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Energy-efficient scheduling for a flexible flow-shop using  
improved genetic-simulated annealing algorithm 

 
 

Abstract: The traditional production scheduling problem considers performance 

indicators such as processing time, cost and quality as optimization objectives in 

manufacturing systems; however, it does not take energy consumption and 

environmental impacts into account completely. Therefore, this paper proposes an 

energy-efficient model for flexible flow-shop scheduling (FFS). First, a mathematical 

model for a FFS problem, which is based on an energy-efficient mechanism, is 

described to solve multi-objective optimization. Since FFS is well known as a NP-

hard problem, an improved genetic-simulated annealing algorithm is adopted to make 

a significant trade-off between the makespan and the total energy consumption for 

implementing a feasible scheduling. Finally, a case study of production scheduling 

problem for metalworking workshop in a plant is simulated. The experimental results 

show the relationship between the makespan and the energy consumption is 

apparently conflicting. Moreover, an energy saving decision is performed in a feasible 

scheduling. Using the decision method, there can be a significant potential to 

minimize energy consumption while complying with the conflicting relationship. 

 

Keywords: flexible flow-shop scheduling (FFS), energy consumption, energy saving, 

makespan, genetic-simulated annealing algorithm 

1. Introduction 

Nowadays manufacturing enterprises are not only facing complex and diverse 

economic trends of shorter product life cycles, quick changing science and technology, 

increasing customer demand diversity, and production activities globalization, but 

also enormous and heavy environmental challenges of global climate change (e.g. 

greenhouse effect), rapid exhaustion of various non-renewable resources (e.g. gas, oil, 

coal), and decreasing biodiversity. Statistical data shows the Germany industrial 

sector was responsible for approximately 47% of the total national electricity 
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consumption, and the corresponding amount of CO2 emissions generated by this 

electricity summed up to 18%-20% [1]. Thus, manufacturing companies are 

responsible for the environmental outcome, and forced to have manufacturing systems 

that show major potential to reduce the environmental impacts [2, 3]. 

 Nowadays there has been a growing interest in the development of energy 

savings due to a sequence of serious environmental impacts and the rising energy 

costs. Research on minimizing the energy consumption of manufacturing systems has 

been focused on three levels' perspective. From the machine-level perspective, 

developing and designing more energy-efficient machines and equipment to reduce 

power and energy demands of machine components is an important strategic target for 

manufacturing companies [4-6]. Unfortunately, previous studies show that the share 

of energy demand for removal of metal material, compared to the share of energy 

needed for supporting various functions of manufacturing systems, is quite small (less 

than 30%) on total energy consumption [7-9]. From the product-level perspective, 

modeling embodied product energy framework based on a product design viewpoint 

for energy reduction approach is beneficial to support the improvements of product 

design and operational decisions [10-13]. It requires strong commercial simulation 

software to facilitate the analysis and evaluation of the embodied product energy. The 

results could not be applied easily in most of manufacturing companies, especially in 

small and medium sized enterprises due to enormous financial investments. In the 

manufacturing system-level perspective, thanks to decision models for supporting 

energy savings, it is feasible to achieve a significant reduction of energy consumption 

in manufacturing applications. 

In the specialized literature about production scheduling there has been widely 

discussed the key production objectives for production scheduling decision models, 

such as cost, time and quality. However, decreasing energy consumption in 

manufacturing systems through production scheduling has been rather limited. One of 

the most related researches is the work by Mouzon et al.[14], who developed several 

algorithms and a multiple objective mathematical programming model for 
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investigating the problem of scheduling jobs on a single CNC machine to reduce the 

energy consumption and total completion time. They pointed out that there was a 

significant amount of energy savings when non-bottleneck machines were turned off 

until needed; such the relevant savings share on the total energy consumption would 

sum up to 80%. In addition, they reported that the inter-arrivals were forecasted and 

more energy-efficient dispatching rules could be adopted for scheduling. In further 

research, Mouzon and Yildirim[15] proposed a greedy randomized adaptive search 

algorithm for solving a multi-objective optimization schedule that minimized the total 

energy consumption and the total tardiness on a machine. Fang et al.[16] provided a 

new mixed integer linear programming model for scheduling a classical flow shop 

that combined the peak total power consumption and associated carbon footprint with 

the makespan. Bruzzone et al. [17] presented an energy-aware scheduling algorithm 

based on a mixed integer programming formulation to realize energy savings for a 

given flexible flow shop which was required to keep fixed original jobs' assignment 

and sequencing.  

Although the majority of the research on production scheduling so far has not 

considered energy saving strategies completely, the efforts mentioned above provide a 

starting point for exploring an energy-aware schedule optimization from the 

viewpoint of the energy consumption. In this paper, a multi-objective optimization 

problem of minimizing the maximum completion time and the total energy 

consumption in a flexible flow-shop is considered.  

The outline of this paper is organized as follows. In Section 2, a general FFS 

problem is presented, and a multi-objective schedule is described. In Section 3, a 

novel energy-aware model for flexible flow-shop scheduling is illustrated. In Section 

4, a heuristic approach based on improved genetic-simulated annealing algorithm for 

solving the multi-objective optimization problem is used. In Section 5, a case study on 

production scheduling problem for metalworking workshop in a plant is simulated. In 

Section 6, the conclusions are detailed.  
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2. FFS problem description 

A flexible flow-shop scheduling (FFS) problem is the further development of the 

classical flow shop scheduling [18]. The FFS is a multi-stage production process 

which consists of two or more production stages in series. At each production stage 

there is at least one machine tool, and at least one stage has more than one machine 

tool. All jobs have to pass every production stage in the same order. The FFS has 

infinite intermediate storage between machine tools [19]. One instance of the FFS 

problem consists of a set of J jobs and a set of M machine tools. Each job Jj on 

machine Mi has corresponding processing time and power consumption at a given 

speed. All jobs are available to be processed sequentially and nonpreemptively at 

different machine stages as illustrated in Fig. 1. The FFS problem is considered as 

NP-hard in essence and difficult to solve [20]. 

The constraints of FFS are made as follows: 

(1) One job can be processed by only one machine at each production stage.  

(2) One machine can process at most one operation at a time.  

(3) For the first stage, all jobs are available at time t=0.  

(4) There are no precedence relationships between operations of different jobs while 

there are precedence relationships between different operations of one job;  

(5) Preemption is not allowed for processing each job, i.e., once an operation is started, 

it must be finished without interruption.  

(6) Every operation of one job can be machined at a given speed for every stage. 

(7) For the same operation, the processing time differs at different unrelated parallel 

machines in a production stage. 

(8) At each stage, power consumption and energy consumption of different states for 

each machine can be metered and calculated. 
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Fig. 1. A flexible flow-shop layout 

The scheduling objective of FFS is to assign jobs to machine tools at the 

corresponding stages and determine the processing sequence of operations on each 

machine in order to minimize the maximum completion time and the total energy 

consumption.  

 

3. Mathematical model of FFS based an energy-efficient mechanism 

3.1 Energy-efficient mechanism 

Suppose that M machine tools are at some production shop, and N jobs are to be 

scheduled on a set of machine tools. By referring to the decomposition of energy 

consumption types of machining systems [4, 21], the energy balance equation for 

manufacturing systems is constructed as follows: 

amjmj
m j

t

mj
m j

t

mj EdttPtPtPdttP
mjmj 

  

))()()(()( cu
M

1

N

1
0

a
M

1

N

1
0

i                         (1) 

where:  

)(i tPmj    represents the input power of manufacturing systems, i.e. the total power 

consumption 

)(a tPmj    represents the load power consumption of manufacturing systems, which is 

composed of the load power consumption of motor drives components, 

main spindle drives components and servo feed drives components 
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u
mjP      represents the unload power consumption of manufacturing systems, which is 

involved in the unload power consumption of motor drives components, 

main spindle drives components and servo feed drives components 

c
mjP      represents the output power of manufacturing systems, i.e. the cutting power 

aE      represents the energy consumption of machine tools' auxiliary systems, such 

as hydraulic system, cooling and lubrication system, control system, and 

periphery system 

mjt       represents the time when the machine tool is at the usage phase, which 

includes non-production time (e.g. start-up, idle, readiness, off) and 

production time. 

Within the range of the permitted load, considering the load power consumption of 

manufacturing systems which is related with the actual load, the relationship between 

the load power and the cutting power of manufacturing systems can be expressed as: 

)()( ca tPtP mjmj                                                       (2) 

where   is the coefficient of the load power consumption. 

In general, the energy efficiency of a system is defined as the ratio of output 

energy to input energy. According to the Eqs. (1)-(2), the energy efficiency of the 

manufacturing system U can be formulated as: 
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According to the Eq. (3), increasing the energy efficiency is in favor of energy 

savings in the manufacturing system. On the one hand, improve and optimize the 

structure of machine tools, in particular auxiliary components, due to high-energy 

consumption. On the other hand, from the perspective of production decisions a 

production scheduling will require to take into account the amount of energy 

consumption in the production process. To this end it is required an energy-aware 
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scheduling model, in order to minimize the total energy consumption as far as 

possible.     

In addition, Mouzon et al. [14]observed that there could be an important decrease 

in energy consumption by changing its operational state when a single CNC machine 

was left running idle for a long time. The considered scheduling problem arises in a 

flexible flow-shop with multiple sleeping mode states, reducing the total energy 

consumption while not delaying the processing of jobs on selected machine tools. On 

the basis of the ratio between the turn off + turn on energy usage and the idle running 

energy usage, this paper gives an energy saving model to determine if machine tools 

should be on or not. 

Assume that the inter-arrival time between jobs is T0 and the time which is 

required for turning off and then turning on the machine is Toff-on. Let Ts be the break-

even duration for the turn off + turn on energy usage (SEsm) divided by the idle power 

usage ( u
jmP ). If the running idle energy usage ( u

smE ) is greater than the turn off + turn 

on energy usage (SEsm), it can be a significant amount of energy savings when 

machines are shut down, i.e. T0 >Ts. Due to the frequent conversion and the limited 

life of a machine controller, an energy saving allowance K is considered. Hence, 

implementing the above energy saving decision model requires sTKT )1(0  . 

Besides, it is needed to meet T0 >Toff-on. The schematic diagram of an energy-efficient 

decision model could be the one displayed in Fig. 2. 

 

 

Fig. 2. The schematic diagram of an energy-efficient model 
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3.2 Energy-efficient model of FFS 

An energy-efficient model for flexible flow-shop that minimizes the maximum 

completion time, while limiting the possible worsening of the total energy 

consumption within a manufacturing system, is proposed in this section. The 

parameters are given below: 

• S is the set of spindle speeds for one machine tool; 

• J is the set of jobs; 

• M is the set of machine tools; 

• Tjmv is the processing time when job j is processed on machine tool m with speed 

v, SvMmJj  ,, ; 

• Sjm is the starting time when job j is processed on machine tool m, MmJj  , ; 

• Cjm is the finishing time when job j is processed on machine tool m, MmJj  , ; 

• Cmax is the makespan of the schedule, i.e. the completion time of the last job in the 

schedule; 

• TD is due date; 

• Ec is the total energy consumption when machine tools are at the run-production 

mode stage; 

• Eb is the basic energy consumption when machine tools are at the run-production 

mode stage; 

• Ef is the friction energy consumption when machine tools are at the production 

mode stage; 

• Eu is the total energy consumption when machine tools are at the idle running mode 

stage, i.e. idle energy consumption; 

• 'uE is the total energy consumption after utilizing the energy-aware decision model 

at the idle running mode stage; 

• Ejmv is the cutting energy consumption when job j is processed on machine tool m 

with speed v, SvMmJj  ,, ; 
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• u
jmP is the idle power consumption when job j is processed on machine tool 

m, MmJj  , ; 

• SEsm is the energy consumption for turning off machine tool m and then turning on 

machine tool m at the idle running mode stage s, Mm ; 

• Xjmv is an integer variable that can have two possible values: 0 or 1, it is set to 1 if 

job j is required to process on machine tool m with speed v, and 0 

otherwise, SvMmJj  ,, . 

As mentioned above, the energy consumption of the manufacturing system in a 

flexible flow-shop is composed of cutting energy usage for removing material process, 

basic energy usage for maintaining normal operation of system components and non-

value added energy consumption due to machine load and friction when jobs are 

processed on machine tools during the production time. It can be expressed as: 

    


Jj Mm Sv jmvjmv EEEXE fbc )1(                             (4) 

Notice that Ejmv, Eb and Ef are defined as follow, respectively.  

310)
60000
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zjmvjmv                                          (5) 

jmvJj Mm Sv jmjmv TPXE     
 u

b                                     (6) 

)( 1
0f MRR

VE
                                                     (7) 

where: 

Fx and Fz  represent the axial force and tangential force respectively. 

v        represents the cutting speed. 

n        represents the spindle speed. 

f        represents the feed rate. 

V        represents the cutting volume. 

MRR     represents the material removal rate. 

0 and 1   represent relevant coefficients. 

Fx and Fz can be metered by a force sensor, and the other parameters of the Eq. (5) can 

be obtained by referring to standard handbooks [22]. The Eq. (7) is the energy 
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equation converted to heat. Li and Kara [23] pointed out that the material removal 

process is efficient when the MRR is greater than 0.3cm3/s 

and 746.0,452.0 10   . 

When the manufacturing system is at idle running mode stage, system components 

which implement activities such as loading or unloading work piece, positioning and 

clamping, and changing cutting tools will consume much energy. The energy demand 

for the flexible flow-shop at the non-production time can be given as: 

      
Jj Mm Sv jmjmvjmmvjmj PXCTCE u

)1()1(u ))((                  (8) 

If the inter-arrival time between job j and job j+1 meets the aforementioned condition 

of the energy saving decision model in Section 3, then instead of uE  and 'uE  is 

adopted as follows: 

)))(((' u
)1()1(u smJj Mm Sv jmjmvjmmjmj SEPXCTCE                      (9) 

According to the Eqs. (4)-(9), the total energy consumption for the manufacturing 

system in the flexible flow-shop can be calculated as below: 

atotal EEEE  cu                                                (10) 

When the MRR is determined on the basis of material attributes, the cutting energy 

consumption (Ejmv) and friction energy consumption (Ef) are constants. Owning to the 

limitation of length, the energy demand of auxiliary systems (Ea) is not considered in 

this paper. Therefore, within the machining time, in order to reduce the total energy 

consumption it is required to minimize, as far as possible, the basic energy 

consumption (Eb) and the idle energy consumption ( uE or 'uE ). 

To sum up, the multi-objective optimization model for a flexible flow-shop 

scheduling problem to realize the trade-off between makespan (f1) and total energy 

consumption (f2) is presented by synthesizing two factors, i.e. time and energy as 

shown below: 
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jmCC max , MmJj  ,                                             (12) DTC max  

                                                        (13) 
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Constraints (12)-(13) define that the makespan, which requires arrival before the due 

date, is equal to the completion time of the last job in the schedule. Constraint (14) 

means that one job can be assigned to only one machine tool at each production stage. 

Constraint (15) imposes that one job can be processed on one machine tool with one 

chosen speed. Constraint (16) points out that the completion time of job j is composed 

of the processing time and starting time on machine tool m. Constraint (17) gives the 

precedence constraints between the operations of job j, i.e. one operation of the job 

cannot be processed at next production stage until it has been finished at the current 

stage. Constraint (18) ensures that one machine can process next job only after it has 

finished the current one. Constraint (19) determines if the manufacturing system will 

implement energy savings strategy or not at the idle running mode stage. 

 The above mathematical model is a multi-objective functions with constraints. 

Although no optimal or near-optimal solution exists in multi-objective optimization 

problem (MOP), a set of non-dominated solutions (Pareto optimal solutions) to make 

the trade-off between the maximum completion time and total energy consumption 
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are obtained. There have been diverse approaches developed to solve multiple-

objective optimization problems. One of the most well-known methods for solving 

MOP is the weighted additive utility function [24-26], which is employed due to its 

simplicity, wide-spread use and the ability to identity non-dominated solutions in this 

paper. Let fi be the ith objective function. Then, the weighted additive utility function 

with 2 objectives can be described as: 

2211)2( fwfwU     




k

j
j

k

j
jj wfwkU

11

1,)(
                                     

            (20) 

where w1 and w2 are the importance weights of each objective function. The sum of 

weights is usually required to be equal to one, i.e. w1+w2=1 and each weight is 

positive number, i.e. 0,0 21  ww . The decision maker defines all weights and they 

reflect decision maker's preference for each objective. Using the utility function, the 

objective values of multiple objectives are combined to form a single objective 

function that can be solved easily. In fact, evaluating weights of importance will be 

hard when the performance measurements are on different scales. By normalizing 

different criteria values to comparable units, all objectives are assessed in the same 

scale. Hence, the weighted additive utility function with normalized objectives is 

described as: 

'' 2211 fwfwU                                                     (21) 

where '1f  and '2f  are normalized values of  f1 and f2, respectively. Notice that each 

normalized objective 'if is defined as: 

min,max,

max,'
ii

ii
i ff

ff
f




                                                   (22) 

where fi,min and fi,max represents the given minimum and maximum values for objective 

function fi, respectively. 
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4. Improved genetic-simulated annealing algorithm for an energy-

aware FFS 

In this section, an improved genetic-simulated annealing algorithm is proposed for 

solving energy-aware scheduling in a flexible flow-shop. There are many meta-

heuristic algorithms that have been implemented in an FFS, such as genetic algorithm 

(GA), simulated-annealing algorithm (SA), particle swam optimization, ant colony 

optimization, etc. Among these approaches, GA can quickly approach to the 

optimization solution, but a fatal shortcoming is that it is liable to be trapped in a local 

optima, i.e. premature convergence. Fortunately, SA has the ability to jumping out of 

the local optima and searching for the best solution. Therefore, this paper proposes to 

incorporate the strengths of a genetic algorithm into a simulated annealing algorithm. 

GA is developed to rapidly search for an optimal or near-optimal solution among the 

solution space and then SA is utilized to seek a better one on the base of that solution. 

In addition, a novel annealing rate function, which is inspired from hormone 

modulation mechanism, is adopted for further improving the efficiency of the 

exploration. The proposed genetic-simulated annealing algorithm for an energy-aware 

FFS is illustrated in Fig. 3. 
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ΔT/exp(k)*k(k)F*T down1k  
 

Fig. 3. Summary of genetic-simulated annealing algorithm 

 

4.1 Encoding representation 

Based on the elements and their corresponding positions in a matrix describing the 

constraints between jobs, an encoding approach for an energy-aware FFS is presented. 

In this representation each chromosome implements a relative and feasible schedule. 

Suppose that N jobs are to be processed on a set of machine tools, and each job is 

required to pass S stages. There are Ms ( S,,2,1 s ) unrelated parallel machine tools 

at each production stage. An encoding matrix SN is constructed as follow: 
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The elements a(i, j):( S,1,2,S,,1,2,N,,,2,1),1M,1(),(   sjijia s ) 

are random real numbers. Int(a(i, j)) is the integer of a(i, j), and it indicates the 

machine tools' identifier that deals with the jth process of job i. If the condition  

ihandjiajha    )),((Int)),((Int  is satisfied, then it means that there are several 

jobs waiting for being processed on the same machine tool for the same process. 

When the process is the first one, these jobs are arranged to operate in accordance 

with the ascending sequence of a(i,1): (i=1,2,…,N). When the process number is 

greater than one, these jobs are determined by their completion time of previous 

process. In other words, the shorter the finishing time of previous process is, the 

earlier the next process can be operated. If the completion time is the same, jobs are 

operated according to the ascending sequence of a(i, j),  (i=1,2,…,N, j=2,3,…,S). 

According to the aforementioned encoding method, a chromosome that consists of 

S segments and N genes included at each segment can be written as: 





))]S,N((Int,)),S,2((Int)),S,1((Int,)),2,N((Int               

,))2,2((Int)),2,1((Int)),N,1((Int,)),1,2((Int)),1,1((Int[

aaaa

aaaaachrom 
         (24) 

For instance, assume that 3 jobs are scheduled at 3 production stages in a flexible 

flow-shop. Each job has 3 processes and the number of parallel machines for each 

stage is 3, 2 and 2. An encoding matrix based on the encoding rule is generated 

randomly using Matlab simulation software as follows: 


















2137.16456.29015.3

4357.21453.14342.3

1123.23234.21316.1

A                                        (25) 

Note that each column of the matrix (25) describes the situation of different jobs at the 

corresponding production stage. For example, the first column presents the machine 

number of jobs being processed at production stage 1, i.e. job 1 is processed on 

machine 1, job 2 on machine 3 and job 3 on machine 3. Due to 3.9015>3.4342, the 

sequence of jobs being waited on machine 3 at stage 1 is job 2 prior to job 3. 

According to the encoding matrix, the chromosome can be 

expressed ]1,2,2,2,1,2,3,3,1[ Achrom . Also the initial population is produced. 
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4.2 Fitness function  

The genetic-simulated annealing algorithm assesses the solutions based on the 

fitness function. The greater fitness an individual has, the higher chance it has to be 

chosen into the next generation. In general, the fitness is relative to the objective 

function. In this paper, the above-mentioned objective function, i.e. Eq. (21) can be 

transformed into the fitness function for solution k as follows:  

)(/1)( kUkF                                                       (26) 
 

4.3 GA operation phase of the FFS 

In the GA operation phase, an initial population is yielded randomly. Using basic 

genetic operations, i.e. selection, crossover and mutation, the GA operates to produce 

new population. Three operations are described in detail as follows: 

• Selection operation: On the base of the fitness of the individual, the selection 

operator chooses individuals used for crossover and mutation. Often the fitness 

value is not the fittest one. Several selection schemes are developed to determine 

good solution space. A ' 2/4 selection ' is adopted to preserve fittest individuals at 

each generation, and maintain the diversity of the population as well [27]. At the 

same time, roulette-wheel-selection is used to create a new population.  

• Crossover operation: According to the aforementioned encoding rule, only if the 

condition )1M,1(),(  sjia  is satisfied, combining genes of selected solution to 

generate a new solution is legal. Thus, it is required to implement two-point 

crossover at each segment of a chromosome with a crossover probability, and pick 

intersections randomly.  

• Mutation operation: As crossover operation cannot yield solutions with new 

information, it is required mutation operation with a specified probability (Pm) for 

every segment in order to obtain the solutions with greater fitness. If the specified 

probability (Pm) is greater than a random number generated on the interval 0 to 1 

using uniformly distributed rule, the mutation operation is executed.   
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4.4 SA operation phase of the FFS 

In the process of the genetic-simulated annealing algorithm, the good individuals 

generated by the GA are sent to the SA for improvement. The SA can avoid falling 

into a local optimum accepting some probability. However, the search efficiency of 

the SA is not high. Therefore, some parameters connected to the SA should be studied, 

including the neighborhood structure, the initial temperature, the annealing rate and 

the termination condition. These factors play a significant role in the performance of 

the SA and should be implemented carefully as follow.  

(1) The neighborhood structure 

Neighborhood structures have a direct impact on the efficiency of local search. 

One of the most effective neighborhood strategies for the SA regarding a production 

scheduling problem is based on the critical path. One critical path which consists of a 

number of blocks corresponds to one feasible solution. One block represents a 

maximal sequence of several operations required to be processed on the same 

machine tool. In this study, moving an operation of one critical block to the end of the 

block or the beginning of the block is adopted to generate the neighborhood.  

(2) The initial temperature 

The initial temperature (T0) should be set to a high enough temperature. In the first 

iteration of the SA this temperature will be minimized until the probability of 

accepting the undesired solutions is greater than 0.8; from this point until the end, the 

temperature will decrease slowly during the iterations of the algorithm. The initial 

temperature function in the SA can be set as 

100)UU(T minmax0                                               (27) 

where Umax is the maximum sum of all jobs' processing time and Umin is the minimum 

sum of all jobs' processing time. 

(3) Annealing rate function  

The performance of the SA has a significant relation with Annealing rate [28]. In 

order to enhance the search efficiency of the SA, a novel annealing rate method, 

which is inspired from hormone modulation mechanism, is developed. Farhy [29] 
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pointed out that the modulation of hormone had characteristics with monotone and 

nonnegative and obeyed up-regulatory and down-regulatory Hill functions, as shown 

below: 
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                                                (28) 

where T is a threshold, T>0, X is an independent variable, n is a Hill coefficient, 

1n  . Note that 1FF downup  and 1(X)F1,0(X)F0 downup  .The Hill functions 

can realize a quick stability, which keeps hormone modulation adaptive and stable. If 

one hormone a is controlled by another hormone b, the secretion of the former Va is 

determined by the concentration of the latter Cb, which can be described as: 

00 V)F(CcV aba                                                  (29) 

where Va0 is the basal secretion of hormone a, and c0 is a constant.  

Based on the above hormone modulation mechanism, an annealing rate function 

can be designed as follows: 

ΔT/exp(k)*k(k)F*T down1k                                       (30) 

subject to 

)k1/(1(k)F n
down                                                   (31) 

previouscurrent TTΔT                                                  (32) 

where   is a small constant, and k is the number of iterations. ΔT  is the difference 

between the current temperature (Tcurrent) and the previous temperature (Tprevious), and 

ΔT <0.  

(4) Terminating condition 

In the SA, the terminating criterion consists of the Markov chain stability criterion 

and the external circulation stopping criterion. In this study, calculating the iterations 

at each given temperature decides if the condition of the Markov chain stability 

criterion is satisfied or not. The end temperature value is used as the termination 

condition, and when a temperature is less than the last one the algorithm ends.    
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5. Evaluation 

To verify the effectiveness and feasibility of the approach, the improved genetic-

simulated annealing algorithm is used to solve a multi-objective scheduling problem. 

The simulation was carried out utilizing Matlab programming language. The 

experimental tests were carried out on a personal computer with Intel Pentium (R) 

with 1 GB Ram and 3.20 GHz frequency, and Windows XP.  

Consider the following flexible flow-shop scheduling in which there are 12 jobs 

waiting for being scheduled and processed at 3 production stages. Each job has 3 

processes and the number of parallel machines for each stage is 3, 2 and 4, 

respectively. The relative date including job number, spindle speed, processing time, 

unload power are shown in Table 1. Due to the relationship between the makespan 

and energy consumption, the importance weights of each objective function are 

determined by the decision-maker's preference. When the higher importance weight is 

assigned to the objective function of makespan, the solution could lead to the lower 

makespan. However, the energy consumption could be greater. On the contrary, when 

the higher importance weight is assigned to the objective function of energy 

consumption, the solution could lead to the lower energy consumption with higher 

makespan. The sets of the importance weights of each objective function were tested 

during the ranging interval [0, 1], and the improved genetic-simulated annealing 

algorithm was run 15 times for each set of w1 and w2. 

We will analyze four different scenarios corresponding to different combinations 

of w1 and w2: 
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Table 1 Relative data of jobs and machines 

Job number 
Process 1 Process 2 Process 3 

machine
（M1） 

machine
（M2）

machine
（M3）

machine
（M4）

machine
（M5）

machine
（M6）

machine
（M7） 

machine
（M8） 

machine
（M9）

 
1 

Spindle speed/rpm 600 600 400 300 250 1500 1200 1500 1300 
Processing time/min 2 2 3 4 5 2 3 2 3 
Unload power/kW 2.26 1.36 1.43 1.46 1.20 4.03 3.80 3.72 3.43 

2 
Spindle speed/rpm 400 350 250 350 300 1200 1100 950 1000 
Processing time/min 4 5 4 3 4 3 4 5 4 
Unload power/kW 1.86 0.98 0.90 1.68 1.30 3.42 3.32 2.30 2.68 

3 
Spindle speed/rpm 200 350 250 300 400 1200 1100 1500 900 
Processing time/min 6 5 4 4 2 3 4 2 5 
Unload power/kW 1.00 0.98 0.90 1.46 1.55 3.42 3.32 3.72 2.25 

4 
Spindle speed/rpm 400 400 250 150 250 1200 850 950 800 
Processing time/min 4 3 4 6 5 3 6 5 7 
Unload power/kW 1.86 1.12 0.90 1.32 1.20 3.42 2.94 2.30 1.99 

5 
Spindle speed/rpm 400 350 400 350 450 1200 1100 900 900 
Processing time/min 4 5 3 3 1 3 4 6 5 
Unload power/kW 1.86 0.98 1.43 1.68 1.70 3.42 3.32 2.12 2.25 

6 
Spindle speed/rpm 200 350 250 200 350 900 1200 800 900 
Processing time/min 6 5 4 5 3 4 3 9 5 
Unload power/kW 1.00 0.98 0.90 1.46 1.42 2.80 3.80 1.92 2.25 

7 
Spindle speed/rpm 250 600 250 300 200 900 1100 1200 900 
Processing time/min 5 2 4 4 6 4 4 3 5 
Unload power/kW 1.18 1.36 0.90 1.46 1.10 2.80 3.32 3.26 2.25 

8 
Spindle speed/rpm 500 350 250 125 250 1200 1200 900 1000 
Processing time/min 3 5 4 7 5 3 3 6 4 
Unload power/kW 2.10 0.98 0.90 1.22 1.20 3.42 3.80 2.12 2.68 

9 
Spindle speed/rpm 600 350 250 500 400 750 750 900 900 
Processing time/min 2 5 4 1 2 7 8 6 5 
Unload power/kW 2.26 0.98 0.90 2.14 1.55 2.14 2.60 2.12 2.25 

10 
Spindle speed/rpm 500 200 250 350 300 900 750 900 800 
Processing time/min 3 6 4 3 4 4 8 6 7 
Unload power/kW 2.10 0.80 0.90 1.68 1.30 2.80 2.60 2.12 1.99 

11 
Spindle speed/rpm 250 600 250 350 250 850 800 900 900 
Processing time/min 5 2 4 3 5 6 7 6 5 
Unload power/kW 1.18 1.36 0.90 1.68 1.20 2.54 2.76 2.12 2.25 

12 
Spindle speed/rpm 200 350 250 200 300 1200 1100 850 900 
Processing time/min 6 5 4 5 4 3 4 7 5 
Unload power/kW 1.00 0.98 0.90 1.46 1.30 3.42 3.32 2.04 2.25 

 

(1) When the decision-maker wants to consider the minimum makespan, the 

importance weights can be set to: w1=1 and w2=0. The improved genetic-simulated 

annealing algorithm was run 15 times for the FFS. Fig.4 describes plots of makespan 

versus energy consumption for a flexible flow-shop problem ( 912 ) with importance 

weights w1=1 and w2=0. In addition, the quantitative analysis of energy consumption 

is obtained to analyze the makespan changes as shown in Table 2. 
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Fig. 4. Plots of makespan versus energy consumption for a FFS with w1=1 and w2=0 

 
 
 

Table 2 Data of makespan and energy consumption with w1=1 and w2=0 

Number 
Makespan 

1
f  

Total energy consumption 

2f  

Idle energy consumption 

uE  

Energy consumption ratio 

2/ fEu  

1 28 307.20 51.05 16.62 

2 31 328.91 68.10 20.70 

3 30 277.23 20.20 7.29 

4 28 298.36 44.64 14.96 

5 29 314.13 53.13 16.91 

6 29 273.23 15.92 5.83 

7 30 261.86 13.02 4.97 

8 30 287.55 13.65 4.75 

9 30 288.11 29.98 10.41 

10 30 294.24 32.12 10.92 

11 28 312.53 59.67 19.09 

12 31 277.89 22.90 8.24 

13 29 302.83 54.00 17.83 

14 30 313.54 47.31 15.09 

15 29 344.76 90.73 26.32 

 

It can be observed that there exists a conflicting relationship in the Pareto frontier 

between the makespan and energy consumption.. When the makespan reaches the 

minimum value 28, the corresponding minimum value of the total energy 
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consumption is 298.36; on the contrary, when the total energy consumption gets one 

best near-optimal value 261.86, the makespan increases to 30. In other words, lower 

makespan will consume more energy and higher energy consumption will reduce the 

completion time of jobs. Besides, it is found that machine tools will consume a certain 

amount of energy during the idle running time. As time increases, idle energy 

consumption increases. The worst ratio between idle energy and total energy is near 

26.32% and the average ratio reaches 13.32% in Table 2. Therefore, when only 

makespan is considered in the manufacturing system, the idle energy consumption 

cannot be neglected. The decision-maker should employ an energy saving model to 

determine if machine tools should be turned on or turned off.    

(2) When the decision-maker wants to minimize energy consumption, the 

importance weights can be set to: w1=0 and w2=1. The improved genetic-simulated 

annealing algorithm was run 15 times for the FFS. Fig. 5 describes plots of makespan 

versus energy consumption for a flexible flow-shop problem ( 912 ) with importance 

weights w1=0 and w2=1. At the same time, the quantitative analysis of energy 

consumption is given for the analysis of the makespan changes as shown in Table 3. 

 

  Fig. 5. Plots of makespan versus energy consumption for a FFS with w1=0 and w2=1 
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Table 3 Data of makespan and energy consumption with w1=0 and w2=1 

Number 
Makespan 

1
f  

Total energy consumption 

2f  

Idle energy consumption 

uE  

Energy consumption ratio 

2/ fEu  

1 33 249.22 0 0 

2 34 249.40 0 0 

3 39 251.84 1.70 0.68 

4 37 251.12 3.42 1.36 

5 40 244.64 3.78 1.55 

6 43 250.64 1.46 0.58 

7 36 246.88 1.46 0.59 

8 38 254.52 10.73 4.22 

9 48 249.97 3.10 1.24 

10 36 247.92 0 0 

11 48 255.53 0 0 

12 34 248.77 10.50 4.22 

13 47 254.44 4.92 1.93 

14 40 248.38 4.38 1.76 

15 32 251.84 0 0 

 

From the results, on the one hand it can be observed that the relationship between 

the makespan and energy consumption is conflicting as in the first scenario in Section 

5. On the other hand, machine tools' usage efficiency is higher obviously. The 

maximum idle energy consumption is not more than 5% on the total energy 

consumption and the average value sums up to 1.21% as illustrated in Table 3.  

 

(3) When the decision-maker takes the makespan and energy consumption into 

account simultaneously, the importance weights can be set to: w1=0.5 and w2=0.5. The 

improved genetic-simulated annealing algorithm was run 15 times for the FFS. Fig. 6 

describes plots of makespan versus energy consumption for a flexible flow-shop 

problem ( 912 ) with importance weights w1=0.5 and w2=0.5. Fig. 7 also illustrates 

that there exists a trade-off between the makespan and energy consumption. If the 

makespan can be realized as short as possible, the corresponding energy consumption 

increases. On the other hand, if the maximum completion time is less than due date, 

the energy consumption can be minimized.   
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Fig.6. Plots of makespan versus energy consumption for a FFS 
with w1=0.5 and w2=0.5 

 

Fig. 7. Plots of makespan versus energy consumption with  
two important weights ranging from 0 to 1 

                                  
(4) Furthermore, all sets of two important weights w1 and w2 are studied ranging 

from (w1, w2) = (0,1) to (w1, w2) = (1,0) with an increment of 0.1 and w1+w2=1. For 

each pair of important weights set, the improved genetic-simulated annealing 

algorithm was run 15 times for the FFS. Experimental result can be seen as shown in 

Fig. 6 and each point denotes the average value of these 15 runs. The result 
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demonstrates that different important weights generate different results on the basis of 

multi-objective function values. In a word, as w1 increases with an increment of 0.1, 

the makespan decreases and the energy consumption increases; as w2 increases with 

an increment of 0.1, the makespan decreases and the energy consumption increases. 

Therefore, it ensures to make a significant trade-off between makespan and total 

energy consumption for performing a feasible scheduling. 

At the same time, due to the serious energy waste of the first scenario in Section 5 

for the manufacturing system at the idle running mode stage, this paper implements an 

energy saving model to determine if machine tools should be on or off. For instance, 

in Fig.4 it is considered a Pareto optimal solution, i.e. the makespan value is 28 and 

the corresponding energy consumption value is 298.36. The production scheduling 

result is shown in Fig. 8. We can find that machine tools, such as M5, M6, M7, M8 

and M9 are in the state of waiting for processing jobs when the interval time between 

jobs on the same machine is much longer. Hence, the mentioned energy saving model 

in Section 3 is executed to determine if the machine should be shut down or started up, 

and relative energy date calculation regarding this production scheduling is illustrated 

in Table 4. 

 

 

Fig. 8. The Gantt chart of the production scheduling 
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Table 4 Relative energy date of the production scheduling 

Number  Unload time/s Spindle speed/rpm Idle power/kW JSEsm /  s/2.1 sT  
Energy saving 

ratio/% 

M5 120 250  1.1952 8065.4 8.4 94.37 

M6 60 1200 3.4901 76782.2 35.2 63.33 

M7 180 750 2.6675 32010.0 14.4 93.33 

M8 300 950 2.3942 41898.5 21.0 94.17 

M9 60|180 900|900 2.3146|2.3146 35876.3 18.6|18.6 74.17|91.39 

 

We can conclude that the energy saving decision model, which is applied in a 

feasible scheduling, has the distinct potential to reduce the total energy consumption. 

As well we calculate that the average energy ratio sums up to 85.13% on the idle 

energy consumption. The idle energy consumption value decreases to 6.64 and the 

total energy consumption value becomes 260.36. In summary, the share of the idle 

energy consumption to the total energy consumption decreases by 12.72%. It is clear 

that performing an energy saving for a feasible scheduling is viable and efficient. 

   

6. Conclusion 

In this paper, we have explored the multi-objective energy-efficient scheduling 

problem with two objectives: makespan and energy consumption in manufacturing 

systems. To solve the multi-objective optimization problem a mathematical model 

based on an energy-efficient mechanism was proposed, which arises in a flexible 

flow-shop scheduling (FFS) problem. The establishment of the energy-aware model 

was only the first step and a theoretical work was conducted to generate Pareto 

efficient solutions using the weighted additive utility function technique. Moreover, 

an improved genetic-simulated annealing algorithm, inspired from hormone 

modulation mechanism, was employed to solve the multi-objective scheduling 

problem. Several optimization problems with importance weights ranging from 0 to 1, 

in a plant of metalworking workshop, were tested. For different scenarios, all the 

experimental results showed that the algorithm can identify a set of Pareto optimal 

solutions in the solution space, and on the other hand the relationship between the 
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makespan and the energy consumption was distinctly conflicting. Through making a 

trade-off between two objective functions, there will be a feasible scheduling.  

At the same time, due to much energy waste in Section 5, this paper proposed an 

energy saving model to determine if machine tools should be on or off when they will 

be idle for an amount of time. The test results showed that the decision model has the 

significant potential to minimize energy consumption turning off and then turning on 

idle machines, if the inter-arrival time between jobs on the same machine is greater 

than the break-even duration. In future research, uncertainty events such as machine 

breakdown, new jobs arrival and existing jobs cancellation should be considered in an 

energy-aware flexible flow-shop scheduling problem. Moreover, an energy-efficient 

dynamic scheduling model will be included in the future. 
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