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Abstract

The permutation flowshop scheduling problem has been thoroughly studied in re-
cent decades, both from single objective as well as from multi-objective perspectives.
To the best of our knowledge, little has been done regarding the multi-objective flow-
shop with Pareto approach when sequence dependent setup times are considered. As
setup times and multi-criteria problems are important in industry, we must focus on
this area. We propose a simple, yet powerful algorithm for the sequence dependent
setup times flowshop problem with several criteria. The presented method is referred
to as Restarted Iterated Pareto Greedy or RIPG and is compared against the best
performing approaches from the relevant literature. Comprehensive computational
and statistical analyses are carried out in order to demonstrate that the proposed
RIPG method clearly outperforms all other algorithms and, as a consequence, it is

a state-of-art method for this important and practical scheduling problem.
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1 Introduction

The flowshop scheduling problem (FSP) is characterized by a set N of n jobs that must be
processed by a set M of m machines. All m machines are disposed in series and, without loss
of generality, jobs visit machine 1 first, then machine 2 and so on until machine m. Each job
needs a given, known in advance, fixed and non-negative processing time at each machine. This is
denoted as p;j, for each j € N and ¢ € M. A job cannot be in process at more than one machine
simultaneously and one machine can only process one job at a time. The aim of this problem
is to sequence the n jobs on the m machines so that a given criterion is optimized. Basically,
there are n! possible job permutations at each machine. In the most general case, each machine
is associated with a different queue of jobs and hence, there are (n!)”™ possible solutions to this
problem, where each solution is commonly referred to as a sequence.

The FSP has been criticized for being too theoretical as most real industry settings seldom
fit into such a model. In part, this is attributable to the absence of setup times, which are very
common in industry. Additionally, real-life problems have a multi-objective nature. Furthermore,
flowshops rarely have the inter-machine flexibility to manipulate jobs in the processing queues.
For all these reasons, this paper studies the multi-objective sequence dependent setup times
permutation flowshop variant.

Setup times involve non-productive operations that have to be performed on machines and
that are not part of the job’s processing times. These may include, but are not limited to, cleaning,
fixing and releasing parts to machines. Although on some occasions setup times can be included
in the processing times, in the majority of industrial contexts it is not possible to ignore them.
We can roughly classify setups into two main categories. The first one defines those setups which
are Sequence Independent (SIST) i.e., the setup or changeover time for a machine only depends
on the job that is to be processed next. The second category is the Sequence Dependent setup
times (SDST) case, where setup time depends both on the current job being processed and on the
next job in the sequence. This second category is much more complex and includes the first one
as a particular case, permitting it to describe several operational scenarios. Furthermore, setups
can be either anticipatory or non-anticipatory. In the former case, setups can be performed as
soon as the machine is free and before the next job in the sequence is loaded. In this setting,
we denote by Sjjx, Vi € M,Vj, k € N,j # k the job sequence dependent setup time at machine 4
when processing job k after having processed job j.

A large body of research in the FSP deals with the optimization of a single criterion. The most
commonly studied objective is the minimization of the maximum completion time or makespan,
denoted to as Cax which is calculated as max?zl{(}'mj}, where C,; is the completion time of
job 7, i.e., the time at which job j finishes processing at machine m. Often, C,,; is simply de-
noted as Cj. Given a sequence 7 of n jobs where 7 denotes the job occupying position [ in
the permutation with | = {1,...,n}, Chax with SDST can be calculated in O(nm) steps with
the following recursive formula: Cm(l) = max {Ci_l,ﬂ(l),Ci’w(l_U + Siuﬂ'(l—l)ﬂr(l)} + Disrg where



C; =0, Co,m):()andSi =0, Vie M, l:{l,...,n}.

Makespan has been widely studied since a minimum value translates into a high resource utiliza-
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tion, throughput and Overall Equipment Efficiency (OEE). A second commonly studied criterion
is the total flowtime, defined as TFT = 27;21 C; if we assume that all jobs are available at
time O (i.e., the release dates or r; are all zero). TFT, albeit certainly related, is quite different
from makespan. A low TFT value reduces the Work-In-Process (WIP) inventory which is of
paramount importance in real production shops. TFT also ensures a minimum cycle time in
production environments. Chax and TFT are production-oriented criteria and neglect an impor-
tant aspect of production which is client satisfaction. Jobs often model client orders that have a
desired delivery date. This date is accounted for in scheduling by means of a due date d; for each
job. A job is said to be tardy if C; > d;. With this in mind, we define the tardiness of a job j
as T; = max {C; — d;,0}. As can be expected, not all orders from clients are equally important.
To model this, a priority, importance or weight w; is also given for each job. Considering all
previous definitions, the third most commonly treated objective is the total weighted tardiness
or TWT =371 wj - Tj.
The previous objectives are the three most common, but are not the only ones. In practice, as
one can expect, a combination of objectives is usually sought. For example, optimizing makespan
results in a very high machine utilization. However, most due dates are likely to be violated. As
a consequence, a multi-objective approach is needed. As concluded from the multi-objective flow-
shop review of Minella et al.| (2008)), most authors deal with several objectives in the most simple
way, which is just adding them into a single weighted linear combination measure for example
- Cpax + (1 — @) - TFT, where 0 < a < 1. This is an example of the “a priori” approach. The
problem with this is that often, objectives are measured in different scales and it is difficult to
map « into a valid user preference. Another procedure, referred to as the “a posteriori” approach
consists of finding out a set of solutions. Each solution represents a trade-off in the optimization
of a given set of independent objective functions. This solution set is called the Pareto front. It
is assumed that a multi-objective procedure returns this set to the decision maker, which later
picks one solution from it.
We restrict ourselves to the permutation version of the flowshop problem where job passing is
not allowed from machine to machine, i.e., the permutation of jobs cannot change from one ma-
chine to the next. This results in a smaller solution space of n! This version of the problem is
denoted as the permutation flowshop problem or PFSP in short. This special case is important
in practice since in-process storage of products is very limited in most situations. Note that even
this simplification of the problem, with no setups and one single objective still remains N P-hard
for many common criteria (Garey et al. [1976) and remains intractable for low values of n.
Following the well known classification scheme of |Graham et al.|(1979) and the extension of
the notation for the multi-objective problems by [T kindt and Billaut| (2006), the problem studied
in this paper is denoted as F'/prmu, Siji/#(71,72) where 71 and 7, are the two objectives that



are considered in a Pareto approach. The two combinations of objectives that we consider in
this paper are (Cpax, TFT) and (Cpax, TWT). To the best of our knowledge, this problem
(even with a different set of objectives) has not been studied in the scientific literature and this
paper presents the first attempt to solve it. We approach this problem with a recently proposed
metaheuristic strategy, specially tailored for multi-objective problems.

The remainder of this paper is organized as follows: Section P] presents a review of the
literature on multi-objective optimization as well as existing results for the PFSP with setup
times. Section [3] details the proposed algorithm which is later tested in Section 4] by carrying out
a wide campaign of experiments and the results are statistically analyzed in detail. Finally, in

Section [ some conclusions and further research topics are given.

2 Literature review

To the best of our knowledge, no paper has been published that considers all characteristics of the
problem studied in this work, i.e., multi-objective permutation flowshop problem with sequence
dependent setup times. Hence, in the following subsections we present first a brief review of

multi-objective flowshop and second a review about SDST flowshop with one single objective.

2.1 Multi-objective flowshop

The literature on multi-objective optimization is extremely rich. However, the multi-objective
PFSP field is relatively scarce, specially in comparison with the large number of papers published
dealing with the single criterion flowshop problem. The few proposed multi-objective methods
for the PFSP are mainly based on evolutionary optimization and on local search techniques like
simulated annealing (SA) or tabu search. In Minella et al.| (2008)), the authors carefully reviewed
the literature related to this problem. Thus, here we restrict ourselves to only the most significant
works and to some other more recent published material.

Methods belonging to the “a priori” multi-objective approach (weighted objective functions,
lexicographical and goal optimization, etc.), in general, return a single solution, the closest one to
decision-maker’s desires. Differently, methods belonging to the “a posteriori” approaches return
several equivalent solutions (Pareto set) among which the decision maker can choose.

Focusing only on the “a posteriori” approach, the number of publications in the flowshop litera-
ture is reduced to a little set. A genetic algorithm (GA) was proposed by Murata et al.| (1996))
which was capable of obtaining a Pareto front for makespan and total tardiness. This algorithm,
referred to as MOGA (Multi Objective Genetic Algorithm), applies elitism and the selection
phase employs a fitness value assigned to each solution as a function of the weighted sum of
the objectives. The weights for each objective are randomly assigned at each iteration of the
algorithm. Later, in Tshibuchi and Muratal (1998]), the authors extended this algorithm by means

of a local search procedure applied to every newly generated solutiomn.



A genetic algorithm is shown by Bagchi| (2001)), which is based on the |Srinivas and Deb| (1994))
NSGA method. Some short experiments are given for a single flowshop instance with flowtime
and makespan objectives. Murata et al.|(2001) improve the earlier MOGA algorithm by Murata
et al.| (1996)). This new method, called CMOGA, refines the weight assignment.

Ishibuchi et al. (2003)) present a comprehensive study about the effect of adding local search to
their previous algorithm (Ishibuchi and Murata, [1998). The local search is only applied to good
individuals and by specifying search directions. This form of local search was shown to give better
solutions for many different multi-objective genetic algorithms. In |Loukil et al. (2000), several
scheduling problems are solved with different combinations of objectives. The main technique
used is a multi-objective tabu search, referred to as MOTS. Later, in [Loukil et al.| (2005)), a similar
study is carried out. In this case the multi-objective simulated annealing (MOSA) approach is
employed.

Suresh and Mohanasundaram| (2004)) propose a Pareto-based simulated annealing algorithm for
makespan and total flowtime criteria. Experiments are conducted and the proposed method is
compared against that of Ishibuchi et al.| (2003) and against an early unpublished version of the
SA later presented in [Varadharajan and Rajendran| (2005). |Arroyo and Armentano| (2004) stud-
ied heuristics for several two and three objective combinations among makespan, flowtime and
maximum tardiness. For the general m machine case, the authors compare the results against
those of Framinan et al.| (2002). The results favor the proposed method that, when used as a
seed sequence, also improves the results of the GA of Murata et al.| (1996)). The same authors
developed a tabu search for the makespan and maximum tardiness objectives in [Armentano and
Arroyo| (2004)). The algorithm includes several advanced features like diversification and local
search in several neighborhoods. The proposed method is shown to be competitive in numerical
experiments. In a more recent paper, Arroyo and Armentano| (2005)) carry out a similar study but
in this case using genetic algorithms. The makespan and total flowtime objectives are studied
by |Varadharajan and Rajendran (2005) with the help of simulated annealing methods. These
algorithms start from heuristic solutions that are further enhanced by improvement schemes.
Two versions of these SA (MOSA and MOSA-II) are shown to outperform the GA of Ishibuchi
and Murata (1998). According to the comprehensive computational evaluation of Minella et al.
(2008), where 23 methods were tested for the multi-objective flowshop, an enhanced version of
MOSA _Varadharajan algorithm (named MOSA-II in the original paper) is shown to consistently
outperform all other methods.

Pasupathy et al.| (2006)) proposed a Pareto-archived genetic algorithm with local search and have
tested it with the makespan and flowtime objectives.

Geiger| (2007) has published an interesting study where the topology of the multi-objective flow-
shop problem search space is examined. Using several local search algorithms, the author ana-
lyzes the distribution of several objectives and tests several combinations of criteria. [Yanda and
Tamura| (2007) presented a variant of the NSGAII of Deb (2002)), referred to as hMGA, which



uses a working population with dynamic size made of only heterogeneous solutions. According
to the authors, this choice prevents the algorithm from getting stalled in local optima. [Framinan
and Leisten| (2008) presented an iterated greedy (IG) procedure based on the NEH heuristic.
This algorithm is an evolution of the IG basic principle for the multi-objective PFSP. Recently,
Rajendran and Ziegler| (2009) proposed an ant-colony algorithm for the flowshop sceduling prob-
lem (MOACA) with the objective of minimizing the makespan and total flowtime. The authors
presented 20 variants of the algorithm and some of them turned out to be highly competitive for

the considered benchmark.

2.2 SDST flowshop

Hundreds of papers dealing with the permutation flowshop problem have been published in the
literature but only a relatively minor fraction of them consider sequence dependent setup times.
Exact techniques for the SDST permutation flowshop have shown rather limited results. The
latest reference and most advanced study is that of Rios-Mercado and Bard| (2003) which studied
the polyhedral structure of two mixed-integer programs for the SDST flowshop in order to generate
more effective cuts to use in a branch-and-cut framework. Some heuristics and metaheuristic
algorithms for the F/S;ji, prmu/Crax have been proposed. For example, Rios-Mercado and
Bard (1998) presented a modification of the well known NEH heuristic for the regular flowshop
from Nawaz et al.| (1983) that takes into account setup times. In the same paper a GRASP
algorithm is also proposed. In a later work, the same authors presented a modification of the
heuristic of |Simons| (1992)) resulting in a new method called HYBRID (Rios-Mercado and Bard),
1999). |Ruiz et al. (2005) proposed a genetic and a memetic algorithm for the F'/S;j, prmu/Cuax.
They carried out an comprehensive experimental study comparing their proposals against several
methods adapted from the F//Ciax problem.

About the F'/S;ji, prmu/ Z;Lzl w;T}, little has been published. In Parthasarathy and Rajendran
(1997a) and [Parthasarathy and Rajendran (1997b)), a Simulated Annealing heuristic was proposed
for the SDST flowshop problem with the goal of minimizing the maximum weighted tardiness and
the total weighted tardiness, respectively. Rajendran and Ziegler| (1997) introduced an algorithm
formed by a new heuristic and a local search improvement scheme for the weighted flowtime
objective. Another similar work is that of Rajendran and Ziegler| (2003) were a combined objective
of total weighted flow-time and tardiness is considered. [Ruiz and Stiitzle (2008) proposed two
iterated greedy algorithms for the PFSP with sequence dependent setup times. The first one
follows the guidelines of the IG framework adapted to setup times and the second incorporates
a simple descent local search. More details can be found in |[Ruiz et al. (2005) where the authors
carried out an extensive literature survey about this problem and in |Allahverdi et al.| (2008)), an

updated and comprehensive review of scheduling research with setup times.



3 Restarted Iterated Pareto Greedy

The iterated greedy methodology (IG) belongs to the stochastic local search techiques (SLS) and
the basic scheme was first presented by [Jacobs and Brusco (1995) for the set covering problem.
Afterwards, Schrimpf et al.| (2000) named as “Ruin and Recreate” a very similar algorithm for the
vehicle routing problem. Tterated greedy method was applied by Ruiz and Stiitzle (2007) to the
regular permutation flowshop problem with the makespan minimization objective. The results
have encouraged several other authors to propose variants and adaptations to other problems,
including the already cited paper of |Ruiz and Stiitzle (2008) for the SDST flowshop, Pan et al.
(2007) for the no-wait flowshop or Ying (2009)) for the hybrid flowshop. In all these problems,
IG has produced state-of-the-art results. Framinan and Leisten (2008) proposed a multi-objetive
1G for the regular permutation flowshop problem which is basically an evolution of the NEH
heuristic of [Nawaz et al.| (1983) modified to use Pareto dominance. As a result, it seems plausible
to attempt an extension for the multi-objective flowshop with setup times. Note that IG works
with a single solution and was proposed for a single objective, therefore, a just simple adaptation
is not possible if high quality results have to be achieved.

Similarly to [Minella et al. (2011)), we propose an extension of the original Iterated Greedy
algorithm named Restarted Iterated Pareto Greedy (RIPG), which is now presented. The rationale
of this algorithm is very simple: a greedy multi-objective strategy is iteratively applied over a set
of non-dominated solutions.

The proposed RIPG is broken into five phases: In the first phase (Initialization), an initial set of
good solutions is generated using different heuristics, each one designed to attain good values for
a specific criterion. The remaining four phases are iteratively repeated and constitute the main
loop of the algorithm. The second phase, called Selection, chooses one solution from the current
working set for the next phase: the Greedy one in which the selected solution is disrupted by
means of a Destruction operator, by removing some elements and then a greedy procedure, called
Construction, is applied. Afterwards, a Local search phase is applied over a selected element of
the current working set. Lastly, a Restart procedure is implemented to prevent the algorithm

from getting stuck in local optima. The following sections describe each phase in detail.

3.1 Algorithm initialization and selection phase

As is of common knowledge, initial solutions expressly generated to have opportune features often
play an underlying role in creating a high performing algorithm. On the other hand, since our
first concern is to create an algorithm capable of performing well for different pairs of obejectives,
we chose heuristics that return good enough solutions for many different objectives ensuring
also a sufficient degree of diversity. In order to generate a good Initial Solution Set (ISS) we
make use of the initialization procedure proposed by [Varadharajan and Rajendran (2005)), which

demonstrated to return high quality initial solutions in the review of Minella et al. (2008). This



procedure uses the NEH heuristic of Nawaz et al. (1983) and the heuristic of Rajendran (1995),
both designed for the optimization of a single criterion. Such heuristics are used to generate two
distinct solutions for each objective to optimize.

In a first step, all initial solutions are processed by the Greedy phase one by one. The resulting
frontiers of this process are added to the ISS and then, the dominated solutions are removed
and the initial current working set is conformed. The aim behind this policy is to avoid that
a likely large improvement during the initial iterations might generate a set of solutions that
dominate the remaining initial solutions, impoverishing the quality and diversity of the working
set too early. At each iteration of the algorithm, the selection phase is responsible for pointing
the search towards promising directions. Selection achieves this goal by choosing one solution
from the current working set on the basis of considerations related to their quality. In this way,
the algorithm focuses on only those solutions that are more likely to increase the quality of the
current working set, speeding up the whole search process.

A modified version of the Crowding Distance Assignment (CDA) procedure, originally presented
in (Deb, |[2002), has been developed in order to carry out the selection process. This procedure first
divides the working set into several dominance levels. Each solution of one level strictly dominates
all the solutions in the next level. The CDA then assigns to each solution a value (Crowding
Distance) dependent on the normalized Euclidean distances between it and the solutions that
precede and follow it in the same dominance level. The main difference resides in the fact that
the modified procedure considers the number of times each solution has been already selected
in previous iterations (Selection Counter), and uses this information to calculate the Modified
Crowding Distance (MCD). The element with the highest value of MCD is selected as the starting
point for the Greedy or local search phases.

The aim of this MCD procedure is to select a candidate solution belonging to a less crowded
region of the Pareto front and at the same time has already been selected a small number of
times. The use of such an operator demonstrated, in preliminary experiments, to significantly
improve the Pareto front in terms of quality and spread of its solutions. The pseudocode of this

procedure is presented in figure [lal

3.2 Greedy phase

This is the main and most innovative part of the algorithm even though the original IG structure
with two phases: Destruction and Construction respectively, is preserved. However, this greedy
phase in the RIPG is radically different from the original IG where only one partial solution is
maintained and a NEH-like greedy heuristic is applied in one unique step at each iteration of the
algorithm. In our case, the Greedy phase becomes an iterative process, that works with a set of
partial solutions and returns a set of non-dominated permutations.

The Destruction step chooses a random starting position and a block of k£ consecutive elements

(jobs) are removed from the selected solution. Note that in the original IG algorithm, the removal



of jobs is not carried out in blocks.

For the Construction step, a variation of the NEH insertion scheme is used. The main difference
from that heuristic lies in the use of Pareto dominance to maintain not just one incomplete
partial solution at each iteration (as in NEH), but a whole set of non-dominated partial solutions
generated during the ingertion process. Actually, the Construction procedure inserts, one by
one, all removed elements from the block back into each partial solution from the non-dominated
partial solution set. This inserting schema was already effectively used in [Arroyo and Armentano
(2004). At each step, a new set of partial solutions is generated. More specifically, let n be the
length of the initial solution and k the size of the block of removed elements. At the end of
the first step, after the first removed element is inserted into all positions of the partial solution,
we have n — k + 1 partial solutions of length n — k + 1. In the second iteration, the procedure
inserts the second removed element in all positions of each one of the n — k + 1 partial solutions
generated in the previous step. Then, at the end of this second iteration, the number of partial
solutions is: (n—k+1) x (n—k+2). Following the same reasoning, at the end of the construction
phase, a set of Hle (n — k + 1) of complete solutions is generated. This defines an upper bound
for the number of solutions generated by the greedy phase of the algorithm. Regardless of this,
the bound is very far from being tight because, at each iteration, all the dominated incomplete
sequences are removed. The greedy phase therefore returns a set of non-dominated solutions,
which is added to the current working set, and then, dominated solutions are removed. Finally,
the MCD selection procedure is applied to the current working set and a solution is selected to

be processed by the local search phase, which is explained next.

3.3 Local search phase

A simple and fast local search procedure has been demonstrated to be very helpful in improving
the quality of solutions in the single as well as in the multi-objective cases. Hence, we added
to our algorithm a simple local search phase aimed at refining the work of the greedy phase. In
the original IG, the local search procedure uses as an input the outcome of the greedy phase.
For the multi-objective case, the greedy phase returns a set of non-dominated elements, and it is
likely that the current working set changes after adding it. To better tackle the multi-objective
nature of the problem, thereby, it is not trivial to decide which solutions undergo the local search
procedure. Therefore, we decided to entail once more the selection procedure previously described
to choose a solution from the current working set for feeding the local search phase.

In order to maintain the algorithm as simple and fast as possible we focused our effort in obtaining
a simple and fast local search procedure. The rationale of this phase is quite straightforward: ng
elements belonging to the selected solution are randomly chosen, removed and re-inserted into
Npeigh consecutive positions, half of which usually precede and half follow the original position
of the element. In fact, depending on the distance of the original position from the beginning or

from the end of the sequence, the neighborhood, still having the same amount of moves, may or



may not be symmetric. Local search in a multi-objective setting is not as simple as one might
think. As a matter of fact, the concept of first improvement or best improvement does not
directly apply. In our case, all movements, i.e., nge X Npeign insertions are carried out and all
solutions are evaluated. Afterwards, Pareto dominance is checked and a final non-dominated set
is generated as a result. Note that is is much faster than generating, one by one, all neighbors
and checking each time for dominance. In order to further speed up this local search, we employ
the well known accelerations of |Taillard| (1990)). Finally, this set is included into the working
set and dominance is applied again. During the initial design phase we studied the algorithm
performance by varying nge and n,.45. We obtained the best results for n,e;gn = 5 and for nggy
by dynamically changing its value with the ncouns value (Selection Counter introduced in section
of the selected solution, in accordance with the following formula:

Ncount if Neount < n/2
Ngel = .
n/2  otherwise

The pseudocode of the local search procedure is presented in figure [1b}

3.4 Restart phase

1G methods have one main drawback: they are prone to get stuck in local optimum solutions.
The reason lies behind their very nature as they are greedy methods. RIPG is no different. To
avoid this potential problem, we have included a simple, yet reliable restart phase. This procedure
merely consists of storing all the elements of the current working set in a separate archive and then
creating a new random working set of 100 elements. The main advantage of this restart procedure
is that it is a very fast way to introduce diversification inside our metaheuristic scheme, whereas
its main inconvenience consists of the difficulty in choosing of a suitable restarting criterion. The
general idea is to execute a restart when the working set has not been changed during a sufficiently
large number of iterations. To accomplish with our objective of simplicity and reliability, we use
the simple approach of checking whether the size of the current working set changes after each
iteration. Of course, this strategy is sometimes inaccurate because it can not detect a change in
the working set that does not affect its cardinality, but has the unquestioned advantage of being
very fast. Another important issue to take into account while designing an effective restart is
to establish the minimum number of iterations to safely assert that the search process is in a
stalemate. In fact, if the restart condition is not carefully designed, it might either be applied too
often, thus preventing reaching a steady state in the search or be too seldom applied, wasting, in
this way, valuable CPU time. We carried out short initial tests considering several fixed as well
as dynamic restarting points and the best results were achieved by applying a restart after n x 2
iterations without changes in the cardinality of the current working set. Note that this rule is
effective since it takes into account the size of the instance allowing for more iterations to bigger

ones for which the algorithm needs a larger amount of time to reach a steady state.
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4 Experimental phase

This section is aimed at introducing the reader to all the elements needed in order to fully
understand the experiments carried out, the results and their implications. First we deal with
the description of the state-of-the-art algorithms the RIPG is compared to within the experimental
phase. Later on, we describe in detail the test bed instance sets used and discuss the performance
assessment methodologies considered. Then, the design process of our proposed algorithm is

described and ultimately, we describe the test campaign and analyze the results.

4.1 Adaptation of existing metaheuristics

In the previously cited review work of Minella et al. (2008), we carried out a comprehensive
analysis of the performances of the most well known multi-objective algorithms. We carefully
re-implemented 23 algorithms and made an exhaustive test campaign with three couples of ob-
jectives, three different stopping times and a large set of instances expressly created for the
multi-objective flowshop problem. Recall that in this paper we extend this problem with the
presence of setup times. A preliminary experiment in which all the algorithms have been tested
using a reduced set of instances has been carried out and on the basis of the results obtained
we have selected the best algorithms. Many of these are specifically designed to tackle flowshop
problems without setups while the other three are general purpose multi-criteria optimization
procedures. Note that, to the best of our knowledge, no multi-objective methods have been
specifically proposed for the setup times flowshop with Pareto approach. The generic methods
are now briefly explained. A genetic algorithm is proposed by Corne et al.| (2000). This method,
called PESA uses a selection and replacement procedure based on a crowding measure. Later,
in |Corne et al.| (2001) an enhanced PESAII method is provided. This algorithm differs from the
preceding one only in the selection technique in which the fitness value is assigned according to
a hyperbox calculation in the objective space.

Kollat and Reed (2005) proposed a variation of NSGAII proposed by [Deb| (2002)) referred to as
e—NSGAII by adding e—dominance archiving and adaptive population sizing. The reader can
find a more detailed description of these algorithms in [Minella et al.| (2008]).

We decided to include another seven algorithms recently presented in the literature that did not
make it for Minella et al. (2008) evaluation. Five of them have been modified in order to use up
all the available time unlike the original versions which ended after a fixed number of iterations.
Those algorithms are highlighted by adding a " M" at the end of the name. Note that one of
them, a modified version of the multi-objective simulating annealing of Varadharajan and Rajen-
dran| (2005), referred to as MOSA _Varad M has been already presented in Minella et al.| (2011))
where it was shown to clearly outperform the original version. For space reasons we included at
http://soa.upv.es as on-line material the pseudo-codes of the original as well as the modified

versions of these algorithms. The selected algorithms, seventeen in total, either specific for the
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PFSP or for the general multi-objective version, are summarized in Table [T} Table [2] shows the

values for the parameters used for all the algorithms in the comparison. Those values are those

reported in their respective original works.

Acronym Year Author/s Type
MOGA Murata 1996 Murata et al. Genetic algorithm. Specific
PESA 2000 Corne et al. Genetic algorithm. General
PESAII 2001 Corne et al. Genetic algorithm. General
CMOGA 2001 Murata et al. Genetic algorithm. Specific
MOTS 2004 Armentano and Arroyo Tabu search. Specific
e—NSGAII 2005 Kollat and Reed! Genetic algorithm. General
MOGALS Arroyo 2005 Arroyo and Armentano Genetic algorithm. Specific
MOSA Varad 2005/ |Varadharajan and Rajendran Simulated annealing. Specific
PGA_ ALS 2006 Pasupathy et al. Genetic algorithm. Specific
PILS 2007 Geiger, Iterated local search. Specific
hMGA 2007 Yanda and Tamura Genetic algorithm. Specific
MOIGS 2008 Framinan and Leisten Tterated Greedy. Specific
MOACAL7 M 2009 Rajendran and Ziegler Ant-colony algorithm. Specific.
MOACA18_ M 2009 Rajendran and Ziegler Ant-colony algorithm. Specific.
MOACA19 M 2009 Rajendran and Ziegler Ant-colony algorithm. Specific.
MOACA20_ M 2009 Rajendran and Ziegler Ant-colony algorithm. Specific.
MOSA Varad M 2011 Minella et al. MOSA _Varad improved version

Table 1: Re-implemented methods for the SDST multi-objective flowshop.

Algorithm Parameter Value
MOSA_ Varad M Non Dominated Solutions Archive Size 500
Initial Temperature 575
Final Temperature when time is over
Ratio of Temperature Decreasing 0.9
MOSA _Varad Non Dominated Solutions Archive Size 500
Initial Temperature 575
Final Temperature 20
Ratio of Temperature Decreasing 0.9
MOTS Population Size 10
PILS Number of environments 3
MOIGS Destruction Block Size 7
PESA Population Size 100
Crossover Probability 0.7
Mutation Probability 1/Number of jobs
Non Dominated Solutions Archive Size 100
Number of Divisions in the Grid 32
PESAII Population Size 100
Crossver Probability 0.7
Mutation Probability 1/Number of jobs
Cardinality of the Non Dominated Solutions set 100
Number of Divisions in the Grid 32
MOGALS Arroyo Number of elite solutions 20
Population size 100
Crossover probability 0.9
Mutation probability 0.6
Max Paths 10
Max Iterations of Local Search 15
Iterations between each 2 search executions 100
PGA ALS Population size 100
Crossver probability 1
Mutation probability 0.1
MOGA MURATA  Number of elite solutions 5
Population size 100
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Algorithm Parameter Value

Crossover probability 0.9
Mutation probability 0.1
e—NSGAII Population 10
Crossover probability 1
Mutation probability 1/Number of jobs
Epsilon value 0.001
CMOGA Number of elite solutions 3
Population size 101
Crossover probability 0.8
Mutation probability 0.3
Maximum cell distance 20
hMGA Population size 100
Crossover probability 0.9
Mutation probability 0.01
MOACA17 M p 0.7
C 2
P 1.5
K 50
Population size 500
MOACA18 M p 0.7
C 2
P 1.5
K 20
Population size 500
MOACA19 M p 0.7
C 2
P 1.5
K 50
Population size 500
MOACA20 M o 0.7
C 2
P 1.5
K 20
Population size 500

Table 2: Table of parameter values for the re-implemented methods.

4.2 Benchmark description

In the experiments presented in this paper we make use of three different instance sets based
on the original work of Taillard (1993) for the regular flowshop and on the papers of |Ruiz et al.
(2005) and Ruiz and Stiitzle (2008) for the setup times version.

Each set contains instances with several combinations for the number of jobs (n) and number of
machines (m). The n x m combinations are: {20,50,100} x {5,10,20} and 200 x {10,20} for a
total of 11 different groups of instances. The first two sets, referred to as SSD50 and SSD125,
respectively, have ten instances for each group, resulting in a total of 110 instances per set.
Setup times in SSD50 and SSD125 are generated to be respectively the 50% and the 125% of the
processing times (p;;). This means that since the p;; in Taillard’s instances are generated using
a uniform distribution in the range [0 — 99] in the first set, setup times are uniformly distributed
in the range [0 — 49], while in the second, their range is [0 — 124]. Each instance is assigned with
a set of weights and due dates. The weights are drawn from a uniform U[1, 10] distribution while
the due dates d; are generated by means of the expression: d; = P; x (1 + random - 3) where

P; = 3" pij is the sum of the processing times over all machines for jobs j € N and random is
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a random number uniformly distributed in [0, 1]. Finally, we created from scratch a third set of
instances, referred to as SSDTest, borrowing the structure from the first two. This set is used
to calibrate our algorithm and contains only four instances for each group, half of which have
setup times in [0 — 49] and half in [0 — 124]. All benchmarks as well as all solutions obtained in

this paper are available at http://soa.upv.es.

4.3 Performance assessment methodologies

In single objective optimization, the concept of a better solution is straightforward. However,
when multiple objectives are present, deciding when a given result A is better than B is far
from simple. As mentioned, the outcome of a multi-objective optimizer is not just one solution,
but a set of several different solutions. Usually, the outcome is already processed so that only
non-dominated solutions are given. This is commonly referred to as a frontier. It is obvious, of
course, that a frontier is better than another if all the points of the former (strongly) dominate
all the points of the latter. In the case that this condition does not hold, an unambiguous way
to establish which frontier outperforms the other does not exist to the best of our knowledge.
Many indices have been introduced in the literature to overcome this impasse but this is still an
open issue so much so that, recently, first Knowles et al.| (2006) and later [Zitzler et al. (2008)
demonstrated that many frequently used metrics are non Pareto-compliant i.e., in some cases,
they can assign a better value to a Pareto frontier B respect to frontier A even if A dominates B.
Those metrics therefore, can often give wrong and misleading results. Therefore, special attention
must be given to the choice of quality measures to ensure fair and generalizable results.

In this paper, we choose the hypervolume Iy and the unary Epsilon I} indicators that Knowles
et al.| (2006 and Zitzler et al. (2008) demonstrated as being Pareto-compliant and, at the mo-
ment, can be considered as the state-of-the-art indicators for the evaluation of multi-objective al-
gorithms. Additionally, considering two quality indicators instead of one, increases the soundness
of our conclusions. Given two multi-objective optimizers, these two indicators can, sometimes,
give conflicting results, indicating that neither one can be considered superior.

The hypervolume indicator I, first introduced by |Zitzler and Thiele (1999) measures the normal-
ized (hyper)volume of the solution space dominated by the Pareto front approximation generated
by one algorithm. A reference point is needed for closing the hypervolume. We obtained this
reference point by considering the worst value for each objective over the whole set of Pareto
front generated by all the methods for a certain instance and multiplying them by 20%. More
formally, the Iy indicator can be defined as follows: Given a set of Pareto frontiers F, be-
ing F' € F a frontier, pt € F a point belonging to the frontier, NObj the number of objec-
tives and NSol the number of points in F', then the hypervolume for F' can be calculated as
In(F) = 31 <icNSol 221<j<NOb; MPE;rfa;j;fl;lﬁnff), where min; F and max; F are the best and
worst values, respectively, for objective j over all the frontiers in F. Notice that, as the objective

values are normalised, the maximum Iy value can by obtained by the product of the reference
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point values: 1.2 x 1.2 = 1.44.

As far as the Unary Epsilon Indicator I! is concerned, it was proposed initially by |[Zitzler et al.
(2003) and was later extended in Knowles et al.| (2006) and in [Zitzler et al. (2008). It measures
the minimum distance between a given Pareto front and the optimal one or an approximation
of it. Since for our problem the optimal front for each instance is not known, a reference set,
constituted by gathering all non-dominated solutions obtained by all the tested algorithms, is
used. As said, the objectives values are normalized and additionally translated by one unit in
order to avoid division by zero errors in the calculation of the indicator. This approach was used
with success by Minella et al.| (2008]) and by |[Minella et al.| (2011). In this way the indicator varies
between 1 and 2. A value close to 1 means that the considered frontier is close to the reference
set, whereas a value close to 2 means that the set of solutions is distant. It is formally calculated
as follows. P is the Pareto front or a reference set and S is an approximation to the Pareto front.
Actually, I} = I.(S, P) where I.(S, P) = max,» min,: max; L),

fiz®

The main drawback of using unary indicators when comparing different frontiers is that

such measures cannot supply us with information about the spatial behavior of the considered
algorithms, i.e., in which region of the objectives space one algorithms behaves better or worse
than the other. This knowledge is especially important during the design phase of a new method.
In fact, having at our disposal a technique that permits us to analyze the outcomes and highlights
potential problems of convergence would highly simplify and accelerate the development processes.
Fonseca et al.| (2001)) proposed a probabilistic measure, called Attainment Function, which is able
to provide useful insight into the spatial behavior of an algorithm. To be more precise, let X € R?
be an arbitrary point of a d-objective solution space and F = {v, € R? p=1,..., P} be a frontier
generated in a single run of and algorithm referred to as «. P is the total number of points
present at the frontier F'. The attainment function is defined by AF,(X) = P(3 v, € F: v, IX)
which describes the probability the method « has to generate, in a single run, a Pareto front
approximation F in which at least one element weakly dominates (<) the arbitrary point X.
In the case of stochastic algorithms, it is not possible to express this function in a closed form
but it can be empirically approximated by employing the outcomes of several algorithm runs.
This approximation is called Empirical Attainment Function and is defined in [Fonseca et al.
(2001) as follows: FAF(X) = % 1_ I(Fn < X) where Fi,Fa, ..., F, represent ¢ Pareto set

approximations obtained in ¢ independent algorithm’s runs and

1 ifF X

I(F, < X) =
(Fn 9.4) {() otherwise

The attainment function has one inconvenience. The problem is that it has to be calculated for
each pair of compared methods. When the number of evaluated methods grows, the number of
pairwise comparisons grows quadratically. In order to overcome this drawback, |[Lépez-Ibanez et al.
(2006) presented the Diff-EAF that is a probability function defined as the difference between
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two EAFs. Let o and 8 be two algorithms. The Diff-EAF is then defined as follows:
Diff — EAF, p)(X) =

This function represents the probability of X to be dominated by a frontier of o but not of S.
Note that the Dif f — EAF, g may have positive as well as negative values. A positive value
indicates that the algorithm « prevails over 8 in X, the other way around in case of a negative
value.

Finally, another important issue related to the comparison among algorithms is the choice of
a suitable termination criterion. We believe that the fairest way to confront different methods is
assigning the same amount of CPU time to each one of them and more time to larger instances
with respect to smaller ones. Therefore, we assign to each algorithm the same elapsed CPU
time limit that depends on the size of the considered instance. The algorithms are then stopped
after n - m/2 - t milliseconds of CPU time, where ¢ is an input parameter that will be tested at
different values. In this way, we assign more time to larger instances that are obviously more

time consuming to solve.

4.4 Design and calibration of the RIPG

The RIPG is the result of an thorough engineering process in which all parts that constitute
it have been compared against several possible alternatives. The aim is to create an efficient
and effective algorithm. To do this we employ of a sound statistical methodology called Design
of Experiments (DoE) (see for more details Montgomery, 2009)). In order to prevent a possible
over-calibration of our proposed algorithm, we decided to use, in this phase, an instance set
(SSDTest) different to those used in the comparison of RIPG against other algorithms (SSD50
and SSD125). Initially, we studied the influence of the local search and the restart mechanism
on the quality of the produced solutions. Thereby, we assembled 4 algorithms called IPG B,
IPG_ LS, RIPG_B and RIPG_ LS, respectively. B and LS stand for Basic and Local Search
and the prefix R indicates the presence of the restart mechanism. Each algorithm was run ten
independent times (replicates) against all 44 instances of the SSDTest set and both hypervolume
and epsilon indicators are calculated, leading to a total of 4 x 44 x 10 = 1760 results.

Ounly the (Cpax, TWT) pair of objectives was considered for the calibration and the stopping
time was fixed at t = 100ms. Figures 2h and 2b depict the means plots with Tukey confidence
intervals with a 95% confidence level (a = 0.05) from the ANOVA test and report on the inter-
action between the response variable, respectively Iy and I}, and the type of algorithm which is
tested as a controlled factor with four levels. Due to reasons of space, we only highlight here the
most important findings. Overall, the method with restart and local search phases (RIPG_LS)
achieves better average results, that are, even for the grand average, statistically better than

the non-restart versions, with and without local search. The local search phase improves the
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quality of the results for all the instances while the restart phase only affects the smaller ones.
This behavior is mainly attributable to the huge number of elements in the solution space that
prevents the algorithm from reaching a steady state in the available computation time. On the
contrary, small instances have Pareto fronts with few solutions and the search soon gets trapped.
In this scenario, the restart procedure operates by increasing the diversification in the process,

thus enhancing the probability of improving the solutions generated.

Figure 2: Means plots and Tukey HSD confidence intervals (o = 0.05) in the ANOVA test for
the calibration of the RIPG. Makespan and total weighted tardiness criteria and ¢t = 100ms CPU
time stopping criterion.

4.5 Computational analysis

In this section we detail the campaign of experiments we have carried out and analyze the
outcomes by means of statistical tests. We run the 18 tested algorithms ten times each (replicates)
for each one of the 220 instances of the sets SSD50 and SSD125, for both pairs of criteria.
Furthermore, two stopping times have been considered (t = 150ms and t = 200ms) raising
up the total number of data samples to 158,400. All the tested methods are coded in Delphi
XE language with all the optimization options activated. The experiments have been executed
on a cluster of 12 Core Duo 2.4 Ghz computers running with Windows® XP SP3 0.S. and 2
GBytes of RAM memory. The results are summarized in Table [3| for the Cpax — TWT case
and Table {] for Cihax — TFT. Although each cell in the tables is the average of no less than
2200 data points, it is still necessary to carry out a careful statistical experiment in order to
assess whether the observed differences in the average values are statistically meaningful. We
did parametric ANOVA analyses as well as non-parametric Friedman rank-based tests for both

instance sets, for the two performance indicators, the two pairs of objectives and for the two
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stopping times. This results in a total of 32 different experiments. Thereby, we carried out 16
multi-factor ANOVAS where the size of the instance and the algorithm are the controlled factors.
One half of the experiments have been carried out employing the hypervolume as a response
variable, and then we repeated the same tests considering the epsilon indicator. All the tests
have been executed with a confidence level of 95% (a = 0.05). Note that since we are carrying
out four tests over the same results (parametric and non-parametric, epsilon and hypervolume),
we employ the Bonferroni adjustment for the « level, i.e., we use an adjusted a; of 0.01 for a
real o of 0.05. In order to safely apply ANOVA, it is necessary to check three main hypothesis:
normality, homogeneity of variance (or homoscedasticity) and independence of residuals. The
residuals resulting from the experimental data have been analyzed and all three hypothesis can
be accepted.

We make use of parametric as well as non-parametric tests to strengthen the soundness of our
conclusions. Therefore we compare the results of the first group of tests against those of a
second group of non-parametric experiments. Non-parametric Friedman rank-based tests have
been carried out. Since there are 18 algorithms and 10 different replicates, the results for each
instance are ranked between 1 and 180. All these tests substantially validate and strengthen
the results shown in the tables. In table |3| the mean values concerning both instance sets and
Chax — TWT criteria are reported. Both indicators Iy and Ial are considered and the methods
are sorted decreasingly according to the value of Iy. RIPG turns out to be the best performing
algorithm for each combination of indicators, stopping time and instance set. In comparison to
MOSA Varad M, the second method in the ranking, the RIPG’s percentage improvement is
between 2% and 7% of the hypervolume.

Please note that the global ranking of algorithms remains substantially unchanged for the

different stopping times and instance sets, whereas there are few differences if we compare the
ranking of Iy and I!. This is mainly due to the fact that the unary epsilon indicator is the
average minimum distance between the frontier generated in a single run and the best Pareto
front known. Also it is much more conservative than the hypervolume, therefore it is likely that
by using this indicator, closer values are assigned to the algorithms and there is the possibility
that they might have a different rank. Since at the moment it is not clear which indicator is the
most reliable, when this anomaly happens, the affected methods are considered incomparable.
It is worth to note that RIPG turns out to be more competitive in the SSD125 set respect to
SSD50.
In Table {] results concerning Chax — TFT criteria are reported and again RIPG comes out as
being the best method in the set, but unlike the Cypax — TWT case, MOIGS performs much
better and achieves the second position of the rank for the SSD125 set. This happens because it
is an improved version of an algorithm specially designed to tackle the multi-objective flowshop
problem with Cy.x — TFT criteria.

Note also how Tables [3]and [] contain additional columns with the total number of evaluated
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solutions for each algorithm, combination of objectives, instance set and termination criterion.
It is interesting to see that there are enormous differences. Take for example algorithms PILS
and MOSA Varad M for instance set SSD50 and termination criterion 150ms. PILS evaluated
about 426 thousand solutions on average whereas MOSA Varad M evaluated more than 3.5
million. This is, on average, MOSA Varad M evaluates almost 8.5 more solutions than PILS
for the same CPU time. This highlights the importance of stopping algorithms after the same
elapsed CPU time and not after the same number of iterations. Stopping both algorithms after
the same number of iterations would result in wildly different employed CPU times.

Figures [3a] and [3b] show some means plots for ANOVA and Friedman tests where only the
first five best algorithms are depicted. It has to be stressed that ranking tests neglect the real
differences in the indicators and therefore, differences may appear smaller of greater respect to
the equivalent ANOVA test.

Due to reasons of limited space, we cannot reproduce here the complete 32 plots, each one
with all the 14 algorithms. These are available as part of the on-line material.

Lastly, we present six figures (dh-df) which represent the EAF for MOSA_Varad_M ({h),
MOIGS (4p) and RIPG (k) and differences of EAFs ({4 [4F) for instance 71 of SSD50 (100 jobs
and 10 machines) and (Cpax — TWT) criteria. Each image is elaborated employing 50 replicates
for each algorithm. Although these pictures give us information only for a single instance, during
a design phase one can use such knowledge to understand by and large the behavior of the involved
algorithms. Let us focus for example on picture [h, it is clear that MOSA _Varad M method is
worse than MOIGS only in a central part of the objective space while it achieves better results
than MOIGS at the extremes of the frontier (see figure [dd). Finally, also using this tool we
confirm that RIPG widely outperforms its competitors. For more details, the reader is referred

to the on-line material where similar figures are reported for other instances.
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5 Conclusions and future research

There have been several methods proposed in the literature for the a posteriori multi-objective
flowshop problem. However, as important as they are in practice, setup times have not been
considered, as far as we know, for this setting. This paper represents a first attempt to tackle
this problem.

We have presented two main contributions to the field of the multi-objective flowshop. First,
we have adapted the best performing algorithms for the multi-objective flowshop by adding
anticipative sequence dependent setup times to the problem. We carried out a study of these
algorithms to establish which ones show better performance for the problem with setups. Second,
we have extended a new strategy which achieved state-of-the-art results for the single objective
flowshop, the Iterated Greedy metaheuristic, in order to deal with several objectives and setup
times simultaneously. The extended IG method has been referred to as RIPG. A thorough
algorithm engineering process, along with statistical calibration led to a refined proposal which
has shown to reach state-of-the-art results for this problem. This has been confirmed by a wide
campaign of tests where the results have been analyzed by means of parametric as well as non-
parametric statistical tests. We employed two Pareto compliant performance indicators, two
stopping criteria bagsed on the elapsed CPU time and two combinations of scheduling objectives.
As a consequence, RIPG can be considered the state-of-art procedure for this scheduling problem.
Future research lines stem from the possibility of applying this scheme to solve different or more
constrained scheduling problems such as, the hybrid flowshop or the parallel machines problems.
Another interesting area of future research relates to the EAF, a rather new statistical tool
employed here, to study the probability that one algorithm has to cover a certain zone of the
objective space. Its main drawback is that only one instance at a time is represented. An
extension of the EAF that takes into account a whole instance set would be a useful tool for a
deeper understanding of algorithm’s behavior and, furthermore, it would also lead to new and

more reliable performance indicators.
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