
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.scico.2012.06.010

http://hdl.handle.net/10251/43659

Elsevier

Catalá Bolós, A.; Pons, P.; Jaén Martínez, FJ.; Mocholi Agües, JA.; Navarro Martínez, EM.
(2013). A meta-model for dataflow-based rules in smart environments: Evaluating user
comprehension and performance. Science of Computer Programming. 78(10):1930-1950.
doi:10.1016/j.scico.2012.06.010.



 

 

 

 

This is a preprint copy of the article “A meta-model for dataflow-based rules in smart environments: Evaluating 
user comprehension and performance”. Please, use the link below to find the final published version and its 
complete reference. 
 

 

Alejandro Catala, Patricia Pons, Javier Jaen, Jose A. Mocholi, Elena Navarro, A 

meta-model for dataflow-based rules in smart environments: Evaluating user 

comprehension and performance, Science of Computer Programming, Volume 78, Issue 

10, 1 October 2013, Pages 1930-1950, ISSN 0167-6423, 

http://dx.doi.org/10.1016/j.scico.2012.06.010. 

(http://www.sciencedirect.com/science/article/pii/S0167642312001232) 

Keywords: Ambient intelligence; Customization; Dataflow; Visual language; Rule; 

Event based; Non-expert programmer; Smart home 

 



 

A Meta-Model for DataFlow-Based Rules in Smart Environments: 

Evaluating User Comprehension and Performance 

 

 

Alejandro Catala1, Patricia Pons1, Javier Jaen1, Jose A. Mocholi1, Elena Navarro2 

1Grupo ISSI, Departamento de Sistemas 

Informáticos y Computación 

Universitat Politècnica de Valencia 

Camino de Vera s/n, 46022, Valencia, Spain 

{acatala, ppons, fjaen, jmocholi}@dsic.upv.es  

2Departamento de Sistemas Informáticos 
Universidad de Castilla-La Mancha, 02071 

Albacete, Spain 

enavarro@dsi.uclm.es 

 

 
Abstract 

A considerable part of the behavior in smart environments relies on event-driven and rule specification. Rules are the 

mechanism most often used to enable user customization of the environment. However, the expressiveness of the rules 

available to users in editing and other tools is usually either limited or the available rule editing interfaces are not 

designed for end users with low skills in programming. This means we have to look for interaction techniques and new 

ways to define user customization rules. This paper describes a generic and flexible meta-model to support expressive 

rules enhanced with data flow expressions that will graphically support the definition of rules without writing code. An 

empirical study was conducted on the ease-of-understanding of the visual data flow expressions, which are the key 

elements in our rule proposal. The visual dataflow language was compared to its corresponding textual version in terms 

of comprehension and ease of learning by teenagers in exercises involving calculations, modifications, writing and 

detecting equivalences in expressions in both languages. Although the subjects had some previous experience in 

editing mathematical expressions on spreadsheets, the study found their performance with visual dataflows to be 

significantly better in calculation and modification exercises. This makes our dataflow approach a promising 

mechanism for expressing user-customized reactive behavior in AmI environments. The performance of the rule 

matching processor was validated by means of two stress tests to ensure that the meta-model approach adopted would 

be able to scale up with the number of types and instances in the space. 

Keywords- Ambient Intelligence; Customization; Dataflow; Visual Language; Rule; Event based; Non-expert 

programmer; Smart Home. 

1. Introduction 

Many areas of computer research are now involved in developing the Ambient Intelligence (AmI) of the 
future [1][2], in which computers will actually disappear [3] and users will be offered intelligent, easy-to-use 
and effective services autonomously and transparently [4]. 

Much of this effort has been focused on the common objective of improving ubiquity, which has 
involved the development of architectures [5][6][7][8][9], discovery, aggregation, interpretation and service 
composition infrastructures capable of dealing with the heterogeneity of both the devices involved and the 
contextual information they supply [10][11], as well as providing adaptation mechanisms [12]. A lot of 
attention has also been given to the development of intelligence in subsystem sensing [13][14], mainly in 
activity sensing [15] and context sensing [16][17], with the idea of being able to provide services 
autonomously in accordance with user needs at different times. 

Although proactivity and capacity for adaptation are absolutely necessary for the achievement of the 
concept of AmI, they entail a radical change in understanding the human-computer interaction, since to a 
certain extent they reduce the user’s explicit interaction and increase automation. AmI is indeed user-
centered, but in the search for implicit and autonomous interaction we are abandoning knowledge previously 
acquired in other types of studies on the user’s role in configuration and adaptation. 

Due not only to the heterogeneity of devices and appliances but also to the variability of situations and 
user preferences, even in specific application domains such as smart homes, it seems an almost impossible 
task at the present time to make infrastructures adapt themselves autonomously to real needs in all 
circumstances [18][19]. Not all situations can be easily learned, nor can system responses be correctly 
suggested for all users. 



Of course we must not stop looking for more autonomous and intelligent systems, but neither must we 
overlook the knowledge provided by user personalization, as suggested by Weis [20], since it would 
probably facilitate the progressive development of AmI and would be closer to user requirements in 
exchange for obtaining greater explicit user interaction during the personalization stages. 

Other authors have already seen the need for personalization in order to facilitate adaptation and 
configuration of systems in intelligent environments that contain all the possible user-based variability 
points [21]. However, in some of these studies, the tools are usually meant for designers, developers in their 
respective frameworks, or skilled end-users, but not really for users without or low programming skills 
[22][23]. In addition, in the proposals that include tools with interfaces for non-skilled users, more than 
personalization, they either allow rapid development of prototypes [24][25] or provide for the visual 
expression of simple rules, which, although powerful enough in certain cases, is somewhat limited in the 
application domain [26][27]. It would therefore be advantageous to explicitly involve the final users and 
allow them to provide part of the desired configuration for system adaptation, since they will be familiar 
with their own environment and their requirements. In this way the system will not have to depend 
exclusively on totally learned or automatic information, or information that has been encoded by developers 
and/or designers. 

In the search of a generic tool to support personalization by non-expert programmers in the future AmI 
environments, we are combining the concept of rules with data flows in such a way that expressive rules can 
be specified and providing a language for reactive rules constructed around the concept of an ecosystem of 
entities. This enhancement in the level of expressiveness of the language to personalize smart environments 
must be manageable by users with either low skills in programming or at least certain digital literacy. 
Nowadays most young people are able to handle multiple computer applications from an early age, thus 
developing computational-thinking skills [28]. Since it is a generic and not a limited domain-specific 
language, it is highly advisable to evaluate the comprehension of the data flows involved as a formalism in 
the rule model, in such a way that we can say that the mechanism is certainly adequate for the task in spite 
of the inherent complexity of the language. Therefore, a first empirical study has been carried out with a 
group of adolescents. They have just been taught the basic computational concepts at school for the first 
time, and they represent the base of users with certain digital literacy as expected in the future inhabitants of 
future intelligent environments. Moreover, such a language must not compromise the performance of the 
systems, which have to select the right personalization behaviors to be enacted. In other words, as a 
secondary but not less important goal, the proposed expressiveness must be supported by effective 
enactment engines. Departing from a basic prototype [29] and the associate management middleware built to 
validate the viability of its construction, the performance of the implemented rule model was evaluated to 
demonstrate that the expressiveness of the proposed language is effectively supported at runtime. 

The remainder of the paper is organized as follows: Section 2 describes some relevant related work 
oriented to provide customization by users. Section 3 presents ECAMI, describing the reactive rule model 
used as well as the meta-model behind it, and comparing it with previous proposals. Section 4 reports on the 
experimental evaluation performed on two aspects of our proposal. The first part presents a study on the use 
of data flows like those used in the rules by young non-expert programmers, and the second, consists of a 
verification that the rule engine performs asymptotically as expected for supporting a large number of 
entities in the AmI environment. Finally, a summary is given of the work’s most important points, together 
with its achievements and a description of future research. 

2. Related Work 

This section describes a number of studies aimed at providing a mechanism for users to specify a 
behavior so that the system can be better adapted to their needs. Sohn and Dey [24] present a context-aware 
application prototyping tool which does not require coding and instead uses a graphical interface based on 
window controls, which allows context and devices to be collected and rules to be constructed (IF-THEN) 



from them by taking only logical-relational operators and restrictions on types of complex conditions, with 
final testing in the devices or in a simulation environment. Even though it is really a prototyping support for 
developers, the technique is also considered suitable for end-users to modify context-aware applications. 

The work by Beckmann and Dey in [27] incorporates an intuitive tangible interaction method for end-
users to create control rules. The system relies on tangible pieces to represent rule conditions, which 
generally have real-world counterparts (e.g. a thermostat) using a metaphor for World-In-Miniature. The 
supported rule expressiveness allows the combination of up to three basic conditions and the invocation of 
predefined state changes in the environment. 

A rule-based approach to control context-aware application behavior is used, and two rule builders are 
presented intended for end-users in the work by Zhang and Bruegge [26]. One is a window-based editor, 
focused on tabs, lists and checkbox controls, providing direct representation of rule concepts. The other is 
targeted at PDA devices and the user interface provides a user-friendly exemplar-based approach using 
puzzle-like pieces. In this, a conjunction of basic conditions can be expressed, and the action consists of 
mounting domain-specific icons together that represent service invocation or state changes. The user study 
reports that the PDA graphical user interface allowed users to define rules quicker with substantially less 
help. They made fewer mistakes and found it an improvement in terms of usability. 

Dey et al. present in [30] a programming by demonstration context-aware prototyping environment 
intended for end-users. The system provides a series of data streams from different sensor inputs in such a 
way that users can select the input streams required for the behavior they want to express. It also specifies 
the actions to be executed. Machine learning algorithms interpret the annotated streams to determine the 
user’s intention. Since end-users are perfectly familiar with their own activities and environments they are 
able to tell the environment how it should behave.  

The work in [20] presents Nexel, a graphical tool for customizers based on [22], which provides a means 
of personalizing and fitting applications to specific needs as part of the development process for pervasive 
applications based on self-configurable components. The editor allows the user to specify the behavior to be 
used on the occurrence of the events that the devices trigger and can introduce bifurcation and iteration 
structure and instruction control sequences. This is done visually by dragging diverse sequentially connected 
components with different semantics to the specification area (e.g. process, receive, post, loop, etc.). 
However, the customization process is designed to support developers and customizers in development 
situations and not the end-users of the environment. 

Considering end-users or low-experienced programming users should be allowed to specify the behavior 
of their environment, García-Herranz et al. present a rule-based agent system for ubiquitous systems in [31]. 
The system kernel supports powerful Event-Condition-Action (ECA) rule expressiveness as complex 
expressions can be written in their textual form and generic filters can be specified by means of wildcards. 
Several graphical user interfaces have been implemented on top to allow a range of users to control and 
program their smart spaces. One used a drag and drop desktop interface and another consisted of a simple 
GUI based on word tokens. 

The recent work by Bonino et al. described in [32] sketches a visual interface that specifically targets 
non-skilled or low-technological skilled home-dwellers (i.e. non-expert users) based on a drag-and-drop 
metaphor. It relies on a rule grammar based on an IF-THEN structure with optional WHEN and OR-IF 
blocks for expressing conditions and rule alternatives. With an emphasis on providing strong visual cues and 
suggestions to facilitate incremental rule construction by end-users, the tool is intended to be implemented 
as a rich web application in the near future, but has not as yet been validated with real non-skilled users. 

3. Rule-Based Behavior with ECAMI 

Non-expert programmer oriented applications and systems are mostly event-based, as it has been 
indicated in [33]. An event-based approximation makes it easier to understand the rules that determine 
behavior, as shown by the results of certain experimental studies in [34][35]. Additionally, since behavior in 



AmI is also event-driven, the rules are considered the ideal mechanism for this purpose [36]. In this section, 
the rule approach is described, presenting its main concerns, such as the simplifications of the environment, 
rule expressiveness and the meta-model, the dataflow approach to expressions and the basic mechanism for 
the enactment of rules. 

3.1. A Simplified View of the Environment 

Instead of taking a specific model in which concepts such as place, service, etc. are explicitly 
distinguished, in our work we chose a more generic and flexible approach which is not dependent on any 
concrete domain specific ontology to describe the elements of the smart environment. In this way, the 
backend of the rule definition and enactment systems is responsible for connecting details with the specific 
middleware used to manage the environment. We therefore based our approach on the assumption that the 
ambient intelligent space is simply composed of a set of typed entities that maintain a certain number of 
attribute-value pairs (i.e. properties) as well as the services the entities offer (i.e. actions). Figure 1 shows the 
UML class diagram of the conceptual model supporting entity-types as an aggregation of actions and 
properties that will eventually represent the services. The types of event that can be found in the 
environment are also specified in the model. An ecosystem is thus made up of entities which are instances of 
a definition of entity that specifies their behavior and the information available in terms of such actions and 
properties, abstracting any of the elements that inhabit the ecosystem. The ecosystem can therefore contain 
the definition of the types of entity for all the physical devices of interest, offering information in the form of 
properties that refer to values read directly by the physical sensors. Entity types can also be offered that 

 
Figure 1. UML class diagram supporting a simplified entity-based vision of the environment. 



represent virtual devices that help to extract specific ambient aspects as required, whose properties refer to 
values derived, aggregated, interpreted, or obtained from physical devices. 

As long as the ecosystem exists, the entities are able to inject event occurrences into the system as the 
system develops. These occurrences correspond to a definition of a type of event. The event occurrences 
triggered by the entities will cause the state of the ecosystem to evolve as the specified rules are 
subsequently instantiated. The complete description of entity types, their actions, properties, event types and 
entities are sustained on a generic meta-model in such a way that the editor described in this work can cover 
a wide variety of scenarios in AmI spaces, provided that the editor backend is coupled to the specific 
middleware for the pervasive applications being used. 

This vision is generic and flexible, as the specific concepts under consideration can change from one 
environment to another or from one deployment to another. Supporting this information with a meta-model 
provides additional benefits. For instance, maintenance and evolution are facilitated in the long term, as both 
seem important given the experimental nature of the field, in terms of introducing new sensors or new data-
gathering abstractions. Moreover, the process of binding this meta-model with the specifics of the 
middleware can rely on an approach based on technological spaces as proposed in [37][38], instead of 
following an ad hoc approach, so that transformations and projections among the ontologies facilitate 
complete consistency and the effective use of tools in producing the system at a reduced cost, even taking 
more elaborated and refined intermediate domain-specific ontologies facilitating knowledge management 
[39]. 

3.2. Rule Expressiveness 

To increase language expressiveness with respect to the previous approaches presented in Section 2, the 
scope of the rules under consideration was expanded to cover the entire ecosystem and were not linked to 
any specific entity. In this way the rules could be defined in a more natural way in which entity populations 
could intervene, instead of having to define a rule for each entity in a collection. This method can be useful 
for involving the same type of entity populations in the rules (e.g. devices of the same type such as 
temperature sensors), thus carrying out joint operations per type (e.g. changing the target temperature of 
several thermostats at once). 

In this context a rule in our approach is formally defined as an ordered pair R = <P, Q>, where P is the 
antecedent and Q is the consequent. The antecedent is defined as P=(E, S, C) where E is the event definition 
that must be thrown by a source S (e.g. an entity), and C is the condition that must hold involving data (i.e. 
entity properties and event attributes) from E and S. The consequent is defined as Q=(T, F, O, {DP}) so that 
T is the target population, F is a condition that filters the entities within the target population to be affected 
by the outcome operation, O is the service operation on every target entity, and {DP} is a set of data 
processes that specify how the operation parameters are established prior to execution. 

Operation O is a service invocation consisting of either the execution of an action or the assignment of a 
value to a property on the target. Consequently, a property assignment entails just a single data process in 
the set {DP}, which would specify how to compute the value to be established on the property. Similarly, if 
the operation is an invoked action then a variable set of data process structures would be needed, one for 
each action parameter. 

The semantics is as follows: if an entity conforming to S throws an event occurrence of type E, and C 
holds, then the rule is triggered and instantiated. Operation O will be executed on those entities that belong 
to the target population T and meet the filter condition F. The operation parameters are established 
according to the data process specifications {DP}. In addition, the rules have an associated priority that 
allows the rule processor to rank them when establishing a prioritized order of execution. The structure of 
the formalized rule is as shown in Figure 2, and several example rules are given in Figure 3. For illustration 
purposes, we used a simple written English syntax at this point in the figures to clarify the conceptual 



structure of a rule. We will later elaborate on the visual and textual languages that support the proposed rule 
model.  

In our proposal, data processes are basically assignment expressions. In this way, the C and F conditions 
are also considered data processes that produce a Boolean outcome that one of the rules conditions must 
take. The language for these expressions embedded in the rule must at least support assignment, arithmetic 
and logical operators with the semantics of general-purpose languages. A grammar describing a textual 
language to define data processes with this expressiveness may be defined as follows: 

 
Instr := Variable '<- ' Expr 

Operand := Variable | Constant | Expr | Func 

Operand_par := ‘(‘ Operand ‘)’ | Operand 

Operator := '+' | '-' | 'x' | 'AND' | 'OR' | 'NOT' | '>' | '<' | '='  

Expr := Operand_par [ Operator Operand_par ] 

Func := Function_name '(' Params ')' 

Params := NIL | ‘(‘ Expr [, Expr]* ‘)’ 

Function_name := 'MAX' | 'MIN' | 'ABS' | ... 

 
This grammar only includes a typical core of functions which has been used in the empirical evaluation 

below, but since the implementation of the rule proposal completely relies on a meta-model, extensibility is 
not difficult for developers allowing other additional functions like DISTANCE and NEAR_AT to be easily 
supported and made available to the users of the language. Figure 3 gives two examples of rules that can be 
defined in the proposed editor for a smart home environment. The upper example refers to a rule which 
would change the representation of the temperature to be displayed in a specific monitor. It also requires an 
extra conversion from Celsius to Fahrenheit of the actual source temperature obtained from the physical 
sensor. The lower example is a bit more complex as it involves source and target populations. The source in 

PRIORITY  __ 
IF S:________________________________THROWS an EVENT E:________ 
[AND C:_________________________________________________________] 
THEN WITH T:________________________ 
[SO THAT F:_____________________________________________________] 
PERFORM O ({DP}):______________________________________________ 

Figure 2. Rule structure. 
 

 
IF S: thermostat1 THROWS an EVENT E: TemperatureChanged 
THEN 
WITH T: monitor_display1 
PERFORM O: Property Assignment (monitor_display1.temperatureF thermostat1.temperature * (9/5) + 

32) 
 
_________________________________________________ 
 
 
IF S: a person of ContextAware_Persons THROWS an EVENT E: Location_Changed  
AND C: condition E.Destination = “Office”  
THEN 
WITH T: entity in Blinds 
SO THAT F: T.Location = E.Destination 
PERFORM Action Execution T.Open (level  (25 * officeLightSensor.DiscreteLightLevel / 100)) 

Figure 3. Example of rules. 



the precondition responds to any person who enters the office, whereas the consequent specifies that all the 
blinds in the office will be opened according to the reading from the light sensor in the room. 
 

3.3. Meta-Model Support for Rules 

As occurred with entities and events which were defined flexibly in terms of a meta-model, rules and 
data processes are also conceptually described in terms of a meta-model supporting the previously discussed 
expressiveness. Figure 4 shows the UML class diagram supporting the formalized rule conceptual model. 

 
Figure 4. UML class diagram supporting rules. 



Firstly, a reactive rule consists of an EventType as defined in Section 3.1, a TargetPopulation and a 
SourcePopulation. Additionally, a precondition expression (PreconditionDataProcess) and a filter condition 
(FilterPreconditionDataProcess) are defined to establish the conditions that must hold to activate the rule 
and determine which target instances the consequent must be applied to. Finally, the operation-binding 
(OperationBinding) defines the operation that must be applied to the elements in the TargetPopulation, 
either a property assignment or an action invocation, and how the operation parameters must be computed 
by means of assignment expressions which are represented as data processes (BindingDataProcess). 

The main concern is considering the specification of the event source as well as the target to be either a 
specific entity in the ecosystem (EntitySourcePopulation and EntityTargetPopulation) or a class of entities. 
In other words, indicating a particular entity (e.g. thermostat in bedroom), or perhaps a type of entity that 
will represent all the entities instantiated from it that are present and operational in the environment (e.g. all 
thermostats). The significance of representing source and/or target populations by means of entity-types 
(EntityTypeSourcePopulation and EntityTypeTargetPopulation) must therefore be kept in mind. If the 
source is defined as an entity-type, the rule will be instantiated if any entity of the type causes the expected 
event. On the other hand, if the rule target population is specified as an entity-type, the rule will be 
instantiated for every entity in the target population. This mechanism has advantages and allows the 
behaviour specification to be simplified when the exact entity is not known in advance or when there are 
various entities of the same type that must behave in exactly the same way (e.g. if all lights must be turned 
on or all blinds lowered in a room). 

In other systems discussed in Section 2 the rules are specified in a simpler way, for example by not 
allowing any data transformation to be applied before being established as operation parameters, thus 
limiting expressiveness. Instead, our model uses data processes to define transformation operations on the 
available data (event attributes and properties of source entities among others), thus obtaining much more 
elaborate constructions. A mechanism is also provided to facilitate the involvement of the properties of any 
entity present in the ecosystem, with the aim of supporting rules with unlimited expressiveness. However, 
despite this expressive power, it is still possible to define simpler rules, such as those described in related 
studies, having no data processes at all in which the consequent of the rule uses values from the antecedent 
without performing any data transformation. The expressive capacity of our rule model is quite different to 
those in the above cited studies, particularly to those that contain a type of visual-based programming 
mechanism because they only support state actions without parameters or data transformations. However, 
we would like to aim at providing a useful editor with enhanced expressiveness for non-expert programmers 
in the future. This requires defining a language that can be easily oriented to user interfaces using visual and 
intuitive mechanisms. This is why a general but simple language based on data flow expressions has been 
chosen as candidate formalism to represent expressions in our language, and bound variables are limited to 
types with the role of event source or target. The present proposal is based on combining the simplicity of 
rule structures with the enormous expressiveness offered by data process structures in the form of dataflows, 
so that the resulting language is more graphically powerful and usable. 

3.4. Dataflow expressions 

The rule model presented enables a set of assignment expressions to be present in the rule specification. 
These expressions were generically represented in the meta-model by the DataProcess class in Figure 4 but 
nothing was discussed with regard to the actual syntactic representation of processes which could be 
represented in textual form, as in some previous examples. However, we are particularly interested in 
providing a rule editor that manages assignment expressions in a natural way and avoids writing code in the 
usual text-based form. This means devising an affordable mechanism to make programming easier, with a 
representation that facilitates the construction of a suitable editing tool. Although assignment expressions 
can be captured by different models (e.g. anyone based on operands and operators), the model considered is 
related to an explicit visual representation based on dataflows. 



Figure 5 shows the type of expressions that can be supported. The expressions in the textual language 
look like many others used in computing and mathematics in general. The ones in the visual language have a 
tree-like organization, where the target variable to be assigned is on the right in grey, the operators are 
represented by boxes with inputs and outputs. The variables and constants involved in the process are 
conveniently connected by means of flows to the operators. The power of a visual paradigm relies on the 
fact that users can manipulate components as independent pieces, and simply join them without complicated 
interface controls. 

The meta-model supporting the data processes is illustrated in Figure 6, in terms of processors and flows. 
To represent a dataflow-based expression, the model follows a graph-like approach, so that a data process 
(DataProcess) consists of a set of nodes (DataProcessNode) and a set of dataflow connecting node Ports. 
The nodes are specialized in a range of different supported node types, to essentially represent operators, 
value constants, or variables, and these nodes can be connected to others by means of dataflows (DataFlow) 
to form a complete expression. Our model contains an important type of node represented by the 
DataProcessorInstance class and allows the inclusion of operators in a flow, depicted as boxes in the figure 
samples. The definition of the specific operators available in the system is provided by the DataProcessor 
class, consisting of an operator implementation and a set of typed port definitions that will provide input 
parameters and an output result. As mentioned earlier, this is an important feature, as in this way the meta-
model supports the extension of the language with new and valuable operators as needed. 

 

 
 

radio.mute  place.noiselevel > 15 OR NOT (television.mute) 
(a) 

 

 

radio.volume  MIN (radio.maxvolume, radio.volume + 1) 
(b) 

Figure 5. Sample expressions. 



Besides the operators, there are other elements such as constants and variables which are also important 
in the definition of a data process. In this respect, the ConstantProvider node is an input node that provides 
the source of a pre-established value to be used in the data process (e.g. constant value “5”). This is to be 
directly connected to input ports. Variables can also be provided by three different types of nodes. If the 
value must be taken from a source’s property or an event type’s attribute involved in the rule, then the type 
of node is either a PropertyDefinitionSource or an EventAttributeDefinitionSource. Should it be required to 
take the value from a specific property of an entity other than the source or target, the 
ClosedPropertyDefinitionSource type node will facilitate such a specification. These different 
considerations with respect to the source element providing values to the variable are needed to support 
bound and free variables respectively. Essentially, the PropertyDefinitionSource nodes give access to 
properties as variables bound to the instantiation of S when triggering the rule. Alternatively, the 
ClosedPropertyDefinitionSource nodes allow the inclusion of property values from any entity as free 
variables. 

Finally, there is a set of possible sink nodes that can be used according to the type of the assignment 
expression that is being created. A sink node represents the final node in which all the dataprocess 
computation converges and each expression must have one and only one. This node implicitly represents the 
assignment operation in the dataprocess. For instance, when a precondition expression is being expressed, 

 
Figure 6. UML class diagram to support visual dataflows. 



the sink node will be the PreconditionResult type. Alternatively, if the expression deals with an assignment 
to a target’s property or target’s action parameter, the sink node will be either the PropertyTarget or 
FormalParameterTarget type.  

3.5. Rule Enactment 

Now that the meta-model supporting the conceptual definition of rules has been presented the 
operational semantics that enables the enactment of rules needs to be defined. The rule engine that has been 
built relies on an event matching process on top of the meta-model described. This process is responsible for 
determining which rules must be instantiated and triggered according to the events occurring in the 
environment. 

Given an event occurrence ev, the processor obtains the collection of rules whose event definition 
matches the one in ev. The EventRuleMatch class represents such a matching. Listings 1 and 2 show the 
specification of the matching process in pseudo-code, assuming that the rules are properly included during 
the initialization and the event occurrences are injected by the middleware as they occur. 

Once the EventRuleMatch collection is constructed each rule in the collection is executed by evaluating 
the precondition data process and, if this is successful, by evaluating the existing transformation data 
processes to execute the action defined in the consequent. 

However, along this basic operation of the rule processing, several additional inner aspects must be 
considered at the moment of executing rules to cope with conflicting situations. Given the expressiveness of 
the proposed language, there are two levels of conflicting behavior that may arise. Firstly, property-
assignment conflicts in which several enabled rules attempt to modify the same entity property with 
different values, and secondly, method invocation conflicts in which several enabled rules invoke behavior 
on entities that could result in the system reaching some undesired state once the corresponding methods 
have been executed. 

The first situation is typically the case of a rule whose operation is specified to set the temperature to 24 
degrees while another activated rule is to set it to 21. It has been addressed in our system by implementing a 
priority based policy in which each rule is assigned a given priority. In the presence of a conflict such as the 
one just described, the system executes only the rule with the highest priority. 

However the second situation is a bit more complex because it requires the formal specification of post-
condition expressions that define the state that is reached by the system for each method execution. By 
having such a formal specification, logic reasoning engines could be used to detect inconsistencies or 
conflicting post-conditions as it has been done in the field of formal verification of programs. Although we 
have not included in this work this second approach, the model can be expanded to consider this in the 
future. 

Along with these improvements, some additional reasoning process could be also included to support 
advanced useful features in real environments. For example, mechanisms to rollback rule actions would be 
interesting to allow users to undo the application of rules on an ad hoc basis. It requires the management of 
the property values over the time in order to be able to roll back reached states. In our system the case of 
property changes has been supported but the rollback of actions is not supported yet because it would 
require the complete specification of actions in terms of post-conditions, similarly to the issue presented 
above about conflicts. Another interesting functionality is the debugging of personalization rules. The 
middleware could analyze which rules are producing conflicts more often within a given interval since their 
activation, and this analysis could help users to detect faulty rules that would require some refinement. The 
combination of these features would also contribute to the capability of the middleware to automatically 
learn from the raised conflicts and/or exceptions of rule application (e.g. rollback situations) to improve the 
user experience by relying on temporal logics. 

 



The build process of the EventRuleMatch collection is a key step that must be carefully designed if the 
performance of the overall rule execution process is not to be compromised. We will demonstrate in the 
experimental section of this paper that our engine is able to support an effective matching process under 
scalability conditions consisting of millions of entities in the ecosystem and thousands of entity types, way 
beyond the needs of most existing smart environments. To scale up to this problem size our matching 
process makes effective use of the meta-model relationships in which objects representing event-definitions, 
entity-types and entities that are part of a rule definition are conveniently linked with each other so that the 

01: RuleEngine::MatchAndDispatch () 
02: BEGIN 
03:  time <- System:Time(); 
04:  IF (emp.NewEventsAvailable) THEN 
05:  BEGIN 
   // performs matching (EventOccurrences against ReactiveRules; establishes the flags NewMatchesAvailable accordingly 

07:   emp.Match ( time); 
08:   IF (emp.NewMatchesAvailable) THEN 
09:    FORALL erm: EventRuleMatch in emp.GetMatches() 
10:    BEGIN 
11:     ExecuteRule (erm); 
12:    ENDFOR; 
13:    emp.ClearEventOccurrencesQueue (); 
    
15:    // it empties the set and establishes the flag NewMatchesAvailable to FALSE 
16:    emp.ClearMatches (); 
17:   ENDIF; 
18:  ENDIF; 
19: END 

Listing 1. Pseudo-code using the Event Matching Processor for the rule enactment. 

 

 
01: EventMatchingProcessor::Match (gameTime:long) 
02: BEGIN 
03: NewMatchesAvailable <- FALSE; 
 
05: FORALL eo: EventOccurrence in pendingEventOccurrences 
06:  FORALL r:ReactiveRule in currentRuleSet 
07: // the private method MatchesRuleConditions checks for the agreement of rule conditions in both source and event against 
the event occurrence 

08: IF (r.EventDefinition = eo.EventDefinition AND eo.RaisedBy BELONGS r.SOURCE.Population  
  AND self.MatchesRuleConditions(r, eo)) THEN 
 
10:  currentMatches.Add (new EventRuleMatch (eo, r)); 
11:   NewMatchesAvailable <- TRUE; 
12:  ENDIF 
13:  ENDFOR 
14: ENDFOR 
15: // clears the list of event occurrences and establishes the flag NewEventsAvailable to FALSE 

16:  pendingEventOccurrences.Clear ();  
17: END 

Listing 2. Pseudo-code for the Match service of the event matching processor. 



computational complexity of the matching process remains constant under some conditions that will be 
discussed in section 4.2. 

The algorithm illustrated in Listing 1 is invoked by the middleware to perform the execution of rules in 
two steps. First the matching process obtains the EventRuleMatch collection (line 7), and the effective 
execution of the related operations is finally performed (line 11). Listing 2 details how the collection of 
correspondences between events and rules is calculated. The algorithm inspects the pending event 
occurrences (line 5) and determines which rules match for each one (lines 6-8). 

 

3.6. Model Expressiveness Comparison 

The related work described in section 2 does not usually state their meta-model explicitly. Thus, in order 
to highlight the most remarkable features of each approach and compare them, several features related to the 
meta-models and their expressiveness have been considered in Table 1 for a more systematic and convenient 
comparison. 

Most of the related work relies on some sort of ECA rules as the basic underlying model. It is 
remarkable how many of them use Condition-Action (CA) rules, so that rules only include condition and 
actions. In those works, events are actually treated as conditions, and therefore there is not explicit 
distinction among these concepts (see the features Underlying model and Trigger/Event in Table 1). 

Although conditions are supported throughout, there are some limitations and differences in 
expressiveness as the feature Conditions shows. Another important characteristic to be considered is related 
to variable support (see Variable support feature). This feature reports on whether the entities involved in 
conditions are only specific (i.e. particular instances already existing at design-time) or whether there is 
some support for bound variables. Bound variables are powerful because they allow writing expressions 
with variables (e.g. by means of types or wildcards) that are instantiated at run-time to one or several 
particular matching entities. 

Some works support the construction of multiple excluding conditions that can be seen as different left-
hand sides in a single rule (see the feature LHS OR-ing). Typically, it refers to syntactic constructions such 
as IF event/conditions OR IF event/conditions. They do not simply consist of using OR operators among 
conditions since the event can also vary. Not supporting this feature is not actually a hard limitation because 
several rules (i.e. one for each excluding event/condition) would be enough to cover all the cases. Indeed it 
could simplify the number of rules to be written. 

Finally, the main differences among approaches are focused on which kind of actions and how many are 
supported in a single rule (see Action and Composite actions features). The most extended action model 
focuses on state actions. They typically refer to simple changes in the state of sensors or actuators (e.g. turn 
the light on/off or close the window). This type of actions also includes those requiring a single parameter 
although they essentially involve a simple state change (e.g. set target temperature to 23ºC). State actions 
cover a wide range of requirements while the environment is limited to state changes. However, there are 
some proposals that consider more complex action models involving either more parameters or non-trivial 
data-transformations on the parameters. In terms of editing tools, this increase in expressiveness is really 
challenging because data-transformations on several parameters have not been extensively studied, although 
it could make more powerful formalisms affordable in future research. 

Our proposal presented in this paper basically has two primary differences with regards to other works. 
Firstly, there is support for bound variables but they are limited to the event sources and targets only. This 
decision was taken with the aim of being able to provide a manageable editor so that users do not have to 
deal with anything as a collection. Secondly, our model focuses on providing support for action parameters 
and data-transformations so that these elements may be edited without writing actual code. 

 



Table 1. Comparison between related work 

Work Underlying 

model 

Trigger or 

event 

Conditions Variable 

support 

LHS OR-

ing 

Actions Composite 

Actions 

Users 

Sohn & Dey 

[24] 

CA rules not present 

(event as 

condition) 

three limited to 

relational 

operators 

specific 

entities – no 

variables 

yes gradient actions 

(1 parameter 

with value 
levels) 

single suitable for end-

users 

Beckmann & 

Dey [27] 

CA rules not present 

(event as 

condition) 

up to 3 pre-

established 

discrete states 

specific 

entities 

no state actions simple end users 

Zhang & 

Bruegge[26] 

CA rules not present 

(event as 

condition) 

conjunction of 

basic conditions 

specific 

entities 

no state actions multiple programmers 

Dey et 
al.[30] 

Machine 
Learning 

(Dynamic 

Bayesian 
Networks) 

implicit on 
levels of data 

streams 

unlimited data 
streams 

specific data 
streams 

n/a state actions multiple users who are not 
computer scientists 

Weis et al. 

[20] 

Signals & Slots explicit 

(signal) 

on signals bound 

variables 

program 

flow 
branching 

slots valuation 

(~ state actions) 

multiple developers and 

skilled users 

García-

Herranz et 

al.[31] 

ECA rules explicit, 

although CA 

rules are 
supported 

unrestricted but 

subexpressions 

unsupported (e.g. 
temp1 < temp2 + 

5) 

powerful 

bound 

variables 
(wildcards) 

yes, or-ing 

for triggers 

state actions multiple suitable for non-

programmers end 

users using the 
magnet poetry 

metaphor 

Bonino et 
al.[32] 

ECA rules explicit conjunction of 
conditions (= 

operator) 

specific 
entities 

yes state Actions multiple non-expert users 
(home inhabitants 

with little or no 

technological 
skills) 

ECAMI ECA rules explicit unlimited 

conditions, rich 
operators and 

mathematical 

expressions 

bound 

variables 
(limited to 

event source 

or targets) 

no parameterized 

actions 

single low-experienced 

users 
(mathematical 

expressions) 



4. Meta-Model Experimental Evaluation 

Before developing the full middleware prototype and an editor supporting the proposed rule model, 
several aspects should be explored regarding the feasibility as well as the validity of the proposal. In this 
paper, two different aspects are considered. Firstly, as the visual programming approach is based on a 
dataflow-based formalism, which has not yet been considered in the context of end-user rule editors, the 
interest focuses on whether the dataflows are intelligible to non-expert programmers. Secondly, since we 
have opted for a meta-model approach rather than for a specific model, a point of verification is to check 
whether the rule model can effectively be operationalized and whether it is scalable with respect to the 
matching process, providing evidence that the implementation is feasible for further development. The 
studies concerning these aspects are presented in the following subsections. 

4.1. User Study on DataFlow Comprehension 

As mentioned above, one of the key elements for the specification of reactive behavior is the definition 
of data transformations by means of dataflow expressions. As end-users defining reactive behaviors in 
ambient intelligent environments with our rule model will have to effectively define these data 
transformation flows, it is important to evaluate the ease of understanding of the proposed visual dataflow 
language. However, unlike other studies that have done this on specific tools, using complex approximations 
including bifurcations and iterations, aimed at software engineering students with some experience in the 
subject [40], our study focused on basic structures suited to young non-programmers. The objective of the 
study was therefore to evaluate the ease of understanding, creation and evolution of expressions and ease of 
use of the system by this user segment. The comparison between our proposed visual approach and a textual 
language with a similar level of expressiveness was deliberately chosen because subjects are used to 
perceiving expressions such as those introduced in the previous examples in textual form in scientific 
subjects like Mathematics, Physics and Computer Science. In theory, this makes the comparison less 
favorable for the visual approach, but, as the experimental results will show, the visual properties of the 
proposed language have advantages over the textual language under certain conditions. 

 
Figure 7. Demographic data on the preference and perceived performance in three main areas. 



4.1.1. Participants 

The participants were 36 fifth-year secondary school students (25 boys, 11 girls) who were taking a 
course in Computer Science as part of the curriculum. Most of them were 16 years old (M=16.39, 
SD=0.494) and were going to face real computational concepts for the first time. None reported prior 
programming experience except for basic spreadsheet formula definitions. Figure 7 shows the frequencies of 
the agreement degree on the participants liking for a subject and their performance in that subject. The 
students in general showed a real interest in Computer Science. A deeper analysis reveals that nineteen came 
from the Humanities stream whereas the rest came from the Sciences stream. The average agreement 
(1=strongly disagree, 5= strongly agree) by curriculum streams on those demographic questions is plotted in 
Figure 8. Those students coming from Humanities do like less mathematics and they consider themselves to 
perform worse than the students from the Sciences stream. Therefore, a reasonable expectation would be 
that students from Humanities could decrease the overall performance in exercises like those considered in 
the current study. 

4.1.2. Materials 

Teaching materials were created and adapted to the objectives of the course (i.e. introduction to 
programming). The class teacher devoted four sessions to the necessary basic concepts (variables, operators, 
assignment instructions, etc.) using the textual language of the grammar described above and the equivalent 
visual dataflow language, as shown in Figure 5. Both approximations were given the same importance and 
were accompanied by examples. Some sample exercises were carried out as a team. 

The worksheet for the test was designed to explore the different aspects involved and to take students to 
the maximum skill level. Four exercise categories were considered. The Compute (C) category, typically 
presented an expression written in either the textual or visual language taught in class. The students were 
required to compute the outcome of the expression, given the values taken by the variables in the expression. 
This category was considered as it is an abstract mental process performed when working with expressions. 
When building and checking whether an expression is viable, people assign values to the variables and 
mentally test whether the computation matches the expected result. An example of this type of question is 
shown in Figure 9(a) and in visual language in Figure 9(b). 
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Figure 8. Average agreement for preference (like) and performance (good at) questions by curriculum 

stream. 



 
 
Assuming the following attribute values: 
person1.glucose equals 4,  
person1.glucose_ref equals 8, 
person1.is_resting equals Yes!, 
person1.pulse equals 8, 
person1.pulse_at_rest equals 5. 
 
 
Calculate the result of the following expression: 
person1.needs_medicine  

NOT(person1.is_resting) AND (person1. 
pulse < 5 + person1.pulse_at_rest) OR 
ABS(person1.glucose_ref – 
person1.glucose*2) < 10) 

(a) 

 
 

 
(b) 

 
 

 
 
 
Given the following expressions, indicate whether they are equivalent: 

 
(c) 

 
 

 
 
Given the following expressions, indicate 

whether they are equivalent: 
 
c  television.volume < 3 OR 

lounge.noise_level > 5 AND 
lounge.light_level < 12 

 
c  lounge.noise_level < 12 AND 

lounge.noise_level > 5 OR 
television.volume < 3 

(d) 

 
 
target_temperature  MIN (24, MAX (temperature2, 2 + temperature1)) 

 
(e) 

 
 

Figure 9. Sample exercises. 



Another category was Modify (M). This consisted of facing the subject with an expression in either 
textual or visual form. Given a statement written in natural language, the participant was then required to 
detect and make the necessary changes to the original expression so that the proposed statement would be 
correctly specified. Since natural language is prone to ambiguity, statements were carefully written with a 
single interpretation. This category was included in the study because rules are usually subject to 
modifications until they work as expected. We therefore consider that for this lifecycle, it is important to be 
able to understand and “repair” a previously given version of an expression. 

The Equivalence category (E), presented two expressions, both written in the same textual or visual 
language. The subject was required to indicate whether or not both were equivalent. This category is not 
only important during the lifecycle of expressions to detect mistakes and errors but also to evaluate the 
user’s understanding of each language. Comparing two expressions requires more abstract reasoning, since 
values for testing expressions are not provided. An example of this type of question is shown in Figure 9(c) 
and (d). 

Finally, a Write (W) category was also included in the study. The students were asked to write from 
scratch in a specific language an expression that matches a statement given in natural language. This 
statement was again ensured to be non-ambiguous. 

These questions were of the type: “Write the following expression: target_temperature is the minimum 
between 24 and the maximum between temperature2 and the addition of temperature1 and 2”. The solutions 
to this question in the textual and visual languages are given by the expressions in Figure 9(e). 

The worksheet included sixteen exercises, four in each category described above. Each exercise in one 
language had a corresponding exercise in the other, keeping the same expressional structure in order to 
ensure students were faced with expressions of similar difficulty in both languages. Four versions of the test 
were prepared, all of which had the same exercises but in a different order. Any two exercises from the same 
pair were not allowed to be contiguous and the categories were distributed throughout the test. 

4.1.3. Method and Procedure 

Both textual and visual languages were used to introduce primary concepts on programming in four one-
hour introductory lectures. The students were tested after these teaching sessions. Worksheet versions were 
randomly distributed in equal numbers. 

4.1.4. Task 

The participants were provided with a worksheet in the test session and were asked to answer as many 
exercises as possible in the available time. They then answered several Likert-scaled questions on their 
subjective perception of each language on factors such as understandability, comprehension and learning 
effectiveness and some questions concerning which language version, textual or visual, the participant 
would prefer in the situations given in the questions. 

4.1.5. Results and Discussion 

The students were given a test containing exercises on the textual and visual languages they had seen in 
the teaching lessons. Table 2 shows the cross table for answers by languages and category. Due to the high 
difficulty and the number of exercises to be addressed in such a limited time without any advice to study the 
contents before the test session, we expected some unsolved exercises. There were 73 exercises in the 
textual language while 85 in the visual, but a Binomial test showed that the proportion of unsolved exercises 
in each language does not significantly differ from the hypothesized value of 50% (p-value=0.382). Overall 
158 exercises remained unsolved out of a total of 576, resulting in 4.3 unsolved exercises per participant on 
average. It is interesting to observe that the values of the mean and the mode for the number of unsolved 
exercises are higher in the students from the Humanities stream (mean=4.94, mode=5) than those from 



Sciences (mean=3.64, mode=3) as shown in Figure 10. This is an expected result because computing is 
mathematics after all, and therefore the worksheet required mathematical skills, which in the students from 
Humanities seemed to be less developed according to their answers to the demographic questions. 
Moreover, a deeper analysis of the distribution of the unsolved exercises per task reveals that (see Table 2) 
most unsolved questions were present in the Compute (52%) and Write (34%) tasks and that, in these cases, 
there are no significant differences (Binomial tests for C and W resulted in 0.728 and 0.392 respectively) in 
the number of unsolved exercises between the visual and textual languages. This means that the reason for 
leaving some exercises unsolved is not determined by the language but by the perceived difficulty of the 
tasks at hand given the limited available time to complete the experiment. In fact, this is confirmed by 
observing the subjective perceived difficulty of each task by the subjects (see column Overall for CQx 
questions in Table 3) who considered the Compute and Write tasks as the most difficult ones. All this 
suggests that the students tried to answer those exercises that considered more affordable given the limited 
time.  

The answers to the exercises that were solved can be correct or incorrect. Unless the unsolved exercises, 
solved exercises did get an answer because students actually faced the given problem and made an effort 
trying to obtain the right solution, although they did not always success. Departing from these exercises we 
can assess the potential of the visual language in different tasks as the ones involved in the exercise 
categories.  

Table 2. Summary of exercises by Answer, Language and Category. 

Type Answer Type Answer 

Incorrect Correct Unsolved Incorrect Correct Unsolved 

C Lang V Count 16  21 35 M Lang V Count 15 38 19 

% within 

Lang 

22,2% 29,2% 48,6% % within 

Lang 

20,8% 52,8% 26,4% 

T Count 28 4 40 T Count 31 35 6 

% within 

Lang 

38,9% 5,6% 55,6% % within 

Lang 

43,1% 48,6% 8,3% 

Total Count 44 25 75 Total Count 46 73 25 

% within 

Lang 

30,6% 17,4% 52,1% % within 

Lang 

31,9% 50,7% 17,4% 

E Lang V Count 10 59 3 W Lang V Count 32 12 28 

% within 

Lang 

13,9% 81,9% 4,2% % within 

Lang 

44,4% 16,7% 38,9% 

T Count 7 59 6 T Count 32 19 21 

% within 

Lang 

9,7% 81,9% 8,3% % within 

Lang 

44,4% 26,4% 29,2% 

Total Count 17 118 9 Total Count 64 31 49 

% within 

Lang 

11,8% 81,9% 6,3% % within 

Lang 

44,4% 21,5% 34,0% 



Figure 11 gives the percentage of answer outcomes by category, arranged according to cognitive effort 
[41]. In the exercises with correct answers, the students performed better using the visual language in 
Category C and M, while the textual language gave better results in Category W. This tendency in favor of 
the textual language when writing expressions must be a consequence of the conditions of the experimental 
apparatus. We have to take into account that the visual language requires some sort of spatial arrangement of 
the elements and there was no tool support for this to help in the construction process, while in the textual 
condition requires writing expressions resembling the way the participants usually do (from left to right). 

Nevertheless, only the comparison in Category C was found to be highly significant, while the 
comparison in Category M was of low significance, as shown by the corresponding Chi-squared tests for 
homogeneity of proportions. This means that the use of a certain language has an effect on the proportion of 
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Figure 10. Average outcome per participant by curriculum stream. 
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correct answers in categories M and C (indicated in the plot by * and ** for significant and highly 
significant levels, respectively). 

According to the overall results, the visual and textual languages performed similarly in tasks that were 
important for comparing and producing expressions. This is actually not a negative result, since the students 
had already seen textual expressions in mathematics and also in computer spreadsheets. The visual language 
performed better in exercises requiring computations and explicit evaluation of expressions. Although we 
expected tracing problems to be more difficult in the visual language because of having to follow data across 
parallel routes, the results indicate that in problems of the size dealt with in the present study this is not an 
issue and that textual representation is more prone to produce errors in calculations. 

The worksheet also included a questionnaire to evaluate the user perception on several factors related to 
the understandability, comprehension and learning of the languages used on the worksheet. The first part of 
the questionnaire consisted of some general questions on learning the languages (GQx) and some basic 
questions to assess how difficult each category was (CQx). These questions used a 5-point Likert-scale in 

 

Table 3 User Assessment Summary. 
  Overall V T  

 Question Mean Std. 

Dev. 

Mean Std. 

Dev. 

Mean  Std. 

Dev. 

Mann. 

Whitney 

Test 

(Z / p-

value) 

GQ1 I understand the meaning of the 
expressions 

3.42 0.875 3.50 0.793 3.35 0.950 -0.629 
/ 0.530 

GQ2 It was hard to learn how to use the 

language. 

2.86 0.854 2.77 0.863 2.94 0.854 -0.773 

/ 0.440 
GQ3 I consider easy to understand the 

different components of the language 

(operators, variables, etc.) 

3.14 0.972 3.26 0.984 3.03 0.964 -0.979 

/ 0.327 

CQ1 I find it difficult to determine whether 

two expressions are equivalent or not 

2.69 0.129 3.00 0.913 2.41 0.907 -2.420/ 

0.016 * 

CQ2 I find it difficult to calculate 

expressions written in this language. 

3.14 0.963 2.85 0.989 3.39 0.882 -2.202 

/ 0.028 * 

CQ3 It is hard to modify existing 

expressions 

2.53 1.002 2.57 0.978 2.63 1.006 -0.125 

/ 0.900 
CQ4 I find it difficult to write expressions 

with the language 

2.78 0.861 2.68 0.945 2.86 0.789 -1.071 / 

0.284 

 

 

Table 4. User preference summary. 
 Question Textual 

(%) 
Visual 

(%) 
Test  
(Chi-sq / p-

value) 

SQ1 It is easier to learn the language… 30 70 3.522 / 0.061 
SQ2 I find it easier to understand the expressions written using… 32 68 2.909 / 0.088 
SQ3 I understand the different elements better (operators, variables, etc.) in… 22 78 7348 / 0.007 
SQ4 I learned the language faster … 26 74 5.261 / 0.022 
SQ5 It is easier to calculate outcome values with the language… 17 83 9.783 / 0.002 
SQ6 I am able to write expressions using the language more easily in… 46 54 0.182 / 0.670 
SQ7 It is easier for me to know whether two expressions are equivalent using the 

language… 
57 43 0.391 / 0.532 

SQ8 When modifying an expression so that it represents a given statement I find out 
faster what needs to be modified using the language… 

39 61 1.87 / 0.297 



which “1” represented a strong disagreement with the given statement whereas “5” meant strongly 
agreement.  

Table 3 shows the descriptive statistics and the Mann-Whitney tests to check whether there were 
differences on the agreement degree by language. Although the assessment of general questions show that 
learning and understanding the visual language was better rated than the textual representation, the tests 
showed that these differences are not important. However, for the questions about categories, the students 
perceived more difficulty in checking the equivalence of expressions in visual as well as in calculating in the 
textural language. With respect to the tasks involving modification and writing of expressions, they 
considered them equally difficult in both languages. 
The second part consisted of single-choice questions concerned with which language, textual or visual, the 

participant would prefer in the situations given in the questions (SQx). This part of the questionnaire was 

answered by 24 students. It seems that the missing answers for this survey occurred as a result of being the 

last page of the worksheet and having no way to check whether the students answered it.  
Table 4 summarizes the results. There is a marked preference for the visual dataflow language with 

regard to ease-of-use, ease of understanding, learning and use in calculations. This indicates that using a 
dataflow model seems to be a promising conceptual tool and should be seriously considered for non-
programmers. Besides this empirical evidence, dataflows are an alternative to writing code since natural 
interfaces based on touch input are required in intelligent environments. 

4.2. Meta-Model Performance Verification 

The use of a meta-model, providing typed entities and reflection services, may facilitate the efficient 
matching of events and rules since relationships being defined could allow to effectively extract only those 
rules of interest for a given event occurrence. Thus, exploring the feasibility of the model operationalization 
is a first step to further middleware development and evaluation. Two synthetic tests have been specifically 
designed to show that the current implementation is scalable with respect to the time required to find the set 
of potential rules to be enacted (i.e. matching time) and therefore it is a promising foundation for a future 
parallel and distributed implementation. Essentially, the tests have only focused on the matching time and 
the study on how the typology of the source population (i.e. a specific entity vs. a population given as a 
type) can affect the matching time. Therefore, it must be understood as a preliminary verification before 
further and more extended evaluation in more realistic environments and conditions. 

The first test focused on rules whose source population is specified as an entity-type (e.g. when any 
window gets open). Since rules expressed in this way refer to all the entities that belong to the population 
indicated by means of the type, the point to verify is that the matching time does not dramatically increase as 
either the number of entity-types or the number of entities within each entity-type grows. With this focus, 
the stress test considered a synthetic scenario in which entities injects events over the time to activate and 
trigger the rules, and the number of entities and the number of entity-type present in the system varied to see 
the evolution of the average matching time. The number of entity-types ranges between 1 and 40,000 
whereas the number of entities within each entity-type is between 1 and 100. The number of rules available 
in the system is set to the number of entity-types present in the system at a given time. The aim was to 
demonstrate that the rule engine would be able to cope with a large number of entity instances in the 
environment while keeping the matching time constant for an event-rule pair when using rules related to 
populations. Figure 12 shows that matching time remains nearly constant when a maximum number of four 
million entity instances, which is the full workload tested (40,000 x 100). 



 
Figure 12. Matching time vs. total number of entity instances under the conditions of Test 1. 

 

 
Figure 13. Matching time vs. the number of entity-types in the conditions of Test 1. 

 



Moreover, as can be seen in Figure 13, the matching time is not affected by the number of entity-types in 
the ecosystem. It shows that this constant behavior is consistent no matter the available instances are spread 
over a reduced number of entity types (i.e. homogenous) or extended across a high number of entity types 
(i.e. heterogeneous). As confirmed by the experimental results the meta-model reflection feature associating 
rules with event-types provides a retrieval process for the set of rules associated to a given event-definition 
at a constant time. 

Given that the current implementation is suitable to cope with event sources expressed as population by 
means of types no matter the size of the entities present, a second essential test would consist of exploring 
the matching time when using rules whose event source is defined over specific entities. In this particular 
case, every rule only refers to an event thrown by a concrete entity. Thus, in this second stress test the 
matching time has to be analyzed with respect to the variation of the number of rules defined for each pair 
consisting of an event-type and entity. 

For each pair <E, S>, i.e. each pair event-type and source entity, a number of rules R were created (R=1, 
5, 10). In this way, when an entity throws a given event occurrence, a set of rules will be triggered, since 
there are several rules that match the same pair E and S. As the total amount of rules depends on the number 
of event-types present in the system, it was varied between 1 and 2000, in order to explore how the matching 
time evolves as the set of matching rules increases. In addition, to show that if the relationships present in 
the meta-model are exploited then a set of efficient indexes can be built so that the matching time remains 
constant no matter the number of event types considered, two versions of the event-matching processor have 
been compared (optimized and non-optimized). 

The first version was implemented without taking into account the valuable information contained in the 
meta-model of the rule specification, which needs to examine the whole rule set regardless of the current 
event occurrence or the entity that raised it. The second version, however, considered the construction of 
indexes on the rule set based on the relationships available at the meta-model level, so that the processor was 
able to effectively determine the rule set of interest for a given event occurrence. The construction of the 
index is performed once at the beginning of the simulation and it requires the inspection of the all the 
specified rules. Indeed, in a more realistic dynamic environment, there would be an extra cost to maintain 
the index structure updated, but the basic cost only implies the removing or insertion of single entries in a 
couple of hash tables performed in constant time when new rules are added or removed. 

Figure 14 and Figure 15 plot the matching time in the above-described conditions for the non-optimized 
and optimized versions, respectively. As Figure 14 shows, the matching time is linear up to the number of 
event-types (where |rules| = R * |E|* 10), as the set of rules must be inspected in the non-optimized version. 
The optimized version obtained nearly constant matching times, as the optimizations are able to provide the 
appropriate rule set without any extra cost (see Figure 15). 

The previous experiments show that the matching process scales with the number of entities, entity-types 
and rules per event-type even when the implementation is still centralized in only a computing node. This 
suggest that the system scalability in terms of the obtained throughput (i.e. number of events processed per 
unit of time) is a matter of the number of available parallel processing nodes (threads, cores or devices) that 
are used so that the matched rules may be executed in parallel. Therefore, a parallel future implementation 
of the processor would be promising to cope with other typical issues such as fault tolerance, workload 
distribution, low power and low memory computing nodes.  

 



 
Figure 14. Matching time vs. event-types with repetitions under non-optimized conditions in Test 2. 

 

 
Figure 15. Matching time vs. event-types and rule repetitions under optimized conditions in Test 2. 

 



5. Conclusions 

This paper presents a meta-model for the definition of rule-based reactive behavior applicable to the 
development of customized smart environments. The proposed model is a step forward with respect to 
existing state of the art rule-based engines in several ways: by supporting the definition of arbitrary complex 
data transformations on any information (event attributes and entities properties) available in the ecosystem 
so that complex behaviors may be implemented in the consequent section of any rule, not being confined to 
state actions; by supporting collections of entities both as sources and targets of any reactive rule in the form 
of bound variables, allowing the definition of rules triggered by behaviors associated to taxonomies of 
entities and that act simultaneously by updating properties or invoking services on collections of entities 
simultaneously; by supporting the definition of data transformation processes by means of a visual language 
based on data flows that can be effectively used by non-expert programmer fifth-year secondary school 
students. 

Although a rule editor prototype for our model has already been implemented and functionally tested in 
a touch screen [29], an immediate future work is to improve it by including wizards, recommenders and 
auto-completion techniques to facilitate the guidance and scaffolding of the rule construction process. These 
improvements would facilitate the use of some specific rule elements that are more difficult for people with 
low skills such as bound variables and non-state actions corresponding to mathematical expressions. After 
that, a more ambitious future work is to deploy the prototype in an actual intelligent environment by 
implementing the binding with a specific AmI middleware and conduct then an empirical user based 
evaluation with actual inhabitants to obtain empirical evidence on which level of personalization users are 
able to achieve. 

In addition, the expressiveness of the model requires some mathematical knowledge, and this means that 
it is not suitable for all kind of users. However, new user interfaces must be explored and devised, even at 
the cost of limiting the full language expressiveness, to offer several editing tools suitable to users with 
different skills. 

The tools implemented until now used to validate the model are currently being redesigned. Specially, 
the rule editor prototype is being re-implemented on a tangible surface interface to make environments with 
this type of technology more natural and seamless, or even could bring the chance to explore how rules can 
be edited collaboratively. As the performance verification conducted in this paper focuses on a very specific 
issue but showed the potential of using the meta-model, several aspects are interesting for further 
development. For example, in the future we plan to explore rule enactment distribution techniques, so that 
the control and coordination processes can be shared among several computing nodes to cope with highly 
populated ecosystems with even complex rules or other constraints related to low-end computing nodes. In 
addition, the refinement of mechanisms to deal with conflicts is also interesting, as well as using a more 
complex priority-based scheme to rank rule instantiations in those conflicting situations.  
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