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ABSTRACT 
Interconnection networks usually consist of a fabric of 

interconnected routers, which receive packets arriving at their 

input ports and forward them to appropriate output ports.  

Unfortunately, network packets moving through these routers 

are often delayed due to conflicting demand for resources, such 

as output ports or buffer space.  Hence, routers typically 

employ arbiters that resolve conflicting resource demands to 

maximize the number of matches between packets waiting at 

input ports and free output ports. Efficient design and imple-

mentation of the algorithm running on these arbiters is critical 

to maximize network performance.  

This paper proposes a new arbitration algorithm called 

SPAA (Simple Pipelined Arbitration Algorithm), which is 

implemented in the Alpha 21364 processor’s on-chip router 

pipeline.  Simulation results show that SPAA significantly 

outperforms two earlier well-known arbitration algorithms: 

PIM (Parallel Iterative Matching) and WFA (Wave-Front 

Arbiter) implemented in the SGI Spider switch.  SPAA outper-

forms PIM and WFA because SPAA exhibits matching 

capabilities similar to PIM and WFA under realistic conditions 

when many output ports are busy, incurs fewer clock cycles to 

perform the arbitration, and can be pipelined effectively. 

Additionally, we propose a new prioritization policy called the 

Rotary Rule, which prevents the network’s adverse perfor-

mance degradation from saturation at high network loads by 

prioritizing packets already in the network over new packets 

generated by caches or memory.   

1. INTRODUCTION 

Cache-coherent, shared-memory multiprocessors with 16 or 

more processors have become common server machines.   In 

2001 such machines generated a total revenue of $9 billion, 

which is roughly 16% of the world-wide server revenue [6].  

This market segment’s revenue tripled in the last four years 

making it the fastest growing segment of the entire server 

market.  Major vendors, such as IBM [8][37], Hewlett-Packard 

[19][17][26], SGI [33], and Sun Microsystems [6] offer such 

shared-memory multiprocessors, which scale up to anywhere 

between 24 and 512 processors.  

High performance interconnection networks are critical to 

the success of large-scale shared-memory multiprocessors. Such 

networks allow a large number of processors and memory 

modules to communicate with one another using a cache 

coherence protocol.   In such systems, a processor’s cache miss 

to a remote memory module (or another processor’s cache) and 

consequent miss response are encapsulated in network packets 

and delivered to the appropriate processors or memories.   The 

performance of many parallel applications, such as database 

servers [29], depends on how rapidly and how many of these 

miss requests and responses can be processed by the system.  

Consequently, it is extremely critical for networks to deliver 

packets with low latency and high bandwidth.  

An interconnection network usually consists of a fabric of 

small interconnected routers, which receive packets arriving at 

their input ports and forward them to appropriate output ports.   

Unfortunately, packets moving through such routers are often 

delayed due to conflicting demand for resources, such as output 

ports or buffer space.  Hence, routers include arbiters to resolve 

conflicting resource demands (Figure 1).   The presence of input 

buffers in a router usually divides up the arbitration process into 

two steps: first an input port picks one or more packets from 

those waiting in its buffers, and then an output port picks a 

packet among the packets nominated to it by one or more input 

ports.  By definition only one packet can be delivered through 

an output port.   

This paper examines several arbitration algorithm choices 

for the on-chip router in the Alpha 21364 processor [3], which 

runs at 1.2 GHz and uses 152 million transistors to integrate on 

the same chip an aggressive dynamically-scheduled processor, 

1.75 megabytes of second-level cache, two Rambus Direct 

RDRam™ memory controllers, and an interconnection network 

router. Efficient design and implementation of these arbiters is 

critical to maximize network throughput, as illustrated by 

Figure 2.  Typically, arbitration algorithms try to maximize the 

number of matches between input and output ports to provide 

high local routing throughput.  A locally maximal match in a 

router does not necessarily guarantee globally optimal network 

 

 

 

 

 

 

 

 

 

 
Figure 1. A router with 8 input ports and 7 output ports, like the 
Alpha 21364 router.  The arbiter controls how and which packets 
are forwarded from the input to the output ports.   

 

C 
R 

O 

S 
S 

B 

A 

R 

Input  

Ports 

Output 

Ports 

Arbiter 

Router 

*Intel Corporation 

334 South Street 

Shrewsbury, MA 01545 

{shubu.mukherjee,joel.emer,steve.lang}@intel.com 

!Hewlett-Packard 

334 South Street 

Shrewsbury, MA 01545 

{peter.bannon,david.webb}@hp.com 

$Department of Computer Engineering  

Universidad Politecnica de Valencia 

Camino de Vera s/n, 46022 Valencia, Spain 

fsilla@disca.upv.es 

 



 

2 

performance.  Nevertheless, in our experience, a locally 

maximal match has the first order impact on overall network 

performance. 

  The high-frequency implementation of the Alpha 21364 

router made the already difficult task of arbitration even harder.  

The entire 21364 chip, including the router, runs at 1.2 GHz.  In 

contrast, earlier generations of such routers ran at much slower 

speeds.  For example, the Cray T3E router runs at 75 MHz [31], 

the SGI Spider runs at 100 MHz [16], while IBM’s third 

generation Vulcan switch runs at 125 MHz [35].  

For efficient implementation at 1.2 GHz, we had to pipeline 

the 21364 router.  Unfortunately, in the 0.18 micron CMOS 

process that the 21364 was designed for, only up to 12-13 logic 

levels could be incorporated in the 0.83 nanoseconds cycle 

time.  This forced us to pipeline the arbitration algorithm itself, 

unlike the SGI switch in which the algorithm was implemented 

within one 10-nanosecond clock cycle.  Unfortunately, each 

additional cycle added to the 21364 router’s arbitration pipeline 

degraded the network throughput by roughly 5% under heavy 

load1.  Hence, any additional cycles incurred by a more 

complex arbitration algorithm must gain back the performance 

degradation from the added cycles in the pipeline.  

This paper shows that SPAA (Simple Pipelined Arbitration 

Algorithm)—implemented in the 21364 router—significantly 

outperforms two well-known arbitration algorithms—Parallel 

Iterative Matching (PIM) [2] and Wavefront Arbitration (WFA) 

[36], which is implemented in the SGI Spider switch.  For 

completeness, we also examine a maximal cardinality matching 

algorithm (MCM), which maximizes the number of matches 

between packets waiting at the input ports and free output ports.    

The number of matches found by PIM and WFA between 

packets waiting at input ports and free output ports is close to 

that of MCM’s, which makes both PIM and WFA very 

powerful arbitration algorithms.  PIM iterates between the input 

and output ports to find a suitable match of packets, whereas 

WFA makes a pass through a matrix of input and output ports 

to find a suitable match.    

The key to PIM and WFA’s high matching capabilities lies 

in their high level of interaction between input and output ports.  

                                                             
1
 This measurement was done using SPAA, which is explained later.  

When multiple input ports nominate packets to the same output 

port, naïve algorithms, such as OPF in Figure 2, can result in 

arbitration  “collisions” and consequent poor performance.  In 

contrast, both PIM and WFA’s input and output port arbiters 

will interact to choose the appropriate match for the specific 

arbitration cycle. Unfortunately, such high level of interaction 

requires a higher number of cycles to implement them com-

pared to what a simpler algorithm, such as SPAA, would need.  

Additionally, such interaction also makes it hard to pipeline 

these algorithms.   

SPAA is a much simpler algorithm compared to PIM and 

WFA and is more like the OPF algorithm in Figure 2.  In 

SPAA, each input port chooses a packet in every cycle to 

nominate to an output port.  However, an input port arbiter’s 

choice is independent of most of the other input port arbiters.  

Similarly, an output port arbiter chooses a packet from the 

packets nominated to it by the input port arbiters.  But, an 

output port arbiter’s decision is independent of the other output 

port arbiters’ decisions. Thus, SPAA minimizes interactions 

between the input and output ports.    

Clearly, because of its reduced interaction between input 

and output port arbiters, SPAA can result in arbitration 

collisions at the output port and, hence, fewer matches than 

what PIM or WFA would offer.  Nevertheless, SPAA signifi-

cantly outperforms both algorithms because of three reasons.  

First, with medium to heavy loads many output ports are busy 

and, hence, an arbitration algorithm need only find matches for 

a few free output ports.   Thus, when our seven output ports are 

busy 50% of the time, SPAA’s matching capabilities are similar 

to PIM and WFA’s.   The difference between PIM, WFA, and 

SPAA’s matching capabilities is negligible when the output 

ports are busy 75% of the time.  

Second, SPAA minimizes its interaction between input and 

output ports, which lowers its matching capabilities, but makes 

it simpler, so that it can be implemented in three cycles in the 

21364 router.  WFA would have incurred four cycles to 

implement.   Similarly, one iteration of PIM takes four cycles to 

implement.  Multiple iterations of PIM would have incurred 

significantly more cycles and would have obviously performed 

poorly in our environment.  Hence, we use only one iteration of 

PIM—which we call PIM1—in all our timing evaluations.   

Third, SPAA can be pipelined effectively because it mini-

mizes interactions between the input and output ports.  PIM1 

requires an extra step of interaction between the output and 

input ports, whereas WFA requires interaction between the 

output ports themselves.  These features prevent both PIM1 and 

WFA from being pipelined effectively.  In our implementation 

both PIM1 and WFA take four cycles, but can start input port 

arbitration every three cycles, whereas SPAA takes three cycles 

and can initiate input port arbitration every cycle.   

Additionally, SPAA nominates a packet to only one output 

port, unlike PIM or WFA, which can nominate the same packet 

to multiple output ports.  This has the added benefit that a 

packet can be speculatively read out from an input buffer as 

soon as it is scheduled for delivery by an input port arbiter (but 

before the output port arbitration is complete), much like the 

way direct-mapped caches allow processors to speculatively 

read out data before the address comparison completes [20]. 

Our simulation results show that SPAA significantly outper-

forms both PIM1 and WFA.   We also demonstrate that SPAA 

will continue to deliver higher throughput compared to PIM1 

Input Port 0 3 2 1 

Input Port 1 3 2 1 

Input Port 2  3 2 1 

Input Port 3 3 2 1 

Input Port 4 3 6 1 

Input Port 5 3 2 0 

Input Port 6 3 2 4 

Input Port 7 3 2 5 

Figure 2. An illustration of the challenges of an arbitration 
algorithm for the router in Figure 1.  The first column lists the 
input ports.  Column 2 – 4 list the output port destinations of the 
packets waiting at that input port.  Column 2 contains the oldest 
packets to arrive at the specific input port, while column 4 lists the 
corresponding youngest packets.  An arbitration algorithm (lets 
call it OPF) that picks the oldest packet from each input port will 
be sub-optimal because output port 3 can deliver only one packet. 
Thus, OPF will result in arbitration collisions at output port 3.  In 
contrast, an arbitration algorithm that chooses the shaded packets 
will have the maximum throughput at this router in the current 
arbitration cycle.  
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and WFA, if the router were scaled to have twice the pipeline 

length, greater input load, or support bigger networks than the 

21364 was designed for.  

In addition to SPAA, we propose a new prioritization policy 

called the Rotary Rule, which provides a significant boost in 

network performance by preventing the network’s adverse 

performance degradation from saturation at high network loads.  

The Rotary Rule prioritizes the movement of network packets 

already in the network over packets recently generated from the 

processor ports.  We demonstrate the effectiveness of the 

Rotary Rule with WFA and SPAA.  The Alpha 21364 router 

provides the Rotary Rule as an optional mode programmable at 

boot-time.   We do not, however, expect most real applications 

running on a system composed of 21364 processors to create 

such heavy network load that would require us to turn on the 

Rotary Rule.  

The rest of the paper is organized as follows.  We first de-

scribe the 21364’s base router architecture in Section 2.  Section 

3 discusses PIM, WFA, SPAA, and the Rotary Rule, as well as 

related work.  Section 4 discusses our evaluation methodology 

and Section 5 describes our results.  Section 6 summarizes the 

paper and presents our conclusions.   

2. THE ALPHA 21364 ON-CHIP ROUTER 

Mukherjee, et al. [26] discusses details of the 21364 net-

work and router architectures.   Here we summarize the salient 

features of the network (Section 2.1) and the router pipeline 

(Section 2.2) relevant to this paper.  

2.1 21364 Network Architecture 

The Alpha 21364’s on-chip router uses two million transis-

tors to connect up to 128 processors in a two-dimensional torus 

network (Figure 3). Salient features of the network are: 

 Packets. The network supports seven classes of coherence 

packets for the directory-based cache-coherence protocol.  

These are requests (three flits), forwards (three flits), block 

response (18 or 19 flits), non-block response (two or three 

flits), write I/O (19 flits), read I/O (three flits), and special 

(one flit, excluding no-ops).   Each flit is 39 bits—32 bits for 

data and 7 bits for ECC.   A 19 flit packet, such as a block 

response, can carry a 64-byte cache block (3 flits for header 

and 16 flits for the cache block).   Thus, when an input or an 

output port is scheduled to deliver a packet, the port can be 

busy for two, three, 18, or 19 cycles.  An output port is ready 

for re-arbitration once all flits of a packet are delivered via the 

port.  

 Virtual Cut-Through Routing.  The 21364 uses virtual cut-

through routing in which flits of a packet proceed through 

multiple routers until the header flit gets blocked at a router. 

Then, all flits of the packet are buffered at the blocking router 

until the congestion clears. Subsequently, the packet is 

scheduled for delivery through the router to the next router 

and the same pattern repeats. To support virtual cut-through 

routing, the 21364’s router provides buffer space for 316 

packets per input port [26].   Note that a packet is never 

dropped from the network in the absence of errors.  

 Adaptive Routing in the Minimal Rectangle.  In the 21364, 

packets adaptively route within the minimum rectangle.   

Given two points in a torus (in this case, the current router 

and the destination processor), one can draw four rectangles 

that contain these two points as their diagonally opposite 

vertices. The minimum rectangle is the one with the minimum 

diagonal distance between the current router and the destina-

tion. Thus, the adaptive routing algorithm has to pick one 

output port among a maximum of two output ports that a 

packet can route in.  Packets that follow adaptive routing may 

not be delivered in order, but the coherence protocol in 21364 

is designed to handle out of order traffic.  

 Virtual Channels.  The 21364 router uses virtual channels [9] 

to break deadlocks in the coherence protocol and the routing 

algorithms.   It assigns a virtual channel group to each coher-

ence packet class.  By design, these virtual channel groups are 

ordered, such that a request packet can never block a block 

response packet.  Each group (except the special class) 

contains three virtual channels: adaptive, VC0, and VC1.   

Packets adaptively route within the adaptive channel until 

they get blocked.2  Blocked packets are then routed in the 

                                                             
2
 This is only true for non-I/O packets.  Read and Write I/O packets only 

route in the deadlock-free channels to adhere to the Alpha 21364’s I/O 

ordering rules.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. A 12-processor Alpha 21364 2D torus network.  

 

 

 

 

 

 
 
 
 
 
 
 
Figure 4. Two of the nine logical router pipelines in the 21364.  
(a) shows the router pipeline for a local input port (cache or 
memory controller) to an interprocessor output port (b) shows the 
router pipeline from an interprocessor (north, south, east, or west) 
input port to an interprocessor output port.  The first flit goes 
through two pipelines: the scheduling pipeline (upper pipeline) 
and data pipeline (lower pipeline). Second and subsequent flits 
follow the data pipeline. RT = Router Table Lookup, Nop = No 
operation, T = Transport (wire delay), DW = Decode and Write 
Entry Table, LA = Input Port Arbitration, RE = Read Entry Table 
and Transport, GA = Output Port Arbitration, W = Wait, WrQ = 
Write Input Queue, RQ = Read Input Queue, X = Crossbar, and 
ECC = Error Correction Code. This paper focuses on the LA, RE, 
and GA stages of the pipeline.  
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deadlock-free channels, VC0 and VC1, which follow strict 

dimension-order routing.  Duato [13] has shown that such a 

scheme breaks routing deadlocks in such networks.  Because 

of virtual cut-through routing, however, packets can return 

from the deadlock-free channels to the adaptive channel.  For 

performance reasons, the adaptive channels have the bulk of 

the packet buffers, whereas the VC0 and VC1 typically have 

one or two buffers.   In the 21364 there is a total of 19 virtual 

channels (three for each of the six non-special coherence 

classes and one for the special class). 

 Ports.  Each port is 39 bits wide to match the network’s flit 

size.  Each router has eight input ports and seven output ports.  

The input ports include four 2D torus ports (north, south, east, 

and west), one cache port (that sends cache miss requests, 

etc.), two memory controller ports (that sends responses to 

cache miss requests), and one I/O port.  The buffers at each 

input port have two read ports to allow the arbitration algo-

rithm greater choice in matching inputs to outputs.  Like the 

input ports, the output ports are divided into four 2D torus 

ports (north, south, east, and west), two memory controller 

ports, and one I/O port.  Inside the processor, the two memory 

controller ports are also tied to the internal cache and, hence, 

there is no separate explicit cache output port.  

2.2 21364 Router Pipeline 

The 21364’s router has nine pipeline types based on the 

input and output ports.  There are three types of input and 

output ports: local (cache and memory controllers), interproces-

sor (off-chip network), and I/O.  Any type of input port can 

route packets to any type of output port, leading to nine types of 

pipeline. Figure 4 shows two such pipeline types.   

As Figure 4 shows, the router pipeline in the 21364 consists 

of several stages that perform router table lookup, decoding, 

arbitration, forwarding via the crossbar, and ECC calculations.  

A packet originating from the local port looks up its routing 

information from the router table and loads it up in its header.   

The decode stage decodes a packet’s header information and 

writes the relevant information into an entry table, which 

contains the arbitration status of packets and is used in the 

subsequent arbitration pipeline stages.  

The 21364’s arbitration pipeline, which is the focus of this 

paper, consists of three stages: LA (input port arbitration), RE 

(Read Entry Table and Transport), and GA (output port 

arbitration).3   The input port arbitration stage finds packets 

from the input buffers and nominates one of them for output 

port arbitration.   Each input buffer has two read ports and each 

read port has an input port arbiter associated with it.  Thus, the 

21364 has a total of 16 input port arbiters.  The input port 

arbiters perform several readiness tests, such as determining if 

the targeted output port is free, using the information in the 

entry table.  

The output port arbiters accept packet nominations from the 

input port arbiters and decide which packets to dispatch.  Each 

output port has one arbiter, so the 21364 has a total of seven 

output port arbiters.   Once an output port arbiter selects a 

packet for dispatch, it informs the input port arbiters of its 

decision, so that the input port arbiters can re-nominate the 

unselected packets in subsequent cycles.  

Figure 5 shows the crossbar connection between the input 

and output port arbiters.  Although the connections form a 

crossbar between input and output ports, the individual read 

ports are not connected to all the output ports.   The same 

crossbar connection is followed by the datapath in the X stage 

of the pipeline (Figure 4).  

In addition to the basic pipeline latency, there are six addi-

tional delay cycles along the path of a packet, including 

synchronization delay, pad receiver and driver delay, and 

transport delay from the pins to the router and from the router 

back to the pins.  Thus, the on-chip pin-to-pin latency from a 

network input to a network output is 13 cycles.   At 1.2 GHz, 

this leads to a pin-to-pin latency of 10.8 nanoseconds.    

Also, the network links that connect the different 21364 

chips run at 0.8 GHz, which is 33% slower than the internal 

router clock. The input port arbitration internally nominates 

packets at the appropriate cycles so that packets leaving the 

router are synchronized with the off-chip network clock.  

3. ARBITRATION ALGORITHMS 

In the 21364 router, the 16 input port arbiters and 7 output 

port arbiters work together to implement the arbitration 

algorithm.  The 21364 router’s arbitration problem can be 

modeled in two ways.  First, it can be modeled as a matching 

problem in a bipartite graph with 16 input port arbiters and 7 

output port arbiters.  Each connection between the input and 

output port arbiters will carry a certain “weight.”  Then, a 

Maximum Weight Matching (MWM) algorithm, will try to find 

a match that maximizes the total weight of the connections 

selected by the match.  Examples of such MWM algorithms are 

LQF (longest queue first), which uses the number of waiting 

packets at an input port as the weight for a connection, and OCF 

(oldest cell first), which uses the waiting time for the oldest 

packet at an input buffer as the weight for a connection [24].  

Unfortunately, the MWM algorithms require O(N
3
) iterations in 

the worst case [25], which makes it very difficult to implement 

them in hardware in a few cycles.  Also, approximations of the 

MWM algorithm, such as RPA [1], MUCS [12], Laura and 

Serena [25], and Apsara [18], are also not implementable in 

hardware within a few cycles.  

                                                             
3
 The 21364 router’s input and output port arbiters are also referred to as 

local arbiters (LA) and global arbiters (GA), respectively [26].    

 G-N G-S G-E G-W G-L0 G-L1 G-I/O 

L-N rp0        

L-N rp1        

L-S rp0        

L-S rp1        

L-E rp0        

L-E rp1        

L-W rp0        

L-W rp1        

L-Cache  rp0        

L-Cache  rp1        

L-MC0 rp0        

L-MC0 rp1        

L-MC1 rp0        

L-MC1 rp1         

L-I/O rp0        

L-I/O rp1        

Figure 5.  The 21364 router’s connection matrix.  This figure 
represents the router’s crossbar connections in a matrix format.  
“G-X” denotes output port arbiter for output port X.  “L-X rpY” 
denotes input port arbiter for input port X and read port Y.  The 
shaded boxes represent no connection.  
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In this paper, as an upper bound we use an algorithm called 

the Maximal Cardinality Matching Algorithm (MCM), which is 

basically MWM with all connections having equal weights.  

MCM exhaustively searches the space for the maximum 

number of matches between input and output port arbiters.  We 

use MCM only in our non-timing simulations because we do 

not know how to implement MCM in hardware within a few 

cycles.  

Another way to model the arbitration problem is to use a 

two-dimensional “connection” matrix with input ports forming 

the rows and output ports forming the columns.  Such a 

representation makes it easier for us to explain the arbitration 

algorithms we study in this paper.  In this representation, an 

input port nominates packets to output ports by filling up the 

corresponding row in the matrix.   An output port chooses 

packets from input ports by scanning the corresponding column 

in the matrix.   

Figure 5 shows the connection matrix for the 21364 router.  

Given this representation, an arbitration algorithm for the 21364 

router then needs to answer the following questions: 

 Which packets should an input port arbiter nominate to an 

output port arbiter?  An input port arbiter can pick packets 

out of all the buffers in each of the 19 virtual channels.   For 

correctness and improved performance, each input port arbiter 

(independent of the arbitration algorithm) obeys some basic 

constraints, such as whether the corresponding output port is 

free to dispatch a packet.   Each input port arbiter then selects 

the oldest packet, which satisfies the basic constraints, from 

the least-recently selected virtual channel.   An input port 

arbiter fills up the corresponding row in the connection matrix 

with the packets it selects.  

 Can the same packet be nominated multiple times?   Any 

packet can proceed along a maximum of two directions 

because 21364 adaptively routes packets within the minimal 

rectangle (Section 2.1).  Thus, a packet can be nominated to at 

most two output port arbiters.   Multiple nominations have the 

advantage that a packet would have a greater probability of 

being dispatched in the same cycle.   However, multiple 

nominations of the same packet also imply extra interaction 

between input and output ports to ensure that the same packet 

is not dispatched through two different output ports.  

 Which packets should an output port arbiter pick from the 

packets nominated to it by the input port arbiters?  An output 

port arbiter examines its corresponding column for packets 

nominated to it by all the input port arbiters.  Then, to select a 

packet from a column it can use a variety of policies, such as 

random [11], round-robin [31], least-recently selected [35], 

some kind of a priority chain [10], or the “Rotary Rule.”  

Such prioritization policies are easily implemented in hard-

ware via a priority matrix.  We describe the implications of 

some of these policies later in this section.  Section 3.4 

describes the Rotary Rule in detail.  

 Can there be multiple iterations (or passes) through the 

matrix?  Multiple iterations through the nomination and 

selection procedure allow the arbitration algorithm to find 

more matches compared to a single iteration.    However, 

multiple iterations would also incur higher number of cycles 

to perform the arbitration.   

Answers to the above questions have important implications on 

the hardware implementation of an arbitration algorithm.   For 

example, these choices determine how much synchronization is 

required among all the 23 arbiters (16 for input, 7 for output) in 

the router and whether the arbitration algorithm can be 

effectively pipelined.  

The rest of this section discusses how PIM, WFA, and 

SPAA answer the above questions (Sections 3.1, 3.2, and 3.3).   

Section 3.4 describes the Rotary Rule and how it can be 

incorporated into WFA and SPAA.   

3.1 Parallel Iterative Matching 

The Parallel Iterative Matching (PIM) algorithm, proposed 

by Anderson, et al. [2], was designed to quickly identify a set of 

conflict-free packets for transmission through an ATM switch.  

PIM works extremely well in such ATM switches where the 

matching algorithm may be implemented in software.  The key 

to PIM’s success lies in its interaction between input and output 

port arbiters, which avoids arbitration collisions incurred by 

naïve algorithms, such as OPF (Figure 2).  

Below we describe the algorithm’s three key steps for the 

21364 router: 

1. Nominate. Each unmatched input port arbiter nominates a 

packet for each output port arbiter for which it has a pack-

et.  The same packet can be nominated to multiple output 

port arbiters.  

2. Grant. If an unmatched output port arbiter receives any 

requests, it accepts one randomly and informs the corre-

sponding input port arbiter of its decision.  

3. Accept. If an input port arbiter receives grants for multiple 

output port arbiters, it selects one randomly.  
PIM iterates over the above three steps until the algorithm 

converges.   According to Anderson, et al. [2], PIM usually 

converges within log2N iterations, so the 21364 router would 

need four iterations (N = 16 input port arbiters) of the above 

three steps.   Researchers have proposed variations of PIM, 

such as iSLIP [23] that can be implemented in hardware, but 

their matching capabilities are similar to PIM’s.  
PIM has two properties that make it difficult to implement 

in hardware in a few cycles.  First, it can nominate the same 

packet to multiple output port arbiters, even though multiple 

output port arbiters cannot dispatch the same packet.  PIM 

avoids multiple dispatches using an additional synchronization 

step (Step 3) between the input and output port arbiters. 

Unfortunately, this synchronization makes it difficult for input 

port arbiters to nominate other packets until they receive their 

grants from the output port arbiters.  In other words, it is hard to 

do input port arbitrations in consecutive cycles, which makes it 

difficult to pipeline PIM.  

Second, PIM requires multiple iterations of its three steps.   

This would further increase the delay of the algorithm.  Hence, 

we use a variant of PIM called PIM1, which is PIM with one 

iteration of its three steps.  McKeown has shown, however, that 

PIM1’s matching capabilities are significantly worse than 

PIM’s [24].  

In our evaluation, we assume that PIM1 takes four cycles 

for arbitration.  We would implement PIM1 using a centralized 

16x7 connection matrix, which receives inputs from the input 

port arbiters and lets output port arbiters iterate over its 

columns.  The first three cycles of the four cycles consist of 

matrix operations and wire delays: 1.5 cycles to select packets 

from the input ports and load up the matrix (i.e., nominate) and 

1.5 cycles to grant and accept (via passes over the matrix).  The 

speed at which the matrix can be evaluated is limited because of 
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dependences between the input and output ports and the limited 

number of logic levels (12-13) per cycle in our process 

technology.  Further, PIM1 requires a random number genera-

tor, which will require a few additional logic levels.  

In this implementation of PIM1, a new arbitration can be 

started every three cycles because nominate, grant, and accept 

take a total of three cycles.  Starting a grant or accept before the 

prior nominate step is difficult because of two reasons.  First, 

the total nominations for the matrix could be up to 54 (unshaded 

boxes in Figure 5).   Keeping track of these large number of in-

flight packets (i.e., nominated, but not delivered) would require 

additional state and could increase the number of cycles 

incurred by PIM1.  Second, we would have to maintain multiple 

copies of the matrix to act as buffers for the pipeline stages for 

the arbiters.  These matrices must be consistent with one 

another and should not be loaded with stale packets.   Again, 

this may further increase the number of cycles incurred by 

PIM1.    

The fourth cycle of PIM1’s four-cycle arbitration accounts 

for wire delays from the matrix to the output ports and can be 

pipelined.  

3.2 Wave-Front Arbiter 

Tamir and Chi [36] proposed the Wave-Front Arbiter 

(WFA) for routers in interconnection networks.  WFA has been 

implemented in the SGI Spider interconnect [16].  WFA is a 

much lighter-weight algorithm than PIM1 and could be used 

effectively in routers that operate at a much lower frequency 

than that of the 21364 router.  For example, WFA in the Spider 

switch operates at 100 MHz and is implemented within a single 

10 nanosecond clock cycle.  Also, the key to WFA’s success 

lies in its interaction among the input port arbiters and among 

the output port arbiters, which allows it to avoid arbitration 

collisions that may be incurred by naïve algorithms, such as 

OPF (Figure 2).  

WFA operates on the entire connection matrix as a whole.   

First, the input port arbiters load up the matrix with their 

nominations.  Then, evaluation of the matrix starts from a 

specific cell in the matrix.  The evaluation proceeds in a wave 

front as follows (Figure 6): 

Granti,j = Request i,j  and Ni,j  and Wi,j 

Si,j = Ni,j and NOT(Granti,j) 

Ei,j =  Wi,j and NOT(Granti,j) 

The connection matrix is represented in hardware as a two-

dimensional array of arbitration cells.  The position of each cell 

in the connection matrix is denoted by i,j.  Request denotes that 

an input port arbiter has nominated a packet for that arbitration 

cell.  Grant denotes that the specific arbitration cell has been 

chosen for packet delivery. Then, following the above equa-

tions, no other cell in the same row (i.e., same input port 

arbiter) and no other cell in the same column (i.e., same output 

port arbiter) as the granted cell, would select any other packet 

for dispatch.  Also, note that Ni,j = Si-1,j and Wi,j = Ei,j-1.  

Thus, as Figure 6 shows, if the evaluation starts with wave-

front 1, then the cell (0,0) will be evaluated first, followed by 

the cells (0,1) and (1,0), which make up wavefront 2.   

Subsequent wavefronts will be evaluated in this fashion.  

To ensure fairness, the first cell from where the wave fronts 

begin must be chosen carefully.  Tamir and Chi suggested using 

a robin-robin scheme to choose the first cell. We will refer to 

this scheme as WFA-base.  Section 3.4 will show how to use the 

Rotary Rule to choose the first cell, which we will refer to as 

WFA-rotary.  

Although the WFA is very appealing, it is not amenable to 

efficient pipelining.   This is because input port arbiters in 

WFA, like in PIM, can nominate the same packet to multiple 

output port arbiters.  PIM uses synchronization between input 

and output port arbiters (Step 3 in PIM) to avoid multiple 

dispatches of the same packet.  In contrast, WFA requires 

communication between the output port arbiters—via the 

propagation of the N and S signals along the columns—to avoid 

dispatching the same packet through multiple output port 

arbiters.   Note that WFA uses the same mechanism—i.e., 

interaction among output port arbiters—to avoid arbitration 

collisions and, thereby, provide good matching performance.  

Thus, interaction between output port arbiters is fundamental to 

the WFA algorithm.  Additionally, micropipelining the matrix 

operations themselves—by pipelining the “waves” of the 

WaveFront Arbiter—is difficult because the starting cell (as 

indicated in the last paragraph) changes every cycle.  

We assume a four-cycle arbitration delay for the WFA.  Our 

timing is optimistically based on the Wrapped Wave-Front 

Arbiter, proposed by Tamir and Chi. The Wrapped WFA 

provides matching performance similar to that of WFA’s, but 

executes faster in hardware by starting multiple wavefronts in 

parallel.  As in PIM1, the first three cycles of WFA’s four-cycle 

arbitration are spent on matrix operations and wire delays: 1.5 

cycles to nominate packets and load up the matrix and 1.5 

cycles to evaluate the matrix.   WFA suffers from the same 

problems as PIM1 (Section 3.1) and hence a new arbitration can 

only be restarted every three cycles.   Again, as in PIM1, the 

fourth cycle accounts for wire delays from the matrix to the 

output ports and can be pipelined.  

3.3 Simple Pipelined Arbitration Algorithm 

The Simple Pipelined Arbitration Algorithm (SPAA) im-

plemented in the 21364 carefully minimizes the impact of 

features, such as interaction between input and output ports, 

which would be hard to pipeline.   However, this also makes its 

matching performance much worse than PIM1 and WFA 

because it may not be able to avoid arbitration collisions 

(Figure 2), particularly in the presence of a large number of free 

output ports.   Thus, in terms of its matching capability, SPAA 

is more like OPF from Figure 2.  

 

 

 

 

 

 

 

 

 

 

 
Figure 6.  Operations of the Wave-Front Arbiter (WFA) for a 4x4 
connection matrix. (a) The dotted lines (with circled numbers) 
show the wave fronts.  Each square represents an arbitration cell 
with coordinates i,j.    (b) This figure shows an arbitration cell (i,j) 
of the WFA matrix.  
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Like PIM, SPAA has three steps: 

1. Nominate. Each input port arbiter nominates a packet for 

only one output port arbiter, if there is one.  A nominated 

packet cannot be nominated again in subsequent cycles 

until Step 3 of this algorithm completes.  

2. Grant. If an output port arbiter receives multiple requests, 

it selects the packet from the least-recently selected input 

port arbiter.   Then, it informs all input port arbiters con-

nected to it of its decision.     

3. Reset.  An input port arbiter resets the state of all nominat-

ed packets that are not selected by the output port arbiter, 

so that they can be nominated again.   

SPAA has three important properties that make it amenable to 

easy hardware implementation and pipelining.  First, unlike 

PIM1 or WFA, an input port arbiter nominates a packet to only 

one output port arbiter.  This avoids the extra interaction 

required between the input and output port arbiters (as in PIM1) 

or between the output port arbiters (as in WFA).   Nevertheless, 

because a pair of input port arbiters shares the same set of input 

buffers via different read ports, the input port arbiters in a pair 

must synchronize to ensure that they do not choose the same 

packet.  However, because the synchronization is between pairs 

of input port arbiters located in close proximity, this is not hard 

to implement.   

Nominating a packet to only one output port also has the 

added benefit that a packet can be speculatively read out from 

an input buffer as soon as it is nominated by an input port 

arbiter (but before the output port arbitration is complete), much 

like the way direct-mapped caches allow processors to 

speculatively read out data before the address comparison 

completes [20].  Of course, the read is wasted if the output port 

does not select the specific packet that was speculatively read 

out.  

Second, SPAA can be implemented as a distributed router 

with the input and output port arbiters sitting right next to their 

corresponding ports.   In contrast, because of PIM1 and WFA’s 

high level of interaction between input and output ports, it is 

easier to implement PIM1 and WFA using a centralized 

connection matrix.  The distributed implementation of SPAA 

allows it to directly send input port nominations from the input 

to the output ports without an intervening connection matrix.  

This helps reduce the number of cycles incurred by SPAA.  

Third, SPAA need only maintain a small list of in-flight 

packets—that is, only 16—because each input port can only 

nominate a maximum of one packet.  In contrast, aggressive 

and more complicated implementations of PIM1 and WFA 

would have required us to maintain state for 54 in-flight 

packets, which would complicate their implementation.  

SPAA’s small number of in-flight packets (i.e., nominated from 

the input port, but not yet accepted by the output port) facili-

tates effective pipelining of SPAA.  Thus, unlike PIM1 and 

WFA, new input port arbitrations in SPAA can be restarted 

every cycle.  

Thus in summary, SPAA incurs only three cycles (Figure 4) 

for its arbitration compared to the four cycles required by PIM1 

or WFA and SPAA can be pipelined effectively, so that an 

input port arbitration can be started every cycle.  SPAA’s three 

cycles consist of input port arbitration (i.e., nominate), transport 

from input to output port, and output port arbitration (Figure 4).  

SPAA’s Step 2 (Grant) selects packets based on the least-

recently selected policy.  We call this SPAA-base.  In the next 

subsection, we discuss how SPAA can use the rotary rule to 

select an input port arbiter.  We call this SPAA-rotary.  

3.4 Rotary Rule 

Under extremely heavy loads most multiprocessor networks 

suffer from tree saturation [28][30], which can dramatically 

degrade a network’s performance beyond the saturation point 

(Figure 7).  Such tree saturation occurs when multiple packets 

contend for a single resource (e.g., a link between nodes) 

creating a hot spot.   Since only one packet can use the resource, 

other packets must wait.  These waiting packets occupy buffers 

and thus delay other packets, even though they may be destined 

for a completely different node and share only one link on their 

paths to their respective destinations.  This process continues 

and waiting packets delay other packets producing a tree of 

waiting packets that fans out from the original hot spot.   

Eventually, this clogs the network bringing down the delivered 

throughput of the entire network.  

The 21364 network is no exception and can get saturated at 

extremely high load levels. Interestingly, the network produces 

a cyclic pattern of network link utilization with extremely high 

levels of uniform random input traffic.  This is because as the 

network gets saturated, it puts backpressure on the links in the 

tree. Eventually, this backpressure throttles the routers in the 

tree and forces them to avoid injecting new traffic, which 

causes the network congestion to clear up slowly.   The period 

of this cycle increases with the diameter of the network because 

it takes longer to fill up the buffers on the path and propagate 

the backpressure.  

Ideally, we would like network throughput to remain at the 

same level as exhibited at the saturation point, instead of 

degrading dramatically beyond the saturation point.   Most 

proposed solutions rely on throttling the input network load 

based on some estimate of congestion, so that the network never 

goes beyond the saturation point.   Lopez, et al. [21][22] use the 

number of busy virtual channels in a router to estimate 

congestion.  Baydal, et al. [4] proposes an approach that counts 

a subset (free and useful) of virtual channel buffers to decide 

whether to throttle or not.  Other researchers (e.g., [34], [30], 

[38]) have proposed the use of a variety of global heuristics to 

determine congestion.  

Fortunately, the 21364 network has two properties that limit 

the network load.  First, a 21364 processor can have only 16 

outstanding cache miss requests to remote memory or caches.  

This limits the load the 21364 network can observe.  

Second, the 21364 is a “direct” network in which the same 

router is responsible for both new traffic (originating from the 

 

 

 

 

 

 

 

 
Figure 7.  Possible network behavior with increasing network load.  
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local ports, such as the cache port or memory controller ports) 

and cross-traffic between routers.  Thus, prioritizing the cross-

traffic over new traffic generated from the local ports has the 

beneficial effect of both clearing the network congestion as well 

as throttling the input load into the network.   We call this 

prioritization policy the “Rotary Rule.”  The name is derived 

from the Massachusetts rotaries in which vehicles in the rotary 

has higher priority to exit than vehicles trying to enter the 

rotary.  

It is easy to implement the Rotary Rule for PIM1, WFA, 

and SPAA.  In PIM1 and SPAA, the output port arbiters would 

select packets nominated by the input port arbiters for the 

network ports before they select packets from the local ports.  

Within the network ports, we use least-recently used selection 

policy.  In WFA, the selection of the first cell to start the 

arbitration process would follow the Rotary Rule.  Thus, cells 

connected to the input port arbiters for the network ports would 

get the highest priority to be the first cell from where the 

wavefronts will start.  In this paper, we only evaluate the Rotary 

Rule for WFA and SPAA.  We call these variants WFA-rotary 

and SPAA-rotary, respectively.    

The Rotary Rule’s prioritization of cross-traffic packets can 

create starvation in the network.   The 21364 router implements 

an anti-starvation algorithm for certain corner cases.  The 

Rotary Rule simply relies on this anti-starvation algorithm to 

clear any starvation caused by its prioritization policy.  The 

anti-starvation algorithm assigns two different colors to packets 

waiting at a router: an old color and a new color.  If the number 

of old colored packets exceed a threshold, the 21364 ensures 

that all the old colored packets are drained before any new 

colored packets are routed.   Further discussion of the anti-

starvation algorithm is beyond the scope of this paper.  

The 21364 network provides the Rotary Rule as an optional 

mode programmable at boot time.  It is an optional mode 

because we believe most applications will not stress the 

network to the extent of pushing it into saturation.  Neverthe-

less, we provide it both as a “safety net” for the 21364 proces-

sor and as a mechanism that may have allowed its use in future 

processors with many more outstanding misses (e.g., the next 

generation Alpha 21464 processor would have had 64 outstand-

ing misses).  

4. METHODOLOGY 

This section describes our performance model, traffic pat-

terns, and performance metric.  

4.1 Performance Model 

Our evaluation of the 21364’s arbitration algorithm choices 

is based on two kinds of performance models written in the 

Asim framework [15], unlike Bhuyan [5] or Peh and Dally [27], 

who had used analytical modeling to understand the behavior of 

arbiters and routers4. Our first model—what we call the 

standalone model—allows us to evaluate the matching 

capabilities of MCM, PIM, PIM1, WFA, and SPAA in a single 

21364 router (just like a cache simulator would allow one to 

evaluate the cache miss ratio without any timing information).  

Our second model—what we call the timing model—is an 

extremely detailed performance model of the 21364 router. We 

                                                             
4
 Bhuyan’s paper pre-dates PIM1 and WFA.   Peh and Dally focused on 

developing analytical models for router pipelines, but did not compare the 

performance of different arbitration algorithms.  

have validated this model against a production-level perfor-

mance model of the 21364 network architecture.  We have 

modeled the detailed timing characteristics of PIM1, WFA-

base, WFA-rotary, SPAA-base, and SPAA-rotary using this 

timing model.    

We described most of the parameters of the timing runs in 

Section 2.2 and Section 3.  In addition, we assume 73 nanosec-

onds for the memory system’s response time, 25 cycles for the 

on-chip L2 cache’s response time, and 3 network clocks 

(running at 0.8 GHz) for latency on each network link.  Most of 

the results we present in this paper are for a 16-processor (4x4) 

network and a 64-processor (8x8) network.  Although the 

21364 network only scales up to 128 processors, Section 5.3 

examines results for a 144-processor (12x12) network to 

understand how the arbitration algorithms may scale for larger 

network configurations.   

4.2 Traffic Patterns 

We evaluate our timing models using a mix of synthetic 

traffic patterns as opposed to real workloads.  Simulations of 

real workloads, such as database servers, would have helped us 

make more accurate predictions about the performance impact 

of the different arbitration algorithms.  Such simulation, 

however, would have required complex full-system simulation 

(including the operating system), which our modeling infra-

structure is unable to handle today.   Trace-driven simulation 

would have been an alternative, but that also has its limitations 

[7].    

Nevertheless, synthetic workloads have two advantages.  

First, they often tend to increase the contention for resources for 

sub-optimal/worst case performance scenarios [39].  Second, 

they represent communication patterns in many real-world 

applications [14].    

Recently, Towles and Dally [39] demonstrated a technique 

to construct synthetic traffic patterns that result in worst-case 

performance for oblivious routers.  Unfortunately, there is no 

known similar technique for adaptive routers, such as the 

21364.  

Our synthetic patterns can be defined along two dimensions.   

The first dimension selects the mix of coherence packets.   We 

use 70% two coherence hop transactions (3-flit request and a 

19-flit block response) and 30% three coherence hop transac-

tions (3-flit request, 3-flit forward, and a 19-flit block response) 

to model a mix of coherence traffic.  We, however, ignore 

traffic generated from cache replacements or invalidations to 

make our analysis simpler.5    Note that a coherence hop only 

specifies a single packet, which can take multiple router hops 

via the network.  

The second dimension selects the destination of the requests 

and forwards.    We use three patterns for such selection: 

uniform, bit-reversal, and perfect-shuffle.  If the bit-coordinate 

of the source processor can be represented as (an-1, an-2, ...a1,a0), 

then the destination bit-coordinates for bit-reversal and perfect-

shuffle are (a0,a1,...,an-2,an-1) and (an-2,an-3,...,a0,an-1) respectively.  

4.3 Performance Metric 

We use the Burton Normal Form (BNF) [14] to express the 

performance of our different arbitration algorithms.   A BNF 

graph uses observed latency as its vertical axis and delivered 

                                                             
5
 The 21364 processor can have 16 outstanding cache replacement requests.  
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throughput as its horizontal axis.    For our BNF graphs, we use 

the average latency of a packet through the network as the 

vertical axis.   The minimum per-packet latency with a 4x4 

network, uniform random distribution of destinations, and a 

70/30 mix of 2-hop and 3-hop coherence transactions is about 

45 ns (nanoseconds).   The 45 ns can be broken into 2.5 ns of 

local port latency, 34 ns of network transit latency for the first 

flit, and 8.5 nanoseconds of latency for the rest of a packet.   

The last number is averaged across the different packet sizes for 

our coherence transaction mixes.  

We represent the delivered throughput as flits/router/ns 

(where ns = nanoseconds).   The maximum throughput is two 

flits/router/cycle because the 21364 router has two local ports to 

sink packets and only one flit can be delivered to a local port 

per cycle.  Thus, the maximum delivered throughput can be 2.4 

flits/router/nanosecond (= 2 / 0.83).  In reality, however, the 

actual delivered throughput will be significantly lower because 

the network links are 33% slower than the processor and the 

network links often carry cross-traffic, whose residence time in 

the network increases with the size of the network.  

We ran each timing simulation for 75,000 cycles.  We have 

validated that simulation for this number of cycles is sufficient 

to predict the steady-state behavior of the network. 

5. RESULTS 

This section presents our standalone, timing, and scaling 

results.  Although we present our results only for a subset of the 

network sizes and traffic patterns, our results are qualitatively 

similar across a wide spectrum of the design space.  

5.1 Standalone Results 

Figure 8 shows that when all output ports are free MCM, 

PIM, and WFA are indeed superior arbitration algorithms 

compared to PIM1 and SPAA.  We generated Figure 8 by 

loading up a single router with input packets and using the 

following assumptions: 

 All arbitration algorithms take one cycle to execute. 

 All output ports are free at the time of the arbitration. 

 50% of the traffic is local and destined for the local memory 

controller and I/O ports. The rest are destined uniformly for 

the other network ports.  

 The number of arbitration matches is averaged across 1000 

iterations of the arbitration algorithms.   Because the traffic is 

generated randomly, in some cases even MCM, which 

exhaustively searches for the maximum number of matches, is 

not able to find a perfect match.  However, the number of 

matches found by MCM is usually very close to the maxi-

mum, i.e., seven (because there are seven output ports).  

 Although all algorithms execute in one cycle, they all follow 

the basic 21364 router constraints, such as adaptive routing 

within the minimum rectangle.  

Under the above assumptions, the number of matches found by 

WFA and PIM are almost close to that found by MCM.  PIM1 

does slightly worse and SPAA is the worst.  At the MCM 

saturation load, the number of matches found by MCM, WFA, 

and PIM are 36% higher than that found by SPAA.  PIM1’s 

number of matches is 14% higher than SPAA’s.  

Figure 9, however, shows that under realistic conditions the 

difference between the various arbitration algorithms reduces 

dramatically. Figure 9 plots the arbitration matches per cycle 

for the different algorithms for various levels of output port 

occupancy.   In the 21364 router, packet sizes range from 3 to 

19 flits, so when a packet wins an arbitration, it occupies an 

output port for several cycles.   It is unnecessary to arbitrate for 

an output port while it is busy delivering a packet.   As the 

fraction of occupied output ports increases, the difference 

between the algorithms reduces and completely disappears 

when 75% of the output ports are occupied.   

Thus, under heavy loads (when output port occupancy is 

likely to be high), it does not matter which arbitration algorithm 

we choose.   Rather, it is better to choose an algorithm that is 

more suited to faster implementation.   We designed SPAA 

based on this observation.  

Another way to look at these results is that WFA and PIM’s 

matching capabilities are more suited to routers with signifi-

cantly higher number of ports compared to what we have in the 

21364 router.   

5.2 Timing Results 

Figure 10 shows the performance of the five arbitration 

algorithms—PIM1, WFA-base, WFA-rotary, SPAA-base, and 

SPAA-rotary—for different network sizes and traffic patterns.  

SPAA-base significantly outperforms both PIM1 and WFA-

base, which perform similarly.   For example, in the 4x4 
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Figure 8. Standalone comparison of matching capabilities of 
different arbitration algorithms for a single 21364 router with 
increasing router load for zero output port occupancy. The 
horizontal axis plots the input router load as a fraction of the load 
required to saturate MCM.  

 

 

 

  

 

 

 

 

 

 
 
 
 
Figure 9.  Standalone comparison of matching capabilities of 
different arbitration algorithms for a single 21364 router with 
increasing output port occupancy at the MCM saturation load.  
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network, with random traffic SPAA-base provides about 11% 

higher throughput compared to PIM1 and WFA-base when the 

average packet latency is about 83 nanoseconds. Similarly, in 

the 8x8 network, with random traffic SPAA-base provides 

about 24% higher throughput compared to PIM1 and WFA-

base when the average packet latency is about 122 nanoseconds.  

The results for bit reversal and perfect shuffle for the 8x8 

network are qualitatively similar.  

Figure 10 also shows that the Rotary Rule prevents both 

WFA-rotary and SPAA-rotary from performance degradation 

under heavy network loads.   The 4x4 network does not show 

saturation behavior, so the performance of WFA-base and 

SPAA-base are similar to WFA-rotary and SPAA-rotary 

respectively. In the 8x8 network, WFA-base and SPAA-base 

perform similar to WFA-rotary and SPAA-base respectively, 

until the network hits the saturation point.  Thereafter, the 

delivered throughput of both WFA-base and SPAA-base 

degrade rapidly, while WFA-rotary’s and SPAA-rotary’s 

delivered throughputs continue to increase.    

Thus, at about an average packet latency of 280 nanosec-

onds, WFA-rotary improves throughput by 16% over WFA-

base and SPAA-rotary improves throughput by 43% over 

SPAA-base.  Note that WFA-base shows less performance 

degradation compared to SPAA-base.  We suspect this happens 

because the interaction between WFA’s output port arbiters 

(unlike in SPAA) makes the worst case behavior of WFA-base 

better than that of SPAA-base.   

Finally, pipelining provides SPAA a significant boost in 

performance compared to PIM1 and WFA (not shown here).  

For example, if we could implement WFA as a three-cycle 

arbitration mechanism like SPAA, then pipelining is the key 

difference between WFA and SPAA.  In an 8x8 network, with 

random traffic SPAA provides a throughput boost of about 8% 

compared to such a configuration of WFA-base with 122 

nanoseconds of average packet latency.   This shows pipelining 

the arbitration mechanism does help SPAA’s performance.  

5.3 Scaling Results 

This section studies the performance of PIM1, WFA-rotary, 

and SPAA-rotary under three different scaling conditions: with 

twice the router pipeline length as in the 21364 router, with 

higher input load than 21364 can offer, and with a bigger 

network.   The router pipeline length could potentially double in 

future generations, given the scaling trends of technology today. 

Figure 11a shows the results for PIM1, WFA-rotary, and 

SPAA-rotary for a pipeline two times longer than and running 

at twice the frequency of the 21364 router’s pipeline.  The 

arbitration latencies for PIM1, WFA-rotary, and SPAA-rotary 

are 8, 8, and 6 cycles respectively.   As the figure shows, 

SPAA-rotary performs significantly better with longer pipelines 

because SPAA-rotary is pipelined, unlike the other two 

arbitration algorithms.   Thus, for example, at about 100 

nanoseconds of average packet latency, SPAA-rotary provides 

greater than 60% higher throughput compared to PIM1 and 

WFA-rotary.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 10.  This figure shows the performance of the 21364 network with different arbitration algorithms, network sizes (4x4 and 8x8), and 
traffic patterns (Random, Bit Reversal, and Perfect Shuffle).  
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Figure 11b shows the results for the three arbitration algo-

rithms for an 8x8 network with higher network load.  Higher 

network load, in the form of greater number of outstanding 

misses, can be expected from future processors with deeper 

pipelines.   Hence, this figure assumes 64 outstanding misses, 

four times higher than that of the 21364 processor.   As the 

figure shows, even under such high network loads, SPAA-

rotary outperforms both PIM1 and WFA-rotary.    Thus, for 

example, at about roughly 200 nanoseconds of average packet 

latency, SPAA-rotary provides roughly 13% higher throughput 

compared to WFA-rotary.  

Figure 11c shows the scaling results for the 21364 router for 

a 144-processor (12x12) network (Note: the 21364 network can 

only scale up to 128 processors).   Like the first two scaling 

results, SPAA-rotary outperforms both PIM1 and WFA-rotary 

significantly.  Thus, for a 200 nanoseconds average packet 

latency, SPAA-rotary provides an 18% higher throughput 

compared to WFA-rotary.  Interestingly, however, at extremely 

high loads, SPAA-rotary is unable to prevent throughput 

degradation under saturation, whereas WFA-rotary’s through-

put continues to increase, possibly because of its synchroniza-

tion between output port arbiters.   

6. CONCLUSIONS 

Large-scale cache-coherent shared-memory machines have 

become common server machines.   Such machines often 

employ interconnection networks to allow communication 

between processors and memory modules.   These interconnec-

tion networks must deliver low latency and high bandwidth to 

effectively run demanding parallel applications.  

Interconnection networks usually consist of a fabric of 

interconnected routers, which receive packets arriving at their 

input ports and forward them to appropriate output ports.  

Unfortunately, network packets moving through these routers 

are often delayed due to conflicting demand for resources, such 

as output ports or buffer space.  Hence, routers typically employ 

arbiters to resolve conflicting resource demands.   These 

arbiters try to maximize the number of matches between 

packets waiting at input ports and free output ports.  

Efficient design and implementation of these arbiters is 

critical to maximize network performance.  The 1.2 GHz 

implementation of the Alpha 21364 microprocessor’s on-chip 

router, which can connect up to 128 processors in a 2D torus, 

made the already difficult task of designing arbitration 

algorithms even more challenging.  Because the 21364’s 

implementation allowed very few logic levels—between 12 and 

13 per clock cycle—we had to carefully weigh the complexity 

of an arbitration algorithm against its benefit.   

This paper proposed a new arbitration algorithm called 

SPAA (Simple Pipelined Arbitration Algorithm), which is 

implemented in the 21364 router’s pipeline.  Simulation results 

showed that SPAA significantly outperforms two earlier well-

known arbitration algorithms: PIM (Parallel Iterative Matching) 

and WFA (Wave-Front Arbiter), which is implemented in the 

SGI Spider switch.  Instead of PIM, which is iterative and 

would have obviously performed poorly in the 21364 router, we 

considered PIM1, which runs only one iteration of the PIM 

algorithm.    

SPAA outperformed PIM1 and WFA, even though both 

PIM1 and WFA have better matching capabilities than SPAA. 

This is because SPAA exhibits matching capabilities similar to 

PIM1 and WFA under realistic conditions when many output 

ports are busy, incurs fewer clock cycles to perform the 

arbitration, and can be pipelined effectively. We also demon-

strated that SPAA will continue to deliver higher throughput 

compared to PIM1 and WFA, if the router were scaled to have 

twice the pipeline length, incur greater input load, or support 

bigger networks than the 21364 was designed for. 

Additionally, we proposed a new prioritization policy called 

the Rotary Rule, which provided significant boost in network 

performance by preventing the network’s adverse performance 

degradation from saturation at high network loads.  The Rotary 

Rule prioritizes the movement of network packets already in the 

network over packets recently generated from the processor 

ports.  We demonstrated the effectiveness of the Rotary Rule 

with WFA and SPAA.   The Alpha 21364 router provides the 

Rotary Rule as an optional mode programmable at boot-time.    

The arbitration algorithm choice for the Alpha 21364 router 

depends largely on its architectural constraints.   The arbitration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 11.  Scaling Results for the 21364 router.   
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algorithm did not need to be as aggressive because of a 

maximum of two output port choices for each packet, per-

packet arbitration, and virtual cut-through routing.  Greater 

routing freedom, flit-level arbitration, and wormhole routing 

(with shallow buffering) may reduce the advantage of SPAA 

over PIM1 and WFA.  
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