

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1145/605432.605421

http://hdl.handle.net/10251/43338

ACM

Mukherjee, S.; Silla Jiménez, F.; Bannon, P.; Emer, J.; Lang, S.; Webb, D. (2002). A
comparative study of arbitration algorithms for the Alpha 21364 pipelined router. ACM
SIGPLAN Notices. 37(10):223-234. doi:10.1145/605432.605421.

Tenth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2002

1

A Comparative Study of Arbitration Algorithms for the
Alpha 21364 Pipelined Router

Shubhendu S. Mukherjee*, Federico Silla
$
, Peter Bannon

!
, Joel Emer*, Steve Lang*, and David Webb

!

ABSTRACT
Interconnection networks usually consist of a fabric of

interconnected routers, which receive packets arriving at their

input ports and forward them to appropriate output ports.

Unfortunately, network packets moving through these routers

are often delayed due to conflicting demand for resources, such

as output ports or buffer space. Hence, routers typically

employ arbiters that resolve conflicting resource demands to

maximize the number of matches between packets waiting at

input ports and free output ports. Efficient design and imple-

mentation of the algorithm running on these arbiters is critical

to maximize network performance.

This paper proposes a new arbitration algorithm called

SPAA (Simple Pipelined Arbitration Algorithm), which is

implemented in the Alpha 21364 processor’s on-chip router

pipeline. Simulation results show that SPAA significantly

outperforms two earlier well-known arbitration algorithms:

PIM (Parallel Iterative Matching) and WFA (Wave-Front

Arbiter) implemented in the SGI Spider switch. SPAA outper-

forms PIM and WFA because SPAA exhibits matching

capabilities similar to PIM and WFA under realistic conditions

when many output ports are busy, incurs fewer clock cycles to

perform the arbitration, and can be pipelined effectively.

Additionally, we propose a new prioritization policy called the

Rotary Rule, which prevents the network’s adverse perfor-

mance degradation from saturation at high network loads by

prioritizing packets already in the network over new packets

generated by caches or memory.

1. INTRODUCTION

Cache-coherent, shared-memory multiprocessors with 16 or

more processors have become common server machines. In

2001 such machines generated a total revenue of $9 billion,

which is roughly 16% of the world-wide server revenue [6].

This market segment’s revenue tripled in the last four years

making it the fastest growing segment of the entire server

market. Major vendors, such as IBM [8][37], Hewlett-Packard

[19][17][26], SGI [33], and Sun Microsystems [6] offer such

shared-memory multiprocessors, which scale up to anywhere

between 24 and 512 processors.

High performance interconnection networks are critical to

the success of large-scale shared-memory multiprocessors. Such

networks allow a large number of processors and memory

modules to communicate with one another using a cache

coherence protocol. In such systems, a processor’s cache miss

to a remote memory module (or another processor’s cache) and

consequent miss response are encapsulated in network packets

and delivered to the appropriate processors or memories. The

performance of many parallel applications, such as database

servers [29], depends on how rapidly and how many of these

miss requests and responses can be processed by the system.

Consequently, it is extremely critical for networks to deliver

packets with low latency and high bandwidth.

An interconnection network usually consists of a fabric of

small interconnected routers, which receive packets arriving at

their input ports and forward them to appropriate output ports.

Unfortunately, packets moving through such routers are often

delayed due to conflicting demand for resources, such as output

ports or buffer space. Hence, routers include arbiters to resolve

conflicting resource demands (Figure 1). The presence of input

buffers in a router usually divides up the arbitration process into

two steps: first an input port picks one or more packets from

those waiting in its buffers, and then an output port picks a

packet among the packets nominated to it by one or more input

ports. By definition only one packet can be delivered through

an output port.

This paper examines several arbitration algorithm choices

for the on-chip router in the Alpha 21364 processor [3], which

runs at 1.2 GHz and uses 152 million transistors to integrate on

the same chip an aggressive dynamically-scheduled processor,

1.75 megabytes of second-level cache, two Rambus Direct

RDRam™ memory controllers, and an interconnection network

router. Efficient design and implementation of these arbiters is

critical to maximize network throughput, as illustrated by

Figure 2. Typically, arbitration algorithms try to maximize the

number of matches between input and output ports to provide

high local routing throughput. A locally maximal match in a

router does not necessarily guarantee globally optimal network

Figure 1. A router with 8 input ports and 7 output ports, like the
Alpha 21364 router. The arbiter controls how and which packets
are forwarded from the input to the output ports.

C
R

O

S
S

B

A

R

Input

Ports

Output

Ports

Arbiter

Router

*Intel Corporation

334 South Street

Shrewsbury, MA 01545

{shubu.mukherjee,joel.emer,steve.lang}@intel.com

!Hewlett-Packard

334 South Street

Shrewsbury, MA 01545

{peter.bannon,david.webb}@hp.com

$Department of Computer Engineering

Universidad Politecnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain

fsilla@disca.upv.es

2

performance. Nevertheless, in our experience, a locally

maximal match has the first order impact on overall network

performance.

 The high-frequency implementation of the Alpha 21364

router made the already difficult task of arbitration even harder.

The entire 21364 chip, including the router, runs at 1.2 GHz. In

contrast, earlier generations of such routers ran at much slower

speeds. For example, the Cray T3E router runs at 75 MHz [31],

the SGI Spider runs at 100 MHz [16], while IBM’s third

generation Vulcan switch runs at 125 MHz [35].

For efficient implementation at 1.2 GHz, we had to pipeline

the 21364 router. Unfortunately, in the 0.18 micron CMOS

process that the 21364 was designed for, only up to 12-13 logic

levels could be incorporated in the 0.83 nanoseconds cycle

time. This forced us to pipeline the arbitration algorithm itself,

unlike the SGI switch in which the algorithm was implemented

within one 10-nanosecond clock cycle. Unfortunately, each

additional cycle added to the 21364 router’s arbitration pipeline

degraded the network throughput by roughly 5% under heavy

load1. Hence, any additional cycles incurred by a more

complex arbitration algorithm must gain back the performance

degradation from the added cycles in the pipeline.

This paper shows that SPAA (Simple Pipelined Arbitration

Algorithm)—implemented in the 21364 router—significantly

outperforms two well-known arbitration algorithms—Parallel

Iterative Matching (PIM) [2] and Wavefront Arbitration (WFA)

[36], which is implemented in the SGI Spider switch. For

completeness, we also examine a maximal cardinality matching

algorithm (MCM), which maximizes the number of matches

between packets waiting at the input ports and free output ports.

The number of matches found by PIM and WFA between

packets waiting at input ports and free output ports is close to

that of MCM’s, which makes both PIM and WFA very

powerful arbitration algorithms. PIM iterates between the input

and output ports to find a suitable match of packets, whereas

WFA makes a pass through a matrix of input and output ports

to find a suitable match.

The key to PIM and WFA’s high matching capabilities lies

in their high level of interaction between input and output ports.

1
 This measurement was done using SPAA, which is explained later.

When multiple input ports nominate packets to the same output

port, naïve algorithms, such as OPF in Figure 2, can result in

arbitration “collisions” and consequent poor performance. In

contrast, both PIM and WFA’s input and output port arbiters

will interact to choose the appropriate match for the specific

arbitration cycle. Unfortunately, such high level of interaction

requires a higher number of cycles to implement them com-

pared to what a simpler algorithm, such as SPAA, would need.

Additionally, such interaction also makes it hard to pipeline

these algorithms.

SPAA is a much simpler algorithm compared to PIM and

WFA and is more like the OPF algorithm in Figure 2. In

SPAA, each input port chooses a packet in every cycle to

nominate to an output port. However, an input port arbiter’s

choice is independent of most of the other input port arbiters.

Similarly, an output port arbiter chooses a packet from the

packets nominated to it by the input port arbiters. But, an

output port arbiter’s decision is independent of the other output

port arbiters’ decisions. Thus, SPAA minimizes interactions

between the input and output ports.

Clearly, because of its reduced interaction between input

and output port arbiters, SPAA can result in arbitration

collisions at the output port and, hence, fewer matches than

what PIM or WFA would offer. Nevertheless, SPAA signifi-

cantly outperforms both algorithms because of three reasons.

First, with medium to heavy loads many output ports are busy

and, hence, an arbitration algorithm need only find matches for

a few free output ports. Thus, when our seven output ports are

busy 50% of the time, SPAA’s matching capabilities are similar

to PIM and WFA’s. The difference between PIM, WFA, and

SPAA’s matching capabilities is negligible when the output

ports are busy 75% of the time.

Second, SPAA minimizes its interaction between input and

output ports, which lowers its matching capabilities, but makes

it simpler, so that it can be implemented in three cycles in the

21364 router. WFA would have incurred four cycles to

implement. Similarly, one iteration of PIM takes four cycles to

implement. Multiple iterations of PIM would have incurred

significantly more cycles and would have obviously performed

poorly in our environment. Hence, we use only one iteration of

PIM—which we call PIM1—in all our timing evaluations.

Third, SPAA can be pipelined effectively because it mini-

mizes interactions between the input and output ports. PIM1

requires an extra step of interaction between the output and

input ports, whereas WFA requires interaction between the

output ports themselves. These features prevent both PIM1 and

WFA from being pipelined effectively. In our implementation

both PIM1 and WFA take four cycles, but can start input port

arbitration every three cycles, whereas SPAA takes three cycles

and can initiate input port arbitration every cycle.

Additionally, SPAA nominates a packet to only one output

port, unlike PIM or WFA, which can nominate the same packet

to multiple output ports. This has the added benefit that a

packet can be speculatively read out from an input buffer as

soon as it is scheduled for delivery by an input port arbiter (but

before the output port arbitration is complete), much like the

way direct-mapped caches allow processors to speculatively

read out data before the address comparison completes [20].

Our simulation results show that SPAA significantly outper-

forms both PIM1 and WFA. We also demonstrate that SPAA

will continue to deliver higher throughput compared to PIM1

Input Port 0 3 2 1

Input Port 1 3 2 1

Input Port 2 3 2 1

Input Port 3 3 2 1

Input Port 4 3 6 1

Input Port 5 3 2 0

Input Port 6 3 2 4

Input Port 7 3 2 5

Figure 2. An illustration of the challenges of an arbitration
algorithm for the router in Figure 1. The first column lists the
input ports. Column 2 – 4 list the output port destinations of the
packets waiting at that input port. Column 2 contains the oldest
packets to arrive at the specific input port, while column 4 lists the
corresponding youngest packets. An arbitration algorithm (lets
call it OPF) that picks the oldest packet from each input port will
be sub-optimal because output port 3 can deliver only one packet.
Thus, OPF will result in arbitration collisions at output port 3. In
contrast, an arbitration algorithm that chooses the shaded packets
will have the maximum throughput at this router in the current
arbitration cycle.

3

and WFA, if the router were scaled to have twice the pipeline

length, greater input load, or support bigger networks than the

21364 was designed for.

In addition to SPAA, we propose a new prioritization policy

called the Rotary Rule, which provides a significant boost in

network performance by preventing the network’s adverse

performance degradation from saturation at high network loads.

The Rotary Rule prioritizes the movement of network packets

already in the network over packets recently generated from the

processor ports. We demonstrate the effectiveness of the

Rotary Rule with WFA and SPAA. The Alpha 21364 router

provides the Rotary Rule as an optional mode programmable at

boot-time. We do not, however, expect most real applications

running on a system composed of 21364 processors to create

such heavy network load that would require us to turn on the

Rotary Rule.

The rest of the paper is organized as follows. We first de-

scribe the 21364’s base router architecture in Section 2. Section

3 discusses PIM, WFA, SPAA, and the Rotary Rule, as well as

related work. Section 4 discusses our evaluation methodology

and Section 5 describes our results. Section 6 summarizes the

paper and presents our conclusions.

2. THE ALPHA 21364 ON-CHIP ROUTER

Mukherjee, et al. [26] discusses details of the 21364 net-

work and router architectures. Here we summarize the salient

features of the network (Section 2.1) and the router pipeline

(Section 2.2) relevant to this paper.

2.1 21364 Network Architecture

The Alpha 21364’s on-chip router uses two million transis-

tors to connect up to 128 processors in a two-dimensional torus

network (Figure 3). Salient features of the network are:

 Packets. The network supports seven classes of coherence

packets for the directory-based cache-coherence protocol.

These are requests (three flits), forwards (three flits), block

response (18 or 19 flits), non-block response (two or three

flits), write I/O (19 flits), read I/O (three flits), and special

(one flit, excluding no-ops). Each flit is 39 bits—32 bits for

data and 7 bits for ECC. A 19 flit packet, such as a block

response, can carry a 64-byte cache block (3 flits for header

and 16 flits for the cache block). Thus, when an input or an

output port is scheduled to deliver a packet, the port can be

busy for two, three, 18, or 19 cycles. An output port is ready

for re-arbitration once all flits of a packet are delivered via the

port.

 Virtual Cut-Through Routing. The 21364 uses virtual cut-

through routing in which flits of a packet proceed through

multiple routers until the header flit gets blocked at a router.

Then, all flits of the packet are buffered at the blocking router

until the congestion clears. Subsequently, the packet is

scheduled for delivery through the router to the next router

and the same pattern repeats. To support virtual cut-through

routing, the 21364’s router provides buffer space for 316

packets per input port [26]. Note that a packet is never

dropped from the network in the absence of errors.

 Adaptive Routing in the Minimal Rectangle. In the 21364,

packets adaptively route within the minimum rectangle.

Given two points in a torus (in this case, the current router

and the destination processor), one can draw four rectangles

that contain these two points as their diagonally opposite

vertices. The minimum rectangle is the one with the minimum

diagonal distance between the current router and the destina-

tion. Thus, the adaptive routing algorithm has to pick one

output port among a maximum of two output ports that a

packet can route in. Packets that follow adaptive routing may

not be delivered in order, but the coherence protocol in 21364

is designed to handle out of order traffic.

 Virtual Channels. The 21364 router uses virtual channels [9]

to break deadlocks in the coherence protocol and the routing

algorithms. It assigns a virtual channel group to each coher-

ence packet class. By design, these virtual channel groups are

ordered, such that a request packet can never block a block

response packet. Each group (except the special class)

contains three virtual channels: adaptive, VC0, and VC1.

Packets adaptively route within the adaptive channel until

they get blocked.2 Blocked packets are then routed in the

2
 This is only true for non-I/O packets. Read and Write I/O packets only

route in the deadlock-free channels to adhere to the Alpha 21364’s I/O

ordering rules.

Figure 3. A 12-processor Alpha 21364 2D torus network.

Figure 4. Two of the nine logical router pipelines in the 21364.
(a) shows the router pipeline for a local input port (cache or
memory controller) to an interprocessor output port (b) shows the
router pipeline from an interprocessor (north, south, east, or west)
input port to an interprocessor output port. The first flit goes
through two pipelines: the scheduling pipeline (upper pipeline)
and data pipeline (lower pipeline). Second and subsequent flits
follow the data pipeline. RT = Router Table Lookup, Nop = No
operation, T = Transport (wire delay), DW = Decode and Write
Entry Table, LA = Input Port Arbitration, RE = Read Entry Table
and Transport, GA = Output Port Arbitration, W = Wait, WrQ =
Write Input Queue, RQ = Read Input Queue, X = Crossbar, and
ECC = Error Correction Code. This paper focuses on the LA, RE,
and GA stages of the pipeline.

(a)

 Nop Nop Nop WrQ W RQ X ECC

First Flit

Second Flit

DW LA RE GA

 Nop WrQ W RQ
 X ECC

(b)

ECC Nop WrQ W RQ X ECC

First Flit

Second Flit

 DW LA RE GA

 Nop WrQ W RQ
ECC X ECC

 T

 Nop Nop

 RT

21364

Chip

Rambus

Memory I/O

 M

I
O

 M

I
O

 M

I
O

 M

I
O

 M

I

O

 M

I

O

 M

I

O

 M

I

O
 M

I

O

 M

I

O

 M

I

O

 M

I

O

4

deadlock-free channels, VC0 and VC1, which follow strict

dimension-order routing. Duato [13] has shown that such a

scheme breaks routing deadlocks in such networks. Because

of virtual cut-through routing, however, packets can return

from the deadlock-free channels to the adaptive channel. For

performance reasons, the adaptive channels have the bulk of

the packet buffers, whereas the VC0 and VC1 typically have

one or two buffers. In the 21364 there is a total of 19 virtual

channels (three for each of the six non-special coherence

classes and one for the special class).

 Ports. Each port is 39 bits wide to match the network’s flit

size. Each router has eight input ports and seven output ports.

The input ports include four 2D torus ports (north, south, east,

and west), one cache port (that sends cache miss requests,

etc.), two memory controller ports (that sends responses to

cache miss requests), and one I/O port. The buffers at each

input port have two read ports to allow the arbitration algo-

rithm greater choice in matching inputs to outputs. Like the

input ports, the output ports are divided into four 2D torus

ports (north, south, east, and west), two memory controller

ports, and one I/O port. Inside the processor, the two memory

controller ports are also tied to the internal cache and, hence,

there is no separate explicit cache output port.

2.2 21364 Router Pipeline

The 21364’s router has nine pipeline types based on the

input and output ports. There are three types of input and

output ports: local (cache and memory controllers), interproces-

sor (off-chip network), and I/O. Any type of input port can

route packets to any type of output port, leading to nine types of

pipeline. Figure 4 shows two such pipeline types.

As Figure 4 shows, the router pipeline in the 21364 consists

of several stages that perform router table lookup, decoding,

arbitration, forwarding via the crossbar, and ECC calculations.

A packet originating from the local port looks up its routing

information from the router table and loads it up in its header.

The decode stage decodes a packet’s header information and

writes the relevant information into an entry table, which

contains the arbitration status of packets and is used in the

subsequent arbitration pipeline stages.

The 21364’s arbitration pipeline, which is the focus of this

paper, consists of three stages: LA (input port arbitration), RE

(Read Entry Table and Transport), and GA (output port

arbitration).3 The input port arbitration stage finds packets

from the input buffers and nominates one of them for output

port arbitration. Each input buffer has two read ports and each

read port has an input port arbiter associated with it. Thus, the

21364 has a total of 16 input port arbiters. The input port

arbiters perform several readiness tests, such as determining if

the targeted output port is free, using the information in the

entry table.

The output port arbiters accept packet nominations from the

input port arbiters and decide which packets to dispatch. Each

output port has one arbiter, so the 21364 has a total of seven

output port arbiters. Once an output port arbiter selects a

packet for dispatch, it informs the input port arbiters of its

decision, so that the input port arbiters can re-nominate the

unselected packets in subsequent cycles.

Figure 5 shows the crossbar connection between the input

and output port arbiters. Although the connections form a

crossbar between input and output ports, the individual read

ports are not connected to all the output ports. The same

crossbar connection is followed by the datapath in the X stage

of the pipeline (Figure 4).

In addition to the basic pipeline latency, there are six addi-

tional delay cycles along the path of a packet, including

synchronization delay, pad receiver and driver delay, and

transport delay from the pins to the router and from the router

back to the pins. Thus, the on-chip pin-to-pin latency from a

network input to a network output is 13 cycles. At 1.2 GHz,

this leads to a pin-to-pin latency of 10.8 nanoseconds.

Also, the network links that connect the different 21364

chips run at 0.8 GHz, which is 33% slower than the internal

router clock. The input port arbitration internally nominates

packets at the appropriate cycles so that packets leaving the

router are synchronized with the off-chip network clock.

3. ARBITRATION ALGORITHMS

In the 21364 router, the 16 input port arbiters and 7 output

port arbiters work together to implement the arbitration

algorithm. The 21364 router’s arbitration problem can be

modeled in two ways. First, it can be modeled as a matching

problem in a bipartite graph with 16 input port arbiters and 7

output port arbiters. Each connection between the input and

output port arbiters will carry a certain “weight.” Then, a

Maximum Weight Matching (MWM) algorithm, will try to find

a match that maximizes the total weight of the connections

selected by the match. Examples of such MWM algorithms are

LQF (longest queue first), which uses the number of waiting

packets at an input port as the weight for a connection, and OCF

(oldest cell first), which uses the waiting time for the oldest

packet at an input buffer as the weight for a connection [24].

Unfortunately, the MWM algorithms require O(N
3
) iterations in

the worst case [25], which makes it very difficult to implement

them in hardware in a few cycles. Also, approximations of the

MWM algorithm, such as RPA [1], MUCS [12], Laura and

Serena [25], and Apsara [18], are also not implementable in

hardware within a few cycles.

3
 The 21364 router’s input and output port arbiters are also referred to as

local arbiters (LA) and global arbiters (GA), respectively [26].

 G-N G-S G-E G-W G-L0 G-L1 G-I/O

L-N rp0

L-N rp1

L-S rp0

L-S rp1

L-E rp0

L-E rp1

L-W rp0

L-W rp1

L-Cache rp0

L-Cache rp1

L-MC0 rp0

L-MC0 rp1

L-MC1 rp0

L-MC1 rp1

L-I/O rp0

L-I/O rp1

Figure 5. The 21364 router’s connection matrix. This figure
represents the router’s crossbar connections in a matrix format.
“G-X” denotes output port arbiter for output port X. “L-X rpY”
denotes input port arbiter for input port X and read port Y. The
shaded boxes represent no connection.

5

In this paper, as an upper bound we use an algorithm called

the Maximal Cardinality Matching Algorithm (MCM), which is

basically MWM with all connections having equal weights.

MCM exhaustively searches the space for the maximum

number of matches between input and output port arbiters. We

use MCM only in our non-timing simulations because we do

not know how to implement MCM in hardware within a few

cycles.

Another way to model the arbitration problem is to use a

two-dimensional “connection” matrix with input ports forming

the rows and output ports forming the columns. Such a

representation makes it easier for us to explain the arbitration

algorithms we study in this paper. In this representation, an

input port nominates packets to output ports by filling up the

corresponding row in the matrix. An output port chooses

packets from input ports by scanning the corresponding column

in the matrix.

Figure 5 shows the connection matrix for the 21364 router.

Given this representation, an arbitration algorithm for the 21364

router then needs to answer the following questions:

 Which packets should an input port arbiter nominate to an

output port arbiter? An input port arbiter can pick packets

out of all the buffers in each of the 19 virtual channels. For

correctness and improved performance, each input port arbiter

(independent of the arbitration algorithm) obeys some basic

constraints, such as whether the corresponding output port is

free to dispatch a packet. Each input port arbiter then selects

the oldest packet, which satisfies the basic constraints, from

the least-recently selected virtual channel. An input port

arbiter fills up the corresponding row in the connection matrix

with the packets it selects.

 Can the same packet be nominated multiple times? Any

packet can proceed along a maximum of two directions

because 21364 adaptively routes packets within the minimal

rectangle (Section 2.1). Thus, a packet can be nominated to at

most two output port arbiters. Multiple nominations have the

advantage that a packet would have a greater probability of

being dispatched in the same cycle. However, multiple

nominations of the same packet also imply extra interaction

between input and output ports to ensure that the same packet

is not dispatched through two different output ports.

 Which packets should an output port arbiter pick from the

packets nominated to it by the input port arbiters? An output

port arbiter examines its corresponding column for packets

nominated to it by all the input port arbiters. Then, to select a

packet from a column it can use a variety of policies, such as

random [11], round-robin [31], least-recently selected [35],

some kind of a priority chain [10], or the “Rotary Rule.”

Such prioritization policies are easily implemented in hard-

ware via a priority matrix. We describe the implications of

some of these policies later in this section. Section 3.4

describes the Rotary Rule in detail.

 Can there be multiple iterations (or passes) through the

matrix? Multiple iterations through the nomination and

selection procedure allow the arbitration algorithm to find

more matches compared to a single iteration. However,

multiple iterations would also incur higher number of cycles

to perform the arbitration.

Answers to the above questions have important implications on

the hardware implementation of an arbitration algorithm. For

example, these choices determine how much synchronization is

required among all the 23 arbiters (16 for input, 7 for output) in

the router and whether the arbitration algorithm can be

effectively pipelined.

The rest of this section discusses how PIM, WFA, and

SPAA answer the above questions (Sections 3.1, 3.2, and 3.3).

Section 3.4 describes the Rotary Rule and how it can be

incorporated into WFA and SPAA.

3.1 Parallel Iterative Matching

The Parallel Iterative Matching (PIM) algorithm, proposed

by Anderson, et al. [2], was designed to quickly identify a set of

conflict-free packets for transmission through an ATM switch.

PIM works extremely well in such ATM switches where the

matching algorithm may be implemented in software. The key

to PIM’s success lies in its interaction between input and output

port arbiters, which avoids arbitration collisions incurred by

naïve algorithms, such as OPF (Figure 2).

Below we describe the algorithm’s three key steps for the

21364 router:

1. Nominate. Each unmatched input port arbiter nominates a

packet for each output port arbiter for which it has a pack-

et. The same packet can be nominated to multiple output

port arbiters.

2. Grant. If an unmatched output port arbiter receives any

requests, it accepts one randomly and informs the corre-

sponding input port arbiter of its decision.

3. Accept. If an input port arbiter receives grants for multiple

output port arbiters, it selects one randomly.
PIM iterates over the above three steps until the algorithm

converges. According to Anderson, et al. [2], PIM usually

converges within log2N iterations, so the 21364 router would

need four iterations (N = 16 input port arbiters) of the above

three steps. Researchers have proposed variations of PIM,

such as iSLIP [23] that can be implemented in hardware, but

their matching capabilities are similar to PIM’s.
PIM has two properties that make it difficult to implement

in hardware in a few cycles. First, it can nominate the same

packet to multiple output port arbiters, even though multiple

output port arbiters cannot dispatch the same packet. PIM

avoids multiple dispatches using an additional synchronization

step (Step 3) between the input and output port arbiters.

Unfortunately, this synchronization makes it difficult for input

port arbiters to nominate other packets until they receive their

grants from the output port arbiters. In other words, it is hard to

do input port arbitrations in consecutive cycles, which makes it

difficult to pipeline PIM.

Second, PIM requires multiple iterations of its three steps.

This would further increase the delay of the algorithm. Hence,

we use a variant of PIM called PIM1, which is PIM with one

iteration of its three steps. McKeown has shown, however, that

PIM1’s matching capabilities are significantly worse than

PIM’s [24].

In our evaluation, we assume that PIM1 takes four cycles

for arbitration. We would implement PIM1 using a centralized

16x7 connection matrix, which receives inputs from the input

port arbiters and lets output port arbiters iterate over its

columns. The first three cycles of the four cycles consist of

matrix operations and wire delays: 1.5 cycles to select packets

from the input ports and load up the matrix (i.e., nominate) and

1.5 cycles to grant and accept (via passes over the matrix). The

speed at which the matrix can be evaluated is limited because of

6

dependences between the input and output ports and the limited

number of logic levels (12-13) per cycle in our process

technology. Further, PIM1 requires a random number genera-

tor, which will require a few additional logic levels.

In this implementation of PIM1, a new arbitration can be

started every three cycles because nominate, grant, and accept

take a total of three cycles. Starting a grant or accept before the

prior nominate step is difficult because of two reasons. First,

the total nominations for the matrix could be up to 54 (unshaded

boxes in Figure 5). Keeping track of these large number of in-

flight packets (i.e., nominated, but not delivered) would require

additional state and could increase the number of cycles

incurred by PIM1. Second, we would have to maintain multiple

copies of the matrix to act as buffers for the pipeline stages for

the arbiters. These matrices must be consistent with one

another and should not be loaded with stale packets. Again,

this may further increase the number of cycles incurred by

PIM1.

The fourth cycle of PIM1’s four-cycle arbitration accounts

for wire delays from the matrix to the output ports and can be

pipelined.

3.2 Wave-Front Arbiter

Tamir and Chi [36] proposed the Wave-Front Arbiter

(WFA) for routers in interconnection networks. WFA has been

implemented in the SGI Spider interconnect [16]. WFA is a

much lighter-weight algorithm than PIM1 and could be used

effectively in routers that operate at a much lower frequency

than that of the 21364 router. For example, WFA in the Spider

switch operates at 100 MHz and is implemented within a single

10 nanosecond clock cycle. Also, the key to WFA’s success

lies in its interaction among the input port arbiters and among

the output port arbiters, which allows it to avoid arbitration

collisions that may be incurred by naïve algorithms, such as

OPF (Figure 2).

WFA operates on the entire connection matrix as a whole.

First, the input port arbiters load up the matrix with their

nominations. Then, evaluation of the matrix starts from a

specific cell in the matrix. The evaluation proceeds in a wave

front as follows (Figure 6):

Granti,j = Request i,j and Ni,j and Wi,j

Si,j = Ni,j and NOT(Granti,j)

Ei,j = Wi,j and NOT(Granti,j)

The connection matrix is represented in hardware as a two-

dimensional array of arbitration cells. The position of each cell

in the connection matrix is denoted by i,j. Request denotes that

an input port arbiter has nominated a packet for that arbitration

cell. Grant denotes that the specific arbitration cell has been

chosen for packet delivery. Then, following the above equa-

tions, no other cell in the same row (i.e., same input port

arbiter) and no other cell in the same column (i.e., same output

port arbiter) as the granted cell, would select any other packet

for dispatch. Also, note that Ni,j = Si-1,j and Wi,j = Ei,j-1.

Thus, as Figure 6 shows, if the evaluation starts with wave-

front 1, then the cell (0,0) will be evaluated first, followed by

the cells (0,1) and (1,0), which make up wavefront 2.

Subsequent wavefronts will be evaluated in this fashion.

To ensure fairness, the first cell from where the wave fronts

begin must be chosen carefully. Tamir and Chi suggested using

a robin-robin scheme to choose the first cell. We will refer to

this scheme as WFA-base. Section 3.4 will show how to use the

Rotary Rule to choose the first cell, which we will refer to as

WFA-rotary.

Although the WFA is very appealing, it is not amenable to

efficient pipelining. This is because input port arbiters in

WFA, like in PIM, can nominate the same packet to multiple

output port arbiters. PIM uses synchronization between input

and output port arbiters (Step 3 in PIM) to avoid multiple

dispatches of the same packet. In contrast, WFA requires

communication between the output port arbiters—via the

propagation of the N and S signals along the columns—to avoid

dispatching the same packet through multiple output port

arbiters. Note that WFA uses the same mechanism—i.e.,

interaction among output port arbiters—to avoid arbitration

collisions and, thereby, provide good matching performance.

Thus, interaction between output port arbiters is fundamental to

the WFA algorithm. Additionally, micropipelining the matrix

operations themselves—by pipelining the “waves” of the

WaveFront Arbiter—is difficult because the starting cell (as

indicated in the last paragraph) changes every cycle.

We assume a four-cycle arbitration delay for the WFA. Our

timing is optimistically based on the Wrapped Wave-Front

Arbiter, proposed by Tamir and Chi. The Wrapped WFA

provides matching performance similar to that of WFA’s, but

executes faster in hardware by starting multiple wavefronts in

parallel. As in PIM1, the first three cycles of WFA’s four-cycle

arbitration are spent on matrix operations and wire delays: 1.5

cycles to nominate packets and load up the matrix and 1.5

cycles to evaluate the matrix. WFA suffers from the same

problems as PIM1 (Section 3.1) and hence a new arbitration can

only be restarted every three cycles. Again, as in PIM1, the

fourth cycle accounts for wire delays from the matrix to the

output ports and can be pipelined.

3.3 Simple Pipelined Arbitration Algorithm

The Simple Pipelined Arbitration Algorithm (SPAA) im-

plemented in the 21364 carefully minimizes the impact of

features, such as interaction between input and output ports,

which would be hard to pipeline. However, this also makes its

matching performance much worse than PIM1 and WFA

because it may not be able to avoid arbitration collisions

(Figure 2), particularly in the presence of a large number of free

output ports. Thus, in terms of its matching capability, SPAA

is more like OPF from Figure 2.

Figure 6. Operations of the Wave-Front Arbiter (WFA) for a 4x4
connection matrix. (a) The dotted lines (with circled numbers)
show the wave fronts. Each square represents an arbitration cell
with coordinates i,j. (b) This figure shows an arbitration cell (i,j)
of the WFA matrix.

(b)

(b)

E

N

S

W

Grant

Request

(a)

i,j

1 2 3 4

5

6

7

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

7

Like PIM, SPAA has three steps:

1. Nominate. Each input port arbiter nominates a packet for

only one output port arbiter, if there is one. A nominated

packet cannot be nominated again in subsequent cycles

until Step 3 of this algorithm completes.

2. Grant. If an output port arbiter receives multiple requests,

it selects the packet from the least-recently selected input

port arbiter. Then, it informs all input port arbiters con-

nected to it of its decision.

3. Reset. An input port arbiter resets the state of all nominat-

ed packets that are not selected by the output port arbiter,

so that they can be nominated again.

SPAA has three important properties that make it amenable to

easy hardware implementation and pipelining. First, unlike

PIM1 or WFA, an input port arbiter nominates a packet to only

one output port arbiter. This avoids the extra interaction

required between the input and output port arbiters (as in PIM1)

or between the output port arbiters (as in WFA). Nevertheless,

because a pair of input port arbiters shares the same set of input

buffers via different read ports, the input port arbiters in a pair

must synchronize to ensure that they do not choose the same

packet. However, because the synchronization is between pairs

of input port arbiters located in close proximity, this is not hard

to implement.

Nominating a packet to only one output port also has the

added benefit that a packet can be speculatively read out from

an input buffer as soon as it is nominated by an input port

arbiter (but before the output port arbitration is complete), much

like the way direct-mapped caches allow processors to

speculatively read out data before the address comparison

completes [20]. Of course, the read is wasted if the output port

does not select the specific packet that was speculatively read

out.

Second, SPAA can be implemented as a distributed router

with the input and output port arbiters sitting right next to their

corresponding ports. In contrast, because of PIM1 and WFA’s

high level of interaction between input and output ports, it is

easier to implement PIM1 and WFA using a centralized

connection matrix. The distributed implementation of SPAA

allows it to directly send input port nominations from the input

to the output ports without an intervening connection matrix.

This helps reduce the number of cycles incurred by SPAA.

Third, SPAA need only maintain a small list of in-flight

packets—that is, only 16—because each input port can only

nominate a maximum of one packet. In contrast, aggressive

and more complicated implementations of PIM1 and WFA

would have required us to maintain state for 54 in-flight

packets, which would complicate their implementation.

SPAA’s small number of in-flight packets (i.e., nominated from

the input port, but not yet accepted by the output port) facili-

tates effective pipelining of SPAA. Thus, unlike PIM1 and

WFA, new input port arbitrations in SPAA can be restarted

every cycle.

Thus in summary, SPAA incurs only three cycles (Figure 4)

for its arbitration compared to the four cycles required by PIM1

or WFA and SPAA can be pipelined effectively, so that an

input port arbitration can be started every cycle. SPAA’s three

cycles consist of input port arbitration (i.e., nominate), transport

from input to output port, and output port arbitration (Figure 4).

SPAA’s Step 2 (Grant) selects packets based on the least-

recently selected policy. We call this SPAA-base. In the next

subsection, we discuss how SPAA can use the rotary rule to

select an input port arbiter. We call this SPAA-rotary.

3.4 Rotary Rule

Under extremely heavy loads most multiprocessor networks

suffer from tree saturation [28][30], which can dramatically

degrade a network’s performance beyond the saturation point

(Figure 7). Such tree saturation occurs when multiple packets

contend for a single resource (e.g., a link between nodes)

creating a hot spot. Since only one packet can use the resource,

other packets must wait. These waiting packets occupy buffers

and thus delay other packets, even though they may be destined

for a completely different node and share only one link on their

paths to their respective destinations. This process continues

and waiting packets delay other packets producing a tree of

waiting packets that fans out from the original hot spot.

Eventually, this clogs the network bringing down the delivered

throughput of the entire network.

The 21364 network is no exception and can get saturated at

extremely high load levels. Interestingly, the network produces

a cyclic pattern of network link utilization with extremely high

levels of uniform random input traffic. This is because as the

network gets saturated, it puts backpressure on the links in the

tree. Eventually, this backpressure throttles the routers in the

tree and forces them to avoid injecting new traffic, which

causes the network congestion to clear up slowly. The period

of this cycle increases with the diameter of the network because

it takes longer to fill up the buffers on the path and propagate

the backpressure.

Ideally, we would like network throughput to remain at the

same level as exhibited at the saturation point, instead of

degrading dramatically beyond the saturation point. Most

proposed solutions rely on throttling the input network load

based on some estimate of congestion, so that the network never

goes beyond the saturation point. Lopez, et al. [21][22] use the

number of busy virtual channels in a router to estimate

congestion. Baydal, et al. [4] proposes an approach that counts

a subset (free and useful) of virtual channel buffers to decide

whether to throttle or not. Other researchers (e.g., [34], [30],

[38]) have proposed the use of a variety of global heuristics to

determine congestion.

Fortunately, the 21364 network has two properties that limit

the network load. First, a 21364 processor can have only 16

outstanding cache miss requests to remote memory or caches.

This limits the load the 21364 network can observe.

Second, the 21364 is a “direct” network in which the same

router is responsible for both new traffic (originating from the

Figure 7. Possible network behavior with increasing network load.
Network performance degrades rapidly beyond the saturation
point.

Increasing Network Load

Delivered

Throughput

saturation

point

degradation

beyond

saturation

point

8

local ports, such as the cache port or memory controller ports)

and cross-traffic between routers. Thus, prioritizing the cross-

traffic over new traffic generated from the local ports has the

beneficial effect of both clearing the network congestion as well

as throttling the input load into the network. We call this

prioritization policy the “Rotary Rule.” The name is derived

from the Massachusetts rotaries in which vehicles in the rotary

has higher priority to exit than vehicles trying to enter the

rotary.

It is easy to implement the Rotary Rule for PIM1, WFA,

and SPAA. In PIM1 and SPAA, the output port arbiters would

select packets nominated by the input port arbiters for the

network ports before they select packets from the local ports.

Within the network ports, we use least-recently used selection

policy. In WFA, the selection of the first cell to start the

arbitration process would follow the Rotary Rule. Thus, cells

connected to the input port arbiters for the network ports would

get the highest priority to be the first cell from where the

wavefronts will start. In this paper, we only evaluate the Rotary

Rule for WFA and SPAA. We call these variants WFA-rotary

and SPAA-rotary, respectively.

The Rotary Rule’s prioritization of cross-traffic packets can

create starvation in the network. The 21364 router implements

an anti-starvation algorithm for certain corner cases. The

Rotary Rule simply relies on this anti-starvation algorithm to

clear any starvation caused by its prioritization policy. The

anti-starvation algorithm assigns two different colors to packets

waiting at a router: an old color and a new color. If the number

of old colored packets exceed a threshold, the 21364 ensures

that all the old colored packets are drained before any new

colored packets are routed. Further discussion of the anti-

starvation algorithm is beyond the scope of this paper.

The 21364 network provides the Rotary Rule as an optional

mode programmable at boot time. It is an optional mode

because we believe most applications will not stress the

network to the extent of pushing it into saturation. Neverthe-

less, we provide it both as a “safety net” for the 21364 proces-

sor and as a mechanism that may have allowed its use in future

processors with many more outstanding misses (e.g., the next

generation Alpha 21464 processor would have had 64 outstand-

ing misses).

4. METHODOLOGY

This section describes our performance model, traffic pat-

terns, and performance metric.

4.1 Performance Model

Our evaluation of the 21364’s arbitration algorithm choices

is based on two kinds of performance models written in the

Asim framework [15], unlike Bhuyan [5] or Peh and Dally [27],

who had used analytical modeling to understand the behavior of

arbiters and routers4. Our first model—what we call the

standalone model—allows us to evaluate the matching

capabilities of MCM, PIM, PIM1, WFA, and SPAA in a single

21364 router (just like a cache simulator would allow one to

evaluate the cache miss ratio without any timing information).

Our second model—what we call the timing model—is an

extremely detailed performance model of the 21364 router. We

4
 Bhuyan’s paper pre-dates PIM1 and WFA. Peh and Dally focused on

developing analytical models for router pipelines, but did not compare the

performance of different arbitration algorithms.

have validated this model against a production-level perfor-

mance model of the 21364 network architecture. We have

modeled the detailed timing characteristics of PIM1, WFA-

base, WFA-rotary, SPAA-base, and SPAA-rotary using this

timing model.

We described most of the parameters of the timing runs in

Section 2.2 and Section 3. In addition, we assume 73 nanosec-

onds for the memory system’s response time, 25 cycles for the

on-chip L2 cache’s response time, and 3 network clocks

(running at 0.8 GHz) for latency on each network link. Most of

the results we present in this paper are for a 16-processor (4x4)

network and a 64-processor (8x8) network. Although the

21364 network only scales up to 128 processors, Section 5.3

examines results for a 144-processor (12x12) network to

understand how the arbitration algorithms may scale for larger

network configurations.

4.2 Traffic Patterns

We evaluate our timing models using a mix of synthetic

traffic patterns as opposed to real workloads. Simulations of

real workloads, such as database servers, would have helped us

make more accurate predictions about the performance impact

of the different arbitration algorithms. Such simulation,

however, would have required complex full-system simulation

(including the operating system), which our modeling infra-

structure is unable to handle today. Trace-driven simulation

would have been an alternative, but that also has its limitations

[7].

Nevertheless, synthetic workloads have two advantages.

First, they often tend to increase the contention for resources for

sub-optimal/worst case performance scenarios [39]. Second,

they represent communication patterns in many real-world

applications [14].

Recently, Towles and Dally [39] demonstrated a technique

to construct synthetic traffic patterns that result in worst-case

performance for oblivious routers. Unfortunately, there is no

known similar technique for adaptive routers, such as the

21364.

Our synthetic patterns can be defined along two dimensions.

The first dimension selects the mix of coherence packets. We

use 70% two coherence hop transactions (3-flit request and a

19-flit block response) and 30% three coherence hop transac-

tions (3-flit request, 3-flit forward, and a 19-flit block response)

to model a mix of coherence traffic. We, however, ignore

traffic generated from cache replacements or invalidations to

make our analysis simpler.5 Note that a coherence hop only

specifies a single packet, which can take multiple router hops

via the network.

The second dimension selects the destination of the requests

and forwards. We use three patterns for such selection:

uniform, bit-reversal, and perfect-shuffle. If the bit-coordinate

of the source processor can be represented as (an-1, an-2, ...a1,a0),

then the destination bit-coordinates for bit-reversal and perfect-

shuffle are (a0,a1,...,an-2,an-1) and (an-2,an-3,...,a0,an-1) respectively.

4.3 Performance Metric

We use the Burton Normal Form (BNF) [14] to express the

performance of our different arbitration algorithms. A BNF

graph uses observed latency as its vertical axis and delivered

5
 The 21364 processor can have 16 outstanding cache replacement requests.

9

throughput as its horizontal axis. For our BNF graphs, we use

the average latency of a packet through the network as the

vertical axis. The minimum per-packet latency with a 4x4

network, uniform random distribution of destinations, and a

70/30 mix of 2-hop and 3-hop coherence transactions is about

45 ns (nanoseconds). The 45 ns can be broken into 2.5 ns of

local port latency, 34 ns of network transit latency for the first

flit, and 8.5 nanoseconds of latency for the rest of a packet.

The last number is averaged across the different packet sizes for

our coherence transaction mixes.

We represent the delivered throughput as flits/router/ns

(where ns = nanoseconds). The maximum throughput is two

flits/router/cycle because the 21364 router has two local ports to

sink packets and only one flit can be delivered to a local port

per cycle. Thus, the maximum delivered throughput can be 2.4

flits/router/nanosecond (= 2 / 0.83). In reality, however, the

actual delivered throughput will be significantly lower because

the network links are 33% slower than the processor and the

network links often carry cross-traffic, whose residence time in

the network increases with the size of the network.

We ran each timing simulation for 75,000 cycles. We have

validated that simulation for this number of cycles is sufficient

to predict the steady-state behavior of the network.

5. RESULTS

This section presents our standalone, timing, and scaling

results. Although we present our results only for a subset of the

network sizes and traffic patterns, our results are qualitatively

similar across a wide spectrum of the design space.

5.1 Standalone Results

Figure 8 shows that when all output ports are free MCM,

PIM, and WFA are indeed superior arbitration algorithms

compared to PIM1 and SPAA. We generated Figure 8 by

loading up a single router with input packets and using the

following assumptions:

 All arbitration algorithms take one cycle to execute.

 All output ports are free at the time of the arbitration.

 50% of the traffic is local and destined for the local memory

controller and I/O ports. The rest are destined uniformly for

the other network ports.

 The number of arbitration matches is averaged across 1000

iterations of the arbitration algorithms. Because the traffic is

generated randomly, in some cases even MCM, which

exhaustively searches for the maximum number of matches, is

not able to find a perfect match. However, the number of

matches found by MCM is usually very close to the maxi-

mum, i.e., seven (because there are seven output ports).

 Although all algorithms execute in one cycle, they all follow

the basic 21364 router constraints, such as adaptive routing

within the minimum rectangle.

Under the above assumptions, the number of matches found by

WFA and PIM are almost close to that found by MCM. PIM1

does slightly worse and SPAA is the worst. At the MCM

saturation load, the number of matches found by MCM, WFA,

and PIM are 36% higher than that found by SPAA. PIM1’s

number of matches is 14% higher than SPAA’s.

Figure 9, however, shows that under realistic conditions the

difference between the various arbitration algorithms reduces

dramatically. Figure 9 plots the arbitration matches per cycle

for the different algorithms for various levels of output port

occupancy. In the 21364 router, packet sizes range from 3 to

19 flits, so when a packet wins an arbitration, it occupies an

output port for several cycles. It is unnecessary to arbitrate for

an output port while it is busy delivering a packet. As the

fraction of occupied output ports increases, the difference

between the algorithms reduces and completely disappears

when 75% of the output ports are occupied.

Thus, under heavy loads (when output port occupancy is

likely to be high), it does not matter which arbitration algorithm

we choose. Rather, it is better to choose an algorithm that is

more suited to faster implementation. We designed SPAA

based on this observation.

Another way to look at these results is that WFA and PIM’s

matching capabilities are more suited to routers with signifi-

cantly higher number of ports compared to what we have in the

21364 router.

5.2 Timing Results

Figure 10 shows the performance of the five arbitration

algorithms—PIM1, WFA-base, WFA-rotary, SPAA-base, and

SPAA-rotary—for different network sizes and traffic patterns.

SPAA-base significantly outperforms both PIM1 and WFA-

base, which perform similarly. For example, in the 4x4

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1

Fraction of MCM Saturation Load

#
 A

rb
it

ra
ti

o
n

 M
a

tc
h

e
s

 P
e

r

C
y

c
le MCM

WFA
PIM
PIM1
SPAA

Figure 8. Standalone comparison of matching capabilities of
different arbitration algorithms for a single 21364 router with
increasing router load for zero output port occupancy. The
horizontal axis plots the input router load as a fraction of the load
required to saturate MCM.

Figure 9. Standalone comparison of matching capabilities of
different arbitration algorithms for a single 21364 router with
increasing output port occupancy at the MCM saturation load.

0

1

2

3

4

5

6

7

0 0.25 0.5 0.75

Fraction of Output Ports Occupied

#
 A

rb
it

ra
ti

o
n

 M
a
tc

h
e
s
 P

e
r

C
y
c
le MCM

WFA

PIM

PIM1

SPAA

10

network, with random traffic SPAA-base provides about 11%

higher throughput compared to PIM1 and WFA-base when the

average packet latency is about 83 nanoseconds. Similarly, in

the 8x8 network, with random traffic SPAA-base provides

about 24% higher throughput compared to PIM1 and WFA-

base when the average packet latency is about 122 nanoseconds.

The results for bit reversal and perfect shuffle for the 8x8

network are qualitatively similar.

Figure 10 also shows that the Rotary Rule prevents both

WFA-rotary and SPAA-rotary from performance degradation

under heavy network loads. The 4x4 network does not show

saturation behavior, so the performance of WFA-base and

SPAA-base are similar to WFA-rotary and SPAA-rotary

respectively. In the 8x8 network, WFA-base and SPAA-base

perform similar to WFA-rotary and SPAA-base respectively,

until the network hits the saturation point. Thereafter, the

delivered throughput of both WFA-base and SPAA-base

degrade rapidly, while WFA-rotary’s and SPAA-rotary’s

delivered throughputs continue to increase.

Thus, at about an average packet latency of 280 nanosec-

onds, WFA-rotary improves throughput by 16% over WFA-

base and SPAA-rotary improves throughput by 43% over

SPAA-base. Note that WFA-base shows less performance

degradation compared to SPAA-base. We suspect this happens

because the interaction between WFA’s output port arbiters

(unlike in SPAA) makes the worst case behavior of WFA-base

better than that of SPAA-base.

Finally, pipelining provides SPAA a significant boost in

performance compared to PIM1 and WFA (not shown here).

For example, if we could implement WFA as a three-cycle

arbitration mechanism like SPAA, then pipelining is the key

difference between WFA and SPAA. In an 8x8 network, with

random traffic SPAA provides a throughput boost of about 8%

compared to such a configuration of WFA-base with 122

nanoseconds of average packet latency. This shows pipelining

the arbitration mechanism does help SPAA’s performance.

5.3 Scaling Results

This section studies the performance of PIM1, WFA-rotary,

and SPAA-rotary under three different scaling conditions: with

twice the router pipeline length as in the 21364 router, with

higher input load than 21364 can offer, and with a bigger

network. The router pipeline length could potentially double in

future generations, given the scaling trends of technology today.

Figure 11a shows the results for PIM1, WFA-rotary, and

SPAA-rotary for a pipeline two times longer than and running

at twice the frequency of the 21364 router’s pipeline. The

arbitration latencies for PIM1, WFA-rotary, and SPAA-rotary

are 8, 8, and 6 cycles respectively. As the figure shows,

SPAA-rotary performs significantly better with longer pipelines

because SPAA-rotary is pipelined, unlike the other two

arbitration algorithms. Thus, for example, at about 100

nanoseconds of average packet latency, SPAA-rotary provides

greater than 60% higher throughput compared to PIM1 and

WFA-rotary.

Figure 10. This figure shows the performance of the 21364 network with different arbitration algorithms, network sizes (4x4 and 8x8), and
traffic patterns (Random, Bit Reversal, and Perfect Shuffle).

8x8, Random Traffic

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8

Delivered flits/router/ns

A
v

e
ra

g
e
 P

a
c

k
e

t
L
a

te
n
c

y

(n
s
)

4x4, Random Traffic

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1 1.2

Delivered flits/router/ns

A
v

e
ra

g
e

 P
a

c
k
e

t
L
a

te
n
c

y

(n
s
)

PIM1
WFA-base
WFA-rotary
SPAA-base
SPAA-rotary

8x8, Bit Reversal
0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8

Delivered flits/router/ns

A
v

e
ra

g
e
 P

a
c
k

e
t
L

a
te

n
c

y

(n
s
)

8x8, Perfect Shuffle

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8

Delivered flits/router/ns

A
v

e
ra

g
e
 P

a
c
k

e
t
L

a
te

n
c

y

(n
s
)

11

Figure 11b shows the results for the three arbitration algo-

rithms for an 8x8 network with higher network load. Higher

network load, in the form of greater number of outstanding

misses, can be expected from future processors with deeper

pipelines. Hence, this figure assumes 64 outstanding misses,

four times higher than that of the 21364 processor. As the

figure shows, even under such high network loads, SPAA-

rotary outperforms both PIM1 and WFA-rotary. Thus, for

example, at about roughly 200 nanoseconds of average packet

latency, SPAA-rotary provides roughly 13% higher throughput

compared to WFA-rotary.

Figure 11c shows the scaling results for the 21364 router for

a 144-processor (12x12) network (Note: the 21364 network can

only scale up to 128 processors). Like the first two scaling

results, SPAA-rotary outperforms both PIM1 and WFA-rotary

significantly. Thus, for a 200 nanoseconds average packet

latency, SPAA-rotary provides an 18% higher throughput

compared to WFA-rotary. Interestingly, however, at extremely

high loads, SPAA-rotary is unable to prevent throughput

degradation under saturation, whereas WFA-rotary’s through-

put continues to increase, possibly because of its synchroniza-

tion between output port arbiters.

6. CONCLUSIONS

Large-scale cache-coherent shared-memory machines have

become common server machines. Such machines often

employ interconnection networks to allow communication

between processors and memory modules. These interconnec-

tion networks must deliver low latency and high bandwidth to

effectively run demanding parallel applications.

Interconnection networks usually consist of a fabric of

interconnected routers, which receive packets arriving at their

input ports and forward them to appropriate output ports.

Unfortunately, network packets moving through these routers

are often delayed due to conflicting demand for resources, such

as output ports or buffer space. Hence, routers typically employ

arbiters to resolve conflicting resource demands. These

arbiters try to maximize the number of matches between

packets waiting at input ports and free output ports.

Efficient design and implementation of these arbiters is

critical to maximize network performance. The 1.2 GHz

implementation of the Alpha 21364 microprocessor’s on-chip

router, which can connect up to 128 processors in a 2D torus,

made the already difficult task of designing arbitration

algorithms even more challenging. Because the 21364’s

implementation allowed very few logic levels—between 12 and

13 per clock cycle—we had to carefully weigh the complexity

of an arbitration algorithm against its benefit.

This paper proposed a new arbitration algorithm called

SPAA (Simple Pipelined Arbitration Algorithm), which is

implemented in the 21364 router’s pipeline. Simulation results

showed that SPAA significantly outperforms two earlier well-

known arbitration algorithms: PIM (Parallel Iterative Matching)

and WFA (Wave-Front Arbiter), which is implemented in the

SGI Spider switch. Instead of PIM, which is iterative and

would have obviously performed poorly in the 21364 router, we

considered PIM1, which runs only one iteration of the PIM

algorithm.

SPAA outperformed PIM1 and WFA, even though both

PIM1 and WFA have better matching capabilities than SPAA.

This is because SPAA exhibits matching capabilities similar to

PIM1 and WFA under realistic conditions when many output

ports are busy, incurs fewer clock cycles to perform the

arbitration, and can be pipelined effectively. We also demon-

strated that SPAA will continue to deliver higher throughput

compared to PIM1 and WFA, if the router were scaled to have

twice the pipeline length, incur greater input load, or support

bigger networks than the 21364 was designed for.

Additionally, we proposed a new prioritization policy called

the Rotary Rule, which provided significant boost in network

performance by preventing the network’s adverse performance

degradation from saturation at high network loads. The Rotary

Rule prioritizes the movement of network packets already in the

network over packets recently generated from the processor

ports. We demonstrated the effectiveness of the Rotary Rule

with WFA and SPAA. The Alpha 21364 router provides the

Rotary Rule as an optional mode programmable at boot-time.

The arbitration algorithm choice for the Alpha 21364 router

depends largely on its architectural constraints. The arbitration

Figure 11. Scaling Results for the 21364 router.

(a) (b) (c)

12x12, Random Traffic

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6

Delivered flits/router/ns

A
v

e
ra

g
e
 P

a
c
k

e
t
L

a
te

n
c

y
 (

n
s
)

64 requests, 8x8,Random Traffic

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8

Delivered flits/router/ns

A
v

e
ra

g
e
 P

a
c
k

e
t
L

a
te

n
c

y
 (

n
s

)

2x Pipeline, 8x8, Random Traffic
0

50

100

150

200

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Delivered flits/router/ns

A
v

e
ra

g
e
 P

a
c
k

e
t
L

a
te

n
c

y
 (

n
s

)

PIM1
WFA-rotary
SPAA-rotary

12

algorithm did not need to be as aggressive because of a

maximum of two output port choices for each packet, per-

packet arbitration, and virtual cut-through routing. Greater

routing freedom, flit-level arbitration, and wormhole routing

(with shallow buffering) may reduce the advantage of SPAA

over PIM1 and WFA.

Acknowledgements
We thank Richard Kessler, who was one of the most important

contributors to the design of the Alpha 21364 network. We also

thank Geoff Lowney and the anonymous referees for their

comments on earlier drafts of this paper. Finally, we thank the
entire Asim team for their help with the Asim infrastructure.

References
[1] M.G.Ajmone Marshan, A. Bianco, and E. Leonardi, “RPA: A Flexible

Scheduling Algorithm for Input Buffered Switches,” IEEE Transac-
tion on Communications, vol. 47, no. 12, pp. 1921-1933, Dec. 1999.

[2] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P.

Thacker, “High Speed Switching for Local Area Networks,” Fifth

International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 98 – 110, Boston, Massachu-

setts, October 12-15, 1992.
[3] Peter Bannon, “Alpha 21364: A Scalable Single-Chip SMP,” 11th

Annual Microprocessor Forum, Microdesign Resources, Sebastopol,

California, 1998.
[4] E.Baydal, P.Lopez, and J.Duato, “A Simple and Efficient Mechanism

to Prevent Saturation in Wormhole Networks,” 14th International

Parallel and Distributed Processing Symposium, pp. 617-622, 2000.
[5] Laxmi N. Bhuyan, “Analysis of Interconnection Networks with

different arbiter designs,” Journal of Parallel and Distributed Compu-

ting, vol. 4, no. 4, pp 384-403, August 1987.
[6] Alan Charlesworth, “The Sun Fireplane Interconnect,” IEEE Micro,

pp 36-45, Volume 22, Number 1, January/February 2002.

[7] Andrew Chien and Magda Konstantinidou, “Workloads and
Performance Metrics for Evaluating Parallel Interconnects,” IEEE

TCCA Newsletter, Fall 1994.

[8] R.Cutler and S.Atkins, “IBM e-Server pSeries 680 Handbook,” IBM,
Armonk, N.Y., 2000; http://www.redbooks.ibm.com/pubs/pdfs/red-

books/sg246023.pdf.

[9] William J. Dally, “Virtual Channel Flow Control,” 17th Annual
International Symposium on Computer Architecture (ISCA), pp. 60-

68, 1990.

[10] William J. Dally and Charles L. Seitz, “The Torus Routing Chip,”
Distributed Computing, vol. 1, no. 4, pp. 187-196, Oct. 1986.

[11] A.DeHon, F. Chong, M. Becker, E. Egozy, H. Minsky, S. Peretz, and

T.F.Knight Jr., “METRO: A Router Architecture for High-
Performance, Short-Haul Routing Networks,” pp. 266-277, 21st Annu-

al International Symposium on Computer Architecture (ISCA), Chica-
go, Illinois, April 1994.

[12] H. Duan, J.W.Lockwood, S.M.Kang, and J.D.Will, “A High

Performance OC12/OC48 Queue Design Prototype for Input Buffered
ATM Switches,” INFOCOM 97: 16th Annual Joint Conference of the

IEEE Computer and Communication Societies (Infocom 97), IEEE CS

Press, pp. 20-28, Los Alamos, California, 1997.
[13] Jose Duato, “A New Theory of Deadlock-free Adaptive Routing in

Wormhole Networks,” IEEE Transaction on Parallel and Distributed

Systems, vol. 4, no. 12, pp. 1320-1331, December 1993.

[14] Jose Duato, Sudhakar Yalamanchilli, and Lionel Ni, “Interconnection

Networks: An Engineering Approach,” IEEE Computer Society, 1997.

[15] Joel Emer, Pritpal Ahuja, Nathan Binkert, Eric Borch, Roger Espasa,
Toni Juan, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shubhen-

du S. Mukherjee, Harish Patil, and Steven Wallace, “Asim: A Per-

formance Model Framework,” IEEE Computer, pp. 68-76, February
2002.

[16] M. Galles, “Spider: A High-Speed Network Interconnect,” IEEE

Micro, vol. 17, no. 1, pp. 34-39, Jan.-Feb. 1997.
[17] K. Gharachorloo, et al., “Architecture and Design of the Alphaserver

GS320,” Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pp. 13-24, 2000.

[18] Paolo Giaccone, Devavrat Shah, and Balaji Prabhakar, “An

Implementable Parallel Scheduler for Input-Queued Switches,” IEEE
Micro, pp 19-25, Volume 22, Number 1, January/February 2002.

[19] Hewlett-Packard, “Meet the HP Superdome Servers,” September,

2001; http://www.hp.com/products1/servers/scalableservers/super-
dome/infolibrary/whitepapers/technical_wp.pdf.

[20] M.D.Hill, “A Case for Direct-Mapped Caches,” IEEE Computer, vol.

21, no. 12, pp. 25-40, December 1988.
[21] P.Lopez, J.M.Martinez, J.Duato, “DRIL: Dynamically Reduced

Message Injection Limitation Mechanism for Wormhole Networks,”

International Conference on Parallel Processing, pp. 535-542, August
1998.

[22] P.Lopez, J.M.Martinez, J.Duato, and F.Petrini, “On the Reduction of

Deadlock Frequency by Limiting Message Injection in Wormhole
Networks,” Parallel Computer Routing and Communication Work-

shop, June 1997.

[23] N. McKeown, “iSLIP: A Scheduling Algorithm for Input-Queued
Switches,” IEEE Transaction on Networking, vol. 7, no. 2, pp. 188-

201, April 1999.

[24] N. McKeown, “Scheduling Algorithms for Input-Queued Cell
Switches,” doctoral dissertation, Dept. of EECS, University of Cali-

fornia, Berkeley, 1995.

[25] Devavrat Shah, Paolo Giaccone, and Balaji Prabhakar, “Efficient
Randomized Algorithms for Input-Queued Switch Scheduling,” IEEE

Micro, pp 10-18, Volume 22, Number 1, January/February 2002.
[26] Shubhendu S. Mukherjee, Peter Bannon, Steven Lang, Aaron Spink,

and David Webb, “The 21364 Network Architecture,” IEEE Micro, pp

26-35, Volume 22, Number 1, January/February 2002.
[27] Li-Shiuan Peh and William J. Dally, “A Delay Model for Speculative

Architecture for Pipelined Routers,” 7th Annual International Sympo-

sium on High-Performance Computer Architecture (HPCA), pp. 255-
266, Neuvo Leon, Mexico, January 2001.

[28] G.E.Pfister and V.A.Norton, “Hot-Spot Contention and Combining in

Multistage Interconnection Networks,” IEEE Transaction on Comput-
ers, C-34(10):943-948, October 1985.

[29] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve,

and Luiz Andre Barroso, “Performance of Database Workloads on
Shared-Memory Systems with Out-of-Order Processors,” Eighth

International Conference on Architectural Support for Programming

Language (ASPLOS), pp. 307-318, San Jose, California, October

1998.

[30] S.L.Scott and G. Sohi, “The Use of Feedback in Multiprocessors and

its Application to Tree Saturation Control,” IEEE Transactions on
Parallel and Distributed Systems, vol. 1, no. 4, pp. 385-398, October

1990.

[31] S.L.Scott and G.M.Thorson, “The Cray T3E Network,” Hot
Interconnects IV, pp. 147-156, 1996.

[32] Simon Steely, Compaq Computer Corporation, Personal Communica-

tion.
[33] Silicon Graphics, “SGI 3000 Family Reference Guide,” 2001;

http://www.sgi.com/origin/3000/3000_ref.pdf.

[34] A. Smai and L.Thorelli, “Global Reactive Congestion Control in
Multicomputer Networks,” 5th International Conference on High

Performance Computing, pp. 179-186, 1998.

[35] C. B. Stunkel, J. Herring, B. Abali, and R. Sivaram, ``A new switch
chip for IBM RS/6000 SP systems,'' Supercomputing '99, Portland,

Oregon, November 1999.

[36] Yuval Tamir and Hsin-Chou Chi, “Symmetric Crossbar Arbiters for
VLSI Communication Switches,” IEEE Trans. on Parallel and Dis-

tributed Systems, vol. 4, no. 1, pp. 13-27, January 1993.

[37] J.M.Tendler, et al., “IBM e-server POWER4 System Microarchitec-
ture,” IBM, Armonk, N.Y., 2001; http://www-

1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.pdf.

[38] Mithuna Thottethodi, Alvin Lebeck, and Shubhendu S. Mukherjee,
“Self-Tuned Congestion Control for Multiprocessor Networks,” Sev-

enth Annual International Symposium on High-Performance Comput-

er Architecture (HPCA), pp. 107-118, Monterrey, Mexico, January
2001.

[39] Brian Towles and William J. Dally, “Worst-case Traffic for Oblivious

Routing,” Computer Architecture Letters, (http://www.cs.vir-
ginia.edu/~tcca/2002paps.html), 2002.

