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Abstract 10 

The Júcar River, in a typical Mediterranean Basin, is expected to suffer a decline 11 

in water quality and quantity as a consequence of the climate change. This study is 12 

focused on the presence and distribution of pesticides in water and fish, using the first 13 

extensive optimization and application of the QuEChERS method to determine 14 

pesticides in river fish. Majority pesticides in water –in terms of presence and 15 

concentration- were dichlofenthion, chlorfenvinphos, imazalil, pyriproxyfen and 16 

prochloraz (associated with a frequent use in farming activities), as well as buprofezin, 17 

chlopyriphos and hexythiaxoz. In fish, the main compounds were azinphos-ethyl, 18 

chlorpyriphos, diazinon, dimethoate and ethion. The analysis of bio-concentration in 19 

fish indicated differences by species. The maximum average concentration was detected 20 

in European eel (a critically endangered fish species). The wide presence of pesticides 21 

in water and fish suggests potential severe effects on fish populations and other biota in 22 

future scenarios of climate change, in a river basin with several endemic and 23 

endangered fish species. The potential effects of pesticides in combination with multiple 24 

stressors require further research to prioritize the management of specific chemicals and 25 

suggest effective restoration actions at the basin scale. 26 
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1. Introduction 32 

Rivers around the world are threatened by socioeconomic drivers that degrade 33 

environmental conditions by altering land use and climate, thereby affecting hydrology 34 

and water quality [1, 2]. Climate change and human use both pose threats to the flow 35 

regime of water ecosystems, and altered flow regimes can have a high impact on the  36 

ecological and chemical status of waters [3]. In order to repair this situation, the 37 

European Parliament established the Water Framework Directive in 2000. Its ultimate 38 

objective is to achieve “good ecological and chemical status” for all Community waters 39 

by 2015. For this, priority substances (some of them pesticides) to be monitored and 40 

their limits have been established to control the pollution in surface waters [4]. 41 

However, the first round of the River Basin Management Plans in the EU show that 42 

more than half of Europe's surface water bodies are in less than good ecological status, 43 

and the reports about the Habitat Directive indicate that over two thirds of all river and 44 

lake habitats and inland water species are in unfavourable conservation status [3]. 45 

Furthermore, some regions of the EU are at risk of water scarcity, and the water 46 

ecosystems services upon which society depends may become more vulnerable to 47 

extreme events such as floods and droughts [5].  48 

In the Júcar River basin (Spain), the last nationwide report on climate change 49 

estimated a 10–25% reduction of the mean annual flow [6], which indicates potential 50 

notable effects on water availability. Therefore, a reduction of water quality, which 51 

would produce severe risks for the ecosystem integrity, is probable [7]. Von der Ohe et 52 

al. [8] analyzed waters in four European rivers (including the Llobregat River in Spain), 53 

reporting that most of the high and very high risk substances detected were pesticides 54 

(74%). They reported that pollution with organic chemicals is a Europe-wide problem.  55 
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In a previous study on contaminants in Spain, different pesticides were detected, in 56 

the Duero, Ebro and Miño River basins (in decreasing order of quantity and 57 

concentrations) [9]. However, a review on the monitoring programs indicated that the 58 

analytical methods for most compounds were not sufficiently developed to consistently 59 

detect their often very low concentrations in the environment [10]. This lack of unified 60 

sample preparation and analytical methods in environmental matrices other than water 61 

and in particular in biota has been widely remarked in several reviews [11, 12].  As a 62 

quick, easy, cheap, effective, rugged and safe sample preparation method, the 63 

QuEChERS method has attracted great attention for pesticide residue determination in 64 

fruit and vegetables. Recently, QuEChERS method was also applied on fish to detect 65 

pyrethrin and pyrethroid pesticides [13], as well as for the most commonly applied 66 

pesticides for cereals and oleaginous crops in France [14]. However, complementary 67 

research is needed to determine a wider range of pesticides in fish. 68 

In this context, the aims of this study were: i) to test the effectiveness of the 69 

QuEChERS method for determining the presence and concentration of pesticides in  70 

freshwater fish; ii) to establish general patterns of presence and concentration of 71 

pesticides in water and fish along the Júcar River; and iii) to assess the potential risk for 72 

the health of freshwater fish species, based on bio-concentration and fish condition. 73 

This is to our knowledge the first study that simultaneously monitors a large number of 74 

pesticides in both water and fish. 75 

 76 

2. Materials and methods 77 

2.1.Study area and sampling  78 

The Júcar River is 497.5 km long and its mean annual flow is 10 m3/s; it flows 79 

through three provinces (Teruel, Cuenca and Valencia) in Eastern Spain, under a typical 80 
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Mediterranean climate. Sampling was performed at five sites distributed along the main 81 

stream of the Júcar River (Fig.1) in October 2010. The site (JUC-I) is located at the 82 

basin headwaters, showing the natural flow regime. In the other sites, a great percentage 83 

of flat lands is dedicated to agriculture and the river flow is regulated by small and large 84 

dams.  85 

The sampling was carried out, as much as possible, following the Environmental 86 

Quality Standards Directive 2008/105/EC (EQSD) [15]. October was the month 87 

selected for several reasons, (i) it coincides with the end of the growing season period, 88 

which is the appropriate for monitoring of fish, and (ii) there are not very recent 89 

applications of pesticides, which allow to establish what pesticides are constantly 90 

present in the environment because its capacity of accumulation and/or its persistence. 91 

Physical and chemical characteristics of water (temperature, pH, total soluble 92 

salts, dissolved O2 and redox potential) were recorded at the sampling sites using a 93 

Multiparameter Eutech Instrument CyberScan PCD 650 (Thermo Fisher Scientific, 94 

Basel, Switzerland). Water samples were collected in glass bottles (2.5 L) and 95 

transferred immediately to the laboratory for analysis. The samples were stored at 4 °C 96 

for no more than 10 days before analysis. Five hundred millilitres of water samples 97 

were filtered to remove any floating or insoluble materials. 98 

Fish were sampled using electrofishing for approximately one hour at each site, 99 

with standard equipment, following the recommendations of the Norm UNE-EN 100 

14011:2003 regarding sampling of fish with electricity. This norm states that in general 101 

the sampling should take place at the end of the growth period, when the juveniles are 102 

large enough to be captured by electrofishing. In this river, the best time approximately 103 

corresponds to October, although water temperature differs from the upper to lower 104 

study sites. Accordingly, a sampling campaign was carried out by the Water Authority 105 
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of the Jucar River Basin in October 2010, in order to monitor pesticides concentration in 106 

fish; such data allowed the comparison of results. The sampling in water was performed 107 

in the same month to show potential relations between concentrations in fish and water.    108 

According to the aforementioned European norm, the weight (g) and fork length 109 

(mm) of each fish were measured in the field. In total, one-hundred-seventy-two 110 

individuals belonging to nine fish species were collected. The different fish species 111 

were distributed as follows. In JUC-I: Iberian gudgeon (n=8) and brown trout (n=9); in 112 

JUC-II, Iberian gudgeon (n=24), brown trout (n=2) and Iberian nase (n=6); in JUC-III, 113 

Iberian gudgeon (n=28) and largemouth bass (n=6); in JUC-IV, European eel (n=3), 114 

bleak (n=4), pumpkinseed (n=1), Iberian gudgeon (n=14), Eastern Iberian barbel (n=1) 115 

and largemouth bass (n=5); in JUC-V, Iberian gudgeon (n=7), pumpkinseed (n=1), 116 

bleak (n=27), northern pike (n=2), largemouth bass (n=2), European eel (n=13) and 117 

Eastern Iberian barbel (n=6).  118 

The collected fish samples were transported to the laboratory in a cool-box and 119 

classified depending on the site and species. Then, the entire fishes were grinded using a 120 

Oster BPST02-B00 (London, United Kingdom). The wet weights were recorded and 121 

fish samples then stored in aluminium wrappers, freeze-dried at -80⁰C and lyophilized.  122 

2.2.Extraction procedures 123 

The full list of chemicals and reagents used, as well as the pesticides selected as 124 

target compounds are provided in the Supplementary Material (Table S1). Very briefly, 125 

water samples were extracted by solid-phase extraction (SPE) with Oasis HLB cartridge 126 

using a previously published procedure [16]. The limits of detection (LODs) and 127 

quantification (LOQ) ranged from 0.1 to 2 ng/L and from 0.3 to 6 ng/L, respectively. 128 

depending on the pesticides. Calibrations curves were linear in the concentration range 129 
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of 10 ng/L to 10 µg/L and the matrix effect was always ≤ 20 %. Recoveries varied from 130 

48.50% to 70% and precision was below 20% for all pesticide. 131 

The fish samples were prepared with the modified QuEChERS method. Two 132 

grams of lyophilized fish were placed in a 50 mL Falcon tube and added with 8 ml of 133 

H2O MiliQ and 15 ml of acetonitrile and shaken vigorously for 30 s. Six g of 134 

magnesium sulphate (MgSO4) and 1.5 g of sodium chloride (NaCl) were then added and 135 

the tube was shaken again for 1 min. The tube was centrifuged for 4 min using a 136 

centrifuge 5810 R (Eppendorf AG, Hamburg, Germany) at 4000 rpm. Two ml from the 137 

resulting supernatant were transferred to a 15 ml Falcon tube and cleaned-up with 0.3 g 138 

of MgSO4, 0.1 g of PSA, 0.1 g of C18 and 0.015 g of activated charcoal. The 15 ml 139 

Falcon tube was shaken for 30 s and centrifuged at 4000 rpm for 4 min. The supernatant 140 

was transferred to an auto-sampler vial for LC-MS analysis through a MR PTFE 141 

Syringe filter (0.22 µm). All samples were analysed in triplicate. The results presented 142 

are the average of the three values. 143 

2.3.LC-MS/MS analysis 144 

Pesticides were determined by liquid chromatography tandem mass 145 

spectrometry (LC-MS/MS) using an Agilent 1260 Infinity system (Agilent 146 

Technologies, Palo Alto, California, USA) equipped with a binary pump, an automatic 147 

injector, a mass spectrophotometer Agilent 6410 triple Quad LC/MS System connected 148 

by an ESI source and software Mass Hunter Workstation version B.04.00/Buil 149 

4.0.225.19. The analytical column was a Luna 18 (150 x 2.0 mm, 3 µm) from 150 

Phenomenex (Paris, France). The mobile phase (A) was 10 mM of formic acid in 151 

methanol and the mobile phase (B) was 10 mM of formic acid in water. The initial 152 

conditions were 50% B, increased to 83% B in 10 min, and then, increased to 98% B in 153 

2.5 min and maintained for 3 min. The stabilization time was 12 minutes, therefore the 154 
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total run time was 27.5 min. The temperature of the column was 30 ⁰C, flow-rate, 0.4 155 

mL·min-1 and injection volume, 5 µL. The source parameters were ionization voltage of 156 

4000 V; nebulizer gas 15 psi; and source temperature 300 ⁰C.  157 

The ionization and fragmentation of the study compounds was optimized by 158 

injecting the solutions of each analyte without column using the Optimizer program. 159 

Optimum fragmentor voltages were between 10 and 150 V, and collision energy 160 

between 10 and 100 V (detailed conditions are outlined in Table S2, Supplementary 161 

material). 162 

2.4.Validation 163 

Compound recoveries were determined using a hake (Merluccius merluccius) 164 

from a Spanish market. Before, it was tested for the presence of any of the selected 165 

pesticides that could interfere in the results. The hake sample was spiked with 150 µl of 166 

a mixture of all pesticides of interest (at a concentration 5 µg/ml of each). As the spiked 167 

volume was low, special care was taken to ensure a proper distribution of the pesticide 168 

within the sample. The 150 µL were added using a GC syringe of 200 µL incrementally 169 

to the sample. Each increment was carried out by spreading 50 µL of the solution as 170 

much as possible in the Falcon tube containing 1 g of lyophilized samples that was then 171 

vortexed at 1300 rpm for 2 min. This was repeated three time until all 150 µL were 172 

added.  The spiked samples were left to stand at room temperature for 20 min to ensure 173 

the evaporation of the organic solvent a more homogeneous distribution. The recoveries 174 

were determined in quintuplicate (n=5) comparing the pesticide areas of the sample 175 

extract spiked before QuEChERS extraction to those of standards prepared, at the same 176 

concentration, in blank fish extracts. Precision was calculated as the relative standard 177 

deviation, % RSD of five samples analyzed in the same day, spiked with a standard 50 178 

ng/ml, to provide a measure of intra-day accuracy. 179 
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Matrix effect was established by comparing the response of a standard (50 µg/g) 180 

prepared in acetonitrile to that of a blank hake extract spiked with the same 181 

concentration as the standard (matrix matched standard). Matrix effect was calculated 182 

according to the following equation:   183 

Signal value = �
A�ish − As

As
� × 100 

Where:  As= standard area; and A�ish= spiked matrix area. 184 

Linearity of the method was established with eight calibration points at 185 

concentrations of 0.1, 1, 5, 10, 20, 30, 40 and 50 ng/ml. Results were adjusted to a 186 

simple linear regression not forced to go through the origin.  187 

LOD was determined as the pesticide concentration that produces a signal-to-188 

noise ratio (S/N) of 3 and LOQ as the lowest validated spike level meeting the method 189 

performance acceptability criteria (mean recoveries for each representative commodity 190 

in the range 70-120%, with an RSDr ≤ 20%) in the accordance with the European Union 191 

Guideliness [17, 18].  192 

2.5.Data analysis 193 

The presence and concentration patterns of pesticides in water and fish samples 194 

were initially analysed separately to determine the most affected sites. According to 195 

occurrence and concentration, the pesticides were classified in three groups: i) those 196 

with regular presence along the river (four or more consecutive sites) at concentrations 197 

> 30 ng/L; ii) those with regular presence concentrations ≤ 30 ng/L, or less frequent 198 

(three sites) with concentrations > 30 ng/L; and iii) those detected randomly in the river 199 

(in three sites or less) at concentrations ≤ 30 ng/L. 200 

An analysis of variance (ANOVA) with a linear regression was carried out to 201 

assess the correlation between the concentration in water and in fish (1-α = 95%), and 202 

between the concentration in fish and the fish condition. The indices of fish condition 203 
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are indicators of the weight-to-length relationship, thus the well-being of a fish or 204 

population; the most common measure is the Fulton condition factor (K = W·100/L3), 205 

where K = fish condition index, W = weight and L = length [19], (1-α = 95%). 206 

Regarding the analysis of fish condition, only the pesticides with a relevant presence in 207 

fish were considered, chlorpyriphos, diazinon and ethion. Statistical analyses were 208 

performed in the program Statgraphics 5.1. 209 

 210 

3. Results and Discussion 211 

3.1.Optimization of the extraction procedure 212 

The QuEChERS protocol has two major steps: a salting-out extraction and a 213 

dispersive SPE (dSPE) clean-up including many possible permutations to allow 214 

adaptation to analyte and matrix. For the extraction, citrate-buffered and unbuffered 215 

versions of the method, as well as acetonitrile with or without 1% of acetic acid were 216 

tested. dSPE clean-up was adapted to the matrix and analytes studied because it could 217 

retain the compounds of interest or react with them or be not enough effective to 218 

eliminate matrix interferences. 219 

3.2.Validation of the extraction procedure  220 

Figure 2 shows the performance of the chromatographic determination. In the 221 

left part, a chromatogram of a QuEChERS extract of an fish sample spiked with the 41 222 

pesticides analyzed by LC-MS/MS is presented. The chromatogram shows complete 223 

separation of most of the compounds (Fig. 2, up), with the exception of those that co-224 

elute between min 10-11 and 14-15. The separation of all compounds took 15 min. The 225 

right side shows the extracted ion chromatograms (EIC) corresponding to pesticide 226 

detected in fish samples and compares them to those of the analytical standards. Peaks 227 

were clear with similar areas and retention times in samples and standards.  228 



11 
 

Recoveries range between 70 and 100% (Fig. 3). Only diuron, imazalil and 229 

omethoate showed recoveries below 70% and only fenthion sulfone, fenoxon sulfoxide 230 

and carbofuran provided recoveries over 100% (see full results in the supplementary 231 

material, Fig. S1). A possible explanation for these high recoveries could be the 232 

degradation of parent or other precursor compounds (fenthion, fenoxon or fenthion 233 

sulfoxide) to fenoxon sulfoxide and fenthion sulfone or the presence of a pesticide as 234 

degradation product of others non-targets present in the blank samples (carbosulfan). 235 

The first hypothesis was checked spiking the samples with the parent pesticides. 236 

However, it was dismissed because no degradation was observed. The second was 237 

tested searching for other “possible” precursor non-target pesticides in the blank 238 

samples that were not detected. 239 

RSDs were lower than 20% for all pesticides for concentrations between 10 and 240 

100 ng/g. These results almost met the limits recommended by the European Guidelines 241 

aforementioned. If any of the pesticides that does not fulfil the criterion on recoveries 242 

was detected, the sample was reanalysed using standard additions as alternative 243 

approach according to the European Guidelines.  This procedure is designed to 244 

determine the content of an analyte in a sample, inherently taking into account the 245 

recovery of the analytical procedure and also compensating for any matrix effect. 246 

A low matrix effect was observed (1-20%) with the exception of simazine and 247 

carbofuran-3-hydroxy (See Supplementary material Fig. S2). Therefore, it did not 248 

require correction, even though matrix-matched standards were used to calculate and 249 

quantify recoveries. The matrix effects were negative (lower response compared to the 250 

standard) for almost all the pesticides, with the exception of buprofezin, carbofuran, 251 

diazinon, metholachlor and omethoate, which showed an increase in the response. 252 

Matrix effect depends on the combination matrix and compound. Comparing to other 253 
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similar studies, Lazartigues et al. [20] found a matrix effect higher than 50% for 254 

isoproturon in fish (changing 8 units between three species of fish).   255 

The linear equations and correlation coefficients are listed in the supplementary 256 

material in Table S3. It shows that most R2 are higher than 0.99, except for methiocarb. 257 

A linear analysis is therefore shown to be acceptable for calculating compounds 258 

concentrations in fish. 259 

Table 1 outlined the LODs and LOQs obtained for the studied compounds. 260 

LODs were between 0.01 and 0.5 ng/g, with the exception of simazine. There is not any 261 

official maximum limit of pesticide residue established for fish non-intended for human 262 

consumption. Table S4 in the supplementary material shows a comparison of the LODs 263 

and LOQs obtained in other studies. The limits obtained allow us to determine 264 

concentrations of environmental relevance. 265 

 266 

3.3.Patterns of pesticides in water 267 

Table 2 and figure 4 present the pesticide concentrations measured in water and fish. 268 

All pesticides were classified in three groups depending on the spatial distribution 269 

(regular/irregular presence in the study sites) and the concentrations, as follows:  270 

1. Regular presence in the river at concentrations >30 ng/L. Some pesticides were 271 

found at all sampling points along the river (mean value for 5 sites in brackets): 272 

pyriproxyfen (89.66 ng/L), a banned substance in the EU since 22/9/2010, 273 

prochloraz (76.04 ng/L) and dichlofenthion (42.54 ng/L). Imazalil (126.38 ng/L) 274 

and chlorfenvinphos (70.23 ng/L, forbidden in EU since 22/9/2010) were at JUC-II 275 

and all other sites downstream. The first pesticides rapidly degrade in the aquatic 276 

ecosystem (less than one month); chlorfenvinphos and imazalil need between 4 and 277 

5 months. 278 
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2. Regular presence at concentrations ≤ 30 ng/L or less frequent (three sites) with 279 

concentrations > 30 ng/L. Chlorpyriphos (18.87 ng/L), hexytiazox (17.94 ng/L), 280 

buprofezin (12.98 ng/L), diazinon (7.23 ng/L) and ethion (4.5 ng/L) were in all 281 

sampling points. From JUC-III to downstream, parathion ethyl (19.72 ng/L) as well 282 

as atrazine (JUC-III, 7.97 ng/L) and its metabolite atrazine desethyl (4.79 ng/L) 283 

were detected. Atrazine and parathion ethyl are very persistent in groundwater, but 284 

they rapidly degrade in surface waters by photolysis. Buprofezin is very stable (half 285 

live up to ten months), ethion and chlorpyriphos have moderate persistence 286 

(between 1 and 4 months), and the others pesticides degrade rapidly (< 1 month). 287 

Four of these eight compounds are forbidden in the EU (buprofezin and ethion since 288 

22/9/2010; atrazine and parathion ethyl since 2005). 289 

3. Irregular presence at concentrations ≤ 30 ng/L: dimethoate, fenoxon-sulfoxide, 290 

malathion and tolclofos methyl. All of them are pesticides that degrade rapidly. 291 

Only malathion is forbidden in the EU since 2005. 292 

Pesticide concentration in water can be mainly influenced by: (i) Degradation (half-293 

life); persistence that can vary between soil and water (Supplementary material Table 294 

S5). (ii) Drainage area and land uses that affect the quantity of pesticides from non-295 

point sources, such as air, runoff or infiltration. There is a large variety of crops in the 296 

floodplain, and many fields irrigated by sprinklers (2 meters high or more) are only five 297 

or ten metres far from the river, with the separation of a small band of riparian trees or 298 

shrubs. (iii) River flow and physico-chemical parameters of water (e.g. water 299 

temperature and pH) that affect dilution and degradation. (iv) Reservoirs along the river, 300 

whose volume determines the water residence time and consequently concentrations of 301 

dissolved contaminants. These reservoirs increase the time for the degradation of 302 

pesticides. (v) Season, which is related to the type of crops (thus chemical treatments) 303 
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and atmospheric conditions. Most of the crops in this area are sowed in the early spring 304 

and harvested at the end of summer whereas few of them are year-round cultivations. 305 

Treatments with herbicides, insecticides and fungicides are applied during crop growth 306 

until few days before the harvesting. Thus, many pesticides could be applied throughout 307 

the year.  308 

Table 3 summarizes the environmental information related to the abiotic degradation 309 

of the pesticides at each study site and between consecutive sites.  The dissolved oxygen 310 

levels in the water samples (> 7.3 mg/L) were not detrimental to the development of 311 

aquatic microorganisms. The large volume of the Alarcon reservoir produces a 312 

hyperannual flow regulation. In 2010, the residence time was long (1640 days) because 313 

the reservoir had accumulated water and released very little flow; the reservoir was 314 

recovering of a long drought. Therefore, in this period any pesticide entering the 315 

reservoir was degraded with very high probability. For a general perspective, the 316 

residence time in this reservoir, annually estimated from March 2012 to February 2013, 317 

was 423 days. 318 

The spatial distribution of pesticides was different depending on compounds, but the 319 

general patterns can be related to the land use and other factors aforementioned. The 320 

relation of crops in the different locations to the pesticides applied and their persistence 321 

were analysed (see table S5 in supplementary material). This information was obtained 322 

from the handbook of pesticides and nutritional products of Spain [21], the material 323 

supplied by the local offices of agricultural development (Ministry of Agriculture, 324 

Government of Spain) and our own field observations. 325 

The first site (JUC-I) is located in the headwaters of the Jucar River; this is a natural 326 

area with little anthropogenic influence and also little river flow (less dilution); this site 327 

presents the lowest number of pesticides. Although the landscape was dominated by 328 
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natural vegetation, small lands with potatoes, mushrooms, poplars, olive, almond and 329 

onion are present, as well as livestock. These activities were the source of the few 330 

pesticides detected at JUC-I; the main compounds were related to the treatments for 331 

insects on olive trees (pyriproxyfen), for fungi on mushrooms and potato (prochloraz) 332 

and also for insects on livestock (pyriproxyfen and diclofenthion) (Table S5). The 333 

presence of diclofenthion, associated to livestock, was approximately regular in the five 334 

study sites. 335 

The second site (JUC-II) is at the city of Cuenca (56,472 habitants), where the 336 

livestock and agricultural activities are more important (including almond, cereals, 337 

garlic, grapevine, olive, onion, potato and sunflower). The main pesticides (i.e., of 338 

highest concentrations) were related with treatments for insects on potato 339 

(chlorfenvinphos, prochloraz), on garlic and wheat (prochloraz) and on olive trees 340 

(pyriproxyfen); with treatments for fungi on almond (imazalil), and for insects on 341 

livestock (chlorfenvinphos and pyriproxyfen) (Table S5). As an indicator, the 342 

cultivation area of garlic, in the province of Cuenca, mean the 17 % of this plant in 343 

Spain [22]. In 6 out of 8 compounds it was observed a reduction (24 % on average) 344 

from JUC-I to JUC-II (see figure 4, Table 2). The reservoir of La Toba, located 35 km 345 

upstream of this site, contributes to the degradation of the pesticides coming from JUC-346 

I; additionally, the stream flow increases (approximately multiplied by two) from the 347 

first site. Therefore, we can assume these are the reasons to explain that reduction, 348 

regardless of the ample use of pesticides in the area. 349 

At the third site (JUC-III) the river travels through an important area of farming in 350 

the province of Albacete, which explains the remarkable input of pesticides; this is the 351 

sampling point where more pesticides were detected. The crops were the same as in 352 

JUC-II, with the addition of soybeans, tomato and broccoli. The main pesticides were 353 
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related to the treatments for fungi on almond (imazalil), for insects on olive and broccoli 354 

(pyriproxyfen, chlorfenvinphos) and treatments on livestock (pyriproxyfen, 355 

chlorfenvinphos). Some of the detected pesticides can be extensive use because they are 356 

recommended for several crops. For example, prochloraz is used for barley, garlic, 357 

onion, oat, potato, tomato and wheat. The concentration of 7 of the 11 pesticides 358 

detected increases  (315 % on average) from JUCII to this site (figure 4, Table 2). 359 

JUCIII is  located in an area of intensive irrigated agriculture. As an indication of the 360 

intensive agricultural activities in Albacete, in terms of area, this province has the 30 % 361 

of the land dedicated to garlic in Spain, 28 % of the onion and 5 % of the barley [22]. 362 

Other studies also detect high levels of nitrates (over the legal limits) in the waters of 363 

this area associated with the intensive irrigated agriculture [23] 364 

Upstream of JUC-III, the presence of Alarcón Dam (the largest reservoir with a 365 

residence time of 1640 days) indicates that all the pesticides reaching the river upstream 366 

are expected to degrade in the reservoir. However, some pesticides increased their 367 

concentrations notably. These results indicate that below Alarcón Dam the contribution 368 

of pesticides into the river is remarkable. Despite of the large increment of drainage area 369 

from JUC-II to JUC-III, the river flow was very similar during the sampling days (due 370 

to flow extraction for agriculture), thus there is no increase of dilution in this river 371 

segment. 372 

Between JUC-III and JUC-IV, the concentration of 9 of the 13 pesticides detected 373 

dismished (20 % on average). On the contrary, the concentration of atrazine-desethyl, 374 

bupofrezine, ethion and fenoxon sulfoxide increased, that of the two last was almost 375 

duplicated (Fig.4-A, Table 2). The increase in the concentration of these two pesticides 376 

could be related to the vineyards and cereals extensions between these consecutive sites. 377 

The decrease can not be explained by the river flow, very similar between both sites 378 
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during the sampling days. Then, it could be related to the storage volume in the Moliner 379 

reservoir and the short half live of these pesticides. One of the most persistent 380 

compounds, ethion, increased gradually from JUC-I to JUC-IV; such increase is 381 

coherent with the accumulation produced by its regular use in the entire basin and its 382 

persistence. The application of ethion is recommended in vineyards and citrus, as well 383 

as for livestock. 384 

The last site (JUC-V) near the city of Valencia collects the water from several 385 

important tributaries covering a larger surface area (14.674 Km2). The watershed 386 

includes large extensions of rice, citrus fruits and vegetables. However, in the three 387 

large reservoirs upstream most pesticides already transported by the river are degradate 388 

(due to the accumulated residence time). Therefore, there was a decrease in the 389 

concentrations of 5 pesticides in comparison with JUC-IV (figure 4-A, Table 2), 390 

especially in Atrazine-desethyl (56 %), Hexythiazox (16 %) and diclofenthion (9 %). 391 

However, other 7 compounds showed higher concentrations, especially chlorpyriphos 392 

(from 2.23 to 36.23 ng/L), commonly used against insects in the extensive cultivation of 393 

citrus in the Valencia province, which produces (in tons) 41 % of the oranges and 50 % 394 

of the tangerines of Spain [22]. 395 

As it was expected, some of the more persistent compounds showed relatively stable 396 

values (specifically imazalil, chlorfenvinphos, ethion and buprofezine); the results 397 

indicate that they were used a few months before the sampling dates, and their 398 

application is distributed throughout the river basin, because the large reservoirs could 399 

not retain all the inputs in the rivers. Additionally, some of the pesticides of low 400 

persistence also showed a regular pattern (pyriproxyfen, prochloraz, diclofenthion, 401 

hexythiazox) indicating their extensive use in the Júcar River Basin during September 402 

and October. Pesticides are applied with the irrigation water by a sprinkler system, and 403 
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then can reach the river carried out by the wind or by run-off since the distance from the 404 

crops to the river is small. 405 

The comparison of results with the data of the river basin authority (Confederación 406 

Hidrográfica del Júcar, hereafter CHJ) was limited to a few coincidences in the 407 

pesticides detected, sampling dates and sites. Firstly, one sampled at Los Frailes-CHJ 408 

(comparable with JUC-III) indicated 15 ng/L of atrazine four days after our sampling 409 

(14/10/2010 and 18/10/2010); this is approximately double our result (7.79 ng/L), which 410 

confirms our findings. On the contrary, chlorpyriphos and chlorfenvinphos were not 411 

detected by the CHJ, but we found concentrations of 32.14 ng/L and 83.07 ng/L, 412 

respectively. This fact could be related to a rise of flow between sampling dates after 413 

precipitation (flow increased from 1.847 m³/s to 2.061 m³/s) which diluted the atrazine 414 

and helped to transport the other two pesticides downstream. 415 

 416 

3.4.Pesticides in fish and fish condition 417 

Most of the pesticides in waters were also detected in fish at low concentrations and 418 

in isolated points. Only five compounds were present in fish taken at three or more sites 419 

(Fig. S3; Table 2). Only Azinphos ethyl (a compound of high potential 420 

bioaccumulation, KoW = 3.18) was detected in fish at high concentrations, but not in 421 

water; this result can be explained by its low persistence in water, and indicates a 422 

repeated use the intensive agricultural areas of Albacete, because the concentration in 423 

fish was high in the two sites located in this province, i.e., 86.17 ng/L at JUC-III and 424 

65.64 ng/L at JUC-IV. The declining or absence of a pesticide in water is not directly 425 

related to the declining in fish. Similar results were observed in fish after the decline of 426 

toxaphene in the Great Lakes [24]. Diazinon was detected in fish at the five sites, with a 427 

maximum in the downstream site JUC-V (5.83 ng/L), probably due to its high capacity 428 
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of absorption by fish [25]. At JUC-III, which present the highest concentrations in 429 

water, omethoate, chlorpyrifos and dimethoate were significantly accumulated, in 430 

different species.  431 

Regarding bio-concentration the species that presented relevant concentrations at the 432 

different sampling points were one Iberian gudgeon at JUC-I (518.9 ng carbofuran/g; 433 

Table 2); one largemouth bass at JUC-IV (86.17 ng azinphos ethyl/g; 78.82 ng 434 

omethoate/g); one bleak at JUC-5 (65.64 ng azinphos ethyl/g); one Iberian nase and an 435 

Iberian gudgeon, both at JUC-II (44.46 ng and 46.64 ng azinphos ethyl/g, respectively). 436 

Although detected pesticides do not present the highest bio-concentration capacities (see 437 

Kow in supplementary material Table S1), most of these fish species are benthic or 438 

epibenthic, thus they live near the river bottom and feed on sediments, detritus, benthic 439 

invertebrates or periphyton [26], which can also be a source of pesticides. Thus, the 440 

accumulation of pesticides and other contaminants in sediments, biofilm and 441 

periphyton, the base of the food web, require further research because it is fundamental 442 

for the health of the aquatic ecosystems. Specifically, due to its sensitivity, fluvial 443 

biofilms can be used as early warning systems for the detection of the effects of 444 

toxicants on aquatic systems [27]. 445 

The comparison of concentrations in fish and water (Table 4) showed no clear 446 

relationship in this river. The highest accumulation of chlorpyriphos was detected in 447 

largemouth bass; the highest accumulation of ethion and diazinon was in the European 448 

eel. The eel is omnivorous and the bass is mainly a predatory species, thus both species 449 

feed on fish [26]. Therefore, we hypothesize that it is the position in the food web the 450 

key factor that explains the highest pesticides concentrations in these fish species. It is 451 

known that predators may bioaccumulate pesticides, PCBs, and metals from the 452 

surrounding water or from feeding on other fish, which may result in the 453 
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biomagnification of these compounds in their tissues [28]. Accordingly, a study based 454 

on extensive sampling across the USA also found significant differences of contaminant 455 

levels in bottom feeding and predatory fish [29]. Additionally, the European eel tends to 456 

bio-concentrate more than the other species due to the high percentage of lipids in its 457 

body [30]. 458 

In accordance with the ample presence of pesticides in fish, when the samples from 459 

all the fish species were aggregated a significant relationship between the Fulton 460 

condition factor and diazinon concentration was observed (p < 0.01). Then, in the 461 

analysis by species, the relation of this compound with the condition of the Eastern 462 

Iberian barbel was significant (p < 0.05). This relation is not very robust, because the 463 

data corresponded to 17 fish but they were pooled in 3 independent samples. 464 

Nevertheless, this result is indicative of the potential effects of pesticides on fish growth 465 

in the Júcar River, and a stronger relationship can be expected if the data were more 466 

abundant and better distributed, as it was found in other studies. 467 

Previous research showed that the exposure of pesticides produced a significant 468 

impact on fish health and growth. A study on the Australian catfish (T. tandanus) 469 

demonstrated that, in a short exposure, concentration of chlorpyriphos from 2 to 10 470 

µg·L-1 affects the fish growth, with low FCR (Food Conversion Ratio) and PER 471 

(Protein Efficiency Ratio) [31]. Accordingly, another study indicated that diazinon 472 

reduces the growth of the snakehead fish (Channa striata) [32]. Without specifying the 473 

type of compound, a study along the Ebro River for several species revealed a 474 

significant decrease in fish condition at the polluted areas and that the responses to the 475 

pollutant were species-specific [33]. 476 

 477 

4. Conclusions 478 
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QuEChERS is a suitable method for the extraction of wide variety pesticides in fish 479 

and provides selective and sensitive results, combined with LC-MS/MS. This method 480 

was primarily designed to be an easy, economical and effective approach with high 481 

sample throughput for a large number of pesticides in fruits and vegetables and now, 482 

has demonstrated its efficacy for fish samples.  The regular spatial pattern of some 483 

pesticides suggests a permanent or frequent supply of these compounds along the Júcar 484 

River Basin, including some components forbidden in the EU [34]. The use of the 485 

pesticides in different cultivations was related to the spatial patterns observed in the 486 

Júcar River. Concentrations in fish are not lethal [25], but the relationships between bio-487 

concentration and fish condition requires further research due to the importance of some 488 

of the fish species, e.g. the brown trout (population in decline) and the European eel 489 

(critically endangered species) from the economic and ecological perspectives. The 490 

wide presence of pesticides in fish suggests potential severe effects on fish populations 491 

and other biota in future scenarios of climate change, due to the presence of endemic 492 

and endangered fish species in this river basin. Future research on the relevance of these 493 

factors, in combination with multiple stressors, will help to improve the fish populations 494 

and the resilience of the Mediterranean river ecosystems facing a future of water 495 

scarcity. Furthermore, this research is necessary to prioritize the management of specific 496 

chemicals and to suggest effective restoration actions at the basin scale. 497 

 498 
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Table 1. LODs and LOQs of analyzed pesticides. 

Pesticides LOD 
(ng/g) 

LOQ 
(ng/g) 

   
Acetochlor 3.8  11.25 
Alachlor 1 3 
Atrazine 0.1 0.3 
Atrazine desethyl 0.1 0.3 
Atrazine desisopropyl 0.5 1.5 
Azinphos ethyl 0.1 0.3 
Azinphos methyl 1 3 
Buprofezin 0.1 0.3 
Carbofuran 0.1 0.3 
Carbofuran-3-hydroxy 0.1 0.3 
Chlorfenvinphos 0.1 0.3 
Chlorpyriphos 0.01 0.03 
Diazinon 0.1 0.3 
Dichlofenthion 0.5 1.5 
Dimethoate 0.01 0.03 
Diuron 0.1 0.3 
Ethion 0.01 0.03 
Fenitrothion 1 3 
Fenoxon sulfoxide 0.5 1.5 
Fenoxon sulfone 0.1 0.3 
Fenthion sulfoxide 0.1 0.3 
Fenthion sulfone 0.01 0.03 
Hexytiazox 0.01 0.03 
Imazalil 0.1 0.3 
Imidacloprid 0.01 0.03 
Isoproturon 0.01 0.03 
Malathion 0.5 1.5 
Methiocarb 0.1 0.3 
Metoalachlor 0.1 0.3 
Molinate 0.5 1.5 
Omethoate 0.01 0.03 
Parathion ethyl 0.1 0.3 
Parathion methyl 1 3 
Prochloraz 0.1 0.3 
Propanil 0.5 1.5 
Propazine 0.1 0.3 
Pyriproxyphen 0.1 0.3 
Simazine 5 1.5 
Terbutryn 0.1 0.3 
Tolclofos methyl 0.5 1.5 

 



Table 2. Concentrations in water (W, in ng/L) and fish (F, in ng/g) by study site in the Júcar 
River (from JUC-I to JUC-V) corresponding to the 23 pesticides detected. 

        Site 
Pesticide  

JUC-I JUC-II JUC-III JUC-IV JUC-V 
W F W F W F W F W F 

Atrazine         7.97          
Atrazine-desethyl         8.65   10.61   4.68  
Atrazine 
desisopropyl 

          21.34-
39.39

  23.83    

Azinphos ethyl   2.52   2.36-
46.63

  86.17   65.64    

Buprofezine 14.07   13.06   11.68   13.27   12.82 Trace
Carbofuran   518.9   Trace            
Chlorfenvinphos     93.34   83.07   78.08   96.68  
Chlorpyriphos 6.84 Trace 16.99 Trace 32.14 24.42 2.23   36.23 7.13 
Diazinon 11.94 0.92-

3.53 
0.44 1.04-

2.31 
8.59 0.37-

2.36 
6.31 1.33 8.87 0.87-

5.83 
Dichlofenthion 44.08   35.11   50.85   43.22   39.43  
Dimethoate   0.18   Trace 1.64 9.87   Trace   Trace
Ethion 0.09 Trace 2.45 Trace 7.07   12.9 13.76   0.48 
Fenoxon sulfoxide         25.52   48.94   50.66  
Hexythiazox 17.71   17.5   20.65   18.38   15.45 0.38 
Imazalil     166.7 6.39 171.5   152.5   141.3  
Malathion     12.62   10.72       8.75  
Methoalachlor                   4.32 
Omethoate           78.82   0.95    
Parathion ethyl         32.47   31.9   34.25  
Prochloraz 79.9   73.85   82.79   66.99   76.69  
Propazine       1.42            
Pyriproxyfen 99.59   89.95   87.4   82.92   88.43 Trace
Tolclofos methyl 28.64     12.63         27.57  

 Trace: the value is below LOQ 

*Where the minimum was 0.00, this value was omitted, showing only the maximum one. 

 



Table 3. Summary of the main factors influencing the abiotic degradation of pesticides in the 
study sites. The volume in reservoirs corresponds to the dams between a study site and the 
previous one upstream. River flow previous month (m3/s) was calculated as the averaged flow 
from the 21rst September to the 20th October, 2010. Mean river flow corresponds to the average 
mean annual river flow for the 10 hydrological years before the sampling. Elevation of the site 
is shown in meters above sea level. Storage volume is the total volume in the large reservoirs 
(hm3) located between each study site and the previous one upstream. 
 

 Tª   
(⁰C) 

River 
flow 

*(m3/s) 

River 
flow 
prev. 

Month 
(m3/s) 

Mean 
river 
flow 

(m3/s) 

Elevation 
(m.asl) 

Drainage 
basin 
(km2) 

Reservoir 
upstream 

of site 

Storage 
volume 
(Hm3) 

Residence 
time 

(days) 

Juc I 10 1.021 1.058 2.465 1170 250 - - - 
Juc II 13.8 1.893 3.652 6.900 916 984 La Toba 4.3 12 
Juc III 13.6 2.061 2.25 4.753 616 5403 Alarcon 570.5 1640 
Juc IV 12.2 1.978 2.794 4.192 348 8122 Molinar 1.65 7 
Juc V 19 1.007 8.393 5.508 37 14674 Cortes II,  

Naranjero
, Tous 

235.6 89 
14 
99 

*Date corresponding to the sampling day.  



Table 4. Comparative of concentrations in fish (F) and water (W) at the same location, only 
observed in three compounds for six fish species. The European eel is considered as a critically 
endangered species. 

Species  F (ng/kg) W (ng/kg)  
Chlorpyrifos 

Largemouth bass (JUC-III) 24.42·10-3 32,14 
Northern pike (JUC-V) 7.13 ·10-3 36,23 

Ethion 
European eel (JUC-IV) 24.42·10-3  12,9 

Iberian gudgeon (JUC-IV) 0.04·10-3  12,9 
Eastern iberian barbel  (JUC-IV) 7.13 ·10-3  12,9 

Diazinon 
European eel (JUC-IV) 24.42·10-3  6,31 

Iberian gudgeon (JUC-IV) 0.04·10-3   11,94 
Pumpkinseed (JUC-V) 1.12·10-3   8,87 

Largemouth bass (JUC-IV) 7.13 ·10-3 8,87 
 



 

Figure 1. Location of the Júcar River Basin (Eastern Spain) and the five sampling sites along the 
Júcar River. 



 

Figure 2. Chromatogram of analyzed compounds (up). Comparative between samples and 
standard chromatographs peaks (down).  



 

Figure 3. Frequency of pesticides regarding percentage of recovery and matrix effect (upper 
plots) as well as ranges of Relative standard deviation (DSR) on detection limits (lower plots). 



 

Figure 4. Pesticides concentration in water at the five sampling sites of the Júcar River; for a 
clear display, those with relatively high concentrations (A) and relatively low ones (B) are 
separated, and only those detected in three or more sites are shown. 

 


