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 

Abstract— Without realistic vehicle mobility patterns, the 

evaluation of communication protocols in vehicular networks is 

compromised. Moreover, in order to ensure repeatability and 

fairness in vehicular simulations, researchers require simulation 

tools that allow them to have a complete control of simulations. 

In this paper we present VACaMobil, a Mobility Manager for the 

OMNeT++ simulator which offers a way to create complex 

scenarios with realistic vehicular mobility by allowing to define 

the desired average number of vehicles, along with its upper and 

lower bounds, which are maintained throughout the simulation. 

We compare VACaMobil against other commonly used methods 

which also generate and manage vehicular mobility. Results 

expose some flaws of those basic tools, and shows that 

VACaMobil behaves significantly better. The harmful impact on 

communication protocols when using common tools is also 

quantified, revealing VACaMobil as a necessity for current 

research. 

 

Index Terms— Vehicular Networks, Mobility patterns, 

Simulation Tool, SUMO, TraCI, Veins, VANET. 

 

I. INTRODUCTION 

HE REPRODUCIBILITY of experiments is a major 

issue when evaluating smart communication protocols and 

algorithms, especially over Vehicular Ad-hoc NETworks 

(VANETs). In [1] the authors provide a complete review of 

the minimum set of parameters that should be identified in 

order to allow other researchers to reproduce simulation 

experiments. They pointed out several key parameters, such as 

the simulated hardware, the network simulator, the scenario, 

and the road traffic simulator. However, regarding node 

mobility, there are other parameters that have been mostly 

ignored by the research community: the traffic density and the 

traffic demand. 

As other authors pointed out in previous studies, mobility 

models [2] and the chosen scenario [3], as well as the node 
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density, heavily influence the final network performance. 

However, since mobility generators and road traffic simulators 

are often difficult to configure, the simulated node density and 

distribution may depend on complex data that are usually not 

included in the published academic results, thereby 

compromising reproducibility. 

Several recent patents concerning inter-vehicle 

communication have been published [20], [21] and [22]. 

Moreover, the industry needs appropriated evaluation 

methods, which makes simulators an interesting subject for 

patent submissions [23] and [24]. 

In this paper we present VACaMobil (VANET Car 

Mobility manager), a mobility manager module  for  the  

OMNeT++ simulator which, to the best of our knowledge, is 

the first tool able to generate SUMO [4] driven nodes in a 

vehicular network while ensuring the stability of certain user-

defined parameters, such as the average, maximum, and 

minimum number of vehicles. These features are especially 

useful for mid-length simulations (typically one hour) 

allowing researchers to assume that the vehicle density is 

stable. At the same time, since our solution is tightly coupled 

with SUMO through the TraCI interface, it is able to mimic 

real vehicle behavior. By running in parallel with SUMO, 

VACaMobil executes the following tasks: (i) it manages when 

a new vehicle must be introduced in the network, (ii) it assigns 

a random route from a predefined set to each vehicle, and (iii) 

it determines which type of vehicle should be added. When 

using VACaMobil, and given a specific road map, researchers 

will be able to completely define the network mobility merely 

by defining the desired average number of vehicles and its 

upper and lower bounds. Going a step further, our tool also 

aids researchers at selecting among the different types of 

vehicles previously defined in SUMO, such as “cars”, “buses”, 

or “trucks”. This allows researchers to easily define road 

traffic simulations with heterogeneous vehicles. 

The rest of this paper is organized as follows: In section II, 

we briefly introduce the different methods commonly used by 

the research community for generating VANET mobility 

patterns. In section III, VACaMobil is fully described. In 

section IV, we compare our proposal with the duaRouter and 

duaIterate.py tools, both included in SUMO. Section V 

demonstrates the impact of the mobility model in the 

performance of network protocols. In section VI we present 

the main guidelines for using the VACaMobil tool 
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successfully. Finally, section VII presents our conclusions and 

some future plans to improve VACaMobil. 

II. A REVIEW OF EXISTING MOBILITY GENERATORS 

FOR VANETS 

Before presenting the details of our proposal, we analyze 

some of the methods commonly used to obtain suitable 

mobility patterns in urban vehicular scenarios. We have 

analyzed several papers published during the last few years, 

most of them published in conferences and journals related to 

Intelligent Transportation Systems. Early approaches relied on 

overly simple mobility models merely based on random 

mobility. Since these simple models do not represent vehicle 

mobility properly, other mobility models have recently been 

developed based on real-world traces, and also on artificial 

mobility models from the field of transportation and traffic 

science. In this section, we briefly describe the most relevant 

works.  

A. Random Vehicle Movement 

At the beginning of the previous decade, the “Random Way-

Point" mobility model was extensively used in Mobility Ad-

Hoc NETwork (MANET) research. However, in 2003, the 

authors in [5] demonstrated how harmful the Random Way-

Point mobility model really is in terms of result 

representativeness. Moreover, the negative effects described in 

this work become even worse when simulating VANETs. 

Later on, some other authors extended the “Random Way-

Point" mobility model by restricting the mobility of nodes to a 

map layout, as in [6]. However, this improvement does not 

solve the majority of the “Random Way-Point” model 

problems stated previously. 

In our research group we developed a tool called “CityMob" 

[7]. CityMob allows users to create random vehicular mobility 

patterns restricted to a grid. It also adds support for downtown 

definition, where a downtown is a region inside the simulated 

map which concentrates the majority of the selected routes 

along the simulation. Although CityMob represents a 

significant improvement compared to non-restricted mobility 

models and random mobility models, it also presents some 

problems; the most important one is that vehicular mobility is 

not influenced by other vehicles, i.e. two different vehicles can 

be at the same physical location, and no minimal distance 

between vehicles is required. Moreover, vehicles do not 

change their speed during a trip. However, in the real world, 

vehicles continuously change their speed according to traffic 

conditions and road characteristics. Last but not least, vehicles 

keep moving throughout the whole simulation, which 

especially influences the performance of protocols that keep 

data stored in buffers. The research community quickly 

realized the problems derived from inaccurate simulation 

patterns, and started to work using alternative methods to 

obtain suitable mobility traces. 

 

B. Real Mobility Traces 

Compared to the use of random mobility, real traces present 

a clear improvement. Such traces are usually obtained from a 

certain set of nodes, e.g. from taxis in the city of Shangai [8]. 

Mobility traces can be obtained by tracking the mobility of 

nodes using On-Board units, as in [8], or by using road-side 

equipment, as in [9]. Although real traces represent the most 

realistic mobility patterns, we cannot obviate the fact that 

mobility of tracked nodes is highly influenced by other 

untracked vehicles, e.g. taxis’ mobility is influenced by other 

users on the road whose movement is not reflected in the 

collected traces. Moreover, real traces lack the flexibility to 

allow for an exhaustive evaluation of VANET protocols, e.g. 

changing the vehicle density without modifying their speed is 

clearly unreal. 

C. Assisted Traffic Simulation 

The restrictions of real traces can be overcome, with almost 

no loss of realism, by using mobility models taken from the 

field of transportation and traffic science. Several road traffic 

simulators are widely used among the VANET research 

community. One of the most widely used mobility generators 

is SUMO [4]. When simulating traffic mobility for VANETs, 

not only the vehicles’ behavior is important, but also the 

traffic demand. SUMO allows defining traffic demand in two 

different ways: trips and flows. The former defines only a 

vehicle, its origin and its destination, while the latter defines a 

set of vehicles which execute the same trip. SUMO currently 

provides several tools to generate traffic demand: 

• randomTrips.py: A random trip generator. This tool 

generates a trip every second having a random origin and 

destination. It does not check if the origin and destination are 

connected, or whether the trip is possible. 

• duaRouter: A Dijkstra router. Given a file with trips and 

flows, this tool generates the actual traffic demand, expressed 

in vehicles with an assigned route. Routes are calculated using 

the Dijkstra algorithm, and every unconnected trip is 

discarded. 

• duaIterate.py: This Python script will produce a set of 

optimal routes from a trip file, i.e. all the nodes will follow 

that route which minimizes the total trip-time for all nodes. 

This tool repeats a routing-simulation loop until optimal routes 

are found. 

Authors have used these tools in order to generate traffic 

demands for SUMO. The most simplistic one is to define 

different flows inside the network. Although drivers usually 

move from certain districts to others, following patterns 

associated with their working and living places, defining the 

traffic only by creating fixed flows lacks realism, as we can 

see in [10] where only a few flows are defined by the user. 

Another common approach is to generate random trips using 

randomTrips.py. This approach presents the problem that only 

one vehicle is introduced every second, which leads to long 

transitory periods until the network reaches a steady state. A 

more sophisticated traffic demand generation strategy is 

presented in [11], where a predefined number of vehicles 

following random routes are randomly placed at the beginning 

of the simulation. Following this trend, in previous works we 

used C4R [12], which is a software developed by our group to 
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automate the task of generating random vehicles with random 

routes at random places. To the best of our knowledge, the 

work presented in [13] is the only one using the duaIterate.py 

script to generate a “stable and optimal distribution of flows". 

This type of traffic definition presents a problem: the trip 

duration cannot be predicted before running the simulations, 

and, as a consequence, there is no way to ensure, or even 

determine, if the road traffic simulation will last until the end 

of the network simulation. As stated in previous work, this 

lack of realism and generality in mobility patterns can lead to 

biased results [2]. 

D. Bidirectionally Coupled Network and Traffic Simulations 

In [14] its authors go a step further and present a new 

simulation framework called Veins, which includes the TraCI 

interface to allow the network simulator to interact with the 

traffic simulator running in parallel. Although it presents much 

novelty and offers a lot of possibilities for VANET simulation, 

the authors do not address the traffic demand generation 

problem. The main characteristics and benefits of this tool 

were highlighted in [15]; in addition it is one of the main 

elements of our VACaMobil module as described below. 

III. VACAMOBIL MOBILITY MANAGER 

In this section we present our proposed tool to generate 

realistic mobility for VANETs. We also provide some 

important implementation details. All of these characteristics 

were developed having two basic objectives in mind: 

achieving realistic- mobility scenarios with a user-defined 

node density, and simplifying the process of simulating 

vehicular networks under the desired conditions.  

A. Implementation Details 

We have implemented VACaMobil as a superset of the 

Veins simulation framework for OMNeT++. This scheme 

allows us to take advantage of the current TraCI 

implementation provided by Veins. 

Due to the high modularity of the OMNeT++ simulator, 

VACaMobil is available for two of the most used network 

simulation environments for OMNeT++: INET [16] and 

MIXIM [17]. Both implementations of VACaMobil can be 

downloaded from our github account1. 

 
1 https://github.com/grclab 

Figure 1 shows the interaction between the different 

modules required for VANET simulations when using 

VACaMobil. 

B. Average Number of Vehicles 

One of the objectives of VACaMobil is to guarantee a 

steady number of vehicles throughout the entire simulation. 

The user can define some degree of variability through the 

carVariability parameter and VACaMobil will ensure that the 

number of vehicles is always between average + 

carVariability and average − carVariability values. 

To control the current number of vehicles, VACaMobil 

selects a current target number of vehicles which should be 

achieved. Then it adds new vehicles, in case the current 

number of vehicles is smaller than the current target number, 

or waits until vehicles arrive to their final destination 

otherwise. A flow chart of this process is shown in Figure 2. 

To avoid the insertion of a large number of vehicles in a 

short period of time, the VACaMobil tool stores the duration 

of the last period where the number of vehicles decreased, and 

then takes the same amount of time to insert new vehicles into 

the network. 

The current target number of vehicles is obtained from a 

normal distribution, whose mean (𝑥̅) is the desired average 

value and whose standard deviation (σ) is equal to 1/3•carV 

ariability. 

The value of σ is not arbitrary; it has been selected to 

guarantee that at least 99% of the values obtained from the 

normal distribution will be inside the user-defined bounds. 

Figure 3 illustrates the effect of σ in the normal distribution 

 
Fig. 3.  Distribution of the target number of vehicles.  

 
 
Fig. 1. The VACaMobil module within the OMNeT++ simulation 

framework. 

 
 

Fig. 2. VACaMobil algorithm flowchart. 
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shape. If we had set σ equal to carV ariability, only 68% of the 

values obtained from the normal distribution would be inside 

the bounds defined by the user. On the contrary, by setting the 

standard deviation to 1/3•carVariability, more than 99% of the 

values returned by the normal distribution are within the 

defined bounds. Finally, to deal with those values falling 

outside the user-defined bounds, we filtered the distribution 

output, being the final current target number distribution as 

follows: 

𝑁 = {
𝑦 = 𝑛𝑜𝑟𝑚(𝑥, 𝜎)       

𝑖𝑓 𝑥 − 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 < 𝑦         
& 𝑦 < 𝑥 + 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

𝑥 − 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑓 𝑦 < 𝑥 − 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦         
𝑥 + 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑓 𝑦 > 𝑥 + 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦         

 

By selecting this distribution and setting its standard 

deviation we obtain a great degree of variability, while 

avoiding extreme values and ensuring that most of the 

simulation time the number of vehicles is maintained near the 

average value desired by the user. 

C. Different Types of Vehicles 

SUMO supports the definition of different types of vehicles, 

which can have different characteristics such as maximum 

speed, acceleration and deceleration values. The list of 

different vehicles can be obtained via TraCI. 

VACaMobil allows the user to set different probabilities 

associated to each type. In this case, every time a new vehicle 

is generated, we obtain a uniform random value to select the 

corresponding vehicle type. If no probability is defined for a 

certain type of vehicle, we assume it is equal to zero. 

However, if no probability value is assigned to any of the 

defined vehicle types, only vehicles of the first type obtained 

via TraCI will be generated. This feature allows users to easily 

define heterogeneous networks composed by different 

vehicles. 

Although SUMO itself is able to provide this behavior, 

VACaMobil adds the possibility of easily changing the 

vehicles’ associated probability between different simulation 

runs. As future work VACaMobil will be able to associate 

different node roles to different types of vehicles, for example, 

“buses” could have a bigger transmission power than “cars”. 

D. Route Generation 

VACaMobil does not include the ability to dynamically 

generate random routes. Instead, it includes randomRoutes.py, 

a script that makes use of two well-known tools included in 

SUMO (randomTrips.py and duaIterate.py). Thanks to those 

tools we can generate a large set of random different routes 

which can be loaded into SUMO. 

The randomRoutes.py script generates a set of trips between 

random points of the map by using randomTrips.py, and then 

it computes the optimal vehicles distribution using 

duaIterate.py. Finally, it extracts the generated routes and 

creates a new file containing only routes’ definitions. 

This method also guarantees that all the defined routes are 

valid, and that all the vehicles that are inserted into the 

simulation scenario will eventually arrive to their final 

destination. 

E. Route Selection per Vehicle 

At startup SUMO loads all the different routes. VACaMobil 

will retrieve them through TraCI, and randomly selects a new 

one from the existing set every time a new vehicle is 

introduced in the network. 

Since routes are defined as a list of consecutive edges, 

vehicles are introduced in the network at the beginning of the 

first edge. It is impossible to insert a new vehicle when 

another previously created vehicle is already located at the 

beginning of the selected route. To minimize the impact of this 

restriction, VACaMobil first tries to insert the vehicle in any 

of the lanes of the route’s first edge. If the previous step does 

not succeed, VACaMobil selects a new route and tries it again 

until it finds a free place to insert the vehicle. It may occur that 

none of the loaded routes allows VACaMobil to introduce a 

new vehicle. In such a case VACaMobil assumes that its main 

objective cannot be satisfied and the simulation is aborted. 

This situation typically occurs at the beginning of the 

simulation, when VACaMobil must introduce a large number 

of vehicles in a short time period. To avoid interrupting the 

simulation, the user can modify a variable called 

warmUpSeconds, which defines the time period at the 

beginning of the simulation during which VACaMobil 

requirements are relaxed. During this warm-up time, 

VACaMobil introduces only a fraction of the desired number 

of vehicles in every step of the simulation, avoiding the 

problem previously described. After the warm-up, time 

VACaMobil ensures that the number of vehicles in the 

simulation is equal to the value defined by the user. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 4.  Maps used for evaluation.  
 

(a) Synthethic map. 

 

 
 

 

 
(b) Moscow residential area. 

  

 

 
 

 
(c) Washington. 

 

 
(d) Milano. 
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F. Repeatability, Scalability, and Usability 

Thanks to the use of the standard random number 

generators available in OMNeT++, VACaMobil ensures the 

repeatability of the different scenarios including route and 

vehicle selection. 

Despite the goodness of the characteristics previously 

presented, the best improvement introduced by VACaMobil is 

the ability to optimize the researcher’s work-flow, as will be 

detailed in section VI. Currently, if a researcher wants to 

repeat the simulation N times for a certain vehicle density 

while varying the vehicle routes to decouple the results from 

the vehicle mobility, the researcher must create N different 

route files and ensure that the vehicle density is the same 

along all the simulations. Moreover, the path of those files 

must be manually introduced into the OMNeT++ 

configuration file, which is prone to errors. 

When using VACaMobil the researcher can take advantage 

of one of the most important features in OMNeT++, which 

allows specifying the number of independent repetitions 

required for every simulation. 

As explained in section VI, VACaMobil also simplifies the 

process of simulating different amount of vehicles in the 

network. 

IV. EVALUATION 

In this section, we compare VACaMobil against the tools 

currently included in SUMO, i.e. duaRouter and duaIterate.py, 

that were described in section II. We have selected the 

following scenarios: 

• Synthetic Manhattan scenario: We created a road map 

consisting of a 25 x 25 grid with segments of 200 meters 

(Figure 4a). 

• Suburban real map scenario: We extracted a suburban 

road layout from the OpenStreetMap database. It is a scenario 

of about 12 km2  from the city of Moscow characterized by 

long road segments and a low road density (Figure 4b). 

• Urban grid real map scenario: We extracted an urban 

road layout from the OpenStreetMap database. It is a scenario 

of about 6 km2  from the city of Washington DC characterized 

by long road segments and a high road density (Figure 4c) 

• Urban downtown real map scenario: We extracted an 

urban road layout from the OpenStreetMap database. It is a 

scenario of about 7 km2 downtown area from the city of 

Milano characterized by short road segments and a high road 

density (Figure 4d). 

In all the scenarios, the set of random routes provided by 

VACaMobil is extracted from the traffic demand generated by 

duaIterate.py. In the following subsection, we compare the 

vehicle density and its evolution along the simulation time for 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

Fig. 5. Heat map for the Manhattan scenario 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 6. Heat map for the suburban scenario (Residential area of Moscow) 

 (a)  duaRouter 
 

(b) duaIterate.py 

(c) VACaMobil 

 
 
(c) VACaMobil 

 (a)  duaRouter 
 

 (b) duaIterate.py  
 (c) VACaMobil 
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the different tools and scenarios. 

A. Vehicle Distribution Study 

We first evaluate one of the most important issues in 

vehicular mobility: how vehicles are distributed over the 

simulated road map. To do so, we have created several heat 

maps that collect information about the total number of 

vehicles that reported a certain location during the simulation. 

The parts of the map colored in red experienced the maximum 

density values, while parts colored in white experienced the 

minimum density values. All the heat maps that belong to the 

same scenario share the same scale. 

Figure 5 shows the vehicle distribution in the Manhattan 

scenario. Due to its lack of randomness, duaRouter is unable 

to select different routes for vehicles when there are several 

streets with the same travel-time. This prevents the simulator 

from properly distributing vehicles, and so all of them are 

routed through the same street. When using the duaIterate.py 

script, a better distribution of the vehicles is achieved since 

many simulations are sequentially executed to optimize 

vehicle routes. Since the VACaMobil’s random routes set is 

obtained from duaIterate.py, it achieves a similar nodes 

distribution. 

Figure 6 shows the vehicle distribution in the suburban 

scenario. In this case, duaRouter concentrates all the traffic in 

the inner roads. Therefore, the typical ring roads around the 

map are underused, which is not a common driver behavior. 

When using the duaIterate.py or VACaMobil, vehicles are 

distributed among the two bigger streets, i.e., the inner and the 

outer avenues. 

Figure 7 shows the vehicle distribution in the urban grid 

scenario. Since this map includes big roads, few congestion 

points are present with duaRouter. However, a smarter driver 

behavior can also be seen when using duaIterate.py or 

VACaMobil. These few congestion points are also avoided 

with these tools because drivers can take advantage of 

alternative paths in this grid to improve their travel times. 

Finally, Figure 8 shows the vehicle distribution in the urban 

downtown scenario. In this case, duaRouter is also unable to 

spread the vehicles properly. Since some roads are faster than 

others, all the vehicles are routed through them, even when 

these streets are congested. Therefore, undesired traffic 

congestion is created in the fastest inner roads. However, this 

is an unrealistic scenario because drivers tend to avoid traffic 

jams whenever possible. When using either duaIterate.py or 

VACaMobil, vehicles are routed through alternative streets, 

avoiding traffic jams. This strategy has a higher degree of 

similitude compared to real road traffic, since drivers prefer 

faster roads but often change their route to avoid traffic jams. 

B. Vehicle Density Study 

Table II shows the differences in terms of number of 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

Fig. 7. Heat map for the urban grid scenario (Washington DC) 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

Fig. 8. Heat map for the downtown scenario (Milano) 

 (a)  duaRouter  
 (b) duaIterate.py 

 
 (c) VACaMobil 
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vehicles for the four different scenarios for each different 

traffic generation tool. Since neither duaRouter nor 

duaIterate.py allows defining the number of cars in the 

simulation, we configured VACaMobil according to values in 

Table I to mimic the average values obtained previously when 

using duaRouter and duaIterate. In the simplest scenario 

(Manhattan), the three methods can achieve a stable value for 

the mean vehicle density with a low standard deviation. 

However, neither duaRouter nor duaIterate allow to a priori 

configure the value of this parameter. On the contrary, 

VACaMobil is not only able to quickly populate the network 

with the desired number of vehicles, but it also allows defining 

a maximum and a minimum number of vehicles, which will 

bound the standard deviation value. In complex maps like the 

urban scenario, VACaMobil is the only tool able to maintain 

the number of vehicles within the predefined bounds. To 

better understand the aforementioned values, Figures 9 to 12 

show the evolution on the number of vehicles in the different 

scenarios against time for each tool. Since duaRouter and 

duaIterate.py are able to add only one vehicle per second, the 

user cannot predict when vehicles will arrive to their 

destination and disappear from the network. Therefore, for the 

Manhattan scenario, the number of vehicles when the 

simulation reaches the steady-state is not known a priori, 

turning protocol analysis based on the number of vehicles into 

a mere act of faith. Moreover, in maps where traffic jams are 

common, as in the urban downtown scenario, it takes more 

time for vehicles to reach their final destination and leave the 

network, which causes a constantly increasing number of 

vehicles in the network when not using VACaMobil. 

Comparing the configuration in Table I and the results in 

Table II, we can conclude that both the target number of 

vehicles and the expected standard deviation are achieved only 

with VACaMobil.  

V. IMPACT ON NETWORK PROTOCOLS 

In this section we evaluate how nodes’ mobility can impact 

network protocols performance. To demonstrate its effects, we 

have simulated the same network topology using duaRouter, 

duaIterate.py, and VACaMobil to manage the mobility. 

A. Mobility Specification 

To perform this test, and for sake of simplicity, we chose 

the synthetic Manhattan scenario presented before. In contrast 

to previous evaluations, we have manually modified the 

configuration files generated by duaRouter and duaIterate.py 

in order to simultaneously introduce 100 vehicles with random 

routes at the beginning of the simulation. VACaMobil was 

configured to maintain 100 nodes in the network during the 

whole simulation. Figure 13 shows the number of nodes inside 

the network. As can be appreciated, when using both, 

duaRouter and duaIterate.py, the number of cars in the 

network decreases, whereas when using VACaMobil it is kept 

at its desired value along the entire simulation. 

B. Network Traffic 

This simulation test aims at evaluating the connectivity 

between two Road Side Units (RSUs). In order to maximize 

the impact of mobility, we placed both RSUs in the most-

traversed road of the scenario. The distance between them was 

900 m and the communication range was approximately 200 

m. Each RSU sends a 512 Bytes UDP packet to the other RSU 

every second. The vehicles were configured to use the DYMO 

routing protocol [18]. 

C. Results 

To assess the impact of mobility we compared the 

connectivity along the simulation when using different 

mobility alternatives. To do so, we have counted the number 

of received packets for every 30-second slot. Figure 14 shows 

the results we obtained after aggregating the values from 10 

different simulations. Notice that, when using duaRouter or 

duaIterate.py, the connectivity of the network experiences an 

initial period where it is higher than when using VACaMobil. 

However, as long as the number of vehicles decreases 

according to Figure 13, the network gradually loses its 

connectivity. On the contrary, when using VACaMobil, the 

connectivity of the network fluctuates throughout the 

TABLE III 

STEPS REQUIRED 

Method #Files #Commands #Rep Steps 

duaRouter 4•N•K 2•N•K 2•N 
duaIterate 4•N•K 3•N•K 3•N 

VACaMobil 4 4 0 

 

 

TABLE II 
VEHICLE STATISTIC SUMMARY 

 Synthetic Manhattan Suburban scenario Urban grid scenario Urban downtown scenario 

 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. 

duaRouter 313.767 58.8271 319.165 79.4342 214.711 39.0532 880.546 465.716 

duaIterate 304.487 55.5174 219.610 34.2232 183.009 36.6651 393.717 96.414 
VACaMobil 319.349 6.14267 223.718 8.32201 174.615 6.79294 369.691 7.84640 

 

 TABLE I 

VACAMOBIL CONFIGURATION 

 
Vehicle 

number 
carVariability Std. dev. 

Synthetic 
Manhattan 

320 20 6.33 

Suburban 

scenario 

225 25 8.33 

Urban grid 

scenario 

175 20 6.33 

Urban downtown 
scenario 

370 25 8.33 
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simulation with peaks and valleys due to the random nature of 

cars mobility. This experiment highlights one of the effects of 

mobility on network protocols. When evaluating more 

complicated scenarios, such as diffusion protocols, delay-

tolerant networks, or cooperative sensors, new problems 

related with the lifetime of the nodes arise [2] 

VI. WORKFLOW COMPARISON 

 

In the previous section we have shown how VACaMobil 

can guarantee that the number of nodes in a simulation is 

within certain bounds. In this section we describe the typical 

steps required to obtain conclusive simulation results when 

using VACaMobil, and compare them against duaRouter and 

duaIterate.py. This section does not aim to be a tutorial or a 

guide, but instead to illustrate how VACaMobil makes it 

easier to avoid biased results due to mobility effects. To do so, 

we reproduce the process to obtain N non-correlated 

simulation runs. 

A. Network Map 

The first step to simulate our network is to obtain or 

generate our road map. It can be downloaded from 

OpenStreetMap [19] and then converted to SUMO format 

using the tools included with SUMO (netconvert). This 

process was the one we used to generate the urban scenarios 

presented in previous sections. The road network can also be 

synthetically generated, as we did for the previous Manhattan 

scenario. This step is always required in order to simulate a 

vehicular network using SUMO to manage nodes’ mobility. 

We assume that the same map is used for our N non-correlated 

repetitions; however, it is always a good practice to vary the 

scenario using different city maps. 

B. Traffic Demand 

Once we have our road scenario, we need to generate the 

traffic demand. The way to model it varies between 

duaRouter, duaIterate.py,  and  VACaMobil. 

 
 
Fig. 9. Evolution of the number of vehicles against time for the Manhattan 

scenario 

 
 

Fig. 10. Evolution of the number of vehicles against time for the suburban 

scenario 

 
 
Fig. 11. Evolution of the number of vehicles against time for the urban grid 

scenario 

 
 

Fig. 13. Number of nodes in the network after introducing 100 cars at the 

beginning of the simulation 
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1) Duarouter: To generate random traffic demand for 

duaRouter we need to invoke the randomTrips.sh script 

presented in section II, and call duaRouter to compute the 

shortest routes. This process will produce a file containing a 

set of vehicles that will be simulated by SUMO. If our 

objective is to repeat N non-correlated simulations we need to 

repeat these steps N times, once for every simulation, and 

generate N configuration files that will be made available to 

SUMO through the OMNeT++ configuration file. In the not so 

atypical case that we want to vary the number of nodes in our 

simulation and simulate K different scenarios, we need to 

repeat these steps K ∗  N times in order to generate N different 

SUMO configuration files for the K possible scenarios. 

2) DuaIterate.py: As referred above duaIterate.py refines the 

traffic demand obtained with duaRouter to minimize the time 

cost of the routes. As a consequence, it adds a new step to the 

duaRouter procedure. This new step must also be repeated for 

every simulation. As well as duaRouter, duaIterate.py 

generates a file containing a set of vehicles that will be 

simulated by SUMO. 

3) VACaMobil: In VACaMobil, the traffic demand consists 

of a set of routes that can be generated immediately after 

obtaining the network map. VACaMobil includes a script, 

called randomRoutes.sh, that generates a large-enough set of 

random routes to be used. 

C. OMNeT++ Configuration 

1) Duarouter and duaIterate.py: In order to configure 

OMNeT++ to use the mobility generated by duaRouter or 

duaIter- ate.py, we need to specify the path for each one of the 

different SUMO configuration files. As seen before, this path 

should change for every simulation. 

2) VACaMobil: In order to simulate the desired scenario 

with VACaMobil we only need to specify the number of 

repetitions and an array containing the different number of 

nodes that should be introduced into the network. OMNeT++ 

and VACaMobil will manage the whole set of simulations, 

storing their results in different files, ready to be parsed. 

D. Total Number of Steps 

In this subsection we detail the number of commands 

required to repeat N times the simulation of K scenarios which 

differ in the number of nodes introduced into the network. 

Table III shows the number of files we need to create, as well 

as the number of steps required to configure our simulations. 

The “#Rep Steps” column contains the number of steps we 

need to repeat in case we decide to add a new scenario K + 1. 

It is clear that VACaMobil does not only provide a more 

“realistic” and steadier mobility generator for our simulations, 

but it also simplifies the complexity of the mobility 

specification, which makes it less prone to errors. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we presented VACaMobil2, a new mobility 

manager for the OMNeT++ simulator which simplifies the 

definition of mobility for VANET simulations. The main 

novelty of VACaMobil is that: to the best of our knowledge, it 

is the first tool able to generate SUMO [4] driven nodes in a 

vehicular network while ensuring the stability of certain user-

defined parameters, such as the average, maximum, and 

minimum number of vehicles. In particular, we added critical 

features to previously existing tools, such as ensuring a 

constant number of vehicles during the entire simulation time, 

disseminating vehicles throughout the whole route-map, and 

offering the possibility of defining different vehicle types with 

different probabilities. In contrast to other existing tools, 

VACaMobil is able to keep the mean number of vehicles and 

the standard deviation value within user-defined bounds. To 

the best of our knowledge, this is currently the only tool that 

allows studying a vehicular network in a steady-state situation 

without losing the realistic vehicle behavior provided by 

SUMO. As future work we plan to improve VACaMobil by 

offering downtown definition and automatic placement for 

Road Side Units (RSU). 

 
 

Fig. 12. Evolution of the number of vehicles against time for the urban 

downtown scenario. 

 
 

Fig. 14. Number of received packets 
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