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Phononic crystals are artificial materials made of a periodic

distribution of solid scatterers embedded into a solid host

medium with different physical properties. An interesting

case of Phononic Crystals, known as Sonic Crystals (SCs),

appears when the solid scatterers are periodically embed-

ded in a fluid medium. In SCs only longitudinal modes are

allowed to propagate and both the theoretical and the exper-

imental studies of the properties of the system are simplified

without loss of generality. The most celebrated property of

these systems is perhaps the existence of spectral band gaps.

However, the periodicity of the system can also affect to the

spatial dispersion, making possible the control of the diffrac-

tion inside these structures. In this work we study the main

features of the spatial dispersion in SCs from a novel point of

view taking into account the evanescent properties of the sys-

tem, i.e., studying the complex spatial dispersion relations.

The evanescent behaviour of the propagation of waves in the

angular band gaps are theoretically and experimentally ob-

served in this work. Both the numerical predictions and the

experimental results show the presence of angular band gaps

in good agreement with the complex spatial dispersion rela-

tion. The results shown in this work are independent of the

spatial scale of the structure, and in principle the fundamen-

tal role of the evanescent waves could be also expected in

micro- or nano-scale phononic crystals.

Nomenclature

PC Phononic Crystal.

SC Sonic Crystal.

PWE Plane wave expansion.

EPWE Extended plane wave expansion.

MST Multiple scattering theory.

BG Band gap.

a Lattice constant.

f Filling fraction.

r Radius of the scatterer.

Ψ Normalized frequency.

SPL Sound pressure level.

k Wave number

ν Frequency

ρ Density

κ Bulk modulus

ω Angular frequency

c Sound velocity



1 Introduction

The study of wave propagation in periodic media has a

long history in the field of vibrations and acoustics [1–3]. In

recent years, after the pioneering works of Yablonovitch [4]

and John [5], who discovered simultaneously the possibili-

ties to control the light flow in periodic distribution of dielec-

tric materials, an increasing interest appeared in the analo-

gous structures to control both the elastic and acoustic waves

using the well-known phononic crystals (PC). Several theo-

retical works started the analysis of periodic arrays made of

isotropic solids embedded in an isotropic elastic background

[6–11]. By analogy with the photonic case, these periodic

arrangements present acoustic band gaps (BGs), defined as

frequency ranges where vibrations, sound and phonons are

forbidden. A particular case of PC, is the Sonic Crystal

(SC) [12, 13] which consist of solid scatterers embedded in

a fluid host medium. In this case an important simplification

without loss of generality arises in this system, which allows

considering the propagation of only longitudinal waves. SC

are specially relevant due to the experimental possibilities as

for example measurements inside the crystal.

The measurements of the sound attenuation by a sculp-

ture, desinged by Eusebio Sempere and exhibited at the Juan

March Foundation in Madrid, constituted the first experi-

mental evidence of the presence of BG in a SC [12]. The

work of Martı́nez-Sala et al. [12] experimentally showed that

the repetition of rigid cylinder rods (2D), inhibited the sound

transmission for certain frequency ranges related to this peri-

odic modulation, just as photonic crystals do with light. The

subsequent theoretical predictions [13, 14] and experimental

results [15] were motivated by these experimental results in

order to explain the propagation properties of this sculpture

that could filter noise.

Since these acoustical properties were measured in that

minimalist sculpture, a great research interest, both experi-

mental and theoretical, have been focused on the exploitation

of the particular dispersion relation of these periodic struc-

tures revealing very interesting physical properties, show-

ing a resurgence of fundamental and applied importance in

condensed matter physics. The existence of complete elas-

tic/acoustic BG, the possibilities of real applications such as

elastic/acoustic filters [16], or even as noise control devices

[17, 18], improvements in the design of transducers [19, 20],

or testing fundamental pure physics phenomena [21–31] are

several examples that motivated this growing interest.

The influence of the spatial periodicity on the spectral

dispersion of such systems is represented by the spectral dis-

persion, however it has come out that the spatial periodicity

can affect not only this temporal dispersion, but also the spa-

tial one making possible the control of the diffraction inside

the periodic structures. Due to that, one can observe different

behaviour depending on the spatial dispersion relation, i.e.,

on the curvature of the isofrequency contours [32]. The so-

called self-collimation effect, due to flat isofrequency con-

tours, consists in the propagation of a beam in the periodic

system without apparent diffraction keeping its original size.

This phenomenon has been experimentally demonstrated to

date at different ranges of frequency for both electromag-

netic waves [33, 34] and acoustic waves [35, 36] in photonic

and sonic crystals respectively. Oppositely, when the cur-

vature of the isofrequency contour is negative, one can ob-

serve focusing due to the all angle negative refraction phe-

nomenon, which has been also observed in both electromag-

netics [37, 38] and acoustics [39–41].

The previous spatial effects, the self-collimation and

all angle negative refraction, occur for connected (continu-

ous) isofrequency contours, however, there are frequencies

in which the isofrequency lines are discontinuous in the Bril-

louin zone, making possible the existence of angles in which

no isolines exist and, as a consequence, there is not propa-

gation of waves. These ranges of angles are called angular

band gaps [32, 35].

In this work we introduce the imaginary part of the re-

lation dispersion, traditionally not considered, to theoreti-

cally and experimentally interpret the spatial dispersion in

SC, specially to interpret the presence of the angular band

gaps. From the complex dispersion relation, k(ω), we pay

attention to the existence of evanescent waves along the an-

gles in which angular band gaps are predicted. Novel repre-

sentation of the complex isofrequency curves, i.e. the depen-

dence of the real and imaginary longitudinal component of

the propagation constant versus the real and imaginary trans-

verse component, k‖ = k‖(k⊥), are introduced in this work

to interpret the angular band gaps. Experimental results, in

good agreement with the predictions of both the multiple

scattering and complex dispersion relation, are also shown

here.

This work is organized as follows. First of all, in Sec-

tion 2, we introduce the complex dispersion relation, k(ω).
We will show the procedure to represent the complex isofre-

quency contours (spatial complex dispersion relation), pay-

ing attention to the case analyzed in this work in which angu-

lar band gaps appear. After that, Section 3 shows the experi-

mental set up we use to analyze the angular band gaps. Sec-

tion 4 shows the numerical and the experimental evidences

of the angular band gaps, but also, in order to be a self-

consistent work the several effects of the spectral dispersion

are also briefly summarized. The concluding remarks are

shown in Section 5.

2 k(ω) complex relation dispersion

Due to the periodicity of the system, the relation dis-

persion has been traditionally obtained from solving the fol-

lowing eigenvalue problem using the plane wave expanssion

(PWE) procedure [10]

∑
~G′

(

(~k+ ~G)σk(~G− ~G′)(~k+ ~G′)−ω2η~k(
~G− ~G′)

)

p~k(
~G′) = 0.

(1)

For ~G, being the reciprocal vector and taking all the possible

values, Equation (1) constitutes a set of linear, homogeneous

equations for the eigenvectors p~k(~G) and the eigenfrequencies

ω(~k). However, this relation dispersion, ω(~k) does not take



Fig. 1. Analysis of the eigenvalue problem using EPWE. (a) Real

part of the complex band structure for a square array of rigid cylinders

embedded in air. Horizontal dashed line represents the studied fre-

quency. Real (b) and imaginary (c) parts of the isofrequency contours

at ν. Analysis of the scattering problem at the selected frequency.

into account the evanescent waves, as only real values can be

obtained.

However, if one solve the inverse problem, k(ω), the so-

lutions are not necessarily forced to be real, and they could be

also complex, introducing the evanescent waves in the inter-

pretation of the dispersion relation of Sonic Crystals [42,43].

The inverse problem can be formulated in terms of the Ex-

tended Plane Wave Expansion (EPWE) as [44]

(

ω2Ω−∑3
i=1 Γ0

i ΣΓ0
i 0

−∑3
i=1 ΣΓ0

i I

)(

P

Φ′

)

= k

(

∑3
i=1 Γ0

i Σαi I

∑3
i=1 Σαi 0

)(

P

Φ′

)

.

(2)

This equation represents a generalized eigenvalue problem

with 2N eigenvalues k. The complex spectral relation disper-

sion in a incidence direction~α can be obtained by solving the

eigenvalue equation for a discrete number of frequencies and

then sorted by continuity of k. However the complex spatial

dispersion can be obtained by solving the problem for a fixed

frequency in all the incident directions.

Figure 1(a) shows the real part of the band structure for

the SC we are dealing with in this work. We consider a SC

with square periodicity, which lattice constant is, a = 11 cm.

In this case the filling fraction is f = 0.1. Along the work

we will use the normalized units, therefore the normalized

frequency is Ψ = νa/chost . The horizontal dashed line, rep-

resents the frequency under study in this work. The imagi-

nary part of the complex band structures has been recently

exploited to obtain the evanescent properties for the spectral

dispersion relation in SC [27, 31, 42, 44–46]. In this work

we are not interested in the imaginary part of the spectral

dispersion relation but in the imaginary part of the spatial

dispersion relation. Figures 1(b) and 1(c) show the real and

the imaginary parts of the isofrequency contours at the fre-

quency under study respectively. We notice that imaginary

isofrequency curves appear for the ranges of angles where

no real isofrequency lines are predicted. As a consequence,

an angular BG appears from the real part of the isofrequency

contours and its evanescent behaviour is characterized by the

imaginary part. It is worth noting that the real part of the

spatial dispersion relation obtained using EPWE, coincides

with the real part obtained using PWE.

Due to the presence of this imaginary part of the isofre-

quency contours, an exponential decay appear at this angles

which decay rate depends on the imaginary part of the value

of the wave vector (of the isofrequency contours). Thus, one

can expect for finite structures a dependence of the attenua-

tion properties at the angular BG on the number of rows of

the SC, as will be discussed bellow.

3 Experimental Setup

All the experimental results shown in this work have

been measured under controlled conditions in an anechoic

chamber. The analyzed SC is made of aluminum cylinders

embedded in air, with the same filling fraction as in the the-

oretical predictions shown in Section 4.

All the acoustic measurements were recorded using a

free-field microphone 1/2” Type 4189 B&K. Thes micro-

phone was controled by a 3D Robotized e-Acoustic Mea-

surement System (3DReAMS), which is a Cartesian robot

with three axes (X, Y, Z) installed in the ceiling of the ane-

choic chamber. The robot was designed to sweep the micro-

phone through a 3D grid of measuring points located at any

trajectory inside the echo-free chamber. The robot includes

a rotatory column installed on the ceiling of the anechoic

chamber, where the periodic arrays are hung in a frame [47].

The National Instruments cards PCI-4474 and NI PCI-

7334 together with the Sound and Vibration Toolkit and the

Order Analysis Toolkit for LabVIEW were used for both the

data acquisition and the motion of the robot. Once the robo-

tized system is turned off and both the acoustic source and

the microphone are turned on, the microphone acquires the

temporal signal. From this temporal signal, one can obtain

the power spectra, the frequency response or the sound-level

measurement.

4 Spatial complex dispersion

In modulated materials waves acquire different phases

depending on the angles of propagation inside the periodic

system because the curvature of the complex isofrequency

contours depends on the propagating angle. This is the mile-

stone of the geometric interpretation of the spatial dispersion.

The geometrical interpretation of wave diffraction is as fol-

lows: wave beams of arbitrary shape can be Fourier decom-

posed into plane waves, which in propagation acquire phase

shifts depending on their propagation angles. This dephasing

of the plane-wave components results in a diffractive broad-

ening of the beams. Figure 2(a) illustrates normal diffraction

in propagation through an homogeneous material, where the

longitudinal component of the wave vector depends trivially

on the propagation angle. In general, the normal or positive

diffraction means that the surfaces of constant frequency are

concave in the wave vector domain as illustrated in Fig. 2(a).

Negative diffraction, as illustrated in Fig. 2(b), geometrically

implies that the surfaces of constant frequency are convex in

the wave vector domain. The intermediate case of vanishing

diffraction is illustrated in Fig. 2(c), where zero diffraction

is supposed to occur at a particular point in k-space where



Fig. 2. Geometrical interpretation of diffraction of waves propagat-

ing along the z axis: (a) positive, or normal diffraction in propagation

through homogeneous materials; (b) negative, or anomalous diffrac-

tion; (c) zero diffraction. The area of negligible diffraction (for eval-

uation of the minimum size of the nondiffractive beam) is indicated.

Reference [35]. (d) Different regimes considered: a broad beams

with spatial spectra inside the parabolic area of the spatial disper-

sion curve, b beams of intermediate width, with spatial spectra fill-

ing the full width of the isoline of the given band, c narrow beams

with the spatial spectra extending over isolines from the neighbor-

ing bands, and thus overlapping the band gaps in angular domain.

The region denoted by d corresponds to the forbidden angles (band

gaps in space spectra domain). (d) Schematic representation of the

angular BG.

the curvature of the surfaces of constant frequency becomes

exactly zero. Zero diffraction physically means that beams

of arbitrary width can propagate without diffractive broaden-

ing. Therefore, the comprehensive study of the isofrequency

surfaces provide crucial information to properly understand

diffraction inside crystals for sound frequencies outside the

BG. This allows the management of spatial dispersion i.e.,

the diffraction properties of narrow beams.

4.1 Negative curvature. All Angle Negative Refraction

A negative refraction index would allow a flat slab of a

material to behave with special properties as for example a

left handed material or as a lens. Concerning periodic struc-

tures, one can achieve negative refraction in two different

ways. The first way is based on the double negativity of the

effective parameters [48,49] in metamaterials. The other way

arises from the negative curvature of the isofrequency con-

tours [37, 38], in which the periodic structure have an effec-

tive refractive index controlled by the band structures. The

properties of the SC in the range of frequencies above the

first BG, where the wavelengths are much smaller than the

lattice constant in SC, were used by Yang et al. [39] to in-

troduce the negative refractive index in the field of the SC.

The authors claim that the relationship between the phase

velocity and the wave vector in the second band suggests

that both focusing and large negative refraction phenomena

may occur. The negative refraction behavior and imaging

effect in periodic structures have been also experimentally

observed [40]. Negative-refraction and imaging effects of

surface water waves by a periodic structure were also theo-

retically and experimentally demonstrated recently [50]. The

anomalous features of negative refraction open the door to a

variety of applications.

It has been observed that one can also obtain imaging

without negative refraction index. At the end of the first

band, near the band edge, the band becomes curved and, as

a consequence, group velocity inside the crystal is a function

of frequency. At this stage the spatial dispersion relation is

relevant. At these frequencies all-angle negative refraction

has been observed without negative effective index around

the ΓM (45◦) direction. At the M point, the curvature of the

isofrequency contour (∂2ω/∂ki∂k j) is negative, i.e., the con-

tour is convex and represents inward-pointing group veloci-

ties. As a consequence, for frequencies corresponding to all-

convex contours, negative refraction occurs. Then, negative

refraction can be observed also in the first band where neither

a negative group velocity nor a negative effective index is a

prerequisite for negative refraction. The phenomenon of the

all-angle negative refraction in SC was observed, showing

a strong dependence on the frequency and on the incidence

angles [41].

4.2 Flat isofrequency contours: Self-collimation or zero

diffraction.

The propagation of waves through a periodic system

is mainly characterized by dispersion, leading to a strong

scattering of the waves in multiple directions, but there is a

fascinating effect, originally named self-collimation or sub-

diffraction in which a beam propagates in the periodic system

without apparent diffraction keeping its original size. Usu-

ally, this phenomenon appears at high propagating bands,

where flat isofrequency contours can be obtained. This phe-

nomenon has been experimentally demonstrated to date for

different frequency ranges of electromagnetic waves, in par-

ticular in the optical [33] and microwave [34] regimes. In

the acoustic counterpart, subdiffractive propagation of sonic

waves in phononic (or sonic) crystals was reported to oc-

cur in 2D SC’s [35, 36]. It is worth noting that this sub-

diffractive sonic beams are supported by crystals with per-

fect symmetry, therefore do not require the presence of de-

fects, different from other waveguiding phenomena previ-

ously reported. Experimental realization of the acoustic self-

collimation of an ultrasonic beam inside a three-dimensional



Fig. 3. Analysis of the scattering problem using multiple scattering

theory. (a), (b) and (c) represent the pattern of the absolute value of

the pressure for a linear source, a linear source inside (in the middle

of the SC) a 6×6 PC and a linear source inside a 16×16 PC respec-

tively. (d), (e) and (f) show the polar profiles of the absolute value

of the pressure for different radial distances from the source in each

SC.

3D sonic crystal was also reported. The crystal is formed

by two crossed steel cylinders structures in a woodpilelike

geometry disposed in water. Measurements of the 3D field

distribution show that a narrow beam, which diffractively

spreads in the absence of the sonic crystal, is strongly col-

limated in propagation inside the crystal, demonstrating the

3D self-collimation effect.

4.3 Angular band gaps.

In addition to BG in the band structure (spectral dis-

persion relation), the periodic structure can also modify the

spatial dispersion, allowing the managing of the diffractive

broadening of beams [32, 35, 36]. The interaction of the

spatial spectrum of the incident wave with the isofrequency

curves of the modulated material can produce different fo-

cusing regimes depending on the curvature of the isolines in
~k-space, one example is the self-collimation discussed above.

On the other hand, there are angles in which no isolines exist

in the~k-space and this results in angular BGs.

Due to the fact that there are no isolines for certain an-

gles, no projection of the wave vector of the incident wave on

the isofrequency line is achieved. As a consequence, prop-

agation is not allowed at these angles for a given frequency.

These angular BGs have been usually interpreted with the

classical isofrequency lines obtained from the ω(~k) relations.

Figure 2(d) shows an schematic interpretation of the angular

BG. There are frequencies in which the wave vectors of the

incident wave do not reach any isofrequency contour, there-

fore this wave vector cannot excite Bloch mode. The region

covered by red area in Figure 2(d) corresponds to this situ-

ation, and it represents the forbidden angles (BGs in space

spectra domain), which constitutes the interest of this Sec-

tion.

As in the case of spectral BGs, angular BGs exist be-

cause of the presence of evanescent waves. In this Section we

study these evanescent waves. We solve the inverted problem

k(ω) and we compare both theoretically and experimentally

Fig. 4. Experimental analysis of the angular band gaps. We have

analyzed three cases: 5, 7 and 9 rows. (a) Experimental polar map

of the sound pressure level spectrum for the case of 9 rows. Color

scale represents the sound pressure level. (b) Cuts at the analyzed

frequency for the three analyzed cases.

the values of the scattering problem in finite structures. The

eigenvalue problem is solved using the EPWE [42,43,46,51]

and the scattering problem is solved using the multiple scat-

tering theory [52,53]. We obtain complex isofrequency con-

tours at angles in which angular BGs are predicted. As we

have previously discussed, due to the complex value of the

wavevector in periodic media, the isofrequency contours can

be represented in terms of the real and imaginary part of~k.

The real part is related with the propagating properties of the

wave whereas the imaginary part is related with the evanes-

cent properties.

We start with the analysis of the finite structures using

multiple scattering theory. Figures 3(a), 3(b) and 3(c) show

the maps of absolute value of the pressure (amplitude) at Ψ=
0.58 for three different cases: (a) an isolated line source, (b)

a line source in the middle of a 6×6 SC and (c) a line source

in the middle of a 16×16 SC respectively. For these three

cases we show in 3(d), 3(e) and 3(f) the polar plots. Note

that, as we increase the number of rows, there are angles at

which the attenuation increases. This can be interpreted by

the presence of evanescent waves in such directions.

Now we recover the isofrequency contours obtained in

Section 2. We pay special attention to the imaginary part

of the spatial dispersion relation. At some given directions

evanescent lobes appears, corresponding to angles in which

attenuation occurs. Due to the presence of evanescent waves,

attenuation is expected to increase as the number of rows in



the SC increases.

The next step consist of comparing both Fig. 1(c) with

the insets in Fig. 3. On one hand we observe that for an-

gles at which an evanescent lobe is predicted, a strong am-

plitude decrease at the polar plot appears. Moreover the

larger the number of rows the deeper the trough in amplitude.

On the other hand, we can also observe a focused beam at

ΓM direction, due to the convexity of the isofrequency con-

tours at point M (as we have explained in the previous Sec-

tion). Therefore, at ΓM direction a focused beam appears

but around this focused beam, one can clearly see the angu-

lar BGs.

In order to experimentally assess the presence of evanes-

cent waves at different directions of propagation, we use a

2D SC composed by a square lattice of cylindrical scatterers

truncated in a triangular outer shape. The source is oriented

at the ΓM direction (45◦) of the crystal. The microphone

positions are controlled by 3DReAMs (see Section 3) in or-

der to measure at the points located in a circular trajectory

around the SC. These positions correspond to different di-

rections of propagation in the crystal.

The experimental polar maps of the values of pressure

for the case of a SC made of 9 rows is shown in Fig. 4(a).

This polar map represents the frequency response of a finite

periodic array. Each radial line represents the sound pressure

level (SPL) spectrum for a given incidence angle. Normal-

ized units with respect to both the lattice constant and the

host material are used in the representation (Ψ = νa/chost).

It is worth to highlight the complexity shown in the polar

map of the finite structure and how we can identify for ex-

ample the spectral band gap due to the spectral dispersion

relation. But our interest in this work is focused on the spa-

tial dispersion relation. In this sense, one can observe the

effect of the evanescent behaviour in the direction where an

angular band gap is predicted by theory (shown by black ar-

rows). Three different configurations have been measured

by removing rows of scatterers in the crystal: 5 rows, 7 rows

and 9 rows. The angular cuts of SPL for these three cases

are shown in Fig. 4(b) using red continuous line with red cir-

cles, blue continuous line with blue square and brown con-

tinuous line with brown triangles respectively. One can see

the troughs in the sound pressure level in the position of the

angular BGs. On the other hand, the decreasing of the val-

ues of SPL at this directions as we increase the number of

rows is a clear effect of the presence of evanescent waves.

Thus, experimental results show that there is a close relation

between evanescent waves and the presence of the angular

(spatial) filtering.

5 Conclusions

The presence of the evanescent waves has been found

of fundamental interest to theoretically and experimentally

interpret phenomena based on the spatial complex relation

dispersion, such us the presence of angular band gaps. Then,

both the propagating (real part of the complex relation dis-

persion) and the evanescent (imaginary part) properties of

these systems are necessary to explain the control of the

diffraction and the diffusion of acoustic waves with periodic

structures. Finally, the properties of these systems are inde-

pendent of the spatial scale of the structure, and as a conse-

quence the control of phonons by means of periodic systems

could be a promising area [54–57]. Therefore, in principle

all phenomena could be observed in micro- or nano-scale

phononic (so called hypersonic [58]) crystals, and evanes-

cent waves can play an important role. At these scales

phonons are intimately related to thermal effects and the

ideas presented in this work could find relevance also for heat

management in acoustical or acousto-optical devices.
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