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Abstract

The parallelization of the Finite Difference Time Domain (FDTD) method for room acoustic simu-
lation using Graphic Processing Units (GPUs) has been subject of study even prior to the introduc-
tion of GPGPU (General-Purpose Computing on GPUs) environments like the Compute Unified
Device Architecture (CUDA) architecture from Nvidia. A mature architecture nowadays, CUDA
offers enough flexibility and processing power to obtain important performance gains with naively
ported serial CPU codes. However, careful implementation of the algorithm and appropriate usage
of the different subsystems a GPU offer can lead to even further performance improvements. In this
paper we present a detailed study between different approaches to the parallelization of the Finite
Differences Time Domain applied to room acoustics modelling and describe several optimization
guidelines to improve the computation speed when using single and double precision floating point
model data, nearly doubling the performance obtained by previously published implementations.

Keywords: Acoustics modelling, FDTD, parallel computing, Graphics Proc. Unit (GPU), CUDA

1. Introduction

During last years General Purpose Computing on Graphics Processing Units (GPGPU) have
experienced a fast evolution, allowing inherently parallel algorithms to experience important per-
formance gains. For an affordable cost, a wide variety of applications have benefited from this
evolution, from fluid dynamics simulation [1], to video compression using the H.264/AVC codec
[2]. The flagship of GPGPU has been the CUDA architecture. CUDA offers the programmer a
variety of resources from the GPU and an easy way of porting serial codes to parallel codes with-
out much effort, however, although naively ported codes can perform much faster than its serial
counterparts, careful tuning and usage of the GPU hardware can increase the speed by one or two
orders of magnitude compared to the serial code. Several techniques can be employed to improve
an algorithm performance on the GPU, as will be discussed in the next section, two of them being
the usage of shared memory and texture memory.

As a widely used method for numeric calculation, the FDTD has been, too, subject of study
applied to electromagnetism simulation [3] and light scattering simulations [4]. Before the CUDA
architecture, investigations on the FDTD made use of the OpenGL API, obtaining promising
results [5, 6] despite the complexity of translating model data to graphics data in order to be pro-
cessed by the GPU. It has not been until recently, with the CUDA architecture, that investigation
has been carried on room acoustic modelling. In [7], an introduction to the implementation on
GPUs is presented, [8] shows a high performance implementation for a 2D mesh, and [9] offers an
overview on FDTD schemes for real-time 3D room auralization. Further investigation on 3D room
simulation with boundary losses is presented in [10], and [11] discusses the performance of different
implementation approaches when working with double precision model data.
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This paper presents a comparison between six representative approaches to FDTD paralleliza-
tion applied to room acoustics modelling, divided into two main categories, with special attention
to the usage of texture memory and shared memory in order to improve data throughput. First,
a brief introduction to the CUDA architecture is provided. Secondly, an explanation of each im-
plementation is provided, with a more detailed description of the implementation using texture
memory only, and advantages and disadvantages of every approach are discussed. Finally, three
experiments are carried to test the performance and correctness of the implementations devel-
oped: a quantitative performance comparison for a standard problem to test the speed difference
between implementations, a comparison with double precision model data to an existing parallel
implementation, and a proof of accurate calculation to show the expected effects of diffraction and
reflection.

2. The FDTD method for acoustics

Finite-Difference Time-Domain (FDTD) method is arguably the most popular numerical method
for the solution of problems in electromagnetism and acoustics. Although the FDTD method has
existed for over 40 years, its popularity continues to grow as computing costs keep on declining.
The method consists in dividing a volume (the room interior in the case of room acoustics) into
small cubic cells and apply the wave propagation equation of pressure to each cell. The sizes of the
cells determine the maximum frequency to be simulated. The difference equation computes the
next time step of pressure as a function of the pressure in the neighbor cells in the two previous
time steps in the form:

plnjli =1/3(Pi4 1,5k + Pis1jk T Pijr1k T Pij—1k t Pigk1 T Pije—1) — P?J_i (1)
where p is the sound pressure, (i, 7, k) are the coordinates of the cells in the mesh and n is the time
step in the recursion. More details about the FDTD method can be found in [12].

The next section explains briefly the CUDA architecture and its limitations, emphasizing the
aspects related to performance that are needed to understand several design decisions, and the
results and conclusions obtained by the carried experiments.

3. The CUDA architecture

In the last years, GPUs have evolved into an affordable, yet powerful architecture for the
computation of massively parallel algorithms. The CUDA architecture has been in the cutting
edge of this evolution and has matured to become a versatile general purpose parallel computing
platform, available for the latest generations of GPUs developed by Nvidia. From the perspective of
CUDA, a GPU is abstracted as a device that contains a set of memories and an array of independent
Streaming Multiprocessors (SMs), with each SM being able to execute a large number of threads
simultaneously. A typical CUDA function, referred to as a kernel, is performed in parallel by a
large number of threads, all of which execute the same instructions.

The threads, organized in blocks, and further clustered in a flat hierarchical structure called
grid, are sent to the cores for execution. Once in the core, the threads execute concurrently, but
grouped in packs of 32 threads called warps. Each warp executes independently of the others,
whilst threads that form a warp must execute one common instruction. Inside each core, on-chip
shared memory allows fast communication between the threads of a block. In addition, the GPU
has a global memory that enables persistent data storage along application lifetime and a (slower)
global scope communication between different thread blocks. Each core has fast read access to both
a texture memory cache, optimized for 2D spatial locality, and a constant memory cache. Finally,
the CUDA environment provides a set of synchronization functions that help coordinating the
parallel execution of threads, which guarantee local and global synchronization between threads
when accessing shared and global memory.

To maximize the performance in this environment, the program code should exercise moderate
access to the GPU global memory and, when doing so, the access pattern should be optimized in
order to achieve memory coalescing. It consists in reducing the number of memory read operations
to global memory for a group of threads by accessing data in the same memory segment. Each
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new version of the architecture removes several restrictions in the access pattern and improves the
bandwidth. The Fermi architecture [13], for instance, adds a two-level cache for global memory
accesses. Although these caches help reducing access latency and global memory bandwidth re-
quirements compared to the Tesla architecture [14], they are small and memory coalescing still
must be taken into account. In addition, the code should try to maximize the number of active
threads in each core as well as minimize the use of flow control instructions, as these can easily
make threads inside a warp follow different execution paths, resulting in serial execution for threads
in the warp. For further information on the CUDA architecture refer to [15, 16].

Taking into account these considerations about the hardware architecture of the GPU and its
execution model, the next section describes two strategies to process three-dimensional rooms and
presents 6 different implementations derived from these strategies in order to test which is the
fastest.

4. 3D FDTD Implementations

The CUDA threading model offers great flexibility when working with 2D data thanks to its
hierarchical nature as stated in the previous section, unfortunately it imposes certain limitations
with 3D data since thread blocks can be three-dimensional but grids can only be two-dimensional.
Therefore it is necessary to explore different possibilities on how to work with 3D data efficiently,
applied in this paper to the simulation of room acoustics through the FDTD modelling technique.
Recent works have explored these possibilities concluding the tiling method (see Section 4.1) is
the one that provides the best performance [11], although not in much detail. This paper aims
to offer an exhaustive study on the optimum processing strategies for 3D enclosures, studying
the performance provided by existing methods and comparing it to new proposed methods with
different data mapping, execution and memory access strategies.

Taking advantage of the features the CUDA threading model offers and the different memory
subsystems an Nvidia GPU posses, two main techniques to process the 3D data are tested, one of
them being the tiling method described in Section 4.1 and the other the slicing method described
in Section 4.2. For this, six kernels with different approaches to memory access during execution
have been developed divided into this two main categories.

The implementations are built on top of a set of basic considerations, so that the speed differ-
ence between them is only caused by the difference in data mapping, execution and data access
approaches. In general terms we use: (i) the constant cache to store data that do not change
during the simulation; (ii) the global memory to store the model and perform global thread syn-
chronization, using optimized access patterns; (iii) texture cache to access the neighboring nodes
in the FDTD iteration; (iv) shared memory to access neighboring nodes and to store temporal
data. Some further guidelines followed are:

e A thread block size of 256 and a limit of 16 and 20 registers per thread when using GPUs with
the Tesla architecture and the Fermi architecture respectively to maximize SM occupancy.

Block dimensions that are a multiple of the size of a half-warp to allow for coalesced memory
access.

e Minimization of memory transfers between host and device.

e Use of register space where possible to prevent any unnecessary accesses to global memory.

The next two sections present an overview of the mentioned tiling and slicing methods and a
description of the implementations that will be tested in Section 5.

4.1. Tiling method

Several parallel implementations of the Finite Differences Time Domain have relied on this form
of data mapping [10, 11] to process three-dimensional rooms, choosing it over sliced methods (see
Section 4.2). It consists in flattening the volume into a tiled plane where each tile corresponds to a
2D slice. Considering the volume extends along the z, y and z dimensions, and being z the slowest
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Figure 1: 3D data tiling in CUDA: (a) 1D tiling, (b) 2D tiling

varying one in linear memory, the volume should be sliced along z to achieve memory coalescing
(see Section 3).

Figure 1 describes how tiles can be laid out in a 1D or 2D fashion. This method maximizes
parallel execution by assigning a thread to every data point and keeping the streaming multipro-
cessors busy, but at a cost. Since thread blocks are executed in a random order it is not possible
to take advantage of spatial or temporal data locality, because every thread needs to read all
six adjacent nodes from global memory, worsening the inherent memory bottleneck to the FDTD
algorithm [17]. Additionally, as the 3D volume is now mapped in a 2D plane, it is necessary to
perform a translation between 2D and 3D data indices so that each thread knows which point in
space it needs to read from and write to. Let (4, j, k) denote an arbitrary point in the 3D volume,
(Si,5;, Sk) the dimensions of the 3D volume, (¢, r) an arbitrary point in the 2D plane, and (S, S;)
the dimensions of the 2D plane. When using 2D tiling, the index translation equations are as
follows:

. . c r
i=cmodS;, j=rmodS;, k=25, {&J + LS}J

While for 1D tiling, lying the tiles along the y dimension, the equations are simplified to:

i=c¢, j=rmodS;, k= VAJ
S;

The floor and modulo operators are computationally very intensive [18], and while the recent
Fermi architecture can cope with the computational cost, the fact that these operations need to
be performed by every single thread impose an important performance penalty in the early Tesla
architecture.

Two versions of the tiling method have been implemented using the 1D approach as less compu-
tations are required for index translation. The first version uses direct accesses to global memory
to access every single neighboring node for every thread (from now on referred to as Tiled Global),
totalling 6 reads from global memory. The second implementation stores the model data first in
shared memory (from now on referred to as Tiled Shared), with every inner thread of a thread
block only having to read from global memory for the nodes above and below. For threads in the
outer edges of thread blocks an additional memory read is performed to access the node value that
falls outside the thread block and that has not been stored in shared memory.
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Figure 2: Data reuse in the slicing method. Nodes to be processed are greyed out whilst dashed nodes represent
the layer immediately above the layer the threadfront is processing.

4.2. Slicing method

Taking into account the threading hierarchy limitations, a straightforward way of processing a
volume is using two-dimensional thread blocks and slicing the volume along its z-dimension [19]
(as data is stored in global memory in a row major order, this allows for memory coalescing). This
way a threadfront sweeps the volume from bottom to top every time step, with every single thread
in the threadfront processing a given column of nodes. Figure 2 depicts how the serial computation
of the slices allows for data reuse. Focusing on a single thread, for every slice processed the thread
only needs to read the four adjacent nodes in the current slice plus the one above since the pressure
values of the current node and the one below have already been read in the two previous time steps.
When the threadfront advances one slice up, a simple shift of the registers is performed and the
process is repeated.

The following sections describe the proposed sliced implementations. First, the reference or
naive implementation is introduced, in which no special optimizations are used. Secondly, an
implementation that makes use of exclusively texture memory to access neighboring data. And
lastly, two implementations that make use of shared memory to store and share reusable information
with two different approaches to access data in the outer edge of thread blocks. Pseudocode
representations are provided in addition to compare the instruction flows of each kernel and the
memory access strategies.

4.2.1. Naive implementation

The naive or global memory-only implementation serves as a reference to test performance gains
over the sliced method achieved by the other sliced approaches described in Sections 4.2.2 and 4.2.3.
This implementation uses the core set of optimizations described in Section 4, the register shifting
approach described in Section 4.2 and the remaining data needed is fetched directly from global
memory. The pseudocode representation can be observed in Figure 3.

4.2.2. Efficient implementation using texture memory

As stated in [15], the texture memory space resides in device memory and is cached in a two-
level [18] cache called texture cache. This cache space is optimized for 2D spatial locality, providing
best performance to threads of the same warp that read texture memory addresses that are close
together in 2D, so, even without the access patterns that global or constant memory reads must
respect to get good performance, high bandwidth can be achieved. Two additional benefits are its
ability to broadcast packed data to separate variables in a single operation, and dedicated units
that perform the addressing calculations outside the kernel.

Texture memory usage is based on the use of texture references. Texture references are struc-
tures that point to certain spaces in global memory and define which part of that space is fetched
and in which way.
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For each timestep
For each thread
Determine the thread’s (x,y) position

Move from(global memory)/| to REG_CURR and REG_DOWN the air
pressure values from the current node and the node below

For each slice

Move from (global memory)/ (EXiliieleache)to REG_UP the pressure value of the
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For each thread

Determine the thread’s (x,y) position
Move from(global memory)/ to SHARED_CURR and SHARED_DOWN
the air pressure values from the current node and the one below
Block synchronize
For each slice
Read from (global memory)/ ({@Xilifeleache) the value of the node above
If current node is air
Perform the FDTD calculation. Read the values of the neighboring nodes from
shared memory. If the thread is located at the border of the thread block, read

from(global memory)/ (@Xiliieleaeh®) the value of the node that falls outside the
block. Read from global memory the pressure value of the current node in the
previous time step

Write the result to global memory
Shift the registers:
SHARED_CURR - SHARED _DOWN
SHARED _UP - SHARED _CURR

Block synchronize

Figure 3: Pseudocode representations of the different implementations. (a) Naive and Pure Texture Fetching:
the memory accesses exclusively performed by the Naive implementation are highlighted in white, and in darker
color the accesses performed by the Pure Tezture Fetching implementation. (b) Shared Global and Shared Texture
Fetching: the memory accesses exclusively performed by the Shared Global implementation are highlighted in white,
whilst the accesses performed by the Shared Texture Fetching implementation are highlighted in darker colour.

Addressing limitations. The main limitation of using texture memory is the size of texture refer-
ences, as the maximum allowed width and height for a 2D texture reference bound to linear memory
is 216 % 215 in Tesla GPUs and 2'6 % 216 in Fermi GPUs. For the applications the texture memory
is intended for, these limits impose no real limitations, however, 3D data structures require some
form of mapping in order to accommodate the additional dimension in a 2D space.

Proposed solution. In order to process the entire volume using texture memory, the volume is
divided into subsections, from now on subvolumes, creating a stack. The dimension of each sub-
volume is determined by the maximum allowed width and height for a 2D texture reference as
mentioned in the previous section. As the first and /or last layer of nodes of each subvolume needs
to access the preceding and following layers, the subvolume size is set so that it can fit the last
layer of the preceding subvolume, if any, and the first layer of the following, if any.

Let wz be the width of the volume and the fastest varying dimension in linear memory, wy
the depth, and wz height. The texture references are created by mapping the 3D subvolume to
a 2D surface whose width equals wz and whose height depends on the location of the subvolume
in the stack. Three different cases arise as can be seen in Figure 4: the subvolume is the first in
the stack, the subvolume is in the middle, the subvolume is located on top. When located the
first in the stack, the first layer of nodes does not need to access the preceding layer of nodes, so
the height of the texture reference equals wy * (W2subvorume + 1), being wzsupvorume the height of
the subvolume. In the second case, the first and last layer of nodes in the subvolume access the
last and the first layer of the preceding and following subvolumes, being the height of the texture
reference wy * (WZsubvolume + 2). In the third case the subvolume height is the remainder of the
division of the volume in equally sized subvolumes of height wzsupvoiume, and the height of the
texture reference equals wy * (Wzremaining + 1)-

This strategy has two main benefits: it bypasses the texture reference size limitation, allowing
for the simulation of big rooms, and serves as a way of partitioning the data set in order to
be processed in multi-GPU environments. After the division of the volume in subvolumes, the
subvolumes are then processed serially: the CPU code is in charge of texture reference creation,
whilst the GPU is in charge of processing every subvolume.

4.2.8. Shared memory implementations

The shared memory implementations make use of shared memory to store reusable data and to
prevent any unnecessary access to global memory. In this case air pressure values from previous,
current, and next slices are stored in shared memory, allowing the reads performed within the
same slice to access a much faster memory space than global memory. Since shared memory is a
per-thread block memory space, threads at the outer edges of thread blocks need to access values
that are not stored in shared memory. Two approaches have been implemented to address this
issue, one of them reads directly from global memory (from now on referred to as the Shared
Global Memory implementation) whilst the other fetches the data from texture cache (from now
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Figure 4: Volume subdivision. Three different cases: (a) The texture reference includes the following layer of nodes,
(b) the texture reference includes the preceding and following layers of nodes of the subvolume, (c) the subvolume
includes only the preceding layer of nodes.

on referred to as Shared Texture Fetching). We chose not to allocate additional space in shared
memory to store the values that fall outside thread blocks as they are read only once by a single
thread, and therefore cannot be reused. Figure 3 shows the pseudocode representations of these
two approaches.

4.8. Other improvements

Besides the implementation guidelines described in Section 4, several additional improvements
can be added to the kernel codes, further increasing the computation speed. This section describes
a way of reducing memory usage, the optimum thread block dimensions, and the proposed strategy
to process arbitrarily shaped rooms.

4.3.1. In-place approach

According to Eq. 1, the computation of pressures at time step n + 1 requires information from
time steps n and n — 1. As global thread synchronization is achieved by launching different kernel
instances, it is possible to use an in-place approach. It consists in storing model data just for time
steps n and n — 1, with each n + 1 time step substituting the data related to n — 1, thus allowing
the simulation of bigger enclosures as less space is used to store model data.

4.3.2. Rectangular thread block dimensions

Thread blocks are typically flat and square in shape. This helps when working with arbitrarily
shaped enclosures as it keeps the amount of padding data introduced to a minimum. However,
as will be discussed in Section 5.2.1, a square thread block provokes branching when executing
the warps that form the blocks, and flattening the thread blocks eliminates this issue. Several
shapes have been tested, and the results are shown in Section 5.2.1 together with the performance
comparison of the different implementations.

4.8.3. Processing of arbitrarily shaped rooms

The ultimate aim of a room acoustic simulator is the ability to process arbitrarily shaped rooms.
Since the CUDA threading model only allows thread block grids to be rectangular, it is necessary
to introduce padding data, surrounding the room with a rectangular enclosure in order to process
it. The approach consists of two main points: storage of boundary data in the same data structure
as air pressure data, and computation of the FDTD only when useful data is present.

The storage of boundary data together with air pressure data eliminates the need of an extra
data structure with the same size as the ones that store model data. The proposed method is to
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Figure 5: Schematic view of a room decomposition in blocks the same size as thread blocks during preprocessing:
(a) 3D view of the room inside the rectangular enclosure and the array of 3D blocks representing the useful model
data zones, (b) 2D projection of the room inside the enclosure.

differentiate air nodes, boundary nodes and padding nodes using values near the upper limit of the
floating point (single or double precision) representable numbers. As the simulations are stable,
and sound sources need to emit in a safe pressure margin in order not to saturate, it is safe to use
this values.

The introduction of padding has two obvious downsides: it increases the size of the model data
structure and slows down the simulation of the enclosures as valuable resources are used to process
useless data outside the room. The proposed solution is to process the model data before the first
kernel execution in order to detect which parts are useless and which parts are needed for the
simulation, identifying from and to which height each thread block needs to be processed. This
procedure produces two matrices, each one with as many elements as thread blocks compose the
thread block grid. The first matrix contains the height from which each thread block needs to
start computing the FDTD and the second matrix contains the height at which it needs to stop.
Figure 5 shows a schematic view of the results produced by the process in a 3D room resembling
an auditorium.

5. Performance comparison

This section presents several tests to compare the performance provided by each implementa-
tion, the speed gains obtained by applying the improvement described in Section 4.3.2, the speedups
and relative speedups compared to a recent parallel implementation of the FDTD algorithm for
room acoustic modelling using double precision model data, and a demonstration of arbitrarily
shaped room processing using the method described in Section 4.3.3. Commodity hardware has
been chosen for the simulations and tests to show that even with this kind of components the per-
formance differences between implementations are significant and that processing clusters based
on consumer grade GPU’s are a viable option.

5.1. Test setup

The simulations are carried using two different Nvidia GPU cards: a GeForce GTX 260 built
with the Tesla architecture and a GeForce GTX 480 built the more recent Fermi architecture [13].
The GeForce GTX 260 is equipped with 1.7GB of global memory, a memory interface width of
448 bits, 192 CUDA cores, and a memory bandwidth of 111.9 GB/s. The GeForce GTX480 is
equipped with 1.5GB of global memory, a memory interface width of 384 bits, 480 CUDA cores,
and a memory bandwidth of 177.4 GB/s. The CPU used is an Intel Core i5 at 3.20GHz with 4GB
of PC3-10700 DDR3 SDRAM.

5.2. Experiment 1

The first experiment consists in a single precision floating point performance comparison be-
tween the different implementations of the approaches introduced in the previous section using
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GTX 260 (Tesla architecture) GTX 480 (Fermi architecture)

. Throughput L . Throughput L -

Implementation (Mvosels /s) Registers used ‘ Instructions (Mvosels /s) Registers used | Instructions
Tiled Shared 1526 10 20.5e9 4470 11 22.3e9
Tiled Global 1784 9 17¢9 4622 11 18.6e9
Naive 1712 13 7.7¢9 3315 13 10.5e9
Shared Texture Fetching 2252 15 15.5e9 5189 19 17.6e9
Shared Global 2441 13 14.4e9 5268 17 14.9¢9
Pure Texture Fetching 3770 16 8.5e9 4920 18 11.8e9

Table 1: Algorithm throughput in Mvoxels/s for 16 x 16 thread block dimensions.

GTX 260 (Tesla architecture) GTX 480 (Fermi architecture)
" Throughput e . Throughput . PR
Implementation (Mvosels /s) Registers used | Instructions (Mvosels /s) Registers used | Instructions
Tiled Shared 1528 10 20.4€9 5666 11 22¢9
Tiled Global 1786 9 17¢9 5700 11 18.5e9
Naive 2464 13 7.7¢9 5122 13 10.5e9
Shared Texture Fetching 2272 15 15.4e9 5483 19 17.3¢9
Shared Global 2463 13 13.8¢9 7279 17 14.9¢9
Pure Texture Fetching 3808 16 8.5e9 7201 18 11.8€9

Table 2: Algorithm throughput in Mvoxels/s for 32 x 8 thread block dimension.

both GPU cards. To test the benefits of rectangular thread blocks two cases are tested: a block
size of 16 x 16 and a block size of 32 x 8. Additionally, the results include the number of registers
used by each implementation and the instruction count of the simulations. For the simulation, 800
time steps were computed in a grid of dimensions 512 x 512 x 512 which equals 134 million nodes
and a Gaussian hard source [20].

5.2.1. Results

Table 1 shows the throughput comparison for a block size of 16 x 16 whilst Table 2 shows a
comparison for a block size of 32 x 8, both of them for single precision model data.

For the Tesla architecture, a strong relationship between the instruction count and the per-
formance can be observed. Tiled approaches prove to be inefficient and instruction-limited, as at
least a division and a modulo operation is needed to obtain the global position of each thread.
Instruction Per Cycle (IPC) counts of 1.08 and 1.03 were obtained for the approaches using shared
memory and direct global memory access respectively. For bigger rooms, 2D tiling may be needed
in order to process the entire volume, worsening the performance even further.

Sliced approaches that make use of shared memory are, too, instruction limited as demonstrated
by IPCs of 1.10 and 1.20 for the Shared Texture Fetching and the Shared Global implementations
respectively. This is due to the branching and synchronization overhead in warp execution when
accessing cached data. Conditional statements and synchronization barriers are needed, thus re-
sulting in serial thread execution within a warp.

In this architecture, the best performance is achieved by the Pure Texture Fetching implemen-
tation by a 54% margin over the naive implementation. This high throughput is due to the flat
threadfront in conjunction with the 2D locality optimization of texture memory, thus allowing for
temporal and spatial locality.

Thanks to its increased computational power, the Fermi architecture provides an important
performance increase over the Tesla architecture, as can be observed despite the high instruction
count, doubling the speed of the tiled shared memory approach and significantly increasing the
performance of the sliced approaches that makes use of shared memory.

Thread block dimensions of 32 x 8 demonstrate to be the optimum choice as can be observed in
Table 2, concluding that a flattened thread block reduces the branching produced in the previous
case. The sliced approach demonstrates to be the fastest, and within it, the Pure Texture Fetching
Implementation and the Shared Global implementations provide respectively a 26% and a 27%
performance increase over the fastest tiled approach implementation.

The high throughput provided by the Shared Global implementation is thanks to the higher
computational power of Fermi devices, with instruction execution being essentially free in this

9



Implementation rg}fﬁ;ﬁj:; Registers used | Time (Seconds) | Speedup | Relative Speedup
Tiled Shared 3322 16 222.7 123 1.62
Tiled Global 2834 20 261 105 1.38
Naive 2334 20 317 87.02 1.14
Shared Texture Fetching 3644 20 203 135.9 1.78
Shared Global Memory 4016 20 184.23 148 1.95
Pure Texture Fetching 2101 20 352 78.37 1.02

Table 3: Algorithm throughput in Mvoxels/s and times for a 16 million point grid size, speed-up and relative speed-
up to the sequential implementation and the parallel implementation using the Fermi architecture respectively
presented in [10].

case, contrary to global memory accesses, that, although cached, still keep a high latency for cache
misses. This computational power effectively hides the synchronization barriers and conditional
statements needed to work with shared memory, and arises the benefits from data sharing from
within the same slice.

Better results can be expected for the Pure Texture Fetching implementation in Fermi devices
with a higher memory bandwidth, and for the implementations using shared memory in devices
with a higher CUDA SM count.

While additional testing was performed for 64 x 4 and 128 x 2 block dimensions, only small per-
formance variations were obtained over 32 x 8 for all the approaches. This dimensions additionally
provide a good balance between speed and memory efficiency when working with arbitrary sized
rooms, where padding of the model data is often necessary to accommodate the thread block grid.

5.3. Experiment 2

In this experiment, to assess the computation speed using double precision data, a comparison
is performed between the results presented in [10] for the basic scheme. The simulations compute
one second of output at 44.1KHz with varying grid sizes, and, in this case, only the GTX 480 GPU
is used. It is important to note the difference in theoretical peak double precision performance
between the GPU’s used in the tests. While the Tesla C2050 used in [10] have a peak double
precision performance of 515 Gflops, the GTX 480 provides 168 Gflops, three times less computation
power.

5.3.1. Results

Table 3 show the throughput comparison for the different implementations computing double
precision model data and the speedups and relative speedups to the results obtained in [10] for a
16 million point grid size.

The GeForce GTX480 GPU, despite its poor double precision computation power compared to
the Tesla C2050 GPU, manages to significantly increase the throughput thanks to the optimized
strategy to access model data and with the help of its higher memory bandwidth. Additional
testing has been performed for smaller grid sizes, the same tested in [10], with consistent relative
speedups except for the Pure Texture Fetching implementation, that presents a value lower than
1 already at a 4 million grid size.

5.4. Ezxperiment 3

This last experiment consists of a set of tests that validate the results and the expected be-
haviour of the simulated sound waves, that is, wall reflection and diffraction around edges and small
openings. Figure 6 shows the diffraction effect that appears at the edge of a sound barrier when
a broadband point source is used and the diffraction that appears when a sound wave propagates
through a small opening. Finally, Figure 7 shows a sound wave propagating in the 3D enclosure
made of hard walls described in Section 4.3.3 at two different time steps.
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Figure 6: Wave diffraction effects: (a) Sound wave propagating through a small opening, (b) Edge diffraction in a
noise barrier.

Figure 7: Sound wave propagation in a 3D enclosure. Horizontal slice of the enclosure at two different time steps.

6. Conclusions and future work

Room acoustic modelling and auralization has been greatly benefited from the development of
new Many Core Architectures (MCA) in recent years. GPUs stand out as an affordable example,
providing great processing power at a low cost. The CUDA architecture offers a simple way of
taking advantage of the general purpose processing capabilities of the GPU, however, special care
must be put in order to make a complete and optimized use of all the subsystems in the device. In
this paper we perform an exhaustive study on how different processing strategies behave in respect
to the calculation speed of the FDTD algorithm applied to room acoustic simulation, providing at
the same time several implementation guidelines to improve the performance of similar algorithms.

For this, we identified two main processing strategies and from them developed six different
implementations covering the usage of all the memory subsystems the GPU offer. It has been
demonstrated that the sliced processing method is the fastest in both hardware architectures
tested. It has been proved the Pure Texture Fetching implementation provides the best results when
using the Tesla architecture thanks to the dedicated addressing units and data locality features
of this memory. As for the Fermi architecture, the Shared Global implementation offers the best
performance processing single or double precision floating point model data. Moreover, speedups
of two orders of magnitude where obtained over optimized serial implementations of the algorithm
and almost a two-fold performance increase over recently published parallel implementations.

Additional testing with a GPU card built with the latest version of the Fermi architecture
showed relevant (if not erratic) variations in performance, most likely due to the new superscalar
features are added to the SMs, therefore future work should explore the new optimization possi-
bilities these new architectural improvements can offer.
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