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Abstract

Purpose: Although theoretical modeling is widely used to study different aspects of

radiofrequency ablation (RFA) its utility is directly related to its realism. An important

factor in this realism is the use of mathematical functions to model the temperature-

dependence of tissue thermal (k) and electrical () conductivities. Our aim was to review

the piecewise mathematical functions most commonly used for modeling the temperature-

dependence of k and  in RFA computational modeling.

Materials and methods: We built a hepatic RFA theoretical model of a cooled electrode

and compared lesion dimensions and impedance evolution with combinations of

mathematical functions proposed in previous studies We employed the thermal damage

contour D63 to compute the lesion dimension contour, which corresponds to Ω= 1, Ω 

being local thermal damage assessed by the Arrhenius damage model.

Results: The results were very similar in all cases in terms of impedance evolution and

lesion size after 6 minutes of ablation. Although the relative differences between cases in

terms of time to first roll-off (abrupt increase in impedance) were as much as 12%, the

maximum relative differences in terms of the short lesion (transverse) diameter were below

3.5%.

Conclusions: The findings suggest that the different methods of modeling temperature

dependence of k and  reported in the literature do not significantly affect the computed

lesion diameter.
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Introduction

High temperature ablative techniques use radiofrequency (RF), laser, microwave, or

ultrasound energy to heat biological tissues to over 50ºC. In particular, RF ablation (RFA),

is a minimally invasive technique that uses electrical currents (≈500 kHz) to heat the target 

biological tissue. It has been increasingly used in recent years for the treatment of cancer in

the liver [1], kidney [2], bone [3], breast [4], prostate [5] and lung [6].

Clinical trials, experimental studies (in vivo or ex vivo), phantom-based models and

theoretical modeling have been used to study different aspects of RFA. Although

theoretical models can provide information about the biophysics of RFA quickly and

cheaply, it is important for them to be as realistic as possible [7]. The mathematical

functions used to model the temperature-dependence of tissue characteristics are one of the

most important factors in achieving realism. Electrical () and thermal conductivity (k) in

particular show significantly varying values due to the phenomena associated with the high

temperatures reached during RFA, such as water vaporization at temperatures near 100ºC

and the subsequent sudden rise in impedance, which impedes the delivery of RF power,

hence limiting the lesion size.

Previous theoretical studies have assessed the impact of absolute values of and k on

lesion geometry [8-10]. However, we are now interested in reviewing the mathematical

functions employed to model the temperature dependence of  and k, since previous

computer modeling studies used different approaches. As far as we know, no previous

studies have critically reviewed and assessed the effect of these mathematical functions on

the computed lesion size. Our aim was to assess how the different mathematical functions
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proposed to model  and k temperature-dependence affect lesion dimensions and

impedance evolution during theoretical computations of RF hepatic ablation with a cooled

electrode. Here we first review the different mathematical functions used in previous

studies on RFA computer modeling and present the different combinations considered by

us in our modeling study. Secondly, we describe the theoretical model used to compare

these combinations and finally we discuss the results and suggest certain functions to be

used in future modeling studies.

Mathematical functions to model the  and k temperature-dependence

At the present time there are two ways of introducing the parameters  and k in RFA

theoretical models: 1) using constant values taken from the scientific literature [11,12], and

2) in a more realistic way, using mathematical functions which reflect the dependence of

these parameters on temperature, specially for high temperatures [13,14]. We are interested

in the second case, consisting of functions which consider temperatures above 100ºC.

Table 1 shows the different combinations of mathematical functions used to model the

and k temperature-dependence considered in this study. These will be explained in the

following subsections.

Temperature-dependence of electrical conductivity (

The most commonly used mathematical function for  in RFA models is a piecewise

function which uses different mathematical expressions according to the temperature

range. First, at temperatures below 100ºC,  increases. However, there are discrepancies

about the rate of this increase, from +1.5%/ºC [15] to +2%/ºC [8], and about the increase

type, linear [16,17] or exponential [13,18].
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At temperatures above 100ºC vaporization occurs and desiccation implies a rapid drop

of . There are also discrepancies about the rate of this drop: Byeongman and Aksan [13]

considered that  decreases by approximately 2 orders of magnitude between 105ºC and

110ºC, Haemmerich et al. [14] assumed a rapid drop by a factor of 10.000 between 100ºC

and 102ºC, and Pätz et al. [19] considered a discontinuous drop to a value close to zero.

Here we have studied the effect of the following variations of  with temperature (see

Table 1):

1) For temperatures below 100ºC, two increase rates: 1.5 and 2%/ºC, and two increase

types: linear and exponential.

2) For temperatures above 100ºC, two drop rates: 2 and 4 orders of magnitude between

100ºC and 105ºC.

These combinations of allowed up to eight cases in which k was assumed to be

constant (see Set 1 in Table 1). In Fig. 1 we represented the different functions used for

in the case of a drop rate of 2 orders.

Temperature-dependence of thermal conductivity (k)

Most RFA theoretical models have used a constant value for k [14,15,17,20-22], probably

due to the fact that changes in k with temperature are not so marked as in  [10,23].

Models considering k temperature-dependence used a piecewise continuous function. The

great discrepancies between these functions are found for temperatures up to 100ºC [24]:

The most commonly used approximation considered a linear increase of k [9,16], but a

decreasing function for k, which depends on the fraction of water vaporized has also been

proposed [24]. Above 100ºC, k has been assumed to be constant [13]. A few studies

modeled the temperature-dependence of k with a non-continuous piecewise function which

considered two different values for k before and after water vaporization temperature [25].
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We have considered the following variations of k with temperature (see Table 1):

1) A constant value (see set 1 in Table 1).

2) A linear increase rate of 1.5%/ºC for temperatures below 100ºC, and a constant value

for temperatures above 100ºC [13].

3) A different value before (0.502 W/mºC) and after (0.092 W/mºC) water vaporization

[25], i.e. a different value for each phase, liquid and gas.

4) A linear drop rate of –1.5%/ºC for temperatures below 100ºC, and a constant value for

temperatures above 100ºC [24].

In Fig. 1 we represented the different functions used to model the thermal dependence

of k.

Description of the model of RF hepatic ablation

To compare the effect of the different combinations of the mathematical functions

presented in the previous section, we considered a theoretical RF hepatic ablation model

which consisted of a fragment of hepatic tissue and an internally cooled electrode. Figure 2

shows the geometry and dimensions of the theoretical model. The problem presented axial

symmetry and hence a two-dimensional analysis was conducted. The model included three

different materials: plastic partially covering the electrode, a metallic electrode and a

fragment of hepatic tissue. The dispersive electrode was modeled as an electrical condition

on boundaries at a distance from the active electrode. The model was based on a coupled

electric-thermal problem, which was solved numerically using COMSOL Multiphysics

software (COMSOL, Burlington MA, USA). The bioheat equation [26] was used as the

governing equation of the thermal problem. The enthalpy method [13,25] was considered

to modify the bioheat equation and hence to incorporate the phase change [22,27] as

follows:
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where i and ci are tissue density and specific heat of tissue in liquid phase (i=l, i.e. tissue

at temperatures below 100ºC) and the post-phase-change tissue (i=g, i.e. tissue at

temperatures above 100ºC), hfg is the product of water latent heat of vaporization and water

density at 100ºC and C is tissue water content inside the liver (68%) [19]. The notation

h(99) and h(100) refers to enthalpy at 99 and 100ºC, respectively. The characteristics of

materials used in the model are shown in Table 2 [12,19,29,30].

Firstly, we conducted a set of simulations including cases 1 to 8 (see Table 1) in order to

assess the effect of  From the results of this first set we selected the two most different

cases of impedance evolution, i.e. those with the earliest and latest roll-offs, roll-off being

the time at which tissue impedance is 30 higher than the initial. We then set the

mathematical function used for  in these extreme cases (1 and 4, see results) and

conducted a second set of simulations varying k by means of different temperature-

dependent functions (cases 9 to14).

The heat source from RF power q (Joule losses) was given by q=|E|2, where E is an

electric field which was obtained from the electrical problem. The Laplace equation 2V=0

was the governing equation for the electric problem, V being the voltage. The electric field
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was calculated by means of E = V. We used a quasi-static approach, i.e. tissues were

considered as purely resistive due to the value of the frequencies used in RF (≈500 kHz) 

and for the geometric area of interest (electrical power is deposited in a very small zone

close to the electrode) [31]. The blood perfusion term Qp was obtained from:

)·(··· TTcQ bbbbp   (3)

where b is density of blood (1000 kg/m3) [14], cb specific heat of blood (4180 J/Kg·K)

[8], Tb blood temperature (37 ºC), b blood perfusion coefficient (6.410-3 s-1) [32] and 

is a coefficient which took the values of 0 and 1, depending on the value of the local

thermal damage : = 0 for   1, and = 1 for  < 1. The parameter  was assessed by

the Arrhenius damage model [32], which associates temperature with exposure time using

a first-order kinetics relationship:
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where R is the universal gas constant, A is a frequency factor and E is the activation

energy for the irreversible damage reaction. The parameters A and E for liver were A =

81039 s-1 and ΔE = 2.577105 J/mol [33]. We employed the thermal damage contour D63

to compute the lesion dimension contour, which corresponds to Ω= 1 (63% probability of 

cell death) [21].

Thermal boundary conditions were: Null thermal flux in the transversal direction to the

symmetry axis and constant temperature of 37ºC in the dispersive electrode. Initial

temperature of the tissue was considered to be 37ºC. The cooling effect produced by the

liquid circulating inside the electrode was modeled using a thermal convection coefficient

h with a value of 3366 W/K∙m2 and a coolant temperature of 10ºC following the Newton’s

law of cooling. The value of h was calculated by considering a length of 30 mm and a flow
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rate of 45 mL/min through an area of 1.5710-6 m2, which is equivalent to half of the cross

section of the inner diameter of the electrode (see Fig. 2).

Electrical boundary conditions were: Zero current density in the transverse direction to

the symmetry axis and inside the electrode and zero voltage in the dispersive electrode.

The modeled pulsed RF protocol consisted of the application of 80 V up to roll-off time.

Impedance evolution up to roll-off was used to compare the different mathematical

functions, since this time is closely related to the time when dehydrated tissue reaches the

middle zone of the electrode [30], i.e. when the area close to the electrode reaches a

temperature around 100ºC. Once roll-off occurs, power is switched off for 15 s and then a

new 80 V pulse is again applied until the next roll-off. This procedure, common in clinical

practice, is repeated for a period of 6-12 min. The simulations lasted for up to 6 minutes

and the protocol was implemented by means of a connection between COMSOL and

MATLAB (MathWorks, Natick, MA, USA).

The model mesh was heterogeneous, with a finer mesh size at the electrode-tissue

interface, where the highest electrical and thermal gradients were expected. All the mesh

elements used were triangular, which areas ratios varied between 2.5e-7 and 2.85e-5 m2.

The size of the finer mesh was estimated by a convergence test. We used the value of the

maximum temperature (Tmax) reached in the liver at the first roll-off time as a control

parameter in these analyses. When there was a difference of less than 0.5% in Tmax

between simulations we considered the former mesh size as appropriate. The final total

number of elements and degrees of freedom were 4991 and 30330, respectively.

Analogously, we used a similar convergence test to estimate the optimal time-step. In the

case of the time-step we used an adaptive scheme since we let the time-stepping method

chose time steps freely.
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All computer simulations were performed with a Dell T7500 workstation with Six Core,

2.66 GHz Xeon processors and 48 GB RAM running on a Windows 7 Professional 64 bit

operating system.

Results

The first roll-off time and the followings up to 12 minutes were registered for each case. In

all cases we observed that after the first roll-off the subsequent roll-offs occurred at

intervals of 25.7±2.1 s. Fig. 3 shows impedance evolution up to the first roll-off in some

cases with  modeled in different ways. Fig. 3A shows the cases in which the increase of

with temperature up to 100ºC was modeled for two increase rates (1.5 and 2%/ºC) and

types (linear and exponential). In all these cases we considered a 2-order drop when

T>100ºC (see Table 1). In general, the first roll-off occurred earlier in cases with

exponential (3 and 4) than linear increase (1 and 2), with a difference of 4.8%. Moreover,

roll-off occurred earlier when the increase rate was 2%/ºC (cases 2 and 4) compared to

1.5%/ºC (cases 1 and 3), with a difference of 7%. Consequently, the extreme cases were 1

(latest first roll-off) and 4 (earliest first roll-off) with time differences of 11.5% in

achieving first roll-off. Fig. 3B shows the impedance evolution for these extreme cases and

the same cases with a 4-order drop in T>100ºC in  (cases 5 and 8, respectively). Here,

the differences were almost negligible (<1.5%).

Fig. 3 also shows that impedance evolution can be divided into three zones: 1) initial

drop; 2) plateau; and 3) sudden increase up to roll-off. Fig. 3A shows that in cases with

linear increase (cases 1 and 2) the drop and increase slopes of the impedance plot were

smaller than with exponential increase (cases 3 and 4). Moreover, for the same type of

increase, the drop and increase slopes of the impedance plot were smaller when the
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increase rate was 1.5%/ºC compared to 2%/ºC. In contrast, Fig. 3B shows that there are no

differences in impedance evolution between a 2-order or 4-order drop in .

In the second set of simulations we considered the extreme cases from the first set

(cases with the earliest and latest roll-offs, 1 and 4) and then varied k according to cases 9

to14, (see Table 1). Fig. 4 shows the impedance evolution up to first roll-off in these cases.

Fig. 4A shows the impedance evolution in cases 1, 9, 10 and 11, i.e. with an extreme case

of  and different combination of k. Fig. 4B shows the impedance evolution of cases 4, 12,

13 and 14, which correspond with the complementary extreme case of  and the same

combinations of k. In both figures it can be seen that in comparison with the cases in which

k was constant (1 and 4), the first roll-off was achieved later in cases in which k increases

with respect to the initial value (9 and 12), and earlier in cases in which k decreases

linearly with respect to the initial value (11 and 14), with differences of 5%. These last

differences increased by 1-2% when there was a sudden drop in k (10 and 13), i.e., a

different value of k before and after 100ºC. Moreover, in all cases the drop and increase

slopes of the impedance plot were similar, and changes in impedance evolution were only

observed during the time in which impedance started to increase.

Finally, in order to assess the impact of the method of modeling the temperature

dependence of  and k on lesion dimensions, the evolution of the lesion short diameter

(transverse diameter) for cases 1 to 4 was plotted for a period of 6 minutes (see Fig.5). In

Fig. 5 the dashed vertical lines indicate the time at which the first roll-off occurred in each

case. The maximum difference was 6% between cases 1 and 4 at 220 s. This difference

was only 3.5% at 6 minutes. The same comparison was made for cases 5 to 8, 9 to 11 and

12 to 14 (not shown) and differences in the lesion short diameter were always smaller. We

also observed that a longer time for the first roll-off was not related to a greater lesion

diameter (Fig. 5). Indeed, when the first roll-off occurred, the lesion diameter was similar
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in all cases and its value was 75% of the lesion diameter at the end of ablation. Fig. 5 also

shows that the growth rate of the lesion decreased linearly with time.

The computational time required to obtain the solutions was almost the same in all the

cases considered. Cases 1-8 were similar from a computational point of view, since a

piecewise temperature-dependent function was used for  and a constant value for k. We

noticed that the computational time was around 5% longer in cases 9-14, in which a

piecewise temperature-dependent function was used for k.

Discussion

In this study the different approaches employed by other authors to theoretically model the

temperature-dependence of  and k during RFA were reviewed and compared, including

those involving the electrical and thermal performance of tissue around 100ºC. The

impedance evolution up to first roll-off was used to compare the different approaches,

since impedance increases abruptly and the subsequent roll-off occurs when the electrode

is completely surrounded by dehydrated tissue (100ºC) [30]. The evolution of the short

diameter of the thermal lesion for up to 6 minutes was also used as a comparison.

We consider that the findings of this study can be explained by the thermal-electrical

performance of the tissue around the electrode. Impedance evolution up to the first roll-off

is divided into three zones (intervals) which are related to the temperature evolution of

tissue surrounding the electrode (Fig. 6). To understand the behavior of impedance in each

zone it is important to be aware that 1) impedance and  are somewhat inversely related,

and 2) the value of is a characteristic of every point in the tissue, while impedance is the

result of a spatial integral which takes into account the value of  at all points in the tissue.

 thus increases at points located at the edges of the electrode (distal and proximal) in the

early stages of RFA, due to the rapid rise in temperature in this zone, after which
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impedance gradually decreases (zone 1). As the temperature of the tissue around the

electrode increases, there is a balance between points with temperatures above and over

100ºC. In the former  drops abruptly and in the latter  is increasing. This situation causes

an impedance plateau (zone 2). Finally, when the tissue around the electrode middle zone

rises to a temperature over 100ºC, i.e. when the electrode is completely surrounded by

dehydrated tissue, impedance increases abruptly and roll-off occurs (zone 3) [30].

According to this behavior, it seems obvious that when  grows slowest (i.e. linear type

increase and 1.5%/ºC rate) the changes in impedance are more gradual, the drop and

increase slopes of impedance evolution are smaller and roll-off occurs later.

On the other hand, as k measures the tissue’s ability to conduct heat, then when the

value of k is lower, around 100ºC, (i.e. a sudden drop in k when T>100ºC and when k

decreases linearly up to 100ºC), the tissue is maintained at high temperatures for a longer

time, so that there is a larger amount of tissue in which  drops at the same time,

consequently roll-off occurs earlier. This also agrees with the results obtained by

Tungjitkusolmun et al [8] in the computer modeling of RF cardiac ablation, in which they

found that a drop in k implied that the maximal temperature of 100ºC was reached earlier.

A rise in k likewise involved a drop in the maximum temperature reached at the end of a

preset time [34].

When we studied the evolution of the short diameter of the thermal lesion we found that

a large part of the lesion volume is formed at the first roll-off time (Fig. 5) and thus used

this time to compare cases. We also observed that longer first roll-off times were not

necessarily related to bigger lesions. It can therefore be said that the different mathematical

functions used to model and k give different first roll-off times (differences up to 11.5%)

but not final lesion size after 6 minutes ablation (differences of 3.5% in short diameter).

Also, the differences in lesion evolution are only noticeable from the first until
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approximately the third roll-off, after which they become negligible. This undoubtedly has

clinical implications, since the computer results suggest that the lesion is almost complete

after three roll-off episodes and experiences little change from this point on.

One of the limitations of this study is that we focused on piecewise mathematical

functions as they are the most commonly used. However, it must be said that other kinds of

mathematical functions can be used to model these characteristics in RFA. Pearce et al.

[27] considered water as the most thermodynamically active tissue constituent and both

their formulation and the functions used to model and k take into account the tissue water

content. As regards , some studies have considered a temperature-dependence based on a

polynomial relation derived from NaCl solutions [21,35]. Ji and Brace [36] recently have

suggested that variations in liver electrical conductivity at temperatures near 100ºC are best

modeled using a sigmoid function for microwave thermal ablation. Watanabe et al. [37]

studied and modeled k temperature-dependence using three different piecewise functions to

those used in our study.

Our study did not include any case in which  was constant with temperature, since it

had previously been demonstrated that this dependence has to be included in the models to

achieve realistic results [38]. Likewise, we always considered the latent heat associated

with the liquid-gas phase change when tissue reached 100ºC (in particular the enthalpy

method [25]). Excluding this heat from the governing equation would considerably reduce

the time to first roll-off. Neither of these approaches (using for  a constant value with

temperature and excluding latent heat) was considered, as they do not accurately reflect

what really happens.

Our aim was not to choose the most suitable function to represent the temperature-

dependence of  and k, which would need additional experimental studies outside the

scope of this work. Although it has been demonstrated that both characteristics depend on
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temperature, no studies have been carried out on the type of function that best represents

this dependence. In all the cases considered a similar trend was observed in the  growth

up to 100ºC, a sudden drop between 100-105ºC, after which it remains constant at a very

low value. However, there is somewhat more uncertainty in the case of k. Although we

have found some studies (e.g. [37]) on the temperature-dependence of k, a deeper study of

this issue is required. A good result in this area would provide the necessary information

for the accurate modeling of  and k. The current lack of this information means that it

necessary to assess the impact of the common mathematical functions used to model the

temperature dependence of  and k in RFA. Temperature profiles obtained in the

simulations are relevant and typically found in a RF ablation regime, which validates our

results in other RF problems (see for example [21] and [35]).

Conclusions

Although our main objective was to review and assess the impact of the mathematical

functions most commonly used to model the temperature dependence of  and k in RFA,

our findings in the case of RF ablation modeling allow us to suggest the following:

1) The temperature dependence of  below 100ºC can be modeled equally well either by

using a linear or exponential increase or an increase rate of between +1.5%/ºC and

+2%/ºC.

2) Once temperature reaches 100ºC, the change in  caused by dehydration can be

modeled equally well by using an abrupt drop of either 2 or 4 orders of magnitude between

100ºC and 105ºC.

3) The temperature dependence of k can be ignored and hence a constant value can be

used, since the different approaches proposed in previous modeling studies provide similar

results.
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4) The COMSOL computing time was similar in all cases.

In the context of this study, the term “equally” means that the computed lesion short

diameter after 6 minutes ablation differs by less than 3.5%. These conclusions could be

useful for groups conducting research on RFA modeling using software with limited

options on the temperature-dependence of  and k.
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Table 1. Studied cases according to the different mathematical functions used to model the

temperature dependence of electrical () and thermal (k) conductivities.

 k
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Table 2. Characteristics of the materials used in the theoretical model [12,19,29,30].

Tissue/material  (S/m) k (W/m·K) (kg/m3) c (J/kg·K)

Electrode 7.4×106 15 8×103 480

Plastic 10-5 0.026 70 1045

1080(3) 3455(3)

Liver 0.132(1) 0.502(2)

370(4) 2156(4)

electric conductivity; k, thermal conductivity; density; c, specific heat

(1)  Assessed at 17ºC. This allows initial impedance (≈100  to match the

experimental mean value obtained from [30]. (2) Assessed at 37ºC [12]. (3) Tissue in

liquid phase. (4) Tissue in gas phase.
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Figure 1 Representation of the functions used for modeling the thermal dependence

of  and k. In the case of  was showed only a 2 order drop for T>105ºC. In

legends are specified some references in which these kind of functions of 

and k are used.
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Figure 2 Geometry of the two-dimensional theoretical model (out of scale and

dimensions in mm) and electrode detail. The domain is divided into three

zones: plastic portion of the electrode, metallic electrode and hepatic tissue.
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Figure 3 A) Impedance evolution to the first roll-off in cases 1 to 4. B) Impedance

evolution to the first roll-off in cases 1, 4, 5 and 8. The only characteristic

which varies in both figures is  in accordance with Table 1.

Figure 4 A) Impedance evolution in cases 1, 9, 10 and 11. B) Impedance evolution in

cases 4, 12, 13 and 14. A different mathematical function for k was used in

each case, in accordance with Table 1.
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Figure 5 Evolution of the lesion short diameter (a) throughout 360 s for cases 1 to 4 (see

Table 1 for details). Dashed lines represent the time in which the first roll-off

was achieved in each case.
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Figure 6 Two-dimensional tissue temperature distribution during RFA and impedance

evolution. The impedance progress can be divided into 3 intervals: 1) initial

impedance drop; 2) impedance plateau; and 3) abrupt increase of impedance.

These zones are related to the physical conditions of the tissue during the RFA

process [30].


