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Abstract

The RAFU (radical functions) method is an original and unknown
approximation procedure we can use in Approximation Theory. We
know that the RAFU method provides a linear space uniformly dense
in C [a, b] by using some separation conditions. In this work, we will
show we can employ the RAFU method to approximate functions of
C0 (R) and C00 (R), Riemann integrable functions, Lebesgue integrable
functions, functions of Lp [a, b] and Lp (R), 1 ≤ p < ∞ and measurable
functions. Moreover, Riemann integrals can be approximated by the
integrals of the functions that the RAFU method provides.
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1. Introduction

Let f be an arbitrary function defined in [a, b] and let a = x0 < x1 < ... <
xn = b be a partition of [a, b] for each natural n. The RAFU method on
approximation is an approximation procedure to the function f by a sequence
of radical functions (Cn)n defined by the formula

(1.1) Cn(x) = f(x1) +

n
∑

p=2

[f(xp)− f(xp−1)] · Fn (xp−1, x)

being Fn (xp, x) =
2n+1

√
xp−a+ 2n+1

√
x−xp

2n+1
√

b−xp+ 2n+1
√

xp−a
, p = 1, ..., n− 1.
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Blasco-Moltó [5], Tietze, Jameson, Mrowka and Garrido-Montalvo (see [6]),
and recently Gassó-Hernández-Rojas [7] have studied the uniform density of a
linear space of C (K) where K is a compact Hausdorff space. In [2] we proved
that the called RAFU linear space is uniformly dense in C [a, b] by using a

S-separation condition due to Blasco-Moltó [5] or its equivalent S
′

-separation
condition due to Garrido-Montalvo [6]. This result was also obtained taking
into account that the mentioned linear space S-separates Lebesgue-sets of [a, b]
[7]. This proof was not possible from well-known Kakutani-Stone’s Theorem or
Stone-Weierstras’ Theorem because the RAFU linear space is not a lattice or
an algebra. About basic properties of the RAFU method on C [a, b], the reader
can see [3].

The RAFU method can be used to uniformly approximate a continuous
function f from average samples of the values f(xj), from linear combinations of

f(xj) and f(xj+1) and from local average samples given by
(

χ[−h
2
,h
2 ]

⋆ f
)

(x).

Moreover, if the data f(xj) or average samples or local average samples are
unknown, but approximate values of them are known, then it is also possible
to obtain the uniform reconstruction of f . Such problems have been studied
by many authors, for example, H. Behforooz, E.J.M. Delhez, F.G. Lang and
X.P. Xu, T. Zhanlav and R. Mijiddorj, J. Huang and Y. Chen, J. Bustamante,
R.C. Castillo and A.F. Collar. In [4] we solved all these problems with the only
condition that f ∈ C [a, b] and we gave error uniform bounds in each case.

The radical functions defined as (1.1) approach very well to the step func-
tions [3]. On the other hand, it is well-known that the step functions are dense
in many spaces of functions, so our aim in this work will be to prove that these
radical functions can also be dense in all these spaces.

The paper is organized as follows. In Section 2 we will recall some basic
results about the uniform approximation on C [a, b]. In Section 3 we will ap-
proach functions of the spaces C0 (R) and C00 (R). The Riemann integrable
functions will be approximated with the RAFU method in Section 4. More-
over, the integral of a Riemann integrable function will be approximated by
the sequence of integrals of the functions that the RAFU method provides.
This approximation procedure will serve to approach the Lebesgue integrable
functions in Section 5. Section 6 is devoted to approximate elements of Lp [a, b]
and Lp (R), 1 ≤ p < ∞. In Section 7 the RAFU method will be employed to
approach measurable functions.

2. Uniform approximation on C [a, b] with the RAFU Method

Consider an arbitrary step function defined [x0, xm] by

(2.1) f(x) = k1 · χ[x0,x1] +

m
∑

p=2

kp · χ(xp−1,xp], ki ∈ R
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Then, the sequence of radical functions (Cm,n)n given by the formula

(2.2) Cm,n(x) = k1 +

m
∑

p=2

[kp − kp−1] · Fn (xp−1,m, x)

where

Fn (xp−1,m, x) =
2n+1

√
xp−1 − x0 + 2n+1

√
x− xp−1

2n+1
√
xm − xp−1 + 2n+1

√
xp−1 − x0

, p = 2, ...,m

verifies the following results.

Proposition 2.1. Let f be the function defined by (2.1). For any β > 0 such
that (xi − β, xi + β)∩(xj − β, xj + β) = ∅ where i 6= j and i, j ∈ {1, ...,m− 1}
the limit

lim
n→+∞

Cm,n = f

is uniform on [x0, x1 − β] ∪ [x1 + β, x2 − β] ∪ ... ∪ [xm−1 + β, xm].

Proposition 2.2. Let β > 0 be such that (xi − β, xi + β)∩ (xj − β, xj + β) =
∅ where i 6= j and i, j ∈ {1, ...,m− 1}. Then, for all ε > 0, there exists n0 ∈ N

such that for n > n0 it follows that
1. | Cm,n(x)− f(x) |<| kj+1 − kj | +ε
2. |Cm,n(x)− (kj · (1 − α) + kj+1 · α)| < ε
where x ∈ (xj − β, xj + β), j = 1, ...,m− 1 and α ∈ (0, 1).

Let a = x0 < x1 < ... < xn = b be a partition of [a, b] with xj = a+ j · b−a
n

,

j = 0, ..., n. Define by ∁n the subset of C [a, b] formed by the functions
Cm,n with m = n. In this case, the functions Cn,n = Cn have the form
Cn(x) = k1 +

∑n

p=2[kp − kp−1] · Fn (xp−1, x) where

Fn (xp−1, x) =
2n+1

√
xp−1 − x0 + 2n+1

√
x− xp−1

2n+1
√
xn − xp−1 + 2n+1

√
xp−1 − x0

, p = 2, ..., n

Theorem 2.3. Let ∁ be the set defined by ∁ = ∪n∈N∁n. Then ∁ is a linear
space uniformly dense on C [a, b].

Besides to prove the uniform density of ∁ in C [a, b], we also know the ex-
pression of each term Cn of the sequence (Cn)n which converges uniformly to
f in [a, b]:

(2.3) Cn(x) = f(a) +

n
∑

j=2

[f(xj)− f(xj−1)] ·
2n+1

√
xj−1 − a+ 2n+1

√
x− xj−1

2n+1
√

b− xj−1 + 2n+1
√
xj−1 − a

with xj = a+ j · b−a
n

, j = 0, 1, ..., n.
Next result deals about the degree of uniform approximation of the RAFU

method.
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Theorem 2.4. Let f be a continuous function defined in [a, b]. Then, there
exists a sequence of radical functions (Cn)n defined in [a, b] as (2.3) such that

|Cn(x)− f(x)| ≤ M −m√
n

+ ω

(

f,
b− a

n

)

for all n ≥ 2 being M and m the maximum and the minimum of f in [a, b]
respectively and ω

(

f, b−a
n

)

its modulus of continuity.

Proofs of these results are in [2, 3].

3. Approximation on C0 (R) and C00 (R)

Definition 3.1. C0 (R) is the space of all continuous functions on R such that
lim

|x|→∞
f(x) exists and equals 0.

C00 (R)is the space that consists of those functions on R with compact sup-
port.

Note that the functions Cn defined on [a, b] as (2.3) can be defined on R

by the same formula. In this case, it is easy to check that these functions
verify lim

n→∞
Cn(x) = f(a) for all x ∈ (−∞, a] and lim

n→∞
Cn(x) = f(b) for all

x ∈ [b,+∞).
If f ∈ C00 (R) there exists M > 0 such that f(x) = 0 if |x| ≥ M . Then the

sequence (Cn)n, defined on R as (2.3) being a = −M and b = M , verifies that
lim
n→∞

Cn = f uniformly on [−M,M ] and lim
n→∞

Cn(x) = f(x) = 0 for all |x| ≥ M .

Let f be an element of C0 (R). Given ǫ > 0, there exists Nǫ such that
|f(x)| < ǫ if |x| > Nǫ. For these ǫ > 0 and Nǫ, there is a function Cn,ǫ, defined
on R as (2.3) by considering a = −Nǫ, b = Nǫ and by requiring Cn,ǫ to have
the values 0 at the points ±Nǫ, such that |f − Cn,ǫ| < ǫ on [−Nǫ, Nǫ]. Thus,
we can construct a sequence (Cn)n defined on R such that lim

n→∞
Cn(x) = f(x)

for all x ∈ R. Moreover, this limit becomes uniform on each interval [−Nǫ, Nǫ].

4. Approximation to a Riemman integrable function

Proposition 4.1. Let f be a bounded real-valued function on [a, b]. If f is
Riemann integrable on [a, b], then there is a sequence of radical functions (Cn)n,
defined as (2.3), such that lim

n→∞
Cn = f uniformly on [a, b] except in a null set

D.

Proof. It is well-known that there is a sequence of step functions (Em)m defined
on [a, b] which converges uniformly to f on [a, b] except in a null set D that
contains the points in which f is not continuous.

Given ǫ > 0, ∃n1 ∈ N such that if m ≥ n1, then |Em − f | < ǫ
3 on the

compact C = [a, b]−⋃∞
n=1 (an, bn) where

∑∞
n=1 (bi − ai) < ǫ. By Proposition

2.1, ∃n2,m ∈ N such that |Cn − Em| < ǫ
3 on

([

x0, x1 −
1

K

]

∪
[

x1 +
1

K
,x2 −

1

K

]

∪ ... ∪
[

xm−1 +
1

K
,xm

])

∩C
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if n ≥ n2,m, for some large K = K0. Fixed this K0 there exists n3,m ∈ N

such that |Cn − Em| <
∣

∣f(xj+1)− f(xj)
∣

∣ + ǫ
3 on

⋃m

j=1

(

xj − 1
K0

, xj +
1
K0

)

∩
C, if n ≥ n3,m. Since

∣

∣f(xj+1)− f(xj)
∣

∣ < ǫ
3 because

∣

∣xj+1 − xj
∣

∣ < δ then

|Cn − Em| < 2ǫ
3 on

⋃m
j=1

(

xj − 1
K0

, xj +
1
K0

)

∩ C.

Thus, for n ≥ max {n2,m, n3,m}, it verifies that |Cn − f | ≤ |Cn − Em| +
|Em − f | < ǫ and the proof is complete. �

Now we suggest the following approximation to the integral of a Riemann
integrable function f by using the RAFU method.

Lemma 4.2. Let Em be a step function on [a, b] defined as (2.1). Then, the

sequence (Cm,n)n defined from Em verifies that lim
n→∞

∫ b

a
Cm,n =

∫ b

a
Em.

Proof.

lim
n→∞

∫ b

a

Cm,n(x)dx = lim
n→∞

∫ b

a

(

k1 +

m
∑

p=2

[kp − kp−1] · Fn (xp−1,m, x)

)

(x)dx

= lim
n→∞

(k1 · (b− a) +

m
∑

p=2

(

(kp − kp−1) · (b− a) · 2n+1
√
xp−1 − a

2n+1
√

b − xp−1 + 2n+1
√
xp−1 − a

)

+
2n+ 1

2n+ 2

·
m
∑

p=2









(kp − kp−1) ·
[

2n+1

√

(b− xp−1)
2n+2 − 2n+1

√

(a− xp−1)
2n+2

]

2n+1
√

b− xp−1 + 2n+1
√
xp−1 − a









)

= k1 · (b− a) +

m
∑

p=2

(

(kp − kp−1) · (b− a)

2

)

+
m
∑

p=2

(

(kp − kp−1) · (b− 2xp−1 + a)

2

)

=

m
∑

i=1

ki · (xi − xi−1) =

∫ b

a

Em

�

The expression

In (Cm,n) =

[

k1 +

m
∑

p=2

(

(kp − kp−1) · 2n+1
√
xp−1 − a

2n+1
√

b− xp−1 + 2n+1
√
xp−1 − a

)]

· (b− a)

+
2n+ 1

2n+ 2
·









m
∑

p=2

(kp − kp−1) ·
[

2n+1

√

(b− xp−1)
2n+2 − 2n+1

√

(a− xp−1)
2n+2

]

2n+1
√

b− xp−1 + 2n+1
√
xp−1 − a








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can be considered a new formula of numerical approximation to the integral
∫ b

a
Em. Thus, if f is a Riemann integrable function, we can approach

∫ b

a
f

taking into account that

∫ b

a

f = lim
m→∞

lim
n→∞

[In (Cm,n)]

5. Approximation to a Lebesgue integrable function

Let I be an arbitrary interval on R and let L (I) be the set of all Lebesgue
integrable functions defined on I.

Proposition 5.1. If f ∈ L (I), then there exists a sequence of radical functions
(Cn)n such that lim

n→∞
Cn = f at almost every point of I.

Proof. If f ∈ L (I), then f = u − v with u, v ∈ U (I), where U (I) is the set
of all upper functions defined on I. In this case, there are sequences of step
functions (sn)n and (tn)n such that u = lim

n→∞
sn at almost every point of I

and v = lim
n→∞

tn at almost every point of I. So f = u − v = lim
n→∞

(sn − tn)

at almost every point of I. Note that s is a step function on I if there is a
compact interval [a, b] ⊂ I such that s is a step function on [a, b] and s(x) = 0
on I − [a, b].

Given K ∈ N, there exists nK ∈ N such that |(sp − tp)− f | < 1
2K at almost

every point of I, if p ≥ nK . Since sp − tp is a step function, there is nK,p ∈ N

such that
∣

∣

∣Cp
mp,n

− (sp − tp)
∣

∣

∣ < 1
2K at almost every point of I, if n ≥ nK,p.

So, if n0 = max {nK , nK,p} and n ≥ n0, then

∣

∣

∣
Cp

mp,n
− f

∣

∣

∣
<
∣

∣

∣
Cp

mp,n
− (sp − tp)

∣

∣

∣
+ |(sp − tp)− f | < 1

K

at almost every point of I. We take into account that the countable union of
null sets is a null set. The sequence (Cn)n we want to obtain can be constructed
by considering suitable Cn = Cp

mp,n
for each p. �

Let I be a set defined by I = I1 ∪ I2 where I1 and I2 are intervals such that
I1 ∩ I2 = ∅. Suppose that f1 ∈ L (I1) and f2 ∈ L (I2). Then, it is well-known
that the function f defined by requiring to have value f1(x) at each point in I1
and to have value f2(x) at each point in I2 is a function that belongs to L (I)
and

∫

I
f =

∫

I1
f1 +

∫

I2
f2. So, the radical functions Cm,n defined as (2.2) can

approach this function f ∈ L (I).

6. Approximation on Lp [a, b] and Lp (R), 1 ≤ p < ∞
Let ([a, b] ,A, µ) be a measure space, where A is the σ- algebra of Borel sub-

sets of [a, b] and µis the restriction of Lebesgue measure toA. Let Lp ([a, b] ,A, µ)
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be the set of all A-measurable functions f : [a, b] → R such that |f |p is inte-
grable. The function ‖·‖p : Lp ([a, b] ,A, µ) → R defined by

‖f‖p =

(

∫ b

a

|f |p dµ
)

1
p

is a seminorm. Let Lp ([a, b] ,A, µ) be the set formed by identifying functions
in Lp ([a, b] ,A, µ) that agree almost everywhere.

We shall use Lp [a, b] and Lp [a, b] as abbreviations for Lp ([a, b] ,A, µ) and
Lp ([a, b] ,A, µ) respectively.

Proposition 6.1. The radical functions of the type (2.2) defined on [a, b] are
dense in Lp [a, b].

Proof. Of course, each continuous function defined on [a, b] as (2.2) belongs
to Lp [a, b]. Since the step functions on [a, b] determine a dense subspace of
Lp [a, b], it is enough to prove that for each step function f and each positive
number ǫ, there is a radical continuous function Cm,n of the type (2.2) defined
on [a, b] that satisfies ‖f − Cm,n‖p < ǫ. So, let f be a step function on [a, b],

then there are real numbers a = x0 < x1 < ... < xm = b such that f takes
a constant value ki on each interval (xi−1, xi). Define, for each n ∈ N, the
radical continuous function Cm,n by the formula (2.2) at each point x on [a, b].
Denote M = sup {|f(x)| : x ∈ [a, b]}, Aβ = [x0, x1 − β]∪ [x1 + β, x2 − β]∪ ...∪
[xm−1 + β, xm] and Bβ =

⋃m−1
j=1 (xj − β, xj + β). In this case, we can put

∫ b

a

|f − Cm,n| dµ =

∫

Aβ

|f − Cm,n| dµ+

∫

Bβ

|f − Cm,n| dµ

Let δ be a positive number. It is possible to find β > 0 such that µ (Bβ) < δ.
Moreover we know that there exists n1 ∈ N such that |f − Cm,n|p < (2M + δ)

p

on Bβ for all n ≥ n1 by Proposition 2.2. On the other hand, for this fixed
β > 0, there exist n2 ∈ N such that |f − Cm,n|p < δp on Aβ for all n ≥ n2 by
Proposition 2.1.

Then, for n ≥ max {n1, n2}
∫ b

a

|f − Cm,n| dµ ≤ δp · (b− a) + (2M + δ)
p · δ

Since δ is arbitrary and M depends only on f , this proof is complete. �

Let us call a function on R a step function if for each interval [a, b] its
restriction to [a, b] is a step function. Analogous of Proposition 6.1 holds for
Lp (R,A, µ) where A and is the σ- algebra of Borel subsets of R and µ is the
Lebesgue measure on R if we replace the set of step functions on [a, b] with the
set of step functions on R that vanish outside some bounded interval, and if we
replace the set of radical continuous functions on [a, b] with the set of radical
continuous functions on R that vanish outside some bounded interval.
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7. Approximation to a measurable function

The function f = 1 is the limit of step functions on R, however f is not
a Lebesgue integrable function, f /∈ L (R). So, the set of functions that are
limit of step functions, namely M (R), contains the set of Lebesgue integrable
functions L (R).

Theorem 7.1. Let I be an arbitrary interval on R and let f ∈ M (I). Then
there exists a sequence of radical continuous functions (Cn)n defined as (2.3)
such that lim

n→∞
Cn(x) = f(x) at almost every point of I.

Proof. If f ∈ M (I), then there exists a sequence of step functions (sn)n on I
such that lim

n→∞
sn(x) = f(x) at almost every point of I.

Given K ∈ N, there is nK ∈ N such that |sp − f | < 1
2K at almost every

point of I, if p ≥ nK . Since sp is a step function, there exists nK,p ∈ N such

that
∣

∣

∣Cp
mp,n

− sp

∣

∣

∣ < 1
2K at almost every point of I, if n ≥ nK,p.

So, if n0 = max {nK , nK,p} and n ≥ n0 then
∣

∣

∣Cp
mp,n

− f
∣

∣

∣ <
∣

∣

∣Cp
mp,n

− sp

∣

∣

∣+ |sp − f | < 1

K
at almost every point of I. We take into account that the countable union of
null sets is a null set. The sequence (Cn)n we want to obtain can be constructed
by considering suitable Cn = Cp

mp,n
for each p. �

Let f be a function defined on an arbitrary interval I and suppose that
(fn)nis a sequence of measurable functions on I such that lim

n→∞
fn(x) = f(x)

at almost every point of I. Then, it is well-known that f is measurable on
I. There are no measurable functions but this result shows us that it is not
easy to construct examples of them. So, by means of the RAFU method on
approximation we can approach almost all functions defined on an arbitrary
interval I.
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