

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://benthamscience.com/journal/abstracts.php?journalID=racnt&articleID=115348

http://hdl.handle.net/10251/40658

Bentham Science Publishers

Báguena Albaladejo, M.; Martínez Tornell, S.; Torres Cortes, A.; Tavares De Araujo
Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2013). A Tool Offering Steady-
State Simulations for VANETs. Recent Patents on Telecommunications. 2(2):102-112.
doi:10.2174/22117407112016660008.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract— Without realistic vehicle mobility patterns, the

evaluation of communication protocols in vehicular networks is

compromised. Moreover, in order to ensure repeatability and

fairness in vehicular simulations, researchers require simulation

tools that allow them to have a complete control of simulations.

In this paper we present VACaMobil, a Mobility Manager for the

OMNeT++ simulator which offers a way to create complex

scenarios with realistic vehicular mobility by allowing to define

the desired average number of vehicles, along with its upper and

lower bounds, which are maintained throughout the simulation.

We compare VACaMobil against other commonly used methods

which also generate and manage vehicular mobility. Results

expose some flaws of those basic tools, and shows that

VACaMobil behaves significantly better. The harmful impact on

communication protocols when using common tools is also

quantified, revealing VACaMobil as a necessity for current

research.

Index Terms— Vehicular Networks, Mobility patterns,

Simulation Tool, SUMO, TraCI, Veins, VANET.

I. INTRODUCTION

HE REPRODUCIBILITY of experiments is a major

issue when evaluating smart communication protocols and

algorithms, especially over Vehicular Ad-hoc NETworks

(VANETs). In [1] the authors provide a complete review of

the minimum set of parameters that should be identified in

order to allow other researchers to reproduce simulation

experiments. They pointed out several key parameters, such as

the simulated hardware, the network simulator, the scenario,

and the road traffic simulator. However, regarding node

mobility, there are other parameters that have been mostly

ignored by the research community: the traffic density and the

traffic demand.

As other authors pointed out in previous studies, mobility

models [2] and the chosen scenario [3], as well as the node

This paragraph of the first footnote will contain the date on which you

submitted your paper for review. It will also contain support information,

including sponsor and financial support acknowledgment. For example, “This
work was supported in part by the U.S. Department of Commerce under Grant

BS123456”.

The next few paragraphs should contain the authors’ current affiliations,
including current address and e-mail. For example, F. A. Author is with the

National Institute of Standards and Technology, Boulder, CO 80305 USA (e-

mail: author@ boulder.nist.gov).

density, heavily influence the final network performance.

However, since mobility generators and road traffic simulators

are often difficult to configure, the simulated node density and

distribution may depend on complex data that are usually not

included in the published academic results, thereby

compromising reproducibility.

Several recent patents concerning inter-vehicle

communication have been published [20], [21] and [22].

Moreover, the industry needs appropriated evaluation

methods, which makes simulators an interesting subject for

patent submissions [23] and [24].

In this paper we present VACaMobil (VANET Car

Mobility manager), a mobility manager module for the

OMNeT++ simulator which, to the best of our knowledge, is

the first tool able to generate SUMO [4] driven nodes in a

vehicular network while ensuring the stability of certain user-

defined parameters, such as the average, maximum, and

minimum number of vehicles. These features are especially

useful for mid-length simulations (typically one hour)

allowing researchers to assume that the vehicle density is

stable. At the same time, since our solution is tightly coupled

with SUMO through the TraCI interface, it is able to mimic

real vehicle behavior. By running in parallel with SUMO,

VACaMobil executes the following tasks: (i) it manages when

a new vehicle must be introduced in the network, (ii) it assigns

a random route from a predefined set to each vehicle, and (iii)

it determines which type of vehicle should be added. When

using VACaMobil, and given a specific road map, researchers

will be able to completely define the network mobility merely

by defining the desired average number of vehicles and its

upper and lower bounds. Going a step further, our tool also

aids researchers at selecting among the different types of

vehicles previously defined in SUMO, such as “cars”, “buses”,

or “trucks”. This allows researchers to easily define road

traffic simulations with heterogeneous vehicles.

The rest of this paper is organized as follows: In section II,

we briefly introduce the different methods commonly used by

the research community for generating VANET mobility

patterns. In section III, VACaMobil is fully described. In

section IV, we compare our proposal with the duaRouter and

duaIterate.py tools, both included in SUMO. Section V

demonstrates the impact of the mobility model in the

performance of network protocols. In section VI we present

the main guidelines for using the VACaMobil tool

A Tool Offering Steady-State Simulations for

VANETs

Miguel Báguena, Sergio M. Tornell, Álvaro Torres, Carlos T. Calafate, Juan-Carlos Cano, Pietro Manzoni

Department of Computer Engineering,

Universitat Politècnica de València

Camino de Vera S/N 46022, Valencia, Spain.

mibaal@upvnet.upv.es, sermarto@upv.es, atcortes@batousay.com, {calafate, jucano, pmanzoni}@disca.upv.es

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

successfully. Finally, section VII presents our conclusions and

some future plans to improve VACaMobil.

II. A REVIEW OF EXISTING MOBILITY GENERATORS

FOR VANETS

Before presenting the details of our proposal, we analyze

some of the methods commonly used to obtain suitable

mobility patterns in urban vehicular scenarios. We have

analyzed several papers published during the last few years,

most of them published in conferences and journals related to

Intelligent Transportation Systems. Early approaches relied on

overly simple mobility models merely based on random

mobility. Since these simple models do not represent vehicle

mobility properly, other mobility models have recently been

developed based on real-world traces, and also on artificial

mobility models from the field of transportation and traffic

science. In this section, we briefly describe the most relevant

works.

A. Random Vehicle Movement

At the beginning of the previous decade, the “Random Way-

Point" mobility model was extensively used in Mobility Ad-

Hoc NETwork (MANET) research. However, in 2003, the

authors in [5] demonstrated how harmful the Random Way-

Point mobility model really is in terms of result

representativeness. Moreover, the negative effects described in

this work become even worse when simulating VANETs.

Later on, some other authors extended the “Random Way-

Point" mobility model by restricting the mobility of nodes to a

map layout, as in [6]. However, this improvement does not

solve the majority of the “Random Way-Point” model

problems stated previously.

In our research group we developed a tool called “CityMob"

[7]. CityMob allows users to create random vehicular mobility

patterns restricted to a grid. It also adds support for downtown

definition, where a downtown is a region inside the simulated

map which concentrates the majority of the selected routes

along the simulation. Although CityMob represents a

significant improvement compared to non-restricted mobility

models and random mobility models, it also presents some

problems; the most important one is that vehicular mobility is

not influenced by other vehicles, i.e. two different vehicles can

be at the same physical location, and no minimal distance

between vehicles is required. Moreover, vehicles do not

change their speed during a trip. However, in the real world,

vehicles continuously change their speed according to traffic

conditions and road characteristics. Last but not least, vehicles

keep moving throughout the whole simulation, which

especially influences the performance of protocols that keep

data stored in buffers. The research community quickly

realized the problems derived from inaccurate simulation

patterns, and started to work using alternative methods to

obtain suitable mobility traces.

B. Real Mobility Traces

Compared to the use of random mobility, real traces present

a clear improvement. Such traces are usually obtained from a

certain set of nodes, e.g. from taxis in the city of Shangai [8].

Mobility traces can be obtained by tracking the mobility of

nodes using On-Board units, as in [8], or by using road-side

equipment, as in [9]. Although real traces represent the most

realistic mobility patterns, we cannot obviate the fact that

mobility of tracked nodes is highly influenced by other

untracked vehicles, e.g. taxis’ mobility is influenced by other

users on the road whose movement is not reflected in the

collected traces. Moreover, real traces lack the flexibility to

allow for an exhaustive evaluation of VANET protocols, e.g.

changing the vehicle density without modifying their speed is

clearly unreal.

C. Assisted Traffic Simulation

The restrictions of real traces can be overcome, with almost

no loss of realism, by using mobility models taken from the

field of transportation and traffic science. Several road traffic

simulators are widely used among the VANET research

community. One of the most widely used mobility generators

is SUMO [4]. When simulating traffic mobility for VANETs,

not only the vehicles’ behavior is important, but also the

traffic demand. SUMO allows defining traffic demand in two

different ways: trips and flows. The former defines only a

vehicle, its origin and its destination, while the latter defines a

set of vehicles which execute the same trip. SUMO currently

provides several tools to generate traffic demand:

• randomTrips.py: A random trip generator. This tool

generates a trip every second having a random origin and

destination. It does not check if the origin and destination are

connected, or whether the trip is possible.

• duaRouter: A Dijkstra router. Given a file with trips and

flows, this tool generates the actual traffic demand, expressed

in vehicles with an assigned route. Routes are calculated using

the Dijkstra algorithm, and every unconnected trip is

discarded.

• duaIterate.py: This Python script will produce a set of

optimal routes from a trip file, i.e. all the nodes will follow

that route which minimizes the total trip-time for all nodes.

This tool repeats a routing-simulation loop until optimal routes

are found.

Authors have used these tools in order to generate traffic

demands for SUMO. The most simplistic one is to define

different flows inside the network. Although drivers usually

move from certain districts to others, following patterns

associated with their working and living places, defining the

traffic only by creating fixed flows lacks realism, as we can

see in [10] where only a few flows are defined by the user.

Another common approach is to generate random trips using

randomTrips.py. This approach presents the problem that only

one vehicle is introduced every second, which leads to long

transitory periods until the network reaches a steady state. A

more sophisticated traffic demand generation strategy is

presented in [11], where a predefined number of vehicles

following random routes are randomly placed at the beginning

of the simulation. Following this trend, in previous works we

used C4R [12], which is a software developed by our group to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

automate the task of generating random vehicles with random

routes at random places. To the best of our knowledge, the

work presented in [13] is the only one using the duaIterate.py

script to generate a “stable and optimal distribution of flows".

This type of traffic definition presents a problem: the trip

duration cannot be predicted before running the simulations,

and, as a consequence, there is no way to ensure, or even

determine, if the road traffic simulation will last until the end

of the network simulation. As stated in previous work, this

lack of realism and generality in mobility patterns can lead to

biased results [2].

D. Bidirectionally Coupled Network and Traffic Simulations

In [14] its authors go a step further and present a new

simulation framework called Veins, which includes the TraCI

interface to allow the network simulator to interact with the

traffic simulator running in parallel. Although it presents much

novelty and offers a lot of possibilities for VANET simulation,

the authors do not address the traffic demand generation

problem. The main characteristics and benefits of this tool

were highlighted in [15]; in addition it is one of the main

elements of our VACaMobil module as described below.

III. VACAMOBIL MOBILITY MANAGER

In this section we present our proposed tool to generate

realistic mobility for VANETs. We also provide some

important implementation details. All of these characteristics

were developed having two basic objectives in mind:

achieving realistic- mobility scenarios with a user-defined

node density, and simplifying the process of simulating

vehicular networks under the desired conditions.

A. Implementation Details

We have implemented VACaMobil as a superset of the

Veins simulation framework for OMNeT++. This scheme

allows us to take advantage of the current TraCI

implementation provided by Veins.

Due to the high modularity of the OMNeT++ simulator,

VACaMobil is available for two of the most used network

simulation environments for OMNeT++: INET [16] and

MIXIM [17]. Both implementations of VACaMobil can be

downloaded from our github account1.

1 https://github.com/grclab

Figure 1 shows the interaction between the different

modules required for VANET simulations when using

VACaMobil.

B. Average Number of Vehicles

One of the objectives of VACaMobil is to guarantee a

steady number of vehicles throughout the entire simulation.

The user can define some degree of variability through the

carVariability parameter and VACaMobil will ensure that the

number of vehicles is always between average +

carVariability and average − carVariability values.

To control the current number of vehicles, VACaMobil

selects a current target number of vehicles which should be

achieved. Then it adds new vehicles, in case the current

number of vehicles is smaller than the current target number,

or waits until vehicles arrive to their final destination

otherwise. A flow chart of this process is shown in Figure 2.

To avoid the insertion of a large number of vehicles in a

short period of time, the VACaMobil tool stores the duration

of the last period where the number of vehicles decreased, and

then takes the same amount of time to insert new vehicles into

the network.

The current target number of vehicles is obtained from a

normal distribution, whose mean (𝑥̅) is the desired average

value and whose standard deviation (σ) is equal to 1/3•carV

ariability.

The value of σ is not arbitrary; it has been selected to

guarantee that at least 99% of the values obtained from the

normal distribution will be inside the user-defined bounds.

Figure 3 illustrates the effect of σ in the normal distribution

Fig. 3. Distribution of the target number of vehicles.

Fig. 1. The VACaMobil module within the OMNeT++ simulation

framework.

Fig. 2. VACaMobil algorithm flowchart.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

shape. If we had set σ equal to carV ariability, only 68% of the

values obtained from the normal distribution would be inside

the bounds defined by the user. On the contrary, by setting the

standard deviation to 1/3•carVariability, more than 99% of the

values returned by the normal distribution are within the

defined bounds. Finally, to deal with those values falling

outside the user-defined bounds, we filtered the distribution

output, being the final current target number distribution as

follows:

𝑁 = {
𝑦 = 𝑛𝑜𝑟𝑚(𝑥, 𝜎)

𝑖𝑓 𝑥 − 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 < 𝑦
& 𝑦 < 𝑥 + 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑥 − 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑓 𝑦 < 𝑥 − 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑥 + 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑓 𝑦 > 𝑥 + 𝑐𝑎𝑟𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

By selecting this distribution and setting its standard

deviation we obtain a great degree of variability, while

avoiding extreme values and ensuring that most of the

simulation time the number of vehicles is maintained near the

average value desired by the user.

C. Different Types of Vehicles

SUMO supports the definition of different types of vehicles,

which can have different characteristics such as maximum

speed, acceleration and deceleration values. The list of

different vehicles can be obtained via TraCI.

VACaMobil allows the user to set different probabilities

associated to each type. In this case, every time a new vehicle

is generated, we obtain a uniform random value to select the

corresponding vehicle type. If no probability is defined for a

certain type of vehicle, we assume it is equal to zero.

However, if no probability value is assigned to any of the

defined vehicle types, only vehicles of the first type obtained

via TraCI will be generated. This feature allows users to easily

define heterogeneous networks composed by different

vehicles.

Although SUMO itself is able to provide this behavior,

VACaMobil adds the possibility of easily changing the

vehicles’ associated probability between different simulation

runs. As future work VACaMobil will be able to associate

different node roles to different types of vehicles, for example,

“buses” could have a bigger transmission power than “cars”.

D. Route Generation

VACaMobil does not include the ability to dynamically

generate random routes. Instead, it includes randomRoutes.py,

a script that makes use of two well-known tools included in

SUMO (randomTrips.py and duaIterate.py). Thanks to those

tools we can generate a large set of random different routes

which can be loaded into SUMO.

The randomRoutes.py script generates a set of trips between

random points of the map by using randomTrips.py, and then

it computes the optimal vehicles distribution using

duaIterate.py. Finally, it extracts the generated routes and

creates a new file containing only routes’ definitions.

This method also guarantees that all the defined routes are

valid, and that all the vehicles that are inserted into the

simulation scenario will eventually arrive to their final

destination.

E. Route Selection per Vehicle

At startup SUMO loads all the different routes. VACaMobil

will retrieve them through TraCI, and randomly selects a new

one from the existing set every time a new vehicle is

introduced in the network.

Since routes are defined as a list of consecutive edges,

vehicles are introduced in the network at the beginning of the

first edge. It is impossible to insert a new vehicle when

another previously created vehicle is already located at the

beginning of the selected route. To minimize the impact of this

restriction, VACaMobil first tries to insert the vehicle in any

of the lanes of the route’s first edge. If the previous step does

not succeed, VACaMobil selects a new route and tries it again

until it finds a free place to insert the vehicle. It may occur that

none of the loaded routes allows VACaMobil to introduce a

new vehicle. In such a case VACaMobil assumes that its main

objective cannot be satisfied and the simulation is aborted.

This situation typically occurs at the beginning of the

simulation, when VACaMobil must introduce a large number

of vehicles in a short time period. To avoid interrupting the

simulation, the user can modify a variable called

warmUpSeconds, which defines the time period at the

beginning of the simulation during which VACaMobil

requirements are relaxed. During this warm-up time,

VACaMobil introduces only a fraction of the desired number

of vehicles in every step of the simulation, avoiding the

problem previously described. After the warm-up, time

VACaMobil ensures that the number of vehicles in the

simulation is equal to the value defined by the user.

Fig. 4. Maps used for evaluation.

(a) Synthethic map.

(b) Moscow residential area.

(c) Washington.

(d) Milano.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

F. Repeatability, Scalability, and Usability

Thanks to the use of the standard random number

generators available in OMNeT++, VACaMobil ensures the

repeatability of the different scenarios including route and

vehicle selection.

Despite the goodness of the characteristics previously

presented, the best improvement introduced by VACaMobil is

the ability to optimize the researcher’s work-flow, as will be

detailed in section VI. Currently, if a researcher wants to

repeat the simulation N times for a certain vehicle density

while varying the vehicle routes to decouple the results from

the vehicle mobility, the researcher must create N different

route files and ensure that the vehicle density is the same

along all the simulations. Moreover, the path of those files

must be manually introduced into the OMNeT++

configuration file, which is prone to errors.

When using VACaMobil the researcher can take advantage

of one of the most important features in OMNeT++, which

allows specifying the number of independent repetitions

required for every simulation.

As explained in section VI, VACaMobil also simplifies the

process of simulating different amount of vehicles in the

network.

IV. EVALUATION

In this section, we compare VACaMobil against the tools

currently included in SUMO, i.e. duaRouter and duaIterate.py,

that were described in section II. We have selected the

following scenarios:

• Synthetic Manhattan scenario: We created a road map

consisting of a 25 x 25 grid with segments of 200 meters

(Figure 4a).

• Suburban real map scenario: We extracted a suburban

road layout from the OpenStreetMap database. It is a scenario

of about 12 km2 from the city of Moscow characterized by

long road segments and a low road density (Figure 4b).

• Urban grid real map scenario: We extracted an urban

road layout from the OpenStreetMap database. It is a scenario

of about 6 km2 from the city of Washington DC characterized

by long road segments and a high road density (Figure 4c)

• Urban downtown real map scenario: We extracted an

urban road layout from the OpenStreetMap database. It is a

scenario of about 7 km2 downtown area from the city of

Milano characterized by short road segments and a high road

density (Figure 4d).

In all the scenarios, the set of random routes provided by

VACaMobil is extracted from the traffic demand generated by

duaIterate.py. In the following subsection, we compare the

vehicle density and its evolution along the simulation time for

Fig. 5. Heat map for the Manhattan scenario

Fig. 6. Heat map for the suburban scenario (Residential area of Moscow)

 (a) duaRouter

(b) duaIterate.py

(c) VACaMobil

(c) VACaMobil

 (a) duaRouter

 (b) duaIterate.py
 (c) VACaMobil

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

the different tools and scenarios.

A. Vehicle Distribution Study

We first evaluate one of the most important issues in

vehicular mobility: how vehicles are distributed over the

simulated road map. To do so, we have created several heat

maps that collect information about the total number of

vehicles that reported a certain location during the simulation.

The parts of the map colored in red experienced the maximum

density values, while parts colored in white experienced the

minimum density values. All the heat maps that belong to the

same scenario share the same scale.

Figure 5 shows the vehicle distribution in the Manhattan

scenario. Due to its lack of randomness, duaRouter is unable

to select different routes for vehicles when there are several

streets with the same travel-time. This prevents the simulator

from properly distributing vehicles, and so all of them are

routed through the same street. When using the duaIterate.py

script, a better distribution of the vehicles is achieved since

many simulations are sequentially executed to optimize

vehicle routes. Since the VACaMobil’s random routes set is

obtained from duaIterate.py, it achieves a similar nodes

distribution.

Figure 6 shows the vehicle distribution in the suburban

scenario. In this case, duaRouter concentrates all the traffic in

the inner roads. Therefore, the typical ring roads around the

map are underused, which is not a common driver behavior.

When using the duaIterate.py or VACaMobil, vehicles are

distributed among the two bigger streets, i.e., the inner and the

outer avenues.

Figure 7 shows the vehicle distribution in the urban grid

scenario. Since this map includes big roads, few congestion

points are present with duaRouter. However, a smarter driver

behavior can also be seen when using duaIterate.py or

VACaMobil. These few congestion points are also avoided

with these tools because drivers can take advantage of

alternative paths in this grid to improve their travel times.

Finally, Figure 8 shows the vehicle distribution in the urban

downtown scenario. In this case, duaRouter is also unable to

spread the vehicles properly. Since some roads are faster than

others, all the vehicles are routed through them, even when

these streets are congested. Therefore, undesired traffic

congestion is created in the fastest inner roads. However, this

is an unrealistic scenario because drivers tend to avoid traffic

jams whenever possible. When using either duaIterate.py or

VACaMobil, vehicles are routed through alternative streets,

avoiding traffic jams. This strategy has a higher degree of

similitude compared to real road traffic, since drivers prefer

faster roads but often change their route to avoid traffic jams.

B. Vehicle Density Study

Table II shows the differences in terms of number of

Fig. 7. Heat map for the urban grid scenario (Washington DC)

Fig. 8. Heat map for the downtown scenario (Milano)

 (a) duaRouter
 (b) duaIterate.py

 (c) VACaMobil

 (a) duaRouter

 (b) duaIterate.py

 (c) VACaMobil

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

vehicles for the four different scenarios for each different

traffic generation tool. Since neither duaRouter nor

duaIterate.py allows defining the number of cars in the

simulation, we configured VACaMobil according to values in

Table I to mimic the average values obtained previously when

using duaRouter and duaIterate. In the simplest scenario

(Manhattan), the three methods can achieve a stable value for

the mean vehicle density with a low standard deviation.

However, neither duaRouter nor duaIterate allow to a priori

configure the value of this parameter. On the contrary,

VACaMobil is not only able to quickly populate the network

with the desired number of vehicles, but it also allows defining

a maximum and a minimum number of vehicles, which will

bound the standard deviation value. In complex maps like the

urban scenario, VACaMobil is the only tool able to maintain

the number of vehicles within the predefined bounds. To

better understand the aforementioned values, Figures 9 to 12

show the evolution on the number of vehicles in the different

scenarios against time for each tool. Since duaRouter and

duaIterate.py are able to add only one vehicle per second, the

user cannot predict when vehicles will arrive to their

destination and disappear from the network. Therefore, for the

Manhattan scenario, the number of vehicles when the

simulation reaches the steady-state is not known a priori,

turning protocol analysis based on the number of vehicles into

a mere act of faith. Moreover, in maps where traffic jams are

common, as in the urban downtown scenario, it takes more

time for vehicles to reach their final destination and leave the

network, which causes a constantly increasing number of

vehicles in the network when not using VACaMobil.

Comparing the configuration in Table I and the results in

Table II, we can conclude that both the target number of

vehicles and the expected standard deviation are achieved only

with VACaMobil.

V. IMPACT ON NETWORK PROTOCOLS

In this section we evaluate how nodes’ mobility can impact

network protocols performance. To demonstrate its effects, we

have simulated the same network topology using duaRouter,

duaIterate.py, and VACaMobil to manage the mobility.

A. Mobility Specification

To perform this test, and for sake of simplicity, we chose

the synthetic Manhattan scenario presented before. In contrast

to previous evaluations, we have manually modified the

configuration files generated by duaRouter and duaIterate.py

in order to simultaneously introduce 100 vehicles with random

routes at the beginning of the simulation. VACaMobil was

configured to maintain 100 nodes in the network during the

whole simulation. Figure 13 shows the number of nodes inside

the network. As can be appreciated, when using both,

duaRouter and duaIterate.py, the number of cars in the

network decreases, whereas when using VACaMobil it is kept

at its desired value along the entire simulation.

B. Network Traffic

This simulation test aims at evaluating the connectivity

between two Road Side Units (RSUs). In order to maximize

the impact of mobility, we placed both RSUs in the most-

traversed road of the scenario. The distance between them was

900 m and the communication range was approximately 200

m. Each RSU sends a 512 Bytes UDP packet to the other RSU

every second. The vehicles were configured to use the DYMO

routing protocol [18].

C. Results

To assess the impact of mobility we compared the

connectivity along the simulation when using different

mobility alternatives. To do so, we have counted the number

of received packets for every 30-second slot. Figure 14 shows

the results we obtained after aggregating the values from 10

different simulations. Notice that, when using duaRouter or

duaIterate.py, the connectivity of the network experiences an

initial period where it is higher than when using VACaMobil.

However, as long as the number of vehicles decreases

according to Figure 13, the network gradually loses its

connectivity. On the contrary, when using VACaMobil, the

connectivity of the network fluctuates throughout the

TABLE III

STEPS REQUIRED

Method #Files #Commands #Rep Steps

duaRouter 4•N•K 2•N•K 2•N
duaIterate 4•N•K 3•N•K 3•N

VACaMobil 4 4 0

TABLE II
VEHICLE STATISTIC SUMMARY

 Synthetic Manhattan Suburban scenario Urban grid scenario Urban downtown scenario

 Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

duaRouter 313.767 58.8271 319.165 79.4342 214.711 39.0532 880.546 465.716

duaIterate 304.487 55.5174 219.610 34.2232 183.009 36.6651 393.717 96.414
VACaMobil 319.349 6.14267 223.718 8.32201 174.615 6.79294 369.691 7.84640

 TABLE I

VACAMOBIL CONFIGURATION

Vehicle

number
carVariability Std. dev.

Synthetic
Manhattan

320 20 6.33

Suburban

scenario

225 25 8.33

Urban grid

scenario

175 20 6.33

Urban downtown
scenario

370 25 8.33

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

simulation with peaks and valleys due to the random nature of

cars mobility. This experiment highlights one of the effects of

mobility on network protocols. When evaluating more

complicated scenarios, such as diffusion protocols, delay-

tolerant networks, or cooperative sensors, new problems

related with the lifetime of the nodes arise [2]

VI. WORKFLOW COMPARISON

In the previous section we have shown how VACaMobil

can guarantee that the number of nodes in a simulation is

within certain bounds. In this section we describe the typical

steps required to obtain conclusive simulation results when

using VACaMobil, and compare them against duaRouter and

duaIterate.py. This section does not aim to be a tutorial or a

guide, but instead to illustrate how VACaMobil makes it

easier to avoid biased results due to mobility effects. To do so,

we reproduce the process to obtain N non-correlated

simulation runs.

A. Network Map

The first step to simulate our network is to obtain or

generate our road map. It can be downloaded from

OpenStreetMap [19] and then converted to SUMO format

using the tools included with SUMO (netconvert). This

process was the one we used to generate the urban scenarios

presented in previous sections. The road network can also be

synthetically generated, as we did for the previous Manhattan

scenario. This step is always required in order to simulate a

vehicular network using SUMO to manage nodes’ mobility.

We assume that the same map is used for our N non-correlated

repetitions; however, it is always a good practice to vary the

scenario using different city maps.

B. Traffic Demand

Once we have our road scenario, we need to generate the

traffic demand. The way to model it varies between

duaRouter, duaIterate.py, and VACaMobil.

Fig. 9. Evolution of the number of vehicles against time for the Manhattan

scenario

Fig. 10. Evolution of the number of vehicles against time for the suburban

scenario

Fig. 11. Evolution of the number of vehicles against time for the urban grid

scenario

Fig. 13. Number of nodes in the network after introducing 100 cars at the

beginning of the simulation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

1) Duarouter: To generate random traffic demand for

duaRouter we need to invoke the randomTrips.sh script

presented in section II, and call duaRouter to compute the

shortest routes. This process will produce a file containing a

set of vehicles that will be simulated by SUMO. If our

objective is to repeat N non-correlated simulations we need to

repeat these steps N times, once for every simulation, and

generate N configuration files that will be made available to

SUMO through the OMNeT++ configuration file. In the not so

atypical case that we want to vary the number of nodes in our

simulation and simulate K different scenarios, we need to

repeat these steps K ∗ N times in order to generate N different

SUMO configuration files for the K possible scenarios.

2) DuaIterate.py: As referred above duaIterate.py refines the

traffic demand obtained with duaRouter to minimize the time

cost of the routes. As a consequence, it adds a new step to the

duaRouter procedure. This new step must also be repeated for

every simulation. As well as duaRouter, duaIterate.py

generates a file containing a set of vehicles that will be

simulated by SUMO.

3) VACaMobil: In VACaMobil, the traffic demand consists

of a set of routes that can be generated immediately after

obtaining the network map. VACaMobil includes a script,

called randomRoutes.sh, that generates a large-enough set of

random routes to be used.

C. OMNeT++ Configuration

1) Duarouter and duaIterate.py: In order to configure

OMNeT++ to use the mobility generated by duaRouter or

duaIter- ate.py, we need to specify the path for each one of the

different SUMO configuration files. As seen before, this path

should change for every simulation.

2) VACaMobil: In order to simulate the desired scenario

with VACaMobil we only need to specify the number of

repetitions and an array containing the different number of

nodes that should be introduced into the network. OMNeT++

and VACaMobil will manage the whole set of simulations,

storing their results in different files, ready to be parsed.

D. Total Number of Steps

In this subsection we detail the number of commands

required to repeat N times the simulation of K scenarios which

differ in the number of nodes introduced into the network.

Table III shows the number of files we need to create, as well

as the number of steps required to configure our simulations.

The “#Rep Steps” column contains the number of steps we

need to repeat in case we decide to add a new scenario K + 1.

It is clear that VACaMobil does not only provide a more

“realistic” and steadier mobility generator for our simulations,

but it also simplifies the complexity of the mobility

specification, which makes it less prone to errors.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented VACaMobil2, a new mobility

manager for the OMNeT++ simulator which simplifies the

definition of mobility for VANET simulations. The main

novelty of VACaMobil is that: to the best of our knowledge, it

is the first tool able to generate SUMO [4] driven nodes in a

vehicular network while ensuring the stability of certain user-

defined parameters, such as the average, maximum, and

minimum number of vehicles. In particular, we added critical

features to previously existing tools, such as ensuring a

constant number of vehicles during the entire simulation time,

disseminating vehicles throughout the whole route-map, and

offering the possibility of defining different vehicle types with

different probabilities. In contrast to other existing tools,

VACaMobil is able to keep the mean number of vehicles and

the standard deviation value within user-defined bounds. To

the best of our knowledge, this is currently the only tool that

allows studying a vehicular network in a steady-state situation

without losing the realistic vehicle behavior provided by

SUMO. As future work we plan to improve VACaMobil by

offering downtown definition and automatic placement for

Road Side Units (RSU).

Fig. 12. Evolution of the number of vehicles against time for the urban

downtown scenario.

Fig. 14. Number of received packets

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

ACKNOWLEDGEMENTS

This work was partially supported by the Ministerio de

Economía y Competitividad, Spain, under Grants TIN2011-

27543- C03-01 and BES-2012-052673, by the Ministerio de

Educación, Spain, under the FPU program, AP2010-4397,

AP2009-2415, and by the Universitat Politècnica de València

under project ABATIS (PAID-05-12).

REFERENCES

[1] S. Joerer, C. Sommer, and F. Dressler, “Toward Reproducibility and

Comparability of IVC Simulation Studies: A Literature Survey,” IEEE
Communications Magazine, vol. 50, no. 10, pp. 82–88, October 2012.

[2] C. Sommer and F. Dressler, “Progressing toward realistic mobility

models in vanet simulations,” Communications Magazine, IEEE, vol.
46, no. 11, pp. 132 –137, Nov. 2008.

[3] M. Fogue, P. Garrido, F. J. Martinez, J.-C. Cano, C. T. Calafate, and P.

Manzoni, “An adaptive system based on roadmap profiling to enhance

warning message dissemination in vanets,” Networking, IEEE/ACM

Transactions on, vol. PP, no. 99, p. 1, 2012.

[4] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo -
simulation of urban mobility: An overview,” in SIMUL 2011, The Third

International Conference on Advances in System Simulation, Barcelona,

Spain, October 2011, pp. 63–68.
[5] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harmful,”

in INFOCOM 2003. Twenty-Second Annual Joint Conference of the

IEEE Computer and Communications. IEEE Societies, vol. 2, March-3
April 2003, pp. 1312 – 1321 vol.2.

[6] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an

efficient routing scheme for intermittently connected mobile networks,”
in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-

tolerant networking, ser. WDTN ’05. New York, NY, USA: ACM,

2005, pp. 252–259.
[7] F. Martinez, J.-C. Cano, C. Calafate, and P. Manzoni, “Citymob: A

mobility model pattern generator for vanets,” in Communications

Workshops, 2008.ICC Workshops ’08. IEEE International Conference

on, May 2008, pp. 370 –374.

[8] X. Li, W. Shu, M. Li, H. Huang, and M.-Y. Wu, “DTN Routing in

Vehicular Sensor Networks,” in Global Telecommunications
Conference, 2008. IEEE GLOBECOM 2008. IEEE. IEEE, Nov. 2008,

pp. 1–5.

[9] M. Gramaglia, M. Calderon, and C. Bernardos, “Trebol: Tree-based

routing and address autoconfiguration for vehicle-to-internet
communications,” in Vehicular Technology Conference (VTC Spring),

2011 IEEE 73rd, May 2011, pp. 1 –5.

[10] L.-J. Chen, Y.-Y. Chen, K. chan Lan, and C.-M. Chou, “Localized data
dissemination in vehicular sensing networks,” in Vehicular Networking

Conference (VNC), 2009 IEEE, Oct. 2009, pp. 1 –6.

[11] C.-C. Lo, J.-W. Lee, C.-H. Lin, M.-F. Horng, and Y.-H. Kuo, “A
cooperative destination discovery scheme to support adaptive routing in

vanets,” in Vehicular Networking Conference (VNC), 2010 IEEE, Dec.

2010, pp. 202 –208.
[12] M. Fogue, P. Garrido, F. J. Martinez, J.-C. Cano, C. T. Calafate, and P.

Manzoni, “Using roadmap profiling to enhance the warning message

dissemination in vehicular environments,” in 36th IEEE Conference on
Local Computer Networks (LCN 2011), Bonn, Germany, October 2011.

[13] C. Sommer, O. Tonguz, and F. Dressler, “Traffic information systems:

efficient message dissemination via adaptive beaconing,”
Communications Magazine, IEEE, vol. 49, no. 5, pp. 173 –179, May

2011.

[14] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled
network and road traffic simulation for improved ivc analysis,” Mobile

Computing, IEEE Transactions on, vol. 10, no. 1, pp. 3 –15, Jan. 2011.

[15] C. Sommer, O. Tonguz, and F. Dressler, “Adaptive beaconing for
delay-sensitive and congestion-aware traffic information systems,”

in Vehicular Networking Conference (VNC), 2010 IEEE, Dec. 2010,

pp. 1 –8.
[16] “Inet framework website,” http://inet.omnetpp.org/, last visit Jul 2013.

[17] “Mixim framework website,” http://mixim.sourceforge.net/, last visit Jul
2013.

[18] C. Perkins, S. Ratliff, and J. Dowden, “Dynamic MANET on-demand

(DYMO) routing,” draft-ietf-manet-dymo-26 (work in progress), 2013.
[19] “OpenStreetMap website,” http://www.openstreetmap.org, October

2012.

[20] D. Bain and J. R. Paseur, “Inter vehicle communication system,” U.S.
Patent 8 307 037 B2, Nov. 6, 2012

[21] M. Nagura, “Inter-vehicle communication apparatus and method capable

of detecting packet collision,” U.S. Patent 8 451 732 B2, May 28, 2013
[22] E. B. Lofton, “System, method and apparatus for inter-vehicle

communication,” U.S. Patent 2013/0157576 A1, Jun. 20, 2013

[23] K. Oguchi, et al., “Simulator for vehicle radio propagation including
shadowing effects” U.S. Patent 2007/0271079 A1, Nov. 22, 2007

[24] C. L. Barret, et al. “Population mobility generator and simulator,” U. S.

Patent 2004/008392 A1, May 6, 2004

