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Abstract

This paper presents the Referrer Graph (RG) web prediction algorithm
and a pruning method for the associated graph as a low-cost solution to
predict next web users accesses. RG is aimed at being used in a real
web system with prefetching capabilities without degrading its perfor-
mance. The algorithm learns from users accesses and builds a Markov
model. These kinds of algorithms use the sequence of the user accesses
to make predictions. Unlike previous Markov model based proposals, the
RG algorithm di↵erentiates dependencies in objects of the same page from
objects of di↵erent pages by using the object URI and the referrer in each
request. Although its design permits us to build a simple data structure
that is easier to handle and, consequently, needs lower computational cost
in comparison with other algorithms, a pruning mechanism has been de-
vised to avoid the continuous growing of this data structure. Results show
that, compared with the best prediction algorithms proposed in the open
literature, the RG algorithm achieves similar precision values and page
latency savings but requiring much less computational and memory re-
sources. Furthermore, when pruning is applied, additional and notable
resource consumption savings can be achieved without degrading origi-
nal performance. In order to reduce further the resource consumption, a
mechanism to prune de graph has been devised, which reduces resource
consumption of the baseline system without degrading the latency savings.

1 Introduction

Currently, the web is being massively used, thus constantly increasing the tra�c
in the network as well as the load that servers manage. Although nowadays web
users have higher bandwidth connections, they still perceive huge latencies when
navigating the web due to overloaded elements (e.g., network, servers, switches,
or intermediate hardware) and long message transference times. Consequently,
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the reduction of the latency perceived by users when browsing the web is still a
crucial research issue.

To reduce this latency, techniques like caching, geographical replication and
prefetching have been proposed and used. Nowadays, caching techniques are
widely implemented since they achieve important latency savings. Big compa-
nies usually implement web replication by using CDNs to reduce their websites
access time, but this solution is expensive and many companies and organiza-
tions cannot a↵ord it. Web prefetching techniques are orthogonal to caching
and replication techniques, so that they can be applied together to achieve a
better web performance.

Web prefetching can highly reduce web latency, as many research works
appeared in the open literature [1, 2, 3, 4] show. In a previous work [5] we
concluded that page latency savings achieved by web prefetching could range
from 39% to 52% in real conditions. However, this technique has been rarely
implemented in commercial products due to three main reasons. The first one is
that early proposals of web prefetching required modifications in the standard
protocols [6], but these are no longer needed since prefetching is compatible with
the current standards and software. The second reason was that the e↵ectiveness
of web prefetching was initially related with high bandwidth requirements [7],
which was a problem in the early proposals that has disappeared in current
communication scenarios. Finally, the third reason was that the most e�cient
prediction algorithms proposed require a lot of computational resources in order
to generate precise predictions because they work by capturing previous user
accesses to build a model of user patterns to predict future accesses [8].

The first two drawbacks mentioned above prevented the massive adoption
of web prefetching and have been properly addressed over the last years. The
design of more attractive web prefetching proposals dealing with resource con-
sumption is critical to encourage the widespread use of web prefetching. This
paper focuses on designing a prediction algorithm with low computational cost,
able to accurately predict the next user accesses, without adding extra service
time that could negatively a↵ect the quality of web services.

This paper presents the Referrer Graph (RG) prediction algorithm as a low-
cost algorithm that achieves precision values and web latency savings similar
to the ones of the best proposals that can be found in the open literature.
The proposed RG prediction algorithm aims to be a low-cost alternative to the
existing algorithms. RG learns from access patterns using the URI and the
Referrer of web requests to predict future accesses. Unlike previous Markov
model based proposals, the RG algorithm di↵erentiates dependencies in objects
of the same page from objects of di↵erent pages by using the object URI and
referrer in each request. The resource consumption, the page latency savings and
the tra�c overhead are evaluated by means of recent, real and representative
traces. Results show that RG achieves page latency savings which are similar
to the ones of the other evaluated prediction algorithms with lower memory and
computational resource consumption.

Although the RG prediction algorithm achieves good performance with low
resource consumption as shown in [9], this cost increases continuously over time
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due to the continuous learning process, as it happens in any other prediction
algorithm proposed in the literature. This paper extends the work presented
in [9] by devising a prune mechanism in order to further reduce the increase
in resource usage. In this context, Section 6 has been included to describe
and evaluate how the proposed mechanism noticeably reduces computational
resources while sustaining the performance. This mechanism, referred to as
pruning algorithm, removes from the graph, both periodically and continuously,
those nodes, arcs, and occurrences that lose their value over time. In this way,
RG can run continuously during unbounded periods of time.

The remaining of this paper is organized as follows. Section 2 presents the
motivation and previous related work. Section 3 describes the RG prediction
algorithm. Section 4 describes the evaluation methodology. Section 5 shows and
analyzes the experimental results Section 6 presents and evaluates the pruning
algorithm. Finally, Section 7 presents some concluding remarks.

2 Motivation and Related Work

Prediction algorithms can be classified in two main groups according to the type
of information used to make predictions [3].

The first group includes algorithms that predict future accesses based on the
previous access patterns. Two subgroups can be distinguished: one that consists
of algorithms that use Markov models [1, 2, 4, 10] and the other with algorithms
that use data mining techniques [11, 12, 13]. Many prediction algorithms based
on Markov models can be found in the literature, and some of them provide high
precision predictions but at the expense of intensive computation and memory
consumption. The resource consumption of data mining based algorithms is
even higher.

The second group contains the algorithms that analyze the web content to
make predictions. Some authors propose to combine the analysis of the content
with usage profiles [14], others apply neural networks to keywords extracted
from HTML content [15], and some others detect similarities in context words
around links in the HTML content [16]. Proposals [15, 16] are based on the
object popularity and the associated hyperlinks, but they do not consider the
relationship among objects.

Regarding the prediction algorithms based on Markov models, one of the
most widely used in the literature is the Dependency Graph (DG) proposed
by Padmanabhan and Mogul [1]. DG builds a dependency graph that depicts
the pattern of accesses to the objects, where there is a node in the graph for
each object that has ever been accessed. Other well-known algorithm is the
Prediction by Partial Match (PPM), proposed by Palpanas and Mendelzon [2],
which also uses a Markov model to store the context of accesses. Both algorithms
achieve a high precision in the predictions, but unfortunately this fact is not
directly related to high latency savings for web users because the algorithms do
not consider the structure of the current websites [4].

The Double Dependency Graph (DDG) algorithm, proposed by Domènech
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et al. [4], is based on DG but it considers the structure of current websites
by di↵erentiating between pages and embedded objects. DDG provides useful
predictions to e↵ectively reduce the user perceived latency when downloading
web pages.

The prediction algorithms mentioned above try to learn the user patterns
from the sequence of accesses. These algorithms consider that two objects are
related if they are requested by the same user closely in time.

Other Markov algorithms learn user patterns from the site structure. Zuk-
erman et al. [8] compares di↵erent prediction models, some of them consider
the order in which documents are requested, and others the structure of the
server site. But the study does not present any algorithm in detail and no re-
sults about the actual page latency savings. Zhu et al. [10] proposed to build
a Markov model from web log files and use it to make predictions. This work
mainly concentrates on the compression of the transition probability matrix. It
does not present any algorithm in detail, and does not study the performance
of the prediction algorithm.

Using current prediction algorithms in the real world presents some problems
with the resource consumption. Several works have addressed this topic in
order to reduce the complexity of the prediction models and, consequently, their
computational and memory costs. In this sense, Deshpande et al. [17] focuses
on pruning Markov models of web prediction algorithms. They present several
techniques to combine Markov models of di↵erent order to reduce the state-
space complexity while maintaining the prediction accuracy. They also propose
three schemes for pruning states: states with low frequency of occurrence; states
with low confidence on state outgoing transition; and states with high error
associated with a state (determined by using o✏ine verification with a trace).
They concluded that the Markov models after pruning achieve similar or better
accuracy than the original models.

3 Referrer Graph

3.1 General Description

The Referrer Graph (RG) prediction algorithm builds a graph based on client
requests. Each requested web object is represented by a node in the graph. For
each web request that reports its referrer, an arc is created from the referred
node (predecessor) to the requested nodes (successor). The resulting graph is
used to make predictions that produce hints which are returned to the web
client.

The idea of a prediction algorithm that considers the site structure accessed
by users is motivated by the fact that users commonly navigate following hyper-
links on web pages. This model considers that two objects are related to each
other if there is a hyperlink between them. Hence, the model considers struc-
tural information about the website instead of the sequence of the requested
objects. In general, the algorithms that use the sequence of requests to build
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the graph need a window of last accesses for each client session in order to
establish arcs among the previous accesses and the current one. RG does not
need this window because this algorithm keeps the relationship between objects
based on their direct reference, which is known thanks to the referrer field in the
request 1. Each HTTP object request includes information about the requested
object and its referrer, so in order to establish an arc it is not necessary to keep
track of previous accesses of the same client session.

RG handles each web request independently of the context of the whole
navigation session. Therefore, RG does not need to keep track of each user
navigation session. On the contrary, prediction algorithms that use the sequence
of accesses identify each navigation session by using the IP address of the client.
This is a problem when several web sessions use the same IP address, which
happens when several clients use the same proxy server, or when they connect
from the same local network masked by a single IP address. Therefore, the
performance of RG is not negatively a↵ected by any of these circumstances.

DDG is a prediction algorithm based on web access patterns while RG is
based on web structure [18]. This is the main reason why the cost of RG is
lower than that of previous proposals. The graph structure built by RG is
also a double dependency graph. However, in the case of RG this structure
is lighter due to the use of the referrer information instead of the sequence of
accesses. This simple way of constructing a lighter graph allows RG to obtain
similar or better benefits with much less cost than DDG and the other evaluated
algorithms.

3.2 Data Structures

RG builds a first-order Markov model, since only the previous access is used to
define the context of the current request. The graph is directed, loopless, and
cyclic.

A Markov model is a directed cyclic graph where the next node only depends
on the current state. The node represents the context of the user, that is, the
recent accesses. Nodes are connected by arcs, which represent the transition
between contexts. The arc weight represents the transition confidence of moving
from the predecessor node to the successor node. The order of a Markov model
indicates how many past accesses are used to define the context in a node.

In the proposed model, a node represents a web object, and it is identified by
the object URI. A directed arc from a predecessor to a successor node represents
the relationship between both nodes.

To illustrate several working aspects of the RG algorithm, let’s assume a
Calendar website, as shown in Figure 1. The main page (Calendars) is linked
to some other secondary pages that focus on di↵erent types of calendars: there
is a di↵erent page for each year calendar (C2007, C2008 and C2009 ); there is
page with the rules used to build the Gregorian calendar (Gregorian), another

1Note that in the original HTTP specification document, the header field was misspelled
as ”referer”, instead of the correct English word ”referrer”.
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Figure 1: Example website

page with the rules for the Mayan calendar (Mayan), and a third one with the
rules for the Julian calendar (Julian). Images and logos are embedded objects
of their own pages.

Figure 2 shows an example graph built by RG for a simple navigation per-
formed in the Calendar website. In the graph there is a primary arc that has
node Calendarsas predecessor, and node Julianas successor. This means that a
user requested the object represented by node Julian, and that request indicated
as referrer the object represented by node Calendars.

Initially, the graph is empty. Then is built and updated through a learning
process. We define the occurrence of a node as the number of requests to the
represented object, and the occurrence of an arc as the number of requests to

/Calendars.html

/Julian.html /logo1.png

/caesar.jpg

Figure 2: Simple graph with two primary and two secondary nodes
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the successor node which provided as referrer the predecessor node. For each
web request, if the graph already contains a node representing that object, the
node occurrence is increased. Otherwise, the node is created with occurrence set
to one. Also, an arc is created or, if it already exists, its occurrence is increased.
To avoid the uncontrolled growth of the graph, it can be periodically pruned by
removing those nodes and arcs that become less representative.

Nodes and arcs can be classified in two main types: primary and secondary.
Primary nodes represent objects that are requested explicitly by users, while
secondary nodes represent embedded objects that are requested by the web
client, not by the user. A secondary node is not predecessor of any arc and its
object’s MIME type corresponds to a typical embedded object (image, video,
script, style sheet, etc). A secondary node is promoted to primary when an arc
having that node as predecessor is established. Thus, it is not possible that an
arc has as predecessor a secondary node. On the contrary opposite, primary
nodes can never be promoted back to secondary.

An arc inherits the type of its successor node. When a secondary node is
promoted to primary, the arcs that have this node as successor are also promoted
to primary.

A web page visited by a user consists of a main object and several embedded
objects. The graph represents this page as a primary node, several secondary
nodes, a primary arc from the referrer node to the primary node, and secondary
arcs from the primary node to the secondary nodes.

In the proposed data structure, the graph stores for each node: the object
URI, node type, node occurrence, list of referrers, list of primary arcs, and
list of secondary arcs. The data stored for an arc is the destination URI, arc
occurrence, and arc transition confidence.

A secondary node keeps a list of referrer nodes because this allows to quickly
find them if the node is promoted to primary.

3.3 Learning Process

The learning part of RG is summarized in Figure 3 and consists of three main
steps: updating the requested node, updating the arc from the referrer node to
the requested node, and promoting the referrer node, if required.

When an object is requested, its corresponding node is found, and the oc-
currence and the list of referrers of the node are updated. If the node has not
been created yet, it is created with a type according to the object MIME type,
and inserted in the graph. If this information is not available, or the MIME
type does not allow to discern the node type, then it is built as a secondary
node.

If the node is secondary, it adds the referrer URI to a list. This is useful in
case of node promotion, as it helps to quickly find the nodes that link to this
node and the arcs that have this node as successor.

If the request provides as referrer the requested object, or if the referrer
is a node that does not exist in the graph (that includes the case of external
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referrers), then the learning process ends. This ensures that arcs have a di↵erent
node as predecessor and successor.

If the referrer already has a node in the graph and there is an arc from the
referrer to the requested object, the arc occurrence is increased. In addition,
all the arcs that have the referrer as the predecessor node are updated: the arc
transition confidence is calculated as the arc occurrence divided by the prede-
cessor node occurrence. If the predecessor is a secondary node, it is promoted to
primary and all the arcs with that node as successor are promoted to primary,
too.

3.4 Prediction Process

Figure 4 shows the main steps of the algorithm that makes predictions and pro-
vides hints. When a user requests an object, the corresponding node is looked
for in the graph. If the node does not exist or it is secondary, no prediction
is made and no hints are provided. On the contrary, if the node exists and is
primary, all its primary arcs are analyzed. Those arcs that have a transition
confidence greater than a given threshold are included in a list of primary arcs,
ordered by transition confidence. Then the successor nodes of such arcs are
looked for and their secondary arcs are analyzed. Those secondary arcs with
a transition confidence (multiplied by the previous primary arc transition con-
fidence) greater than a secondary threshold are included in a list of secondary
result arcs, also ordered by arc transition confidence.

The lists of primary and secondary arcs are then concatenated. The URIs
associated to these arcs are the hints that will be provided as predictions. The
definitive list of hints can be cut to provide only the first N hints.

3.5 Working Example

This section presents an example of a set of clients sessions browsing the Cal-
endar website, the graph built by the learning process, and the hints provided
by the prediction algorithm.

Table 1 lists the web requests performed during the client session, which
are processed by the learning process of RG. Figure 5 shows the corresponding
graph. The primary and secondary nodes are depicted with solid and dashed
lines, respectively. Nodes are labeled with the URI and their occurrence while
arcs are labeled with the arc occurrence and transition confidence. Table 2
shows the hints that RG would provide using the graph previously shown if
a client performed di↵erent requests. The main threshold and the secondary
threshold are not enforced in this example.
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Figure 3: Algorithm for learning from user access and building the RG graph
1: Input:
2: rg: RG graph
3: uri: URI requested
4: referrer: Referrer provided in the request
5: mime: MIME type of the requested object
6: Output:
7: rg: RG graph with improved knowledge

{ UPDATING NODE: Updating the requested node b }
8: b find node with uri 2 rg or build new node, with type based on mime

9: b occurrence  b occurrence+ 1
10: if b type = secondary then
11: Add to b list of referrers: referrer
12: end if
13: Store b in rg

{ UPDATING ARC: Updating arc ~

ab }
14: if uri = referrer or referrer /2 rg then
15: return rg

16: end if
17: a find node with referrer 2 rg

18: ~

ab  find arc with uri 2 a or build new arc
19: ~

ab occurrence  ~

ab occurrence +1
20: Store ~

ab in a

21: for all arcs ~

at 2 a in rg do
22: ~

at transition confidence  ~

at occurrence / a occurrence
23: end for

{ PROMOTION: Promoting Referrer node a }
24: if a type = secondary then
25: a type  primary
26: for all uris urix 2 a list of referrers in rg do
27: x find node with urix 2 rg

28: ~xa  find secondary arc with referrer 2 x

29: x secondary arcs  remove ~xa from x secondary arcs
30: x primary arcs  x primary arcs

S
~xa

31: Store x in rg

32: end for
33: end if
34: Store a in rg

35: return rg
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Table 1: Web requests in example client session
URI requested URI of referrer

/Calendars.html -
/logo1.png /Calendars.html
/logo2.png /Calendars.html
/Gregorian.html /Calendars.html
/popegxiii.jpg /Gregorian.html
/Julian.html /Gregorian.html
/caesar.jpg /Julian.html
/Calendars.html -
/logo1.png /Calendars.html
/Maya.html /Calendars.html
/tzolkin.jpg /Maya.html
/Calendars.html www.search.com
/logo1.png /Calendars.html
/Gregorian.html /Calendars.html
/popegxiii.jpg /Gregorian.html
/Julian.html /Gregorian.html
/caesar.jpg /Julian.html
/Calendars.html /Julian.html

Table 2: Hints provided if client requests URI
URI Hints URI and probability

/Calendars.html /Gregorian.html 50%, /Maya.html 25%, /popegxiii.jpg 50%,
/tzolkin.png 25%

/Gregorian.html /Julian.html 100%, /caesar.jpg 100%
/Julian.html /Calendars.html 50%, /logo1.png 37.5%, /logo2.png 12.5%
/Maya.html -
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Figure 4: Algorithm for giving hints based on RG graph
1: Input:
2: rg: RG graph
3: u: last user access
4: th: primary threshold
5: thsec: secondary threshold
6: Output:
7: h: Set of hints
8: for all output primary arcs a 2 u in rg do
9: if a transition confidence � th then

10: hptemp hptemp

S
{a}

11: for all output secondary arcs e 2 a in rg do
12: if e transition confidence · a transition confidence � thsec then
13: hstemp hstemp

S
{e}

14: end if
15: end for
16: end if
17: end for
18: hpsorted sort hptemp by higher probability
19: hsuniq  delete duplicates in hstemp

20: hssorted sort hsuniq by higher probability
21: h hpsorted

S
hssorted

22: return h

4 Evaluation Methodology

4.1 Simulation Framework

To carry out the experiments in order to show the improvements of the RG
algorithm, we use a pool of simulated clients with prefetching capabilities fed
by real web traces. These clients perform requests to a simulated web server
implementing di↵erent prediction algorithms, according to the architecture de-
scribed and implemented in [19]. The server sends the predictions as hints to
the clients for them to prefetch.

Several assumptions have been taken into account to carry out the experi-
ments. First, the prefetching engine (located at the clients) prefetches the hints
during the browser idle time, like Mozilla-based browsers. Second, each client
can set up two HTTP 1.1 non-pipelined persistent connections to the web server,
which is the maximum number of connections that the standard recommends.
In the prefetching phase, only one of this connections is used (like Mozilla-based
browsers). Third, experiments assume an infinite cache in the clients. The main
reason of this assumption is that we use real traces to feed the clients, that is,
experiments reply those original GET requests made by the clients obtaining a
200 OK response. Therefore, we have no information about the original browser
cache hits.
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/Calendars.html 4

/logo1.png 3

3 ,  75%

/logo2.png 1

1 ,  25%

/Gregorian.html 2

2 ,  50%

/Maya.html 1

1 ,  25%

/popegxiii.jpg 2

2 ,  1 0 0 %

/Julian.html 2

2 ,  1 0 0 %

1,  50%

/caesar.jpg 2

2 ,  1 0 0 %

/tzolkin.jpg 1

1 ,  1 0 0 %

Figure 5: Graph of RG after some simple navigation sessions

4.2 Workload Description

The experiments were performed using two recent web traces (A and B) from
di↵erent websites. The trace files were logged by Apache 2 web servers in a cus-
tom format that included, among other information, the referrer, the user agent,
and the object latency. Table 3 summarizes the main characteristics of these
traces. As observed, some characteristics widely vary between traces because
the corresponding websites serve di↵erent contents to distinct user profiles. This
fact will noticeably impact on the performance achieved by web prefetching, as
shown in Section 5.

Trace A was obtained from the dynamic website of a dynamic website that
acts as the home page of an open source project, which mainly contains news
posts, documentation, and forums. Most of the content is generated dynami-
cally by PHP scripts that query a database. However, the dynamic URIs are
persistent since they are written using an Apache 2 feature that does not use
URI query strings.

Trace B is from a school website which mainly consists of news posts, and
information addressed to students, sta↵, and visitors. The content of this site is
not dynamically generated and its visitor community is much more constrained.

A web session is a group of page requests made by the same web browser
(identified by its IP address). The trace files do not indicate when a session
finishes, so we assume that a browser idle time longer than 15 minutes represents
the end of the web session.

4.3 Performance Indexes

The page latency saving has been used as the main performance index for mea-
suring prediction and prefetching e↵ectiveness in this work because our aim is
to study the maximum benefit perceived by web users.
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Table 3: Trace characteristics
Characteristic Trace A Trace B

Starting date Sep, 27 2007 Mar, 21 2005

Ending date Jun, 18 2008 Nov, 22 2006

Unique IP addresses 131 668 21 566

Browsing sessions 317 268 127 186

Page requests 992 037 884 249

Average page latency (seconds) 0.877± 0.117 1.314± 0.240

Unique objects 6790 1168

Object requests 5 654 371 2 244 916

Requests of objects 77% 70%
smaller than 10 kB

Bytes transferred (MB) 28 135 35 779

The page latency saving percentage (rPL(%)) has been calculated as:

rPL(%) = (1� Average PL with Prefetching

Average PL without Prefetching
) ⇤ 100

The page latency is defined as the elapsed time from when the user demands
a page until the web browser receives all the objects in the page.

All performance indexes have been obtained with a 95% confidence interval.
Nevertheless, for the sake of clarity, only average values are shown in the figures,
as the interval lengths are always less than 5% of the average value. The run
length for each single experiment is 120K user requests and each run consists of
20 intervals equally sized. For each single experiment a preliminary warming-up
phase of 70 intervals (420 000 object requests) is carried out before collecting
statistics.

5 Experimental Results

This section compares the cost-benefit and the resource consumption of the
RG prediction algorithm against other three well-known algorithms. These
algorithms are the Prediction by Partial Match (PPM) [2], the Dependency
Graph (DG) [1], and the Double Dependency Graph (DDG) [4].

The algorithms parameters were individually tuned according to their in-
trinsic characteristics in order to obtain the best cost-benefit ratio with the less
resource consumption. We found that, in both traces, the best configuration was
the use of a lookahead window size of 2 in both DG and DDG, and a first-order
Markov model in PPM.

5.1 Page Latency Saving and Byte Tra�c Increase

Figure 6 illustrates the cost and benefit obtained by the studied prediction al-
gorithms. The page latency saving quantifies the benefit, while the byte tra�c
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Figure 6: Page latency saving versus byte tra�c increase
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increase measures the incurred cost. Experiments were run for di↵erent values
of the prediction algorithms threshold parameter, because this is the most ap-
propriate parameter to modify the aggressiveness of the algorithm prediction.
Only those hints with a higher probability than the threshold are returned to
the web client. The numbers inside the figure show the threshold values used
in the experiment run.

DDG and RG obtained better cost-benefit ratio than PPM and DG. This
di↵erence is specially noticeable in Trace A (see Fig. 6(a)), but it can also
be seen in Trace B (see Fig. 6(b)). This di↵erence arises because DDG and
RG discern among primary and secondary objects in the graph; thus, they can
provide more useful hints. As observed, RG is the preferable algorithm under
low-cost constrains, while DDG is the best when no constrains are imposed.

5.2 Resource Consumption

To increase the prediction accuracy, the prediction algorithms store a lot of
information about user’s navigation and, consequently, have to perform a deeper
information analysis handling a high number of variables to make predictions.
As a consequence, prediction algorithms become more and more complex. In
other words, the algorithms require more computational and memory resources
both to learn from the user behaviour and to make predictions. Therefore, the
research must concentrate not only on the precision of the prediction algorithms,
but also on their resource consumption. A prediction algorithm whose resource
consumption increases exponentially is not appropriate for real usage. When
two prediction algorithms provide similar precision, it is preferable the one with
lower resource consumption.

We quantified the resource consumption of the previously mentioned algo-
rithms. To quantify the memory consumption we measured the number of arcs
in the graph that is built by each prediction algorithm. The number of nodes in
the graphs built by the algorithms DG, DDG and RG is identical because all the
algorithms receive the same number of object requests, and all of them create
a node for each requested object. As an approximation to the computational
consumption, we measured the service time required by the algorithms to make
predictions.

The algorithms DG, DDG, and RG create the same nodes in their graphs,
although they are connected in a di↵erent way. However, PPM builds a data
structure that is completely di↵erent. Consequently, its data structure is not
directly comparable to the other algorithms, as each requested object is repre-
sented with one or more nodes in the PPM tree.

Figure 7 shows the number of arcs in the graph of each algorithm during the
experiment measured in number of user requests.

The data structure created by any algorithm strongly depends on the website
navigation tree. This is the cause of the big di↵erence in cost between Trace A
and Trace B.

The algorithm that always created fewer arcs in its graph was RG. The
reason is that RG creates an arc between two nodes when a web request of the
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Figure 7: Number of arcs in graph when threshold is 0.1
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second node references the first one. This is the main di↵erence between RG
and the other algorithms, where an arc is created between two nodes when they
are requested sequentially during a short lapse of time.

Figure 8 depicts the prediction service time during the experiment, that is,
the time consumed by the implementation of the prediction algorithm to make
a prediction. This time consists of two main components: the learning phase
time and the prediction phase time. A server equipped with a 64-bit Intel Xeon
Processor 3.2GHz, 2M Cache, 4 cores, with 4 GB of RAM was used to perform
the experiments.

As one can observe, the prediction service time (Fig. 8) is directly related to
the number of arcs in the graph (Fig. 7). The reason is that those algorithms
consume most of their prediction time looping over the arcs in the graph and
performing actions with each arc.

RG was the implemented algorithm that required less time to make predic-
tions, followed by DDG, DG and PPM. However, in all cases the service time
increased as the experiment advanced. The reason is that the traces included
requests for several months. During the months when the trace was captured,
new pages were added to the website. Therefore, the prediction algorithms were
continuously adding more nodes to the graph, as well as arcs between old and
new nodes. As a consequence, the prediction service time increased. To avoid
the continuous increase of this time, we propose to prune the graph, that is, to
reduce the graph complexity, as described below.

6 Graph Pruning

This section presents a method for pruning the graph built by RG. First, the
main questions related to the growing of the graph and data structures associ-
ated with the prediction algorithm are discussed. Then, the proposed pruning
algorithm is presented, and the design choices are explained in detail. An ex-
ample of RG pruning illustrates how the algorithm works in practice. Finally,
the benefits of RG pruning against the baseline RG are evaluated.

6.1 General Issues

The graph associated with a prediction algorithm is dynamically built over
time and updated with the corresponding information when a user access is
performed. As a result, the graph grows and continually needs more computa-
tional resources. The problem arises when some information stored in the graph
becomes stale or useless. This fact can happen due to two main reasons: i) the
changes on web navigation patterns, and ii) the removal of some website pages.
The first case appears because users’ interests vary over time. This may happen
depending, among others, on the kind of contents the site provides (e.g., sports
news, financial news, program documentation, ...). The second case occurs be-
cause, when some pages are removed from a website, some knowledge in the
graph becomes useless since users will no longer visit such pages. Furthermore,
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Figure 8: Prediction service time when threshold is 0.1
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keeping obsolete and useless information in the graph not only wastes memory
and computational resources in the prediction engine, but also has a negative
impact on the performance because the precision can noticeably decrease. That
is, if such information was used by the prediction algorithm, it could provide
useless hints. The process of pruning a graph consists of walking on the graph to
check which parts have become obsolete, and therefore suitable to be removed.

The design of a pruning algorithm must address two major concerns: re-
source consumption, and prediction accuracy. The first one means that pruning
must not increase the resource consumption of the original prediction algorithm.
That is, the sum of resource consumption due to the prediction and the pruning
algorithms must not exceed the consumption when pruning is not performed.
This entails that the pruning algorithm itself must be a low-consumption process
and removing information results in a simpler graph that needs less computa-
tional resources. The second concern means that pruning must not have adverse
impact on the e↵ectiveness of the web prediction. In other words, pruning the
graph implies the removal of information, so if useful information is pruned,
prediction accuracy could have adverse e↵ects.

6.2 Proposed Pruning Algorithm

The graph built by RG has two elements that grow over time: nodes that
represent pages, and arcs that represent transitions between pages. Node and
arc occurrences are counters that increase continuously, as they represent the
number of times a page or a transition have been observed. According to the
implementation of the data structures, the action of pruning a node also prunes
the arcs having that node as predecessor. On the other hand, occurrences
are internally represented with integer values, so an integer overflow can raise
arithmetic exceptions because an arc or a node is being highly accessed over
time. In this sense, an e↵ective pruning could help to avoid such exceptions.

The design of a pruning algorithm is determined by two main decisions: i)
what to prune, and ii) when to prune.

The first decision consists in selecting those elements that must be pruned
from the graph. This process must cover the pruning of the three main elements
of the graph: nodes, arcs, and occurrence values. Notice that pruning nodes
and arcs means to remove them from the graph, while pruning occurrences
refers decreasing their value. In order to perform a fair pruning, decreasing the
occurrence values must keep the overall consistency, that is, these values must
be kept proportional to each other. To this end, the occurrences of the arcs are
all reduced at the same time, then the occurrence of the predecessor nodes is
reduced in the same ratio.

The second decision refers to the points in time at which pruning is per-
formed. This can be done either continuously, periodically, or both. In a
continuous pruning, when an element of the graph is accessed, only that el-
ement and the directly related elements are checked for pruning. This process
is performed dynamically and synchronously with the learning process, so com-
putational consumption extends over time. On the other hand, in a periodic
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pruning all the graph contents are checked for pruning at fixed intervals. In the
latter case, the computational consumption concentrates on the lapse of time
when pruning is triggered.

Figure 9 summarizes the pruning process devised for the RG algorithm.
Continuous pruning is used for arcs, and periodical pruning for nodes. Notice
that the pruning and learning algorithms (Figure 3) must be interleaved as
follows: first, updating the requested node and the arc from its referrer; second,
pruning arcs and reducing occurrences; then, promoting the referrer node; and
finally pruning nodes. Consequently, the order in the complete algorithm will
include the following steps:

1. UPDATING NODE (Figure 3)

2. UPDATING ARC (Figure 3)

3. PRUNING ARCS AND REDUCING OCCURRENCES (Figure 9)

4. PROMOTION (Figure 3)

5. PRUNING NODES (Figure 9)

The criterion used for pruning arcs and occurrences, as highlighted in Figure
9 (PRUNING ARCS AND REDUCING OCCURRENCES), is the following.
When a request indicates as its referrer a node that already exists in the graph,
and the node occurrence exceeds a threshold (node occ th), its outgoing arcs are
checked for pruning. An arc is pruned when its transition confidence is lower
than the primary threshold ; otherwise the arc occurrence value is reduced by
a factor (occ reduction factor). As mentioned in Section 3.3, the arc transition
confidence is calculated as the ratio of its occurrence value to the occurrence
value of its predecessor node. Proceeding in this way, the occurrence value
estimates the arc popularity. Once all the arcs leaving a node have been updated,
the occurrence of the node is also reduced by the mentioned factor to maintain
this popularity.

Node pruning is highlighted in Figure 9 (PRUNING NODES). A global
access counter is used to determine the point in time at which the pruning of
all nodes in the graph must start. This counter increases its value each time
a web request occurs. When this counter surpasses a given value (pruning th),
the node pruning process starts. Nodes are pruned when they i) do not reach
a minimum popularity or ii) have not been accessed for a long time. A node is
considered popular enough to be maintained in the graph if its node occurrence
value is higher than a minimal configured value (node occ th) in the pruning
algorithm.

To determine the elapsed time since a node was accessed, a new variable
is associated with each node (last access field). When a node is accessed, this
field gets the value of the global access counter mentioned above (which also
increases its value). Thus, if the last access value of a node is lower than a
configured access threshold (access th) set in the pruning algorithm, then the
node is pruned. Otherwise the node last access field is set to zero. When the
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node pruning process finishes, the global access counter is reset, thus becoming
ready to start a new learning process. When a node is pruned, all the arcs
leaving that node or having this node as their destination are also removed.

Finally, notice that node pruning requires to walk on the entire graph because
the nodes most likely to be pruned are the less requested ones.

Figure 9: Algorithm for pruning the RG graph
1: Input:
2: rg: RG graph
3: referrer: Referrer provided in the request
4: th: Primary threshold
5: accesscounter: Global counter of accesses
6: Output:
7: rg: RG graph with improved knowledge

{ PRUNING ARCS AND REDUCING OCCURRENCES }
8: a find node with referrer 2 rg

9: if a occurrence � node occ th then
10: for all arcs ~ar 2 a in rg do
11: if ~ar transition confidence < th then
12: prune arc ~ar

13: else
14: ~ar occ  ~ar occ ⇤ occ reduction factor

15: end if
16: end for
17: a occ  a occ ⇤ occ reduction factor

18: end if
19: Store a in rg

{ PRUNING NODES }
20: if accesscounter � pruning th then
21: for all nodes n 2 rg do
22: if n occ < node occ th or n last access < access th then
23: prune node n

24: else
25: n last access  0
26: end if
27: end for
28: accesscounter  0
29: end if
30: return rg

6.3 Example of RG Pruning

To illustrate the pruning method, this section presents an example of a graph
built by RG and the graph that results from the pruning of arcs and nodes. The
graph built corresponds to the navigations performed by a set of clients to the
Calendar website proposed in Figure 1.
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In this scenario, navigation sessions have also been assumed to build the
RG graph shown in figure 10(a). As known, nodes represent the visited pages,
and arcs show the transitions among them. Each node shows the value of
its occurrence and its last access, and each arc shows its occurrence and its
transition confidence.

The corresponding navigations were as follows: many clients accessed the
website by first visiting its main page, which is, consequently, very popular (see
occurrence of Calendars). Few visitors were interested in the 2008 calendar or
in the Mayan one. In fact, the last accesses to those pages were performed a
long time ago (compare the global access counter with the corresponding last

access value). The page showing the Gregorian calendar is quite popular but
few users requested it before accessing the main page, possibly because one of
the visitors shared the page URL with his or her friends, so the new visitors
requested the Gregorian page directly, without requesting Calendars before.
This can be observed in the graph by comparing the high value of the Gregorian

node occurrence to the low occurrence value of the arc that links the Calendars

node to the Gregorian one. The numerical values of these fields show possible
consistent values with the users behavior described above.

The pruning algorithm parameters for this demonstration are set as follows:
threshold = 15%, node occ th = 50, occ reduction factor = 0.1, pruning th =
1000, access th = 500. In this example, let’s suppose that the RG algorithm
receives a new prediction request for Calendars. Then, a prediction is performed,
the graph is updated to reflect the new access, and the pruning mechanism is
triggered.

The pruning process starts by checking the arcs that leave the node Calendar.
Two of the arcs are pruned because their transition confidence is lower than the
primary threshold: the arc to the Gregorian node, and the one to the Mayan

one. Then, the remaining arcs and nodes update their occurrences using the
reduction factor mentioned above. Then, when the global access counter reaches
the pruning threshold (pruning th), the process starts and all nodes in the graph
are checked for pruning. Besides its popularity, the node C2008 is removed
because its last access was performed a long time ago. The Mayan node is also
deleted but, unlike the previous one, it is deleted because it has a very low
occurrence (which means it has not been popular since the last node pruning
process). Of course, the arcs that arrive at or leave the pruned nodes are also
removed from the graph. The graph resulting from the pruning is shown in
Figure 10(b).

In summary, the initial graph of five nodes is reduced to only three nodes,
and only one arc remains from the four initial arcs. Those elements of the graph
were removed because they were not popular or had not been accessed for a long
time.

6.4 Experimental Results of Pruning

This section evaluates the benefits of pruning. Graph complexity, prediction
time, and page latency savings have been measured and compared to the original
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uri: CALENDARS
occurrence:  499
last  access:  998

uri :  C2008
occurrence:  200
last  access:  200

occurrence:  200
transi t ion

confidence: 40%

uri :  C2009
occurrence:  100
last  access:  999

occurrence:  100
transi t ion

confidence: 20%

uri: GREGORIAN
occurrence:  95
last  access:  997

occurrence:  10
transi t ion

confidence: 2%

uri: MAYAN
occurrence:  5

last  access:  205

occurrence:  5
transi t ion

confidence: 1%

access  counter :  999

(a) Before pruning

uri: CALENDARS
occurrence:  50
last  access:  0

uri :  C2009
occurrence:  100

last  access:  0

occurrence:  10
transi t ion

confidence: 100%

uri: GREGORIAN
occurrence:  95
last  access:  0

access  counter :  0

(b) Graph after arc and node pruning

Figure 10: Graph learnt and graph after pruning
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Table 4: Distribution of the prediction service time among subtasks
Trace Algorithm Data Learn Prune Predict Prediction

access service time

A RG 0.630 0.739 — 0.303 1.672

A RG+pruning 0.341 0.400 0.290 0.164 1.196

B RG 0.095 0.112 — 0.046 0.253

B RG+pruning 0.063 0.072 0.052 0.029 0.216

algorithm. To carry out the experiments, the node occ th and the access th were
set to 10 and 250 000 accesses, respectively. For the sake of clarity, the results
of each trace are presented in a separate plot across the performed experiments
because both traces present quite di↵erent characteristics.

Figure 11 shows, for both traces, the increase in the number of nodes in
the graph as the experiment progresses. Regardless of the trace, when using
the original RG algorithm (upper curve), the number of nodes increases notice-
ably during the experiment. As expected, when applying pruning, the graph
complexity is reduced each time pruning is performed.

Figure 12 illustrates how the number of arcs evolves in the graph when
applying pruning and in the original algorithm. When pruning arcs, these are
continually removed over the experiment, whereas when pruning nodes, these
are removed at fixed intervals. The reduction in the number of arcs is caused
by the periodic node pruning, because the removal also a↵ects the number of
arcs, that is, when a node is removed from the graph all its outgoing arcs are
also removed.

Figure 13 shows the average service time taken by the RG prediction algo-
rithm to perform predictions. In addition to the learning and predicting phases,
this time includes the pruning phase. In spite of this fact, compared to the
original algorithm, the inclusion of the pruning mechanism significantly reduces
the service time, which drops by about 30% in trace A and 23% in trace B
(quantified at the end of the experiment).

These results mean that graph pruning does not have any adverse e↵ect on
the service time; on the contrary, it contributes to noticeably reduce it, thanks
to the reduction of the graph complexity.

As mentioned above, the algorithm has five main subtasks. While four of
them (access to data storage, learn from the users request, prune arcs and
occurrences and, perform a prediction) run sequentially in the same process,
the subtask of pruning nodes runs concurrently with the others and occurs
periodically . Table 4 shows the weight of each subtask over the total prediction
service time measured at the end of the experiments shown in Figure 13. As
can be seen, data access and learning are the tasks that take more time, while
predicting is much less time costly. When pruning is enabled, the service time
increases but indirectly reduces the complexity of the other subtasks, and thus,
decreasing the total prediction service time. This observation can be appreciated
in both traces.
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Figure 11: Number of nodes in graph when threshold is 0.1
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Figure 12: Number of arcs in graph when threshold is 0.1
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Figure 13: Prediction latency when threshold is 0.1

27



0%

5%

10%

15%

20%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Pa
ge

 L
at

en
cy

 S
av

in
g

Byte Traffic Increase

RG

0.05
0.1

0.2

0.5
RG+pruning

0.05
0.1

0.2

0.5

0.05
0.1

0.2

0.5

(a) Trace A

0%

5%

10%

15%

20%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Pa
ge

 L
at

en
cy

 S
av

in
g

Byte Traffic Increase

RG

0.05

0.1

0.2

0.5
RG+pruning

0.05

0.1

0.2

0.5

0.05

0.1

0.2

0.5

(b) Trace B

Figure 14: Page latency saving versus byte tra�c increase
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Finally, Figure 14 shows the page latency saving and byte tra�c increase
obtained by the RG algorithm with and without pruning. In trace A, pruning
the graph results in almost no change in the performance achieved. It is ob-
served that in trace B, RG obtains slightly higher benefit when pruning, but at
expenses of increasing the cost. This is because pruning the graph deletes nodes
and arcs with low transition confidence, and this fact increases the transition
confidence of the remaining arcs. As a consequence, more hints are provided in
the predictions, more hints are prefetched, and some of them finally result in
prefetching hits.

In summary, the proposed method for pruning the RG graph allows us to
reduce computational (i.e., less service time) and storage resources (i.e., graph
complexity) without decreasing the original performance.

7 Conclusions

This paper has presented the Referrer Graph (RG) prediction algorithm and an
associated prune mechanism, which is aimed to be a precise and simple solution
for web prediction while consuming few computational resources. RG learns
from user accesses and builds a Markov model, di↵erentiating dependences on
objects of the same page from objects of di↵erent pages. However, instead
of using the sequence of user accesses as other algorithms do, RG uses the
object URI and referrer associated to each request. This permits the design of
a very simple algorithm because it does not need to keep track of previous user
accesses (the user browsing session). It also means that RG establishes arcs to
represent proven relations, instead of establishing arcs between objects for the
circumstantial reason that they were requested sequentially by the same user.
Consequently, RG establishes fewer arcs than other proposals, so the Markov
model is smaller. This allows a faster management of the model when learning
or predicting.

The experimental results show that RG compared to the best prediction
algorithms proposed in the open literature, obtains a page latency saving similar,
or even better when the tra�c increase is a strong constraint, but requiring
less computational and memory resources, thanks to its data structure and
algorithmic simplicity.

In addition to the learning and prediction processes, a simple mechanism
for pruning nodes, arcs, and occurrences in the graph has been devised for RG.
This allows RG to learn from new user accesses over time without increasing
the resource consumption. Results show that the proposed pruning mechanism
significantly reduces the graph complexity and consequently the service time to
perform a prediction, and has no adverse impact on the latency savings achieved,
even improves them.
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