massive filtering is carried out by using IIR filter structures, we
have proposed also a GPU-based implementation that highlights the power
of the parallel form of IIR filters in parallel computing. The proposed
implementation can carry out up to 1256 equalizers with a filter order of
256 in real time, which means 321536 total filter order, for a buffer size
of 32 samples. A large number of applications can be favored from this
result, including a total equalization of a WFS system. In addition, we
have compared the proposed GPU-based implementation with a multicore-
based implementation in a powerful computer. Results show that GPU
outperforms the powerful multicore computer in all example cases.

Finally, the GPUs are also used for accelerating the search of specific
parameters whose purpose is to reduce the dynamic range in musical au-
dio. To this end, massive filtering based on the allpass filter chains is
implemented and performed in GPU, which is able to compute 28,966,400
of these filters in 760 s. The results show that the more combinations are
tackled, the better reduction can be achieved, but a reduction of more than
3 dB is achieved by few specific parameters.

The important conclusion to point out in this dissertation is that GPUs
can be used as coprocessor that carries out the massive audio processing
tasks. All the proposed GPU implementations offer excellent performances
regarding the audio resources they can manage. Moreover, the fact of
using GPUs for audio processing allows the CPU resources can be used for
other tasks. Thus, this dissertation demonstrates that the use of the GPUs
provides a good solution to build applications that require massive audio
processing.

10.2 Further Work

There are still a large number of audio applications that can be accelerated
by using GPUs, such as room acoustics, speech deconvolution in reverberant
environments, among others. Most of them use computational operations
that have been addressed through this dissertation and that can be used

202 Conclusion

as a model by software developers in the field of audio processing.

However, there are other challenges that require the use of even more
powerful many-core processors such as Intel Xeon Phi. The Xeon Phi 3100-
series was designed to deliver over 1TFLOPS peak double precision perfor-
mance. One feature that differences this processor from GPUs architec-
tures is task parallelism, which could be beneficial to develop ambitious
and costly applications.

Future research can be mainly focused on the multichannel audio sig-
nal processing with feedback: To render signals through a large number
of loudspeakers, and to pick up signals through a large number of micro-
phones. Applications that use microphones and loudspeakers are related
with the cancellation of selected noise. To achieve this objective requires to
study a special case in the FIR filtering: Multichannel Adaptive Filtering,
as shown in Fig.10.1

Filtering

FIR filtering IIR filtering

Multiple
convolutions
concurrently

Multiple
correlations
concurrently

Multiple
Parallel

2nd-order
sections

Multiple
allpass
filters
chains

Headphone-based
Spatial audio
 application

Wave Field
Synthesis

Generalized Crosstalk
Cancellation and

Equalization

Reduce
Dynamic Range in

audio signals

Multiple
Equalizations
concurrently

Sound
Source

Localization
system

Applications

Multiple
Adaptive
Filtering

Active
Noise

Control

Cancellation
of

selected
Noise

System
Identification

Figure 10.1. Developed and future applications that require

massive multichannel signal processing.

Adaptive filtering is applied to modelling or system identification, and
active noise control. The target of these applications consists of filtering
some input signal to match a desired response. The filter parameters are
updated by making some measurements and applying them to the adaptive
filtering algorithm such that the difference between the filter output and
the desired response is minimized. One common scenario occurs at home
when the windows are opened in order to leave fresh air to enter home. In
some countries, this is a large problem since the traffic noise is extremly
loud (Asian countries mainly). A large system composed of loudspeakers

10.3. List of Publications 203

and microphones could reduce this noise pollution.

However, computing needs increase as the number of speakers and mi-
crophones increase. Thus, developing systems that require adaptive filter-
ing in future many-core architectures is presented as a great challenge to
pursue in the field of immersive and friendly scenarios.

On the other hand, as a consequence of the developed work through-
out this dissertation, we have now a large number of computational kernels.
As a future work, all these kernels could be packed in specific libraries for
audio applications using GPUs. Libraries are valuable tools for specialists
of a particular field, since it facilitates the development of scientific codes
without knowing GPUs characteristics. These future libraries will also con-
sider the new advances in the GPU architectures. Thus, it is expected that
the performances of these libraries improve meaningfully the performances
that are collected in this manuscript.

10.3 List of Publications

A list of published work produced during the course of candidature for the
degree is presented in what follows.

Publications as First Author

Journal Papers indexed in JCR

• J. A. Belloch, M. Ferrer, A. Gonzalez, F. J. Martinez-Zaldivar, A. M.
Vidal, “Headphone-based virtual spatialization of sound with a GPU
accelerator”, Journal of the Audio Engineering Society, vol. 61, No.
7/8, July/August 2013. Impact Factor : 0.831.

• J. A. Belloch, A. Gonzalez, F. J. Martinez-Zaldivar, A. M. Vidal,
“Multichannel Massive Audio Processing for a Generalized Crosstalk
Cancellation and Equalization application using GPUs”, Integrated
Computer-Aided Engineering - An International Journal, vol. 20,
no.2 pp 169-182, April 2013. Impact Factor : 3.451.

• J. A. Belloch, A. Gonzalez, F. J. Martinez-Zaldivar, A. M. Vidal,
“Real-time massive convolution for audio applications on GPU”, Jour-

204 Conclusion

nal of Supercomputing, vol. 58, no. 3, pp. 449-457, December 2011.
Impact Factor : 0.578.
Note that this paper is shown in NVIDIA SHOW CASES webpage:
http://www.nvidia.co.uk/object/cuda-showcase-uk.html#

• J. A. Belloch, A. Gonzalez, A. M. Vidal, M. Cobos “On the Perfor-
mance of Real-Time Massive Microphone Systems for Sound Source
Localization Using Multiple GPUs”, Submitted for publication.

International Conference Papers

• J. A. Belloch, J. Parker, L. Savioja, A. Gonzalez, V. Välimäki, “Dy-
namic Range Reduction of Audio Signals Using Multiple Allpass fil-
ters on a GPU accelerator”, Accepted for publication in EUSIPCO
2014. Lisbon, Portugal, September 2014.

• J. A. Belloch, B. Bank, L. Savioja, A. Gonzalez, V. Välimäki, “Multi-
channel IIR Filtering of Audio Signals Using a GPU”, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP 2014). ISBN: 978-1-4799-2893-4. Florence,
Italy, May 2014.

• J. A. Belloch, M. Ferrer, A. Gonzalez, J. Lorente, A. M. Vidal, “GPU-
based WFS systems with mobile Virtual Sound Sources and Room
Compensation”, Proceedings of the 52nd Conference on Sound Field
Control - Audio Engineering Society, Guildford, England, September
2013.

• J. A. Belloch, A. Gonzalez, A. M. Vidal, M. Cobos “Real-Time
Sound Source Localization on Graphics Processing Units”, Interna-
tional Conference on Computational Science (ICCs), pp. 2549 2552,
Barcelona, Spain, June 2013.

• J. A. Belloch, M. Ferrer, A. Gonzalez, F. J. Martinez-Zaldivar, A.
M. Vidal, “Headphone-based spatial sound with a GPU accelerator”,
International Conference on Computational Science (ICCs), pp. 116-
125 Omaha, Nebraska, USA, June 2012.
doi: 10.1016/j.procs.2012.04.013

10.3. List of Publications 205

• J. A. Belloch, A. Gonzalez, F. J. Martinez-Zaldivar, A. M. Vidal, “A
real-time crosstalk canceller on a notebook GPU”, IEEE International
Conference on Multimedia and Expo (ICME), I.S.B.N. 978-1-61284-
348-3, pp. 1-4, Barcelona, Spain, July 2011.
Note that this paper is shown in NVIDIA SHOW CASES webpage:
http://www.nvidia.co.uk/object/cuda-showcase-uk.html#

• J. A. Belloch, F. J. Martinez-Zaldivar, A. M. Vidal, A. Gonzalez,
“Analysis of GPU thread structure in a multichannel audio appli-
cation”, Proceedings of the 11th International Conference on Com-
putational and Mathematical Methods in Science and Engineering,
I.S.B.N. 978-84-614-6167-7 vol. 1, pp. 156-163, Benidorm, Spain,
Junio 2011.

• J. A. Belloch, A. M. Vidal, F. J. Martinez-Zaldivar, A. Gonzalez,
“Real-time Multichannel Audio Convolution”, GPU Technology Con-
ference 2010,
http://nvidia.fullviewmedia.com/gtc2010/0923-n-2116.html,
San José, California, USA, September 2010.

• J. A. Belloch, A. M. Vidal, F. J. Martinez-Zaldivar, A. Gonzalez,
“Multichannel acoustic signal processing on GPU”, Proceedings of the
10th International Conference on Computational and Mathematical
Methods in Science and Engineering, I.S.B.N. 978-84-613-5510-5 vol.
1, pp. 181-187, Almeŕıa, Spain, June 2010.

Other coauthored publications related with this thesis

International Conference Papers

• J. Lorente, M. Ferrer, M. de Diego, J. A. Belloch, A. Gonzalez, “GPU
Implementation of Frequency-domain Modified Filtered-x LMS al-
gorithm for Multichannel Local Noise Control”, Proceedings of the
52nd Conference on Sound Field Control - Audio Engineering Soci-
ety, Guildford, England, September 2013.

• J. Lorente, J. A. Belloch, M. Ferrer, A. Gonzalez, “Multichannel
Active Noise Control System using a GPU accelerator”, Internoise,
I.S.B.N. 0736-2935, pp. 13-24, New York, United States of America,
August 2012.

206 Conclusion

• J. Lorente, A. Gonzalez, M. Ferrer, J. A. Belloch, M. de Diego, G.
Piñero, A. M. Vidal, “Active Noise Control Using Graphics Process-
ing Units”, 19th International Congress on Sound and Vibration, 978-
609-459-079-5, pp. 1-8, Vilnius, Lithuania, July 2012.

• J. Lorente, G. Piñero, A. M. Vidal, J. A. Belloch, A. Gonzalez, “Par-
allel implementations of beamforming design and filtering for micro-
phone array applications”, 19th European Signal Processing Confer-
ence, I.S.S.N. 2076-1465, pp 501-505 Barcelona, Spain, August 2011.

Peer-reviewed non-ISI Journal Papers

• J. Lorente, M. Ferrer, J. A. Belloch, G. Piñero, M. de Diego, A.
Gonzalez, A. M. Vidal, “Real-time adaptive algorithms using GPUs”,
Waves, vol. 4, pp. 59-68, September 2012.

• A. Gonzalez, J. A. Belloch, F. J. Martinez-Zaldivar, P. Alonso, V. M.
Garcia, E. S. Quintana-Ort, A. Remon, A. M. Vidal, “The Impact of
the Multi-core Revolution on Signal Processing”, Waves, vol. 2, pp.
64-75, September 2010.

• A. Gonzalez, J. A. Belloch, G. Piñero, J. Lorente, M. Ferrer, S. Roger
, C. Roig, F. J. Martinez, M. de Diego, P. Alonso, V. M. Garcia, E. S.
Quintana-Ort, A. Remon and A. M. Vidal, “Application of Multi-core
and GPU Architectures on Signal Processing: Case Studies”, Waves,
vol. 2, pp. 86-96, September 2010.

Spanish Conference Papers

• P. Alonso, J. A. Belloch, A. Gonzalez, E. S. Quintana-Ort, A. Remon,
A. M. Vidal, “Evaluación de bibliotecas de altas prestaciones para
el clculo de la FFT en procesadores multincleo y GPUs”, II Work-
shop en Aplicaciones de Nuevas Arquitecturas de Consumo y Altas
Prestaciones, I.S.B.N. 978-84-692-7320-3, pp. 1-9 Mostoles, Spain,
November 2009.

10.4. Institutional Acknowledgements 207

10.4 Institutional Acknowledgements

This work has received financial support of the following projects and
stipends:

• Project TEC2009-13741: Spatial audio systems based on massive par-
allel processing of multichannel acoustic signals with general purpose-
graphics processing units (GP-GPU) and multicores. (Spanish Min-
istry of Science and Innovation)

• Project TEC2012-38142-C04-01: Distributed and Collaborative Sound
Signal Processing: algorithms, tools and applications. (Spanish Min-
istry of Science and Innovation)

• Project PROMETEO 2009/2013: Computación de altas prestaciones
sobre arquitecturas actuales en problemas de procesado de múltiples
señales. (Generalitat Valenciana).

• Projects PAID-05-11 and PAID-05-10: Programa de Apoyo a la In-
vestigacin y Desarrollo (Universitat Politècnica de València).

• Stipend BES-2010-037793: FPI program (Spanish Ministry of Science
and Innovation).

• Stipend EEBB-I-13-06059: Research Internship (Spanish Ministry of
Science and Innovation).

208 Conclusion

Bibliography

[1] J. Parker and V. Välimäki, “Linear dynamic range reduction of mu-
sical audio using an allpass filter chain,” IEEE Signal Processing Let-
ters, vol. 20, no. 7, pp. 669–672, 2013.

[2] Y. A. Huang, J. Chen, and J. Benesty, “Immersive audio schemes,”
IEEE Signal Processing Magazine, vol. 28, no. 1, pp. 20–32, 2011.

[3] E. Torick, “Highlights in the history of multichannel sound,” J. Au-
dio. Eng. Soc., vol. 46, no. 5, pp. 27–31, 1998.

[4] R. Rabenstein, S. Spors, and P. Steiffen, “Wave Field Synthesis tech-
niques for spatial sound reproduction,” Topics in Acoustic Echo and
Noise Control, vol. 5, pp. 517–545, 2006.

[5] S. Spors, R. Rabenstein, and W. Herbordt, “Active listening room
compensation for massive multichannel sound reproduction system
using wave-domain adaptive filtering,” J. Acoustic. Soc. Am., vol.
122, pp. 354–369, 2007.

[6] Y. Huang, J. Benesty, and J. Chen, “Generalized crosstalk cancella-
tion and equalization using multple loudspeakers for 3d sound repro-
duction at the ears of multiple listeners,” in IEEE Int. Conference on
Acoustics, Speech and Signal Processing, Las Vegas, USA, October
2008, pp. 405–408.

210 Conclusion

[7] N. Madhu and R. Martin, Advances in Digital Speech Transmission.
New York, NY, USA: Wiley, 2008, ch. Acoustic Source Localization
with Microphone Arrays, pp. 135–166.

[8] F. Rumsey, Spatial Audio. Elsevier, 2001.

[9] J. Blauert, Spatial Hearing - Revised Edition: The Psychophysics of
Human Sound Localization. The MIT Press, 1996.

[10] R. Rabenstein, S. Spors, and J. Ahrens, Spatial Sound Synthesis. vol
4. Chapter 32. Academic Press Library in Signal Processing Oxford
UK, 2014.

[11] V. Algazi and R. Duda, “Headphone-based spatial sound,” IEEE
Signal Processing Magazine, vol. 28, no. 1, pp. 33–42, 2011.

[12] D. Schnstein and B. Katz, “Variability in perceptual evaluation of
HRTFs,” J. Audio Eng. Soc, vol. 60, no. 10, pp. 783–793, 2012.

[13] A. Berkhout, D. de Vries, and P. Vogel, “Acoustic control by Wave
Field Synthesis,” J. Acoustic. Soc. Amer, vol. 93, pp. 2764–2778, May
1993.

[14] “Audio and Communications Signal Processing Group at Universitat
Politecnica de Valencia,” http://www.gtac.upv.es/enlaces.asp.

[15] “IOSONO Wave Field Synthesis System,” http://www.timelab-
hhi.com/en/system-description/iosono-wave-field-synthesis-
system.html.

[16] E. Hulsebos, D. de Vries, and E. Bourdillat, “Improved microphone
array configurations for auralization of sound fields by Wave-Field
Synthesis,” J. Audio Eng. Soc, vol. 50, no. 10, pp. 779–790, 2002.

[17] S. Spors, H. Buchner, and R. Rabenstein, “Efficient active listening
room compensation for Wave Field Synthesis,” in Proceedings of the
116th AES Convention, Berlin,Germany, May 2004.

[18] J. Lopez, A. Gonzalez, and L. Fuster, “Room compensation in Wave
Field Synthesis by means of multichannel inversion,” in Applications
of Signal Processing to Audio and Acoustics, 2005. IEEE Workshop
on, oct. 2005, pp. 146 – 149.

10.4. Institutional Acknowledgements 211

[19] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust lo-
calization in reverberant rooms,” in Microphone Arrays: Signal Pro-
cessing Techniques and Applications, M. S. Brandstein and D. Ward,
Eds. Berlin, Germany: Springer-Verlag, 2001, ch. 8, pp. 157–180.

[20] “Nvidia CUDA Developer Zone,”
https://developer.nvidia.com/cuda-downloads, (accessed 2014 March
10).

[21] “CUDA ZONE: CUDA Community Showcase,”
http://www.nvidia.co.uk/object/cuda apps flash new uk.html#,
(accessed 2014 January 28).

[22] J. Moura, “What is Signal Processing?” IEEE Signal Processing
Magazine, vol. 26, no. 6, pp. 6–6, 2009.

[23] A. Kwasinski, M. Kaveh, and L. Deng, “The Discipline of Signal
Processing: Part 2,” IEEE Signal Processing Magazine, vol. 31, no. 1,
pp. 157–159, 2014.

[24] A. Oppenheim, A. Willsky, and S. Nawab, Signals and Systems, 1996.

[25] T. Apostol, Mathematical Analysis, 1960.

[26] J. W. Cooley and J. W. Tukey, “An algorithm for the machine cal-
culation of complex Fourier series,” Mathematics of Computation,
vol. 19, pp. 297 – 301, 1965.

[27] S. S. Soliman and M. D. Srinath, Continuous and Discrete Signals
and Systems, Prentice Hall, 1997.

[28] V. Välimäki, J. D. Parker, L. Savioja, J. O. Smith, and J. Abel,
“Fifty Years of Artificial Reverberation,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 20, no. 5, pp. 1421–1448,
2012.

[29] A. Torger and A. Farina, “Real-time partitioned convolution for Am-
biophonics surround sound,” in IEEE Workshop on the Applications
of Signal Processing to Audio and Acoustics, 2001, pp. 195–198.

[30] E. C. Ifeachor and B. W. Jervis, Digital signal processing: a practical
approach. Prentice-Hall, 2002.

212 Conclusion

[31] “Xilinx,”
http://www.xilinx.com/, (accessed 2014 March 03).

[32] N. Tsingos, W. Jiang, and I. Williams, “Using programmable graph-
ics hardware for acoustics and audio rendering,” J. Audio Eng. Soc,
vol. 59, no. 9, pp. 628–646, 2011.

[33] G. Moore, “Cramming More Components onto Integrated Circuits,”
Electronics, vol. 38, pp. 114–117, 1965.

[34] G. Blake, R. Dreslinski, and T. Mudge, “A Survey of Multicore Pro-
cessors,” IEEE Signal Process. Mag., vol. 26, no. 6, pp. 26–37, 2009.

[35] E. Lindholm, M. Kilgard, and H. Moreton, “A User-Programmable
Vertex Engine.” in Proceeding of the 28th Ann. Conf. on Computer
Graphics and Interactive Techniques, Los Angeles, August 2001.

[36] M. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. 21, pp. 948–960, 1972.

[37] “NVIDIA Kepler Architecture,”
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf, (accessed 2013 May 28).

[38] “Features of the Nvidia CUDA capabilities,”
https://developer.nvidia.com/cuda-gpus, (accessed 2014 April 16).

[39] S. Cook, A Developer’s Guide to Parallel Computing with GPUs.
Morgan Kaufmann, 2013.

[40] “openMP API Specifications,”
http://www.openmp.org, (accessed 2013 June 05).

[41] “Steinberg Media Technologies Gmbh,”
http://www.steinberg.net/en/company/developer.html, (accessed
2014 April 18).

[42] “Generic ASIO drivers asio4all,”
http://www.asio4all.com/, (accessed 2014 April 18).

[43] B. S. Atal and M. R. Schroeder, “Apparent sound source translator,”
U.S. Patent 3,236,949, Tech. Rep., 1966.

10.4. Institutional Acknowledgements 213

[44] B. B. Bauer, “Stereophonic earphones and binaural loudspeakers,” J.
Audio Eng. Soc, vol. 9, no. 1, pp. 148–151, 1961.

[45] S. M. Kuo and G. H. Canfield, “Dual-channel audio equalization and
cross-talk cancellation for 3-D sound reproduction,” IEEE Transac-
tions Consum. Electron., vol. 43, no. 4, p. 11891196, 1997.

[46] S. Miyabe, M. Shimada, T. Takatani, H. Saruwatari, and K. Shikano,
“Multi-channel inverse filtering with selection and enhancement of
a loudspeaker for robust sound field reproduction,” in Proc. of
IWAENC 2006, Paris, France, September 2006.

[47] K. Matsui, “Binaural reproduction of 22.2 multichannel sound over
frontal loudspeakers,” in Proc. of 3DSA 2013, Osaka, Japan, June
2013.

[48] J. J. Lopez, A. Gonzalez, and F. Ordua-Bustamante, “Measurement
of cross-talk cancellation and equalization zones in 3-D sound repro-
duction under real listening conditions,” in Proc. of the 16th AES
Conference, Rovaniemi, Finland, April 1999.

[49] O. Kirkeby, P. Rubak, L. G. Johansen, and P. A. Nelson, “Imple-
mentation of Cross-talk Cancellation Networks Using Warped FIR
Filters,” in Proc. of the 16th AES Conference, Rovaniemi, Finland,
April 1999.

[50] “openGL,” online at: http://www.opengl.org/.

[51] B. Cowan and B. Kapralos, “GPU-Based One-Dimensional Convolu-
tion for Real-Time Spatial Sound Generation,” Loading...: The Jour-
nal of the Canadian Game Studies Association, vol. 3, no. 5, pp. 1–14,
2009.

[52] F. Wefers and J. Berg, “High-Performance real-time FIR-filtering us-
ing fast convolution on graphics hardware,” in Proc. of the 13th Con-
ference on Digital Audio Effects, Graz, Austria, September 2010.

[53] L. Savioja, V. Välimäki, and J. O. Smith, “Audio Signal Processing
using Graphics Processing Units,” J. Audio Eng. Soc, vol. 59, no. 1-2,
pp. 3–19, 2011.

[54] J. Blauert and all, The technology of binaural listening, 2013.

214 Conclusion

[55] S. Spors and J. Ahrens, “Efficient range extrapolation of head-related
impulse responses by Wave Field Synthesis techniques,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing,
Prague, Czech Republic, May 2011.

[56] Y. Kahana and P. A. Nelson, “Numerical modelling of the spatial
acoustic response of the human pinna,” Journal of Sound and Vibra-
tion, vol. 292, no. 1-2, pp. 148 – 178, 2006.

[57] G. Enzner, M. Krawczyk, F.-M. Hoffmann, and M. Weinert, “3d re-
construction of hrtf-fields from 1d continuous measurements,” in Ap-
plications of Signal Processing to Audio and Acoustics (WASPAA),
2011 IEEE Workshop on, oct. 2011, pp. 157 –160.

[58] “Room Acoustics Team, IRCAM Database,” online at:
http://recherche.ircam.fr/equipes/salles/listen/index.html.

[59] “The CIPIC HRTF Database,” online at:
http://interface.cipic.ucdavis.edu/sound/hrtf.html.

[60] E. Gallo and N. Tsingo, “Efficient 3D Audio Processing with the
GPU,” in GP2: ACM Workshop on General Purpose Computing on
Graphics Processors, Los Angeles, USA, August 2004.

[61] S. Siltaten, T. Lokki, and L. Savioja, “Frequency domain acoustic
radiance transfer for real-time auralization,” Acta Acustica/Acustica,
vol. 95, pp. 106–117, 2009.

[62] B. Cowan and B. Kapralos, “Spatial sound for video games and vir-
tual environments utilizing real-time GPU-Based Convolution,” in
Proc. 2008 Conf. on Future Play: Research, Play, Share, Ontario,
Canada, November 2008.

[63] A. Berkhout, “A holographic approach to acoustic control,” J. of the
Audio Engineering Society, vol. 36, pp. 2764–2778, May 1988.

[64] P. Vogel, “Application of Wave Field Synthesis in room acoustics,”
Ph.D. dissertation, Delft University of Technology, 1993.

[65] E. Start, “Direct sound enhancement by Wave Field Synthesis,”
Ph.D. dissertation, Delft University of Technology, 1997.

10.4. Institutional Acknowledgements 215

[66] E. Verheijen, “Sound reproduction by Wave Field Synthesis,” Ph.D.
dissertation, Delft University of Technology, 1997.

[67] J.-J. Sonke, “Variable acoustics by Wave Field Synthesis,” Ph.D.
dissertation, Delft University of Technology, 2000.

[68] E. Hulsebos, “Auralization using Wave Field Synthesis,” Ph.D. dis-
sertation, Delft University of Technology, 2004.

[69] L. Romoli, P. Peretti, S. Cecchi, L. Palestini, and F. Piazza, “Real-
time implementation of Wave Field Synthesis for sound reproduction
systems,” in Circuits and Systems, 2008. APCCAS 2008. IEEE Asia
Pacific Conference on, 30 2008-dec. 3 2008, pp. 430 –433.

[70] D. Theodoropoulos, G. Kuzmanov, and G. Gaydadjiev, “A minimal-
istic architecture for reconfigurable wfs-based immersive-audio,” in
Reconfigurable Computing and FPGAs (ReConFig), 2010 Interna-
tional Conference on, dec. 2010, pp. 1 –6.

[71] ——, “Multi-core platforms for beamforming and Wave Field Syn-
thesis,” IEEE Transactions on multimedia, vol. 3, no. 2, pp. 235–245,
April 2011.

[72] M. Brandstein and D. Ward, Microphone arrays, B. Verlag, Ed.
Springer, 2001.

[73] J. Chen, J. Benesty, and Y. Huang, “Time delay estimation in room
acoustic environments: an overview,” EURASIP Journal on Applied
Signal Processing, vol. 2006, pp. 1–19, 2006.

[74] B. Xu, G. Sun, R. Yu, and Z. Yang, “High-Accuracy TDOA-Based
Localization without Time Synchronization,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 24, no. 8, pp. 1567–1576, 2013.

[75] C. H. Knapp and G. C. Carter, “The generalized correlation method
for estimation of time delay,” Transactions on Acoustics, Speech and
Signal Processing, vol. ASSP-24, pp. 320–327, 1976.

[76] V. Peruffo Minotto, C. Rosito Jung, L. Gonzaga da Silveira, and
B. Lee, “GPU-based approaches for real-time sound source localiza-
tion using the SRP-PHAT algorithm,” International Journal of High
Performance Computing Applications, 2012.

216 Conclusion

[77] Y. Liang, Z. Cui, S. Zhao, K. Rupnow, Y. Zhang, D. L. Jones, and
D. Chen, “Real-time implementation and performance optimization
of 3D sound localization on GPUs,” in DATE’12, 2012, pp. 832–835.

[78] C. J. Webb and S. Bilbao, “Virtual room acoustics: A comparison
of techniques for computing 3D-FDTD schemes using CUDA,” in
Proceedings of the 130th AES Convention, London, U.K., May 2011.

[79] L. Savioja, “Real-time 3D finite-difference time-domain simulation of
low- and mid-frequency room acoustics,” in Proc. of the Int. Conf.
Digital Audio Effects, Graz, Austria, September 2010.

[80] A. Southern, D. Murphy, G. Campos, and P. Dias, “Finite difference
room acoustic modelling on a General Purpose Graphics Processing
Unit,” in Proc. of the 128th AES Convention, London, United King-
dom, May 2010.

[81] B. Hamilton and C. J. Webb, “Room acoustics modelling using GPU-
accelerated finite difference and finite volume methods on a face-
centered cubic grid,” in Proc. Conference on Digital Audio Effects
(DAFx-13), Maynooth, Ireland, September 2013.

[82] M. Jedrzejewski and K. Marasek, “Computation of room acoustics
using programmable video hardware,” Computational Imaging and
Vision, vol. 32, pp. 587–592, September 2006.

[83] N. Rober, U. Kaminski, and M. Masuch, “Ray acoustics using com-
puter graphics technology,” in Conference on Digital Audio Effects
(DAFx-07) proceedings, Bourdeaux, France, June 2007.

[84] L. Savioja, V. Välimäki, and J. O. Smith, “Real-time additive syn-
thesis with one million sinusoids using a GPU,” in Proc. of the 128th
AES Convention, London, United Kingdom, May 2010.

[85] R. Bradford, J. Ffitch, and R. Dobson, “Real-time sliding phase
vocoder using a commodity GPU,” in Proc. of ICMC 2011, University
of Huddersfield, United Kingdom, August 2011.

[86] J. Lorente, G. Piñero, A. Vidal, J. Belloch, and A. Gonzalez, “Parallel
implementations of beamforming design and filtering for microphone
array applications,” in Proc. of EUSIPCO 2011, Barcelona, Spain,
August 2011.

10.4. Institutional Acknowledgements 217

[87] “NVIDIA Library CUFFT, howpublished =
http://docs.nvidia.com/cuda/pdf/cufft library.pdf, note = (accessed
2014 July 23).”

[88] J. A. Belloch, A. M. Vidal, F. J. Mart́ınez-Zald́ıvar, and A. Gonzalez,
“Multichannel acoustic signal processing on GPU,” in Proceedings of
the 10th International Conference on Computational and Mathemati-
cal Methods in Science and Engineering, vol. 1, Almeria, Spain, June
2010, pp. 181–187.

[89] “Nvidia CUDA toolkit 2.3,”
https://developer.nvidia.com/cuda-toolkit-23-downloads, (accessed
2014 April 15).

[90] J. A. Belloch, A. M. Vidal, F. J. Mart́ınez-Zald́ıvar, and A. Gon-
zalez, “Real-time Multichannel Audio Convolution,” in GPU Tech-
nology Conference 2010, San Jose, California, USA, September 2010,
http://www.gputechconf.com/gtcnew/on-demand-gtc.php.

[91] J. A. Belloch, A. Gonzalez, F. J. Mart́ınez-Zald́ıvar, and A. M. Vi-
dal, “Real-time massive convolution for audio applications on GPU,”
Journal of Supercomputing, vol. 58, no. 3, pp. 449–457, December
2011.

[92] M. Gardner, “Historical background of the haas and/or precedence
effect,” J. Acoust. Soc. Am., vol. 43, no. 6, pp. 1243–1248, 1968.

[93] B. S. Xie and S. Q. Guan, “Some Recent Works on Head-Related
Transfer Functions and Virtual Auditory Display in China,” in Proc.
of the 40th AES Conference, Tokyo, Japan, October 2010.

[94] O. Kirkeby, P. Nelson, H. Hamada, and F. Orduna-Bustamante, “Fast
deconvolution of multichannel systems using regularization,” Speech
and Audio Processing, IEEE Transactions on, vol. 6, no. 2, pp. 189
–194, mar 1998.

[95] W. Chu, “Impulse response and reverberation-decay measurements
made by using a periodic pseudorandom sequence,” Applied Acous-
tics, vol. 29, pp. 193–205, 1990.

[96] J. A. Belloch, A. Gonzalez, F. J. Martinez-Zaldivar, and A. M. Vi-
dal, “A real-time crosstalk canceller on a notebook GPU,” in 2011

218 Conclusion

IEEE International Conference on Multimedia and Expo (ICME),
Barcelona, Spain, july 2011, pp. 1 –4.

[97] A. V. Oppenheim, A. S. Willsky, and S. Hamid, “Signals and sys-
tems,” ser. Processing series. Prentice Hall, 1997.

[98] G. Garcia, “Optimal filter partition for efficient convolution with
short input/output delay,” in Proceedings of the 113th AES Con-
vention, Los Angeles,U.S.A., October 2002.

[99] W. G. Gardner, “Efficient convolution without input-output delay,”
Journal of the Audio Engineering Society, vol. 43, pp. 127–136, 1995.

[100] P. M. Gerald and P. C. W. Sommen, “A new method for efficient con-
volution in frequency domain by nonuniform partitioning for adaptive
filtering,” IEEE Transactions on signal processing, vol. 44, pp. 127–
136, 1996.

[101] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, and N. K. Govindaraju,
“Auto-tuning of fast Fourier transform on graphics processors,” in
Proceedings of the 16th ACM symposium on Principles and practice
of parallel programming, ser. PPoPP ’11, 2011, pp. 257–266.

[102] J. A. Belloch, F. J. Mart́ınez-Zald́ıvar, A. M. Vidal, and A. Gon-
zalez, “Analysis of GPU thread structure in a multichannel audio
application,” in Proceedings of the 11th International Conference on
Computational and Mathematical Methods in Science and Engineer-
ing, vol. 1, Benidorm, Spain, June 2011, pp. 156–163.

[103] J. A. Belloch, A. Gonzalez, F. Martinez-Zaldivar, and A. M. Vidal,
“Multichannel massive audio processing for a generalized crosstalk
cancellation and equalization application using GPUs,” Integrated
Computer-Aided Engineering, vol. 20, no. 2, pp. 169–182, 2013.

[104] A. Kudo, H. Hokari, and S. Shimada, “A study on switching of the
transfer functions focusing on sound quality,” Acoustical Science and
Technology, vol. 26, no. 3, pp. 267–278, 2005.

[105] H. David, The method of paired comparisons, ser. Griffin’s statistical
monographs & courses. Griffin, 1963.

10.4. Institutional Acknowledgements 219

[106] F. Keyrouz and K. Diepold, “A rational hrtf interpolation approach
for fast synthesis of moving sound,” in Digital Signal Processing
Workshop, 12th - Signal Processing Education Workshop, 4th, sept.
2006, pp. 222 –226.

[107] ——, “A new HRTF interpolation approach for fast synthesis of
dynamic environmental interaction,” J. Audio Eng. Soc, vol. 56, no.
1/2, pp. 28–35, 2008. [Online]. Available: http://www.aes.org/e-
lib/browse.cfm?elib=14373

[108] D. R. Begault, 3-D sound for virtual reality and multimedia. San
Diego, CA, USA: Academic Press Professional, Inc., 1994.

[109] M. Matsumoto, S. Yamanaka, M. Toyama, and H. Nomura, “Effect
of Arrival Time Correction on the Accuracy of Binaural Impulse Re-
sponse Interpolation–Interpolation Methods of Binaural Response,”
J. Audio Eng. Soc, vol. 52, no. 1/2, pp. 56–61, 2004.

[110] S. M. Robeson, “Spherical methods for spatial interpolation: review
and evaluation,” Cartography and Geographic Information Systems,
vol. 24, no. 1, pp. 3–20, 1997.

[111] K.-S. Lee and S.-P. Lee, “A relevant distance criterion for interpola-
tion of head-related transfer functions,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 19, no. 6, pp. 1780 –1790, aug.
2011.

[112] J. A. Belloch, M. Ferrer, A. Gonzalez, F. Martinez-Zaldivar, and
A. M. Vidal, “Headphone-based spatial sound with a gpu accelera-
tor,” Procedia Computer Science, vol. 9, no. 0, pp. 116 – 125, 2012,
proceedings of the International Conference on Computational Sci-
ence, ICCS 2012.

[113] ——, “Headphone-based virtual spatialization of sound with a GPU
accelerator,” J. Audio Eng. Soc, vol. 61, no. 7/8, pp. 546–561, 2013.

[114] M. M. Boone, E. N. G. Verheijen, and P. F. Van Tol, “Spatial Sound-
Field Reproduction by Wave-Field Synthesis,” J. Audio Eng. Soc,
vol. 43, no. 12, pp. 1003–1012, 1995.

[115] S. Spors, A. Kuntz, and R. Rabenstein, “An Approach to Listening
Room Compensation with Wave Field Synthesis,” in Proc. of the 24th
AES Conference, Banff, Canada, May 2003.

220 Conclusion

[116] S. Spors and J. Ahrens, “Analysis and Improvement of Pre-
equalization in 2.5-Dimensional Wave Field Synthesis,” in Proceed-
ings of the 128th AES Convention, London, UK, May 2010.

[117] L. Fuster, J. J. Lopez, A. Gonzalez, and P. Faus, “Time and fre-
quency domain room compensation applied to Wave Field Synthesis,”
in Proc. Conference on Digital Audio Effects (DAFx-05), Madrid,
Spain, September 2005.

[118] M. Miyoshi and Y. Kaneda, “Inverse filtering of room acoustics,”
Acoustics, Speech and Signal Processing, IEEE Transactions on,
vol. 36, no. 2, pp. 145 –152, feb 1988.

[119] G. Jansen, “Focused wavefields and moving virtual sources by wave-
field synthesis,” Master’s thesis, Delft University of Technology, 1997.

[120] H. Kuttruff, Room acoustics, S. Press, Ed. Abingdon, Oxford, UK:
Taylor & Francis, October 2000, 368 pages.

[121] F. Wefers and M. Vorländer, “Optimal filter partitions for real-time
FIR filtering using uniformly-partitioned FFT-based convolution in
the frequency-domain,” in Proc. of the 14th Conference on Digital
Audio Effects, Paris, France, September 2010.

[122] J. A. Belloch, M. Ferrer, A. Gonzalez, J. Lorente, and A. M. Vidal,
“GPU-based WFS Systems with Mobile Virtual Sound Sources and
Room Compensation,” in Proc. of the 52nd AES Conference, Guild-
ford, United Kingdom, September 2013.

[123] H. Do and H. F. Silverman, “A fast microphone array SRP-PHAT
source location implementation using coarse-to-fine region contrac-
tion (CFRC),” in Proc. of the IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, New Paltz, USA, Septem-
ber 2007.

[124] A. Said, B. Lee, and T. Kalker, “Fast steered response power compu-
tation in 3D spatial regions,” HP Labs, Palo Alto, USA, Tech. Rep.
HPL-2013-40, April 2013.

[125] A. Marti, M. Cobos, and J. J. Lopez, “A steered response power
iterative method for high-accuracy acoustic source location,” Journal
of the Acoustical Society of America, vol. 134, no. 4, 2013.

10.4. Institutional Acknowledgements 221

[126] J. H. DiBiase, “A high accuracy, low-latency technique for talker
localization in reverberant environments using microphone arrays,”
Ph.D. dissertation, Brown University, Providence, RI, May 2000.

[127] M. Cobos, A. Marti, and J. J. Lopez, “A modified SRP-PHAT func-
tional for robust real-time sound source localization with scalable
spatial sampling,” IEEE Signal Processing Letters, vol. 18, no. 1, pp.
71–74, January 2011.

[128] S. Bilbao and C. J. Webb, “Physical modeling of timpani drums in
3D on GPGPUs,” J. Audio Eng. Soc, vol. 61, no. 10, pp. 737–748,
2013.

[129] “Optimizing Parallel Reduction in CUDA NVIDIA,”
http://developer.download.nvidia.com/
assets/cuda/files/reduction.pdf, (accessed 2013 June 10).

[130] J. B. Allen and D. A. Berkley, “Image method for efficiently simu-
lating small-room acoustics,” J. Acoust. Soc. Am., vol. 65, no. 4, pp.
943–950, 1979.

[131] J. A. Belloch, A. Gonzalez, A. M. Vidal, and M. Cobos, “Real-Time
Sound Source Localization on Graphics Processing Units,” in Proc. of
the International Conference on Computational Science, ICCS 2013,
Barcelona, Spain, June 2013.

[132] J. A. Belloch, J. Parker, L. Savioja, A. Gonzalez, and V. Välimäki,
“Dynamic Range Reduction of Audio Signals Using Multiple Allpass
Filters on a GPU Accelerator,” in Accepted for publication in EU-
SIPCO, Lisbon, Portugal, September 2014.

[133] A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, and
J. Huopaniemi, “Frequency-Warped Signal Processing for Audio Ap-
plications,” J. Audio Eng. Soc, vol. 48, no. 11, pp. 1011–1031, 2000.

[134] M. Karjalainen and T. Paatero, “Equalization of loudspeaker and
room responses using Kautz filters: Direct least squares design,”
EURASIP J. on Advances in Sign. Proc., Spec. Iss. on Spatial Sound
and Virtual Acoustics, vol. 2007, p. 13, 2007.

[135] B. Bank, “Perceptually motivated audio equalization using fixed-pole
parallel second-order filters,” IEEE Signal Processing Letters, vol. 15,
pp. 477–480, 2008.

222 Conclusion

[136] K. Steiglitz and L. E. McBride, “A technique for the indentification
of linear systems,” IEEE Trans. Autom. Control, vol. AC-10, pp.
461–464, Oct. 1965.

[137] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1975.

[138] B. Bank, “Audio Equalization with Fixed-Pole Parallel Filters: An
Efficient Alternative to Complex Smoothing,” J. Audio Eng. Soc,
vol. 61, no. 1/2, pp. 39–49, 2013.

[139] ——, “Loudspeaker and room response equalization using parallel
filters: Comparison of pole positioning strategies,” in Proc. 51st AES
Conf., Helsinki, Finland, Aug. 2013.

[140] ——, “Logarithmic Frequency Scale Parallel Filter Design with Com-
plex and Magnitude-Only Specifications,” IEEE Signal Processing
Letters, vol. 18, no. 2, pp. 138–141, Feb. 2011.

[141] J. A. Belloch, B. Bank, L. Savioja, A. Gonzalez, and V. Välimäki,
“Multi-channel IIR Filtering of Audio Signals Using a GPU,” in IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Florence, Italy, May 2014.

[142] U. Zölzer, “Dafx - digital audio effects (second edition),” Edited by
Udo Zölzer, 2011.

[143] E. Vickers, “The loudness war: Do louder, hypercompressed record-
ings sell better?” J. Audio Eng. Soc, vol. 59, no. 5, pp. 346–351,
2011.

[144] G. Giannoulis, M. Massberg, and J. Reiss, “Digital dynamic range
compressor design: A tutorial and analysis,” J. Audio Eng. Soc,
vol. 60, no. 6, pp. 399–408, 2012.

[145] J. Kates and K. Arehart, “Multichannel dynamic-range compression
using digital frequency warping,” EURASIP J. on Applied Signal
Process., vol. 18, pp. 3003–3014, 2005.

[146] D. Griesinger, “Impulse response measurements using all-pass decon-
volution,” in Proceedings of the 11th AES Conference, Portland, May
1992.

10.4. Institutional Acknowledgements 223

[147] M. Schroeder and B. Logan, “Colorless artificial reverberation,” J.
Audio Eng. Soc, vol. 9, no. 3, pp. 192–197, 1961.

[148] V. Välimäki, J. Parker, L. Savioja, J. Smith, and J. Abel, “Fifty years
of artificial reverberation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 20, no. 5, pp. 1421–1448, 2012.

[149] V. Välimäki, J. Abel, and J. Smith, “Spectral delay filters,” J. Audio
Eng. Soc, vol. 57, no. 7-8, pp. 521–531, 2009.

[150] V. Välimäki, J. Parker, and J. Abel, “Parametric spring reverberation
effect,” J. Audio Eng. Soc, vol. 58, no. 7-8, pp. 547–562, 2010.

[151] W. Blizard, “Multiset theory,” J. Formal Logic Notre Dame, vol. 30,
no. 1, pp. 36–66, 1989.

224 Conclusion

Appendix A

226 Appendix

Appendix A
A.1 Alternative Multi-GPU Parallelization strategy

The challenge of this strategy consists in parallelizing the computation of
the GCC matrix. Initially, all the GPUs must have access to this matrix
since each point of the SRP matrix requires a contribution from each pair
of microphones (each row of the GCC matrix).

The strategy that we present aims at achieving a good trade-off between
the total operations carried out in each GPU and the number of transferred
audio buffers. For example, if the number of microphones is M = 12, the
number of pairs to compute in GCC matrix is Q = 66. These pairs are
distributed among the NGPU in a pseudo-triangular way. Figure A.1 shows
the distribution of the computation and audio buffers among 2, 3 and 4
GPUs. The notation 01 x 05, indicates the element-wise multiplication of
vector 1 and vector 5 of all computed vectors fm, m = 0, . . . ,M−1 (see step
2 of section 7.3). Note that the GPU that performs more multiplications
deals with less audio buffers, minimizing the data transfers between CPU
and GPU. This triangular structure can be considered independently of the
number of microphones.

228 Appendix

Finally, after the distributed computation of the GCC matrix, all
GPUs need all of the rows of the GCC matrix in order to compute their
corresponding ν/NGPU elements of the SRP matrix. The use of UVA (see
Appendix 2.6.2) allows each GPU to access other GPU via peer-to-peer
over the PCI-E bus rather than copying data back to the host and then
to another GPU. Thus, each GPU transparently accesses the memories of
other GPUs by just referencing a memory location.

A.1.1 Basic Implementation using two GPUs

Using all the parallelization techniques presented in Chapter 2, the SRP-
PHAT algorithm is implemented on two GPUs as follows:

1. A parallel region is created with two CPU threads. Each CPU thread
is bound with a GPU.

2. Since different audio buffers are received in the system, each CPU
thread independently and asynchronously sends its corresponding au-
dio buffers to its GPU by using stream parallelization. The Kernels
A and the FFTs are computed for each channel inside the streams.

3. As in step 2 of Section 7.3, stream synchronization is addressed. Only
one stream is used to compute the rows of the GCC matrix. Accord-
ing to Figure A.1, in the case of M = 12, one GPU would compute
35 vectors and the other one would compute 31 vectors.

4. By using UVA, each GPU has access to the whole GCC matrix in
order to compute ν/2 elements of the SRP matrix and locates a
maximum value among the computed elements.

5. Each GPU transfers back to the CPU its maximum value and its
location inside the SRP matrix. Then, a synchronization barrier
for both CPU threads is set followed by an openMP section that is
only executed by the master thread. This thread compares the two
maximum values and chooses the greatest one, getting its location.
This location indicates the sound source position.

A.1.2 Comparison between strategies

Table A.1 shows the speed up that the implementation strategy presented
in section 7.3.3 achieves with respect to the strategy presented in this ap-

A.1. Alternative Multi-GPU Parallelization strategy 229

pendix. Two important aspects significantly penalize the performance of
this strategy in comparison with the strategy in section 7.3.3. First, since
each GPU does not contain the whole GCC matrix, each GPU must access
the global-memory of the other GPU in order to compute the SRP matrix;
second, after computing the corresponding elements of the GCC matrix,
both GPUs must be synchronized.

Table A.1. Speed up between strategies.

rsp M = 6 M = 12 M = 24 M = 48

0.01 30.097 35.443 36.968 31.649

0.05 12.259 24.043 31.291 43.313

0.1 4.815 9.861 15.310 21.249

230 Appendix

01 x 02
01 x 03 02 x 03
01 x 04 02 x 04 03 x 04
01 x 05 02 x 05 03 x 05 04 x 05
01 x 06 02 x 06 03 x 06 04 x 06 05 x 06
01 x 07 02 x 07 03 x 07 04 x 07 05 x 07 06 x 07
01 x 08 02 x 08 03 x 08 04 x 08 05 x 08
01 x 09 02 x 09 03 x 09 04 x 09
01 x 10 02 x 10 03 x 10
01 x 11 02 x 11

05 x 09
05 x 10
05 x 11
05 x 12

06 x 08 07 x 08
06 x 09 07 x 09 08 x 09
06 x 10 07 x 10 08 x 10 09 x 10
06 x 11 07 x 11 08 x 11 09 x 11 10 x 11
06 x 12 07 x 12 08 x 12 09 x 12 10 x 11 11 x 12

04 x 10
04 x 11
04 x 12

03 x 11
03 x 1202 x 12

GPU 1

GPU 0 uses 11 audio buffers and performs 35 element-wise multiplications
GPU 1 uses 12 audio buffers and performs 31 element-wise multiplications

01 x 12

GPU 0

01 x 02
01 x 03 02 x 03
01 x 04 02 x 04 03 x 04
01 x 05 02 x 05 03 x 05 04 x 05
01 x 06 02 x 06 03 x 06 04 x 06 05 x 06
01 x 07 02 x 07 03 x 07 04 x 07 05 x 07 06 x 07
01 x 08 02 x 08 03 x 08 04 x 08 05 x 08 06 x 08 07 x 08

07 x 09 08 x 09
07 x 10 08 x 10 09 x 10
07 x 11 08 x 11 09 x 11 10 x 11
07 x 12 08 x 12 09 x 12 10 x 11 11 x 12

06 x 10
06 x 11
06 x 12

05 x 11
05 x 1204 x 12

01 x 09 02 x 09 03 x 09 04 x 09 05 x 09 06 x 09
01 x 10 02 x 10 03 x 10 04 x 10 05 x 10
01 x 11 02 x 11 03 x 11 04 x 11
01 x 12 02 x 12 03 x 12

GPU 0

GPU 1

GPU 2

GPU 0 uses 08 audio buffers and performs 28 element-wise multiplications
GPU 1 uses 10 audio buffers and performs 18 element-wise multiplications
GPU 2 uses 09 audio buffers and performs 20 element-wise multiplications

01 x 02
01 x 03 02 x 03
01 x 04 02 x 04 03 x 04
01 x 05 02 x 05 03 x 05 04 x 05
01 x 06 02 x 06 03 x 06 04 x 06 05 x 06
01 x 07 02 x 07 03 x 07 04 x 07 05 x 07 06 x 07

07 x 08
07 x 09 08 x 09
07 x 10 08 x 10 09 x 10
07 x 11 08 x 11 09 x 11 10 x 11
07 x 12 08 x 12 09 x 12 10 x 11 11 x 12

04 x 10
04 x 11
04 x 12

03 x 11
03 x 1202 x 12

01 x 08 02 x 08 03 x 08 04 x 08 05 x 08
01 x 09 02 x 09 03 x 09 04 x 09
01 x 10 02 x 10 03 x 10
01 x 11 02 x 11
01 x 12

GPU 0

GPU 1

GPU 3

GPU 0 uses 07 audio buffers and performs 21 element-wise multiplications
GPU 1 uses 09 audio buffers and performs 15 element-wise multiplications
GPU 2 uses 10 audio buffers and performs 15 element-wise multiplications
GPU 3 uses 06 audio buffers and performs 15 element-wise multiplications

05 x 09
05 x 10
05 x 11
05 x 12

06 x 08
06 x 09
06 x 10
06 x 11
06 x 12

GPU 2

01 x 02
01 x 03 02 x 03
01 x 04 02 x 04 03 x 04
01 x 05 02 x 05 03 x 05 04 x 05
01 x 06 02 x 06 03 x 06 04 x 06 05 x 06
01 x 07 02 x 07 03 x 07 04 x 07 05 x 07 06 x 07
01 x 08 02 x 08 03 x 08 04 x 08 05 x 08 06 x 08 07 x 08
01 x 09 02 x 09 03 x 09 04 x 09 05 x 09 06 x 09 07 x 09 08 x 09
01 x 10 02 x 10 03 x 10 04 x 10 05 x 10 06 x 10 07 x 10 08 x 10 09 x 10
01 x 11 02 x 11 03 x 11 04 x 11 05 x 11 06 x 11 07 x 11 08 x 11 09 x 11 10 x 11
01 x 12 02 x 12 03 x 12 04 x 12 05 x 12 06 x 12 07 x 12 08 x 12 09 x 12 10 x 11 11 x 12

GPU 0 uses 12 audio buffers and performs 66 element-wise multiplications

GPU 0

Figure A.1. Distribution of the audio buffers in order to

compute the rows of the GCC matrix when NGPU is 1,2,3

and 4.

A.1. Alternative Multi-GPU Parallelization strategy 231

