

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.ejor.2012.12.031

http://hdl.handle.net/10251/43117

Elsevier

Ciavotta, M.; Minella, GG.; Ruiz García, R. (2013). Multi-objective sequence dependent
setup times permutation flowshop: A new algorithm and a comprehensive study. European
Journal of Operational Research. 227(2):301-313. doi:10.1016/j.ejor.2012.12.031.

Multi-objective sequence dependent setup times

permutation �owshop: a new algorithm and a

comprehensive study

Michele Ciavotta∗, Gerardo Minella, Rubén Ruiz,

Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,

Ciudad Politécnica de la Innovación, Edi�cio 8G. Acceso B. Universitat Politècnica de València,

Camino de Vera s/n, 46022 Valencia, Spain

{mciavotta,mgerar}@iti.upv.es, rruiz@eio.upv.es

October 20, 2012

Abstract

The permutation �owshop scheduling problem has been thoroughly studied in re-

cent decades, both from single objective as well as from multi-objective perspectives.

To the best of our knowledge, little has been done regarding the multi-objective �ow-

shop with Pareto approach when sequence dependent setup times are considered. As

setup times and multi-criteria problems are important in industry, we must focus on

this area. We propose a simple, yet powerful algorithm for the sequence dependent

setup times �owshop problem with several criteria. The presented method is referred

to as Restarted Iterated Pareto Greedy or RIPG and is compared against the best

performing approaches from the relevant literature. Comprehensive computational

and statistical analyses are carried out in order to demonstrate that the proposed

RIPG method clearly outperforms all other algorithms and, as a consequence, it is

a state-of-art method for this important and practical scheduling problem.

Keywords: scheduling, permutation �owshop, multi-objective, sequence dependent

setup times, iterated greedy

∗Corresponding author. Tel: +34 96 387 99 52. Fax: +34 963 87 72 39

1

1 Introduction

The �owshop scheduling problem (FSP) is characterized by a set N of n jobs that must be

processed by a set M of m machines. All m machines are disposed in series and, without loss

of generality, jobs visit machine 1 �rst, then machine 2 and so on until machine m. Each job

needs a given, known in advance, �xed and non-negative processing time at each machine. This is

denoted as pij , for each j ∈ N and i ∈M . A job cannot be in process at more than one machine

simultaneously and one machine can only process one job at a time. The aim of this problem

is to sequence the n jobs on the m machines so that a given criterion is optimized. Basically,

there are n! possible job permutations at each machine. In the most general case, each machine

is associated with a di�erent queue of jobs and hence, there are (n!)m possible solutions to this

problem, where each solution is commonly referred to as a sequence.

The FSP has been criticized for being too theoretical as most real industry settings seldom

�t into such a model. In part, this is attributable to the absence of setup times, which are very

common in industry. Additionally, real-life problems have a multi-objective nature. Furthermore,

�owshops rarely have the inter-machine �exibility to manipulate jobs in the processing queues.

For all these reasons, this paper studies the multi-objective sequence dependent setup times

permutation �owshop variant.

Setup times involve non-productive operations that have to be performed on machines and

that are not part of the job's processing times. These may include, but are not limited to, cleaning,

�xing and releasing parts to machines. Although on some occasions setup times can be included

in the processing times, in the majority of industrial contexts it is not possible to ignore them.

We can roughly classify setups into two main categories. The �rst one de�nes those setups which

are Sequence Independent (SIST) i.e., the setup or changeover time for a machine only depends

on the job that is to be processed next. The second category is the Sequence Dependent setup

times (SDST) case, where setup time depends both on the current job being processed and on the

next job in the sequence. This second category is much more complex and includes the �rst one

as a particular case, permitting it to describe several operational scenarios. Furthermore, setups

can be either anticipatory or non-anticipatory. In the former case, setups can be performed as

soon as the machine is free and before the next job in the sequence is loaded. In this setting,

we denote by Sijk,∀i ∈M,∀j, k ∈ N, j 6= k the job sequence dependent setup time at machine i

when processing job k after having processed job j.

A large body of research in the FSP deals with the optimization of a single criterion. The most

commonly studied objective is the minimization of the maximum completion time or makespan,

denoted to as Cmax which is calculated as maxnj=1{Cmj}, where Cmj is the completion time of

job j, i.e., the time at which job j �nishes processing at machine m. Often, Cmj is simply de-

noted as Cj . Given a sequence π of n jobs where π(l) denotes the job occupying position l in

the permutation with l = {1, . . . , n}, Cmax with SDST can be calculated in O(nm) steps with

the following recursive formula: Ci,π(l) = max
{
Ci−1,π(l) , Ci,π(l−1)

+ Si,π(l−1),π(l)

}
+ pi,π(l) where

2

Ci,π(0) = 0, C0,π(l) = 0 and Si,π(0),π(l) = 0, ∀i ∈M, l = {1, . . . , n}.
Makespan has been widely studied since a minimum value translates into a high resource utiliza-

tion, throughput and Overall Equipment E�ciency (OEE). A second commonly studied criterion

is the total �owtime, de�ned as TFT =
∑n

j=1Cj if we assume that all jobs are available at

time 0 (i.e., the release dates or rj are all zero). TFT , albeit certainly related, is quite di�erent

from makespan. A low TFT value reduces the Work-In-Process (WIP) inventory which is of

paramount importance in real production shops. TFT also ensures a minimum cycle time in

production environments. Cmax and TFT are production-oriented criteria and neglect an impor-

tant aspect of production which is client satisfaction. Jobs often model client orders that have a

desired delivery date. This date is accounted for in scheduling by means of a due date dj for each

job. A job is said to be tardy if Cj > dj . With this in mind, we de�ne the tardiness of a job j

as Tj = max {Cj − dj , 0}. As can be expected, not all orders from clients are equally important.

To model this, a priority, importance or weight wj is also given for each job. Considering all

previous de�nitions, the third most commonly treated objective is the total weighted tardiness

or TWT =
∑n

j=1wj · Tj .
The previous objectives are the three most common, but are not the only ones. In practice, as

one can expect, a combination of objectives is usually sought. For example, optimizing makespan

results in a very high machine utilization. However, most due dates are likely to be violated. As

a consequence, a multi-objective approach is needed. As concluded from the multi-objective �ow-

shop review of Minella et al. (2008), most authors deal with several objectives in the most simple

way, which is just adding them into a single weighted linear combination measure for example

α · Cmax + (1− α) · TFT , where 0 ≤ α ≤ 1. This is an example of the �a priori� approach. The

problem with this is that often, objectives are measured in di�erent scales and it is di�cult to

map α into a valid user preference. Another procedure, referred to as the �a posteriori� approach

consists of �nding out a set of solutions. Each solution represents a trade-o� in the optimization

of a given set of independent objective functions. This solution set is called the Pareto front. It

is assumed that a multi-objective procedure returns this set to the decision maker, which later

picks one solution from it.

We restrict ourselves to the permutation version of the �owshop problem where job passing is

not allowed from machine to machine, i.e., the permutation of jobs cannot change from one ma-

chine to the next. This results in a smaller solution space of n! This version of the problem is

denoted as the permutation �owshop problem or PFSP in short. This special case is important

in practice since in-process storage of products is very limited in most situations. Note that even

this simpli�cation of the problem, with no setups and one single objective still remains NP-hard
for many common criteria (Garey et al., 1976) and remains intractable for low values of n.

Following the well known classi�cation scheme of Graham et al. (1979) and the extension of

the notation for the multi-objective problems by T'kindt and Billaut (2006), the problem studied

in this paper is denoted as F/prmu, Sijk/#(γ1, γ2) where γ1 and γ2 are the two objectives that

3

are considered in a Pareto approach. The two combinations of objectives that we consider in

this paper are (Cmax, TFT) and (Cmax, TWT). To the best of our knowledge, this problem

(even with a di�erent set of objectives) has not been studied in the scienti�c literature and this

paper presents the �rst attempt to solve it. We approach this problem with a recently proposed

metaheuristic strategy, specially tailored for multi-objective problems.

The remainder of this paper is organized as follows: Section 2 presents a review of the

literature on multi-objective optimization as well as existing results for the PFSP with setup

times. Section 3 details the proposed algorithm which is later tested in Section 4 by carrying out

a wide campaign of experiments and the results are statistically analyzed in detail. Finally, in

Section 5, some conclusions and further research topics are given.

2 Literature review

To the best of our knowledge, no paper has been published that considers all characteristics of the

problem studied in this work, i.e., multi-objective permutation �owshop problem with sequence

dependent setup times. Hence, in the following subsections we present �rst a brief review of

multi-objective �owshop and second a review about SDST �owshop with one single objective.

2.1 Multi-objective �owshop

The literature on multi-objective optimization is extremely rich. However, the multi-objective

PFSP �eld is relatively scarce, specially in comparison with the large number of papers published

dealing with the single criterion �owshop problem. The few proposed multi-objective methods

for the PFSP are mainly based on evolutionary optimization and on local search techniques like

simulated annealing (SA) or tabu search. In Minella et al. (2008), the authors carefully reviewed

the literature related to this problem. Thus, here we restrict ourselves to only the most signi�cant

works and to some other more recent published material.

Methods belonging to the �a priori� multi-objective approach (weighted objective functions,

lexicographical and goal optimization, etc.), in general, return a single solution, the closest one to

decision-maker's desires. Di�erently, methods belonging to the �a posteriori� approaches return

several equivalent solutions (Pareto set) among which the decision maker can choose.

Focusing only on the �a posteriori� approach, the number of publications in the �owshop litera-

ture is reduced to a little set. A genetic algorithm (GA) was proposed by Murata et al. (1996)

which was capable of obtaining a Pareto front for makespan and total tardiness. This algorithm,

referred to as MOGA (Multi Objective Genetic Algorithm), applies elitism and the selection

phase employs a �tness value assigned to each solution as a function of the weighted sum of

the objectives. The weights for each objective are randomly assigned at each iteration of the

algorithm. Later, in Ishibuchi and Murata (1998), the authors extended this algorithm by means

of a local search procedure applied to every newly generated solution.

4

A genetic algorithm is shown by Bagchi (2001), which is based on the Srinivas and Deb (1994)

NSGA method. Some short experiments are given for a single �owshop instance with �owtime

and makespan objectives. Murata et al. (2001) improve the earlier MOGA algorithm by Murata

et al. (1996). This new method, called CMOGA, re�nes the weight assignment.

Ishibuchi et al. (2003) present a comprehensive study about the e�ect of adding local search to

their previous algorithm (Ishibuchi and Murata, 1998). The local search is only applied to good

individuals and by specifying search directions. This form of local search was shown to give better

solutions for many di�erent multi-objective genetic algorithms. In Loukil et al. (2000), several

scheduling problems are solved with di�erent combinations of objectives. The main technique

used is a multi-objective tabu search, referred to as MOTS. Later, in Loukil et al. (2005), a similar

study is carried out. In this case the multi-objective simulated annealing (MOSA) approach is

employed.

Suresh and Mohanasundaram (2004) propose a Pareto-based simulated annealing algorithm for

makespan and total �owtime criteria. Experiments are conducted and the proposed method is

compared against that of Ishibuchi et al. (2003) and against an early unpublished version of the

SA later presented in Varadharajan and Rajendran (2005). Arroyo and Armentano (2004) stud-

ied heuristics for several two and three objective combinations among makespan, �owtime and

maximum tardiness. For the general m machine case, the authors compare the results against

those of Framinan et al. (2002). The results favor the proposed method that, when used as a

seed sequence, also improves the results of the GA of Murata et al. (1996). The same authors

developed a tabu search for the makespan and maximum tardiness objectives in Armentano and

Arroyo (2004). The algorithm includes several advanced features like diversi�cation and local

search in several neighborhoods. The proposed method is shown to be competitive in numerical

experiments. In a more recent paper, Arroyo and Armentano (2005) carry out a similar study but

in this case using genetic algorithms. The makespan and total �owtime objectives are studied

by Varadharajan and Rajendran (2005) with the help of simulated annealing methods. These

algorithms start from heuristic solutions that are further enhanced by improvement schemes.

Two versions of these SA (MOSA and MOSA-II) are shown to outperform the GA of Ishibuchi

and Murata (1998). According to the comprehensive computational evaluation of Minella et al.

(2008), where 23 methods were tested for the multi-objective �owshop, an enhanced version of

MOSA_Varadharajan algorithm (named MOSA-II in the original paper) is shown to consistently

outperform all other methods.

Pasupathy et al. (2006) proposed a Pareto-archived genetic algorithm with local search and have

tested it with the makespan and �owtime objectives.

Geiger (2007) has published an interesting study where the topology of the multi-objective �ow-

shop problem search space is examined. Using several local search algorithms, the author ana-

lyzes the distribution of several objectives and tests several combinations of criteria. Yanda and

Tamura (2007) presented a variant of the NSGAII of Deb (2002), referred to as hMGA, which

5

uses a working population with dynamic size made of only heterogeneous solutions. According

to the authors, this choice prevents the algorithm from getting stalled in local optima. Framinan

and Leisten (2008) presented an iterated greedy (IG) procedure based on the NEH heuristic.

This algorithm is an evolution of the IG basic principle for the multi-objective PFSP. Recently,

Rajendran and Ziegler (2009) proposed an ant-colony algorithm for the �owshop sceduling prob-

lem (MOACA) with the objective of minimizing the makespan and total �owtime. The authors

presented 20 variants of the algorithm and some of them turned out to be highly competitive for

the considered benchmark.

2.2 SDST �owshop

Hundreds of papers dealing with the permutation �owshop problem have been published in the

literature but only a relatively minor fraction of them consider sequence dependent setup times.

Exact techniques for the SDST permutation �owshop have shown rather limited results. The

latest reference and most advanced study is that of Ríos-Mercado and Bard (2003) which studied

the polyhedral structure of two mixed-integer programs for the SDST �owshop in order to generate

more e�ective cuts to use in a branch-and-cut framework. Some heuristics and metaheuristic

algorithms for the F/Sijk, prmu/Cmax have been proposed. For example, Ríos-Mercado and

Bard (1998) presented a modi�cation of the well known NEH heuristic for the regular �owshop

from Nawaz et al. (1983) that takes into account setup times. In the same paper a GRASP

algorithm is also proposed. In a later work, the same authors presented a modi�cation of the

heuristic of Simons (1992) resulting in a new method called HYBRID (Ríos-Mercado and Bard,

1999). Ruiz et al. (2005) proposed a genetic and a memetic algorithm for the F/Sijk, prmu/Cmax.

They carried out an comprehensive experimental study comparing their proposals against several

methods adapted from the F//Cmax problem.

About the F/Sijk, prmu/
∑n

j=1wjTj , little has been published. In Parthasarathy and Rajendran

(1997a) and Parthasarathy and Rajendran (1997b), a Simulated Annealing heuristic was proposed

for the SDST �owshop problem with the goal of minimizing the maximum weighted tardiness and

the total weighted tardiness, respectively. Rajendran and Ziegler (1997) introduced an algorithm

formed by a new heuristic and a local search improvement scheme for the weighted �owtime

objective. Another similar work is that of Rajendran and Ziegler (2003) were a combined objective

of total weighted �ow-time and tardiness is considered. Ruiz and Stützle (2008) proposed two

iterated greedy algorithms for the PFSP with sequence dependent setup times. The �rst one

follows the guidelines of the IG framework adapted to setup times and the second incorporates

a simple descent local search. More details can be found in Ruiz et al. (2005) where the authors

carried out an extensive literature survey about this problem and in Allahverdi et al. (2008), an

updated and comprehensive review of scheduling research with setup times.

6

3 Restarted Iterated Pareto Greedy

The iterated greedy methodology (IG) belongs to the stochastic local search techiques (SLS) and

the basic scheme was �rst presented by Jacobs and Brusco (1995) for the set covering problem.

Afterwards, Schrimpf et al. (2000) named as �Ruin and Recreate� a very similar algorithm for the

vehicle routing problem. Iterated greedy method was applied by Ruiz and Stützle (2007) to the

regular permutation �owshop problem with the makespan minimization objective. The results

have encouraged several other authors to propose variants and adaptations to other problems,

including the already cited paper of Ruiz and Stützle (2008) for the SDST �owshop, Pan et al.

(2007) for the no-wait �owshop or Ying (2009) for the hybrid �owshop. In all these problems,

IG has produced state-of-the-art results. Framinan and Leisten (2008) proposed a multi-objetive

IG for the regular permutation �owshop problem which is basically an evolution of the NEH

heuristic of Nawaz et al. (1983) modi�ed to use Pareto dominance. As a result, it seems plausible

to attempt an extension for the multi-objective �owshop with setup times. Note that IG works

with a single solution and was proposed for a single objective, therefore, a just simple adaptation

is not possible if high quality results have to be achieved.

Similarly to Minella et al. (2011), we propose an extension of the original Iterated Greedy

algorithm named Restarted Iterated Pareto Greedy (RIPG), which is now presented. The rationale

of this algorithm is very simple: a greedy multi-objective strategy is iteratively applied over a set

of non-dominated solutions.

The proposed RIPG is broken into �ve phases: In the �rst phase (Initialization), an initial set of

good solutions is generated using di�erent heuristics, each one designed to attain good values for

a speci�c criterion. The remaining four phases are iteratively repeated and constitute the main

loop of the algorithm. The second phase, called Selection, chooses one solution from the current

working set for the next phase: the Greedy one in which the selected solution is disrupted by

means of a Destruction operator, by removing some elements and then a greedy procedure, called

Construction, is applied. Afterwards, a Local search phase is applied over a selected element of

the current working set. Lastly, a Restart procedure is implemented to prevent the algorithm

from getting stuck in local optima. The following sections describe each phase in detail.

3.1 Algorithm initialization and selection phase

As is of common knowledge, initial solutions expressly generated to have opportune features often

play an underlying role in creating a high performing algorithm. On the other hand, since our

�rst concern is to create an algorithm capable of performing well for di�erent pairs of obejectives,

we chose heuristics that return good enough solutions for many di�erent objectives ensuring

also a su�cient degree of diversity. In order to generate a good Initial Solution Set (ISS) we

make use of the initialization procedure proposed by Varadharajan and Rajendran (2005), which

demonstrated to return high quality initial solutions in the review of Minella et al. (2008). This

7

procedure uses the NEH heuristic of Nawaz et al. (1983) and the heuristic of Rajendran (1995),

both designed for the optimization of a single criterion. Such heuristics are used to generate two

distinct solutions for each objective to optimize.

In a �rst step, all initial solutions are processed by the Greedy phase one by one. The resulting

frontiers of this process are added to the ISS and then, the dominated solutions are removed

and the initial current working set is conformed. The aim behind this policy is to avoid that

a likely large improvement during the initial iterations might generate a set of solutions that

dominate the remaining initial solutions, impoverishing the quality and diversity of the working

set too early. At each iteration of the algorithm, the selection phase is responsible for pointing

the search towards promising directions. Selection achieves this goal by choosing one solution

from the current working set on the basis of considerations related to their quality. In this way,

the algorithm focuses on only those solutions that are more likely to increase the quality of the

current working set, speeding up the whole search process.

A modi�ed version of the Crowding Distance Assignment (CDA) procedure, originally presented

in (Deb, 2002), has been developed in order to carry out the selection process. This procedure �rst

divides the working set into several dominance levels. Each solution of one level strictly dominates

all the solutions in the next level. The CDA then assigns to each solution a value (Crowding

Distance) dependent on the normalized Euclidean distances between it and the solutions that

precede and follow it in the same dominance level. The main di�erence resides in the fact that

the modi�ed procedure considers the number of times each solution has been already selected

in previous iterations (Selection Counter), and uses this information to calculate the Modi�ed

Crowding Distance (MCD). The element with the highest value of MCD is selected as the starting

point for the Greedy or local search phases.

The aim of this MCD procedure is to select a candidate solution belonging to a less crowded

region of the Pareto front and at the same time has already been selected a small number of

times. The use of such an operator demonstrated, in preliminary experiments, to signi�cantly

improve the Pareto front in terms of quality and spread of its solutions. The pseudocode of this

procedure is presented in �gure 1a.

3.2 Greedy phase

This is the main and most innovative part of the algorithm even though the original IG structure

with two phases: Destruction and Construction respectively, is preserved. However, this greedy

phase in the RIPG is radically di�erent from the original IG where only one partial solution is

maintained and a NEH-like greedy heuristic is applied in one unique step at each iteration of the

algorithm. In our case, the Greedy phase becomes an iterative process, that works with a set of

partial solutions and returns a set of non-dominated permutations.

The Destruction step chooses a random starting position and a block of k consecutive elements

(jobs) are removed from the selected solution. Note that in the original IG algorithm, the removal

8

of jobs is not carried out in blocks.

For the Construction step, a variation of the NEH insertion scheme is used. The main di�erence

from that heuristic lies in the use of Pareto dominance to maintain not just one incomplete

partial solution at each iteration (as in NEH), but a whole set of non-dominated partial solutions

generated during the insertion process. Actually, the Construction procedure inserts, one by

one, all removed elements from the block back into each partial solution from the non-dominated

partial solution set. This inserting schema was already e�ectively used in Arroyo and Armentano

(2004). At each step, a new set of partial solutions is generated. More speci�cally, let n be the

length of the initial solution and k the size of the block of removed elements. At the end of

the �rst step, after the �rst removed element is inserted into all positions of the partial solution,

we have n − k + 1 partial solutions of length n − k + 1. In the second iteration, the procedure

inserts the second removed element in all positions of each one of the n− k + 1 partial solutions

generated in the previous step. Then, at the end of this second iteration, the number of partial

solutions is: (n−k+1)×(n−k+2). Following the same reasoning, at the end of the construction

phase, a set of
∏k
i=1 (n− k + i) of complete solutions is generated. This de�nes an upper bound

for the number of solutions generated by the greedy phase of the algorithm. Regardless of this,

the bound is very far from being tight because, at each iteration, all the dominated incomplete

sequences are removed. The greedy phase therefore returns a set of non-dominated solutions,

which is added to the current working set, and then, dominated solutions are removed. Finally,

the MCD selection procedure is applied to the current working set and a solution is selected to

be processed by the local search phase, which is explained next.

3.3 Local search phase

A simple and fast local search procedure has been demonstrated to be very helpful in improving

the quality of solutions in the single as well as in the multi-objective cases. Hence, we added

to our algorithm a simple local search phase aimed at re�ning the work of the greedy phase. In

the original IG, the local search procedure uses as an input the outcome of the greedy phase.

For the multi-objective case, the greedy phase returns a set of non-dominated elements, and it is

likely that the current working set changes after adding it. To better tackle the multi-objective

nature of the problem, thereby, it is not trivial to decide which solutions undergo the local search

procedure. Therefore, we decided to entail once more the selection procedure previously described

to choose a solution from the current working set for feeding the local search phase.

In order to maintain the algorithm as simple and fast as possible we focused our e�ort in obtaining

a simple and fast local search procedure. The rationale of this phase is quite straightforward: nsel

elements belonging to the selected solution are randomly chosen, removed and re-inserted into

nneigh consecutive positions, half of which usually precede and half follow the original position

of the element. In fact, depending on the distance of the original position from the beginning or

from the end of the sequence, the neighborhood, still having the same amount of moves, may or

9

may not be symmetric. Local search in a multi-objective setting is not as simple as one might

think. As a matter of fact, the concept of �rst improvement or best improvement does not

directly apply. In our case, all movements, i.e., nsel × nneigh insertions are carried out and all

solutions are evaluated. Afterwards, Pareto dominance is checked and a �nal non-dominated set

is generated as a result. Note that is is much faster than generating, one by one, all neighbors

and checking each time for dominance. In order to further speed up this local search, we employ

the well known accelerations of Taillard (1990). Finally, this set is included into the working

set and dominance is applied again. During the initial design phase we studied the algorithm

performance by varying nsel and nneigh. We obtained the best results for nneigh = 5 and for nsel

by dynamically changing its value with the ncount value (Selection Counter introduced in section

3.1) of the selected solution, in accordance with the following formula:

nsel =

{
ncount if ncount ≤ n/2
n/2 otherwise

The pseudocode of the local search procedure is presented in �gure 1b.

3.4 Restart phase

IG methods have one main drawback: they are prone to get stuck in local optimum solutions.

The reason lies behind their very nature as they are greedy methods. RIPG is no di�erent. To

avoid this potential problem, we have included a simple, yet reliable restart phase. This procedure

merely consists of storing all the elements of the current working set in a separate archive and then

creating a new random working set of 100 elements. The main advantage of this restart procedure

is that it is a very fast way to introduce diversi�cation inside our metaheuristic scheme, whereas

its main inconvenience consists of the di�culty in choosing of a suitable restarting criterion. The

general idea is to execute a restart when the working set has not been changed during a su�ciently

large number of iterations. To accomplish with our objective of simplicity and reliability, we use

the simple approach of checking whether the size of the current working set changes after each

iteration. Of course, this strategy is sometimes inaccurate because it can not detect a change in

the working set that does not a�ect its cardinality, but has the unquestioned advantage of being

very fast. Another important issue to take into account while designing an e�ective restart is

to establish the minimum number of iterations to safely assert that the search process is in a

stalemate. In fact, if the restart condition is not carefully designed, it might either be applied too

often, thus preventing reaching a steady state in the search or be too seldom applied, wasting, in

this way, valuable CPU time. We carried out short initial tests considering several �xed as well

as dynamic restarting points and the best results were achieved by applying a restart after n× 2

iterations without changes in the cardinality of the current working set. Note that this rule is

e�ective since it takes into account the size of the instance allowing for more iterations to bigger

ones for which the algorithm needs a larger amount of time to reach a steady state.

10

Modi�ed-crowding-distance-assignment(PS)
% PS is the Pareto Set
SetSize := |PS|;

for all i := 1, . . . , SetSize

PS[i]dist. = 0;

for all objectives m

PS := sort(PS,m);

for all i := 2, . . . , SetSize− 1

PS[i]dist. := PS[i]dist. +
(PS[i+1]Obji

−PS[i−1]Obji
)

(fmax
m −fmin

m)
;

% where fmax
m and fmin

m are the maximum and minimum
values for the objective m in PS

for all i := 1, . . . , SetSize

if PS[i]dist. := −1 then

PS[i]dist. := maxSetSizei=1 (PS[i]dist.);

for all i := 1, . . . , SetSize

PS[i]dist. := PS[i]dist. +minSetSizei=1 {max(PS[i]dist., 0)} ;

PS[i]distance :=
PS[i]dist.

PS[i]numEval+1 ;

(a) Modi�ed Crowding Distance Assignment Procedure (MCDA).

LS(Sol, nsel, nneigh)
% Sol is the solution selected for the Local search.
% nneigh is the number of positions a element could be moved
to the left and to the right.

Pos := random_array(1, Length(Sol));
% Pos is an array of nsel randomly generated di�erent
positions from 1 to the maximum position in the solution.

for all i := 1, . . . , nsel

if Pos[i] ≤ nneigh

2 then

nleft := Pos[i]− 1;

nright := nneigh − nleft;

else if Pos[i] > Length(Sol)− nneigh

2 then

nright := Length(Sol)− Pos[i];

nleft := nneigh − nright;

else
nright :=

nneigh

2 ;

nleft :=
nneigh

2 ;

for all j := i, . . . , nleft

% Insert the element in position Pos[i] in Pos[i]− j.
OutSet[i][j] := INSERT (Pos[i], Pos[i]− j, Sol);

for all j := 1, . . . , nright

% Insert the element in position Pos[i] in Pos[i] + j.
OutSet[i][j] := INSERT (Pos[i], Pos[i] + j, Sol);

return OutSet

(b) Local Search procedure (LS).

Figure 1: Pseudocode of MCDA and LS procedures.
11

4 Experimental phase

This section is aimed at introducing the reader to all the elements needed in order to fully

understand the experiments carried out, the results and their implications. First we deal with

the description of the state-of-the-art algorithms the RIPG is compared to within the experimental

phase. Later on, we describe in detail the test bed instance sets used and discuss the performance

assessment methodologies considered. Then, the design process of our proposed algorithm is

described and ultimately, we describe the test campaign and analyze the results.

4.1 Adaptation of existing metaheuristics

In the previously cited review work of Minella et al. (2008), we carried out a comprehensive

analysis of the performances of the most well known multi-objective algorithms. We carefully

re-implemented 23 algorithms and made an exhaustive test campaign with three couples of ob-

jectives, three di�erent stopping times and a large set of instances expressly created for the

multi-objective �owshop problem. Recall that in this paper we extend this problem with the

presence of setup times. A preliminary experiment in which all the algorithms have been tested

using a reduced set of instances has been carried out and on the basis of the results obtained

we have selected the best algorithms. Many of these are speci�cally designed to tackle �owshop

problems without setups while the other three are general purpose multi-criteria optimization

procedures. Note that, to the best of our knowledge, no multi-objective methods have been

speci�cally proposed for the setup times �owshop with Pareto approach. The generic methods

are now brie�y explained. A genetic algorithm is proposed by Corne et al. (2000). This method,

called PESA uses a selection and replacement procedure based on a crowding measure. Later,

in Corne et al. (2001) an enhanced PESAII method is provided. This algorithm di�ers from the

preceding one only in the selection technique in which the �tness value is assigned according to

a hyperbox calculation in the objective space.

Kollat and Reed (2005) proposed a variation of NSGAII proposed by Deb (2002) referred to as

ε−NSGAII by adding ε−dominance archiving and adaptive population sizing. The reader can

�nd a more detailed description of these algorithms in Minella et al. (2008).

We decided to include another seven algorithms recently presented in the literature that did not

make it for Minella et al. (2008) evaluation. Five of them have been modi�ed in order to use up

all the available time unlike the original versions which ended after a �xed number of iterations.

Those algorithms are highlighted by adding a "_M" at the end of the name. Note that one of

them, a modi�ed version of the multi-objective simulating annealing of Varadharajan and Rajen-

dran (2005), referred to as MOSA_Varad_M has been already presented in Minella et al. (2011)

where it was shown to clearly outperform the original version. For space reasons we included at

http://soa.upv.es as on-line material the pseudo-codes of the original as well as the modi�ed

versions of these algorithms. The selected algorithms, seventeen in total, either speci�c for the

12

http://soa.upv.es

PFSP or for the general multi-objective version, are summarized in Table 1. Table 2 shows the

values for the parameters used for all the algorithms in the comparison. Those values are those

reported in their respective original works.

Acronym Year Author/s Type

MOGA_Murata 1996 Murata et al. Genetic algorithm. Speci�c
PESA 2000 Corne et al. Genetic algorithm. General
PESAII 2001 Corne et al. Genetic algorithm. General
CMOGA 2001 Murata et al. Genetic algorithm. Speci�c
MOTS 2004 Armentano and Arroyo Tabu search. Speci�c

ε−NSGAII 2005 Kollat and Reed Genetic algorithm. General
MOGALS_Arroyo 2005 Arroyo and Armentano Genetic algorithm. Speci�c
MOSA_Varad 2005 Varadharajan and Rajendran Simulated annealing. Speci�c
PGA_ALS 2006 Pasupathy et al. Genetic algorithm. Speci�c

PILS 2007 Geiger Iterated local search. Speci�c
hMGA 2007 Yanda and Tamura Genetic algorithm. Speci�c
MOIGS 2008 Framinan and Leisten Iterated Greedy. Speci�c

MOACA17_M 2009 Rajendran and Ziegler Ant-colony algorithm. Speci�c.
MOACA18_M 2009 Rajendran and Ziegler Ant-colony algorithm. Speci�c.
MOACA19_M 2009 Rajendran and Ziegler Ant-colony algorithm. Speci�c.
MOACA20_M 2009 Rajendran and Ziegler Ant-colony algorithm. Speci�c.

MOSA_Varad_M 2011 Minella et al. MOSA_Varad improved version

Table 1: Re-implemented methods for the SDST multi-objective �owshop.

Algorithm Parameter Value

MOSA_Varad_M Non Dominated Solutions Archive Size 500
Initial Temperature 575
Final Temperature when time is over
Ratio of Temperature Decreasing 0.9

MOSA_Varad Non Dominated Solutions Archive Size 500
Initial Temperature 575
Final Temperature 20
Ratio of Temperature Decreasing 0.9

MOTS Population Size 10
PILS Number of environments 3
MOIGS Destruction Block Size 7
PESA Population Size 100

Crossover Probability 0.7
Mutation Probability 1/Number of jobs
Non Dominated Solutions Archive Size 100
Number of Divisions in the Grid 32

PESAII Population Size 100
Crossver Probability 0.7
Mutation Probability 1/Number of jobs
Cardinality of the Non Dominated Solutions set 100
Number of Divisions in the Grid 32

MOGALS_Arroyo Number of elite solutions 20
Population size 100
Crossover probability 0.9
Mutation probability 0.6
Max Paths 10
Max Iterations of Local Search 15
Iterations between each 2 search executions 100

PGA_ALS Population size 100
Crossver probability 1
Mutation probability 0.1

MOGA_MURATA Number of elite solutions 5
Population size 100

13

Algorithm Parameter Value

Crossover probability 0.9
Mutation probability 0.1

ε−NSGAII Population 10
Crossover probability 1
Mutation probability 1/Number of jobs
Epsilon value 0.001

CMOGA Number of elite solutions 3
Population size 101
Crossover probability 0.8
Mutation probability 0.3
Maximum cell distance 20

hMGA Population size 100
Crossover probability 0.9
Mutation probability 0.01

MOACA17_M ρ 0.7
C 2
P 1.5
K 50
Population size 500

MOACA18_M ρ 0.7
C 2
P 1.5
K 20
Population size 500

MOACA19_M ρ 0.7
C 2
P 1.5
K 50
Population size 500

MOACA20_M ρ 0.7
C 2
P 1.5
K 20
Population size 500

Table 2: Table of parameter values for the re-implemented methods.

4.2 Benchmark description

In the experiments presented in this paper we make use of three di�erent instance sets based

on the original work of Taillard (1993) for the regular �owshop and on the papers of Ruiz et al.

(2005) and Ruiz and Stützle (2008) for the setup times version.

Each set contains instances with several combinations for the number of jobs (n) and number of

machines (m). The n×m combinations are: {20, 50, 100} × {5, 10, 20} and 200× {10, 20} for a
total of 11 di�erent groups of instances. The �rst two sets, referred to as SSD50 and SSD125,

respectively, have ten instances for each group, resulting in a total of 110 instances per set.

Setup times in SSD50 and SSD125 are generated to be respectively the 50% and the 125% of the

processing times (pij). This means that since the pij in Taillard's instances are generated using

a uniform distribution in the range [0− 99] in the �rst set, setup times are uniformly distributed

in the range [0− 49], while in the second, their range is [0− 124]. Each instance is assigned with

a set of weights and due dates. The weights are drawn from a uniform U [1, 10] distribution while

the due dates dj are generated by means of the expression: dj = Pj × (1 + random · 3) where
Pj =

∑m
i=1 pij is the sum of the processing times over all machines for jobs j ∈ N and random is

14

a random number uniformly distributed in [0, 1]. Finally, we created from scratch a third set of

instances, referred to as SSDTest, borrowing the structure from the �rst two. This set is used

to calibrate our algorithm and contains only four instances for each group, half of which have

setup times in [0− 49] and half in [0− 124]. All benchmarks as well as all solutions obtained in

this paper are available at http://soa.upv.es.

4.3 Performance assessment methodologies

In single objective optimization, the concept of a better solution is straightforward. However,

when multiple objectives are present, deciding when a given result A is better than B is far

from simple. As mentioned, the outcome of a multi-objective optimizer is not just one solution,

but a set of several di�erent solutions. Usually, the outcome is already processed so that only

non-dominated solutions are given. This is commonly referred to as a frontier. It is obvious, of

course, that a frontier is better than another if all the points of the former (strongly) dominate

all the points of the latter. In the case that this condition does not hold, an unambiguous way

to establish which frontier outperforms the other does not exist to the best of our knowledge.

Many indices have been introduced in the literature to overcome this impasse but this is still an

open issue so much so that, recently, �rst Knowles et al. (2006) and later Zitzler et al. (2008)

demonstrated that many frequently used metrics are non Pareto-compliant i.e., in some cases,

they can assign a better value to a Pareto frontier B respect to frontier A even if A dominates B.

Those metrics therefore, can often give wrong and misleading results. Therefore, special attention

must be given to the choice of quality measures to ensure fair and generalizable results.

In this paper, we choose the hypervolume IH and the unary Epsilon I1ε indicators that Knowles

et al. (2006) and Zitzler et al. (2008) demonstrated as being Pareto-compliant and, at the mo-

ment, can be considered as the state-of-the-art indicators for the evaluation of multi-objective al-

gorithms. Additionally, considering two quality indicators instead of one, increases the soundness

of our conclusions. Given two multi-objective optimizers, these two indicators can, sometimes,

give con�icting results, indicating that neither one can be considered superior.

The hypervolume indicator IH , �rst introduced by Zitzler and Thiele (1999) measures the normal-

ized (hyper)volume of the solution space dominated by the Pareto front approximation generated

by one algorithm. A reference point is needed for closing the hypervolume. We obtained this

reference point by considering the worst value for each objective over the whole set of Pareto

front generated by all the methods for a certain instance and multiplying them by 20%. More

formally, the IH indicator can be de�ned as follows: Given a set of Pareto frontiers F , be-
ing F ∈ F a frontier, pt ∈ F a point belonging to the frontier, NObj the number of objec-

tives and NSol the number of points in F , then the hypervolume for F can be calculated as

IH(F) =
∑

1≤i≤NSol
∑

1≤j≤NObj
pti,j−1.2·minj F

1.2·(maxj F−minj F) , where minj F and maxj F are the best and

worst values, respectively, for objective j over all the frontiers in F . Notice that, as the objective
values are normalised, the maximum IH value can by obtained by the product of the reference

15

http://soa.upv.es

point values: 1.2× 1.2 = 1.44.

As far as the Unary Epsilon Indicator I1ε is concerned, it was proposed initially by Zitzler et al.

(2003) and was later extended in Knowles et al. (2006) and in Zitzler et al. (2008). It measures

the minimum distance between a given Pareto front and the optimal one or an approximation

of it. Since for our problem the optimal front for each instance is not known, a reference set,

constituted by gathering all non-dominated solutions obtained by all the tested algorithms, is

used. As said, the objectives values are normalized and additionally translated by one unit in

order to avoid division by zero errors in the calculation of the indicator. This approach was used

with success by Minella et al. (2008) and by Minella et al. (2011). In this way the indicator varies

between 1 and 2. A value close to 1 means that the considered frontier is close to the reference

set, whereas a value close to 2 means that the set of solutions is distant. It is formally calculated

as follows. P is the Pareto front or a reference set and S is an approximation to the Pareto front.

Actually, I1ε = Iε(S, P) where Iε(S, P) = maxx2 minx1 maxj
fj(x

1)
fjx2

.

The main drawback of using unary indicators when comparing di�erent frontiers is that

such measures cannot supply us with information about the spatial behavior of the considered

algorithms, i.e., in which region of the objectives space one algorithms behaves better or worse

than the other. This knowledge is especially important during the design phase of a new method.

In fact, having at our disposal a technique that permits us to analyze the outcomes and highlights

potential problems of convergence would highly simplify and accelerate the development processes.

Fonseca et al. (2001) proposed a probabilistic measure, called Attainment Function, which is able

to provide useful insight into the spatial behavior of an algorithm. To be more precise, let X ∈ Rd

be an arbitrary point of a d-objective solution space and F = {vp ∈ Rd, p = 1, . . . , P} be a frontier
generated in a single run of and algorithm referred to as α. P is the total number of points

present at the frontier F . The attainment function is de�ned by AFα(X) = P (∃ vp ∈ F : vpEX)
which describes the probability the method α has to generate, in a single run, a Pareto front

approximation F in which at least one element weakly dominates (E) the arbitrary point X .
In the case of stochastic algorithms, it is not possible to express this function in a closed form

but it can be empirically approximated by employing the outcomes of several algorithm runs.

This approximation is called Empirical Attainment Function and is de�ned in Fonseca et al.

(2001) as follows: EAF (X) = 1
q

∑q
h=1 I(Fh E X) where F1,F2, . . . ,Fq represent q Pareto set

approximations obtained in q independent algorithm's runs and

I(Fh E X) =

{
1 if Fh E X
0 otherwise

The attainment function has one inconvenience. The problem is that it has to be calculated for

each pair of compared methods. When the number of evaluated methods grows, the number of

pairwise comparisons grows quadratically. In order to overcome this drawback, López-Ibáñez et al.

(2006) presented the Di�-EAF that is a probability function de�ned as the di�erence between

16

two EAFs. Let α and β be two algorithms. The Di�-EAF is then de�ned as follows:

Diff − EAF(α,β)(X) =
1

q

q∑
h=1

[
I(Fαh E X)− I(Fβh E X)

]
This function represents the probability of X to be dominated by a frontier of α but not of β.

Note that the Diff − EAF(α,β) may have positive as well as negative values. A positive value

indicates that the algorithm α prevails over β in X , the other way around in case of a negative

value.

Finally, another important issue related to the comparison among algorithms is the choice of

a suitable termination criterion. We believe that the fairest way to confront di�erent methods is

assigning the same amount of CPU time to each one of them and more time to larger instances

with respect to smaller ones. Therefore, we assign to each algorithm the same elapsed CPU

time limit that depends on the size of the considered instance. The algorithms are then stopped

after n ·m/2 · t milliseconds of CPU time, where t is an input parameter that will be tested at

di�erent values. In this way, we assign more time to larger instances that are obviously more

time consuming to solve.

4.4 Design and calibration of the RIPG

The RIPG is the result of an thorough engineering process in which all parts that constitute

it have been compared against several possible alternatives. The aim is to create an e�cient

and e�ective algorithm. To do this we employ of a sound statistical methodology called Design

of Experiments (DoE) (see for more details Montgomery, 2009). In order to prevent a possible

over-calibration of our proposed algorithm, we decided to use, in this phase, an instance set

(SSDTest) di�erent to those used in the comparison of RIPG against other algorithms (SSD50

and SSD125). Initially, we studied the in�uence of the local search and the restart mechanism

on the quality of the produced solutions. Thereby, we assembled 4 algorithms called IPG_B,

IPG_LS, RIPG_B and RIPG_LS, respectively. B and LS stand for Basic and Local Search

and the pre�x R indicates the presence of the restart mechanism. Each algorithm was run ten

independent times (replicates) against all 44 instances of the SSDTest set and both hypervolume

and epsilon indicators are calculated, leading to a total of 4× 44× 10 = 1760 results.

Only the (Cmax, TWT) pair of objectives was considered for the calibration and the stopping

time was �xed at t = 100ms. Figures 2a and 2b depict the means plots with Tukey con�dence

intervals with a 95% con�dence level (α = 0.05) from the ANOVA test and report on the inter-

action between the response variable, respectively IH and I1ε , and the type of algorithm which is

tested as a controlled factor with four levels. Due to reasons of space, we only highlight here the

most important �ndings. Overall, the method with restart and local search phases (RIPG_LS)

achieves better average results, that are, even for the grand average, statistically better than

the non-restart versions, with and without local search. The local search phase improves the

17

quality of the results for all the instances while the restart phase only a�ects the smaller ones.

This behavior is mainly attributable to the huge number of elements in the solution space that

prevents the algorithm from reaching a steady state in the available computation time. On the

contrary, small instances have Pareto fronts with few solutions and the search soon gets trapped.

In this scenario, the restart procedure operates by increasing the diversi�cation in the process,

thus enhancing the probability of improving the solutions generated.

Figure 2: Means plots and Tukey HSD con�dence intervals (α = 0.05) in the ANOVA test for
the calibration of the RIPG. Makespan and total weighted tardiness criteria and t = 100ms CPU

time stopping criterion.

4.5 Computational analysis

In this section we detail the campaign of experiments we have carried out and analyze the

outcomes by means of statistical tests. We run the 18 tested algorithms ten times each (replicates)

for each one of the 220 instances of the sets SSD50 and SSD125, for both pairs of criteria.

Furthermore, two stopping times have been considered (t = 150ms and t = 200ms) raising

up the total number of data samples to 158,400. All the tested methods are coded in Delphi

XE language with all the optimization options activated. The experiments have been executed

on a cluster of 12 Core Duo 2.4 Ghz computers running with Windows R© XP SP3 O.S. and 2

GBytes of RAM memory. The results are summarized in Table 3, for the Cmax − TWT case

and Table 4 for Cmax − TFT . Although each cell in the tables is the average of no less than

2200 data points, it is still necessary to carry out a careful statistical experiment in order to

assess whether the observed di�erences in the average values are statistically meaningful. We

did parametric ANOVA analyses as well as non-parametric Friedman rank-based tests for both

instance sets, for the two performance indicators, the two pairs of objectives and for the two

18

stopping times. This results in a total of 32 di�erent experiments. Thereby, we carried out 16

multi-factor ANOVAS where the size of the instance and the algorithm are the controlled factors.

One half of the experiments have been carried out employing the hypervolume as a response

variable, and then we repeated the same tests considering the epsilon indicator. All the tests

have been executed with a con�dence level of 95% (α = 0.05). Note that since we are carrying

out four tests over the same results (parametric and non-parametric, epsilon and hypervolume),

we employ the Bonferroni adjustment for the α level, i.e., we use an adjusted αs of 0.01 for a

real α of 0.05. In order to safely apply ANOVA, it is necessary to check three main hypothesis:

normality, homogeneity of variance (or homoscedasticity) and independence of residuals. The

residuals resulting from the experimental data have been analyzed and all three hypothesis can

be accepted.

We make use of parametric as well as non-parametric tests to strengthen the soundness of our

conclusions. Therefore we compare the results of the �rst group of tests against those of a

second group of non-parametric experiments. Non-parametric Friedman rank-based tests have

been carried out. Since there are 18 algorithms and 10 di�erent replicates, the results for each

instance are ranked between 1 and 180. All these tests substantially validate and strengthen

the results shown in the tables. In table 3, the mean values concerning both instance sets and

Cmax − TWT criteria are reported. Both indicators IH and I1ε are considered and the methods

are sorted decreasingly according to the value of IH . RIPG turns out to be the best performing

algorithm for each combination of indicators, stopping time and instance set. In comparison to

MOSA_Varad_M, the second method in the ranking, the RIPG's percentage improvement is

between 2% and 7% of the hypervolume.

Please note that the global ranking of algorithms remains substantially unchanged for the

di�erent stopping times and instance sets, whereas there are few di�erences if we compare the

ranking of IH and I1ε . This is mainly due to the fact that the unary epsilon indicator is the

average minimum distance between the frontier generated in a single run and the best Pareto

front known. Also it is much more conservative than the hypervolume, therefore it is likely that

by using this indicator, closer values are assigned to the algorithms and there is the possibility

that they might have a di�erent rank. Since at the moment it is not clear which indicator is the

most reliable, when this anomaly happens, the a�ected methods are considered incomparable.

It is worth to note that RIPG turns out to be more competitive in the SSD125 set respect to

SSD50.

In Table 4 results concerning Cmax − TFT criteria are reported and again RIPG comes out as

being the best method in the set, but unlike the Cmax − TWT case, MOIGS performs much

better and achieves the second position of the rank for the SSD125 set. This happens because it

is an improved version of an algorithm specially designed to tackle the multi-objective �owshop

problem with Cmax − TFT criteria.

Note also how Tables 3 and 4, contain additional columns with the total number of evaluated

19

solutions for each algorithm, combination of objectives, instance set and termination criterion.

It is interesting to see that there are enormous di�erences. Take for example algorithms PILS

and MOSA_Varad_M for instance set SSD50 and termination criterion 150ms. PILS evaluated

about 426 thousand solutions on average whereas MOSA_Varad_M evaluated more than 3.5

million. This is, on average, MOSA_Varad_M evaluates almost 8.5 more solutions than PILS

for the same CPU time. This highlights the importance of stopping algorithms after the same

elapsed CPU time and not after the same number of iterations. Stopping both algorithms after

the same number of iterations would result in wildly di�erent employed CPU times.

Figures 3a and 3b show some means plots for ANOVA and Friedman tests where only the

�rst �ve best algorithms are depicted. It has to be stressed that ranking tests neglect the real

di�erences in the indicators and therefore, di�erences may appear smaller of greater respect to

the equivalent ANOVA test.

Due to reasons of limited space, we cannot reproduce here the complete 32 plots, each one

with all the 14 algorithms. These are available as part of the on-line material.

Lastly, we present six �gures (4a-4f) which represent the EAF for MOSA_Varad_M (4a),

MOIGS (4b) and RIPG (4c) and di�erences of EAFs (4d,4e,4f) for instance 71 of SSD50 (100 jobs

and 10 machines) and (Cmax− TWT) criteria. Each image is elaborated employing 50 replicates

for each algorithm. Although these pictures give us information only for a single instance, during

a design phase one can use such knowledge to understand by and large the behavior of the involved

algorithms. Let us focus for example on picture 4a, it is clear that MOSA_Varad_M method is

worse than MOIGS only in a central part of the objective space while it achieves better results

than MOIGS at the extremes of the frontier (see �gure 4d). Finally, also using this tool we

con�rm that RIPG widely outperforms its competitors. For more details, the reader is referred

to the on-line material where similar �gures are reported for other instances.

20

(a) Hypervolume indicator response variable. Makespan and total
�owtime criteria.

(b) Epsilon indicator response variable. Makespan and total weighted
tardiness criteria.

Figure 3: Means plot and Tukey HSD con�dence intervals (αs = 0.01, α = 0.05) for the ANOVA and Friedman Rank-based tests for
SSD50 (a and c) and SSD125 (b and d) with t=150ms (a and b) and t=200ms (c and d) CPU time stopping criterion

21

SSD50 SSD125

150ms 200ms 150ms 200ms

Method IH I1ε Eval(103) Method IH I1ε Eval(103) Method IH I1ε Eval(103) Method IH I1ε Eval(103)

RIPG 1.296 1.067 2548.679 RIPG 1.313 1.057 3423.776 RIPG 1.318 1.064 2762.511 RIPG 1.336 1.054 3615.022

MOSA_Varad_M 1.272 1.102 3587.690 MOSA_Varad_M 1.282 1.096 4772.831 MOSA_Varad_M 1.237 1.146 3623.574 MOSA_Varad_M 1.248 1.140 4713.809

MOSA_Varad 1.232 1.127 1339.338 MOSA_Varad 1.232 1.127 1339.338 MOIGS 1.225 1.147 2698.486 MOIGS 1.241 1.134 3392.280

MOIGS 1.186 1.164 2023.348 MOIGS 1.202 1.150 2510.204 MOSA_Varad 1.182 1.178 1338.261 MOSA_Varad 1.182 1.178 1338.261

MOGALS_Arroyo 1.179 1.132 920.041 MOGALS_Arroyo 1.189 1.127 1148.871 MOGALS_Arroyo 1.154 1.157 912.086 MOGALS_Arroyo 1.163 1.153 1150.823

MOTS 1.151 1.136 685.987 MOTS 1.163 1.130 798.745 MOTS 1.126 1.162 627.080 MOTS 1.135 1.158 732.265

PESAII 1.106 1.201 583.685 PESAII 1.123 1.189 757.140 PESA 1.075 1.216 710.123 PESA 1.092 1.205 908.765

PESA 1.104 1.202 552.473 PESA 1.121 1.191 712.579 PESAII 1.067 1.221 707.241 PESAII 1.086 1.208 907.282

MOACA17_M 1.087 1.189 2201.857 MOACA17_M 1.095 1.185 2751.410 MOACA17_M 1.060 1.228 2206.634 MOACA17_M 1.065 1.226 2686.160

MOACA18_M 1.087 1.188 2208.651 MOACA18_M 1.095 1.185 2750.188 MOACA18_M 1.059 1.227 2205.608 MOACA18_M 1.065 1.225 2684.479

MOACA19_M 1.083 1.192 2211.429 MOACA19_M 1.091 1.187 2750.047 MOACA20_M 1.056 1.231 2203.806 MOACA20_M 1.063 1.227 2685.790

MOACA20_M 1.082 1.191 2211.536 MOACA20_M 1.091 1.187 2748.924 MOACA19_M 1.056 1.232 2202.398 MOACA19_M 1.062 1.228 2686.138

PGA_ALS 1.024 1.250 617.776 PGA_ALS 1.034 1.246 798.703 PGA_ALS 0.955 1.323 656.617 PGA_ALS 0.967 1.318 834.233

MOGA_Murata 0.980 1.276 1366.304 MOGA_Murata 1.004 1.263 1826.234 ε−NSGAII 0.913 1.296 1219.000 MOGA_Murata 0.934 1.297 1822.611

ε−NSGAII 0.969 1.266 1215.814 ε−NSGAII 0.989 1.255 1629.181 MOGA_Murata 0.908 1.313 1398.489 ε−NSGAII 0.934 1.284 1593.860

CMOGA 0.897 1.332 1155.755 CMOGA 0.930 1.313 1537.986 CMOGA 0.810 1.380 1167.108 CMOGA 0.843 1.360 1522.397

hMGA 0.804 1.356 498.624 hMGA 0.815 1.348 667.361 PILS 0.729 1.448 448.360 PILS 0.774 1.410 581.475

PILS 0.741 1.441 426.402 PILS 0.791 1.401 565.870 hMGA 0.699 1.425 509.212 hMGA 0.709 1.417 665.950

Table 3: Results for the Cmax − TWT criteria.

SSD50 SSD125

150ms 200ms 150ms 200ms

Method IH I1ε Eval(103) Method IH I1ε Eval(103) Method IH I1ε Eval(103) Method IH I1ε Eval(103)

RIPG 1.314 1.062 2886.704 RIPG 1.333 1.053 3899.048 RIPG 1.322 1.063 2963.529 RIPG 1.339 1.055 3913.874

MOSA_Varad_M 1.217 1.138 3190.094 MOSA_Varad_M 1.232 1.133 4271.434 MOIGS 1.196 1.124 3490.327 MOIGS 1.218 1.114 4607.469

MOIGS 1.197 1.121 3144.601 MOIGS 1.219 1.109 4182.232 MOSA_Varad_M 1.148 1.168 3207.332 MOSA_Varad_M 1.166 1.161 4231.502

MOSA_Varad 1.151 1.170 1337.774 MOSA_Varad 1.151 1.170 1337.774 MOSA_Varad 1.067 1.208 1336.762 MOSA_Varad 1.067 1.208 1336.762

MOGALS_Arroyo 1.131 1.166 890.481 MOGALS_Arroyo 1.143 1.159 1213.891 MOGALS_Arroyo 1.043 1.210 893.042 MOGALS_Arroyo 1.056 1.203 1192.328

MOTS 1.093 1.188 528.608 MOTS 1.108 1.181 654.054 MOTS 1.029 1.220 487.054 MOTS 1.041 1.213 603.787

PESA 1.023 1.212 847.249 PESA 1.044 1.201 1131.626 MOACA18_M 0.946 1.280 2269.013 PESA 0.961 1.248 1242.884

PESAII 1.002 1.222 811.593 PESAII 1.023 1.211 1083.591 MOACA17_M 0.943 1.281 2266.877 MOACA18_M 0.952 1.277 2805.182

MOACA18_M 0.995 1.253 2271.125 MOACA18_M 0.999 1.249 2808.732 MOACA20_M 0.941 1.283 2269.028 MOACA17_M 0.950 1.277 2803.932

MOACA17_M 0.992 1.254 2266.600 MOACA17_M 0.998 1.249 2806.738 PESA 0.940 1.259 945.584 MOACA20_M 0.948 1.279 2803.418

MOACA20_M 0.990 1.255 2271.435 MOACA20_M 0.996 1.251 2809.364 MOACA19_M 0.937 1.284 2224.286 MOACA19_M 0.945 1.281 2784.915

MOACA19_M 0.989 1.256 2225.466 MOACA19_M 0.993 1.253 2775.174 PESAII 0.916 1.272 897.434 PESAII 0.937 1.261 1183.023

PGA_ALS 0.921 1.306 661.826 PGA_ALS 0.934 1.300 867.378 PGA_ALS 0.835 1.349 681.036 PGA_ALS 0.847 1.342 877.647

MOGA_Murata 0.821 1.336 1434.468 MOGA_Murata 0.850 1.319 1935.043 ε−NSGAII 0.705 1.400 1227.838 MOGA_Murata 0.731 1.385 1910.583

ε−NSGAII 0.799 1.345 1231.011 ε−NSGAII 0.827 1.328 1660.687 MOGA_Murata 0.702 1.404 1443.474 ε−NSGAII 0.729 1.385 1627.731

CMOGA 0.753 1.374 1188.429 CMOGA 0.790 1.350 1602.032 CMOGA 0.626 1.450 1191.594 CMOGA 0.663 1.426 1581.127

PILS 0.661 1.476 486.066 PILS 0.713 1.429 654.566 PILS 0.607 1.508 508.728 PILS 0.650 1.467 673.374

hMGA 0.585 1.505 512.607 hMGA 0.598 1.495 691.926 hMGA 0.468 1.584 517.613 hMGA 0.479 1.575 687.022

Table 4: Results for the Cmax − TFT criteria.

22

Figure 4: Empirical attainment functions (a,b,c) and di�erences between such functions (d,e,f) for MOSA_Varad_M, MOIGS and RIPG.
A single instance of 100 jobs and 10 machines belonging to SSD50 is analyzed against makespan and total weighted tardiness criteria and

t=150ms termination criterion.
23

5 Conclusions and future research

There have been several methods proposed in the literature for the a posteriori multi-objective

�owshop problem. However, as important as they are in practice, setup times have not been

considered, as far as we know, for this setting. This paper represents a �rst attempt to tackle

this problem.

We have presented two main contributions to the �eld of the multi-objective �owshop. First,

we have adapted the best performing algorithms for the multi-objective �owshop by adding

anticipative sequence dependent setup times to the problem. We carried out a study of these

algorithms to establish which ones show better performance for the problem with setups. Second,

we have extended a new strategy which achieved state-of-the-art results for the single objective

�owshop, the Iterated Greedy metaheuristic, in order to deal with several objectives and setup

times simultaneously. The extended IG method has been referred to as RIPG. A thorough

algorithm engineering process, along with statistical calibration led to a re�ned proposal which

has shown to reach state-of-the-art results for this problem. This has been con�rmed by a wide

campaign of tests where the results have been analyzed by means of parametric as well as non-

parametric statistical tests. We employed two Pareto compliant performance indicators, two

stopping criteria based on the elapsed CPU time and two combinations of scheduling objectives.

As a consequence, RIPG can be considered the state-of-art procedure for this scheduling problem.

Future research lines stem from the possibility of applying this scheme to solve di�erent or more

constrained scheduling problems such as, the hybrid �owshop or the parallel machines problems.

Another interesting area of future research relates to the EAF, a rather new statistical tool

employed here, to study the probability that one algorithm has to cover a certain zone of the

objective space. Its main drawback is that only one instance at a time is represented. An

extension of the EAF that takes into account a whole instance set would be a useful tool for a

deeper understanding of algorithm's behavior and, furthermore, it would also lead to new and

more reliable performance indicators.

Acknowledgments

The authors would like to thank the anonymous referees for their careful and detailed comments

which have helped improve this manuscript considerably. This work is partially �nanced by the

Spanish Ministry of Science and Innovation, under the projects �SMPA - Advanced Parallel Mul-

tiobjective Sequencing: Practical and Theorerical Advances� with reference DPI2008-03511/DPI

and "RESULT - Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-

36243-C02-01 and by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA)

and by the European Union through the European Regional Development Fund (FEDER) inside

the R+D program �Ayudas dirigidas a Institutos Tecnológicos de la Red IMPIVA� during the

year 2011, with project numbers IMDEEA/2011/142 and IMDEEA/2012/143.

24

References

Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y. (2008). A survey of scheduling
problems with setup times or costs. European Journal of Operational Research, 187(3):985�
1032.

Armentano, V. A. and Arroyo, J. E. C. (2004). An application of a multi-objective tabu search
algorithm to a bicriteria �owshop problem. Journal of Heuristics, 10(5):463�481.

Arroyo, J. E. C. and Armentano, V. A. (2004). A partial enumeration heuristic for multi-objective
�owshop scheduling problems. Journal of the Operational Research Society, 55(9):1000�1007.

Arroyo, J. E. C. and Armentano, V. A. (2005). Genetic local search for multi-objective �owshop
scheduling problems. European Journal of Operational Research, 167(3):717�738.

Bagchi, T. P. (2001). Pareto-optimal solutions for multi-objective production scheduling prob-
lems. In Zitzler, E., Deb, K., Thiele, L., Coello Coello, C. A., and Corne, D., editors, Evo-
lutionary Multi-Criterion Optimization, First International Conference, EMO 2001, Zurich,

Switzerland, March 7-9, 2001, Proceedings, volume 1993 of Lecture Notes in Computer Sci-

ence, pages 458�471. Springer.

Corne, D. W., Jerram, N. R., Knowles, J. D., and Oates, M. J. (2001). PESA-II: Region-based
selection in evolutionary multiobjective optimization. In Spector, L., Goodman, E. D., Wu,
A., Langdon, W. B., Voigt, H. M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H.,
and Burke, E., editors, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001), pages 283�290, San Francisco, California, USA. Morgan Kaufmann.

Corne, D. W., Knowles, J. D., and Oates, M. J. (2000). The pareto envelope-based selection
algorithm for multiobjective optimization. In Schoenauer, M., Deb, K., Rudolph, G., Yao,
X., Lutton, E., Merelo Guervós, J. J., and Schwefel, H. P., editors, Parallel Problem Solving

from Nature - PPSN VI, 6th International Conference, Paris, France, September 18-20, 2000,

Proceedings, volume 1917 of Lecture Notes in Computer Science, pages 839�848. Springer.

Deb, K. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions

on Evolutionary Computation, 6(2):182�197.

Fonseca, V. G. D., Fonseca, C. M., and Hall, A. O. (2001). Inferential performance assessment of
stochastic optimisers and the attainment function. In In Evolutionary Multi-Criterion Opti-

mization, First International Conference, volume 1993 of Lecture Notes in Computer Science,
pages 213�225. Springer-Verlag.

Framinan, J. and Leisten, R. (2008). A multi-objective iterated greedy search for �owshop
scheduling with makespan and �owtime criteria. OR Spectrum, 30(18):787�804.

Framinan, J. M., Leisten, R., and Ruiz-Usano, R. (2002). E�cient heuristics for �owshop se-
quencing with the objectives of makespan and �owtime minimisation. European Journal of

Operational Research, 141(3):559�569.

Garey, M., Johnson, D., and Sethi, R. (1976). The complexity of �ow shop and job shop schedul-
ing. Mathematics of Operations Research, 1:117�129.

Geiger, M. J. (2007). On operators and search space topology in multi-objective �ow shop
scheduling. European Journal of Operational Research, 181(1):195�206.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. H. G. R. (1979). Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5:287�326.

Ishibuchi, H. and Murata, T. (1998). A multi-objective genetic local search algorithm and its
application to �owshop scheduling. IEEE Transactions on Systems Man and Cybernetics,
28(3):392�403.

25

Ishibuchi, H., Yoshida, T., and Murata, T. (2003). Balance between genetic search and lo-
cal search in memetic algorithms for multiobjective permutation �owshop scheduling. IEEE

Transactions on Evolutionary Computation, 7(2):204�223.

Jacobs, L. W. and Brusco, M. J. (1995). A local-search heuristic for large set-covering problems.
Naval Research Logistics, 42(7):1129�1140.

Knowles, J., Thiele, L., and Zitzler, E. (2006). A tutorial on the performance assessment of
stochastic multiobjective optimizers. Technical Report 214, Computer Engineering and Net-
works Laboratory (TIK), ETH Zurich, Switzerland. revised version.

Kollat, J. B. and Reed, P. M. (2005). The value of online adaptive search: A performance
comparison of nsgaii, ε−nsgaii and ε−moea. In Coello Coello, C. A., Hernández Aguirre,
A., and Zitzler, E., editors, Evolutionary Multi-Criterion Optimization, Third International

Conference, EMO 2005, Guanajuato, Mexico, March 9-11, 2005, Proceedings, volume 3410 of
Lecture Notes in Computer Science, pages 386�398. Springer.

Loukil, T., Teghem, J., and Fortemps, P. (2000). Solving multi-objective production scheduling
problems with tabu search. Control and Cybernetics, 29(3):819�828.

Loukil, T., Teghem, J., and Tuyttens, D. (2005). Solving multi-objective production scheduling
problems using metaheuristics. European Journal of Operational Research, 161(1):42�61.

López-Ibáñez, M., Paquete, L., and Stützle, T. (2006). Hybrid population-based algorithms
for the bi-objective quadratic assignment problem. Journal of Mathematical Modelling and

Algorithms, 5(1):111�137.

Minella, G., Ruiz, R., and Ciavotta, M. (2008). A review and evaluation of multi-objective
algorithms for the �owshop scheduling problem. INFORMS Journal on Computing, 20(3):451�
471.

Minella, G., Ruiz, R., and Ciavotta, M. (2011). Restarted iterated pareto greedy algorithm for
multi-objective �owshop scheduling problems. Computers & Operations Research, 38(11):1521�
1533.

Montgomery, D. C. (2009). Design and Analysis of Experiments. Wiley, New York, seventh
edition.

Murata, T., Ishibuchi, H., and Gen, M. (2001). Speci�cation of genetic search directions in
cellular multi-objective genetic algorithms. In Zitzler, E., Deb, K., Thiele, L., Coello Coello,
C. A., and Corne, D., editors, Evolutionary Multi-Criterion Optimization, First International

Conference, EMO 2001, Zurich, Switzerland, March 7-9, 2001, Proceedings, volume 1993 of
Lecture Notes in Computer Science, pages 82�95. Springer.

Murata, T., Ishibuchi, H., and Tanaka, H. (1996). Multi-objective genetic algorithm and its
applications to �owshop scheduling. Computers & Industrial Engineering, 30(4):957�968.

Nawaz, M., Jr, E. E. E., and Ham, I. (1983). A heuristic algorithm for the m machine, n job
�owshop sequencing problem. Omega-International Journal of Management Science, 11(1):91�
95.

Pan, Q.-K., Wang, L., and Zhao, B.-H. (2007). An improved iterated greedy algorithm for the
no-wait �ow shop scheduling problem with makespan criterion. The International Journal of

Advanced Manufacturing Technology, 38(7-8):778�786.

Parthasarathy, S. and Rajendran, C. (1997a). An experimental evaluation of heuristics for
scheduling in a real-life �owshop with sequence-dependent setup times of jobs. International

Journal of Production Economics, 49(3):255�263.

Parthasarathy, S. and Rajendran, C. (1997b). A simulated annealing heuristic for scheduling to
minimize mean weighted tardiness in a �owshop with sequence-dependent setup times of jobs
- a case study. Production Planning & Control, 8(5):475�483.

26

Pasupathy, T., Rajendran, C., and Suresh, R. K. (2006). A multi-objective genetic algorithm
for scheduling in �ow shops to minimize the makespan and total �ow time of jobs. The

International Journal of Advanced Manufacturing Technology, 27(7-8):804�815.

Rajendran, C. (1995). Heuristics for scheduling in �owshop with multiple objectives. European
Journal of Operational Research, 82(3):540�555.

Rajendran, C. and Ziegler, H. (1997). A heuristic for scheduling to minimize the sum of weighted
�owtime of jobs in a �owshop with sequence-dependent setup times of jobs. Computers &

Industrial Engineering, 33(1-2):281�284.

Rajendran, C. and Ziegler, H. (2003). Scheduling to minimize the sum of weighted �owtime
and weighted tardiness of jobs in a �owshop with sequence-dependent setup times. European
Journal of Operational Research, 149(3):513�522.

Rajendran, C. and Ziegler, H. (2009). A multi-objective ant-colony algorithm for permutation
�owshop scheduling to minimize the makespan and total �owtime of jobs. In Chakraborty,
U., editor, Computational Intelligence in Flow Shop and Job Shop Scheduling, volume 230 of
Studies in Computational Intelligence, chapter 3, pages 53�99. Springer, Berlin / Heidelberg.

Ríos-Mercado, R. Z. and Bard, J. F. (1998). Computational experience with a branch-and-cut
algorithm for �owshop scheduling with setups. Computers & Operations Research, 25(5):351�
366.

Ríos-Mercado, R. Z. and Bard, J. F. (1999). An enhanced TSP-based heuristic for makespan
minimization in a �ow shop with setup times. Journal of Heuristics, 5(1):53�70.

Ríos-Mercado, R. Z. and Bard, J. F. (2003). The �ow shop scheduling polyhedron with setup
times. Journal of Combinatorial Optimization, 7(3):291�318.

Ruiz, R., Maroto, C., and Alcaraz, J. (2005). Solving the �owshop scheduling problem with se-
quence dependent setup times using advanced metaheuristics. European Journal of Operational

Research, 165(1):34�54.

Ruiz, R. and Stützle, T. (2007). A simple and e�ective iterated greedy algorithm for the permu-
tation �owshop scheduling problem. European Journal of Operational Research, 177(3):2033 �
2049.

Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup
times �owshop problem with makespan and weighted tardiness objectives. European Journal

of Operational Research, 187(3):1143 � 1159.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G. (2000). Record breaking
optimization results using the ruin and recreate principle. Journal of Computational Physics,
159:139�171.

Simons, Jr, J. V. (1992). Heuristics in �ow shop scheduling with sequence dependent setup times.
Omega-International Journal of Management Science, 20(2):215�225.

Srinivas, N. and Deb, K. (1994). Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation, 2(3):221�248.

Suresh, R. K. and Mohanasundaram, K. M. (2004). Pareto archived simulated annealing for
permutation �ow shop scheduling with multiple objectives. In IEEE Conference on Cybernetics

and Intelligent Systems (CIS), Singapore, December 1-3, 2004, Proceedings, volume 2, pages
712�717.

Taillard, E. (1990). Some e�cient heuristic methods for the �ow-shop sequencing problem. Eu-
ropean Journal of Operational Research, 47(1):65�74.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational

Research, 64(2):278�285.

T'kindt, V. and Billaut, J.-C. (2006). Multicriteria scheduling: Theory, models and algorithms.

27

Springer, Berlin, second edition.

Varadharajan, T. and Rajendran, C. (2005). A multi-objective simulated-annealing algorithm
for scheduling in �owshops to minimize the makespan and total �owtime of jobs. European

Journal of Operational Research, 167(3):772�795.

Yanda and Tamura, H. (2007). A new multiobjective genetic algorithm with heterogeneous pop-
ulation for solving �owshop scheduling problems. International journal of computer integrated

manufacturing, 20(5):465�477.

Ying, K.-Y. (2009). An iterated greedy heuristic for multistage hybrid �owshop scheduling prob-
lems with multiprocessor tasks. Journal of the Operational Research Society, 60(6):810�818.

Zitzler, E., Knowles, J., and Thiele, L. (2008). Quality assessment of pareto set approximations.
In Branke, J., Deb, K., Miettinen, K., and Sªowinski, R., editors, Multiobjective Optimization:

Interactive and Evolutionary Approaches, volume 5252 of Lecture Notes in Computer Science,
pages 373�404, Berlin, Heidelberg. Springer-Verlag.

Zitzler, E. and Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Computation,
3(4):257�271.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003). Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE, Transactions

on Evolutionary Computation, 7(2):117�132.

28

