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Summary

During the past years, DNA sequencers have been constantly improved in per-
formance and operating costs, generating a genomic data deluge. This situation
has fostered the general improvement and parallelisation of alignment algorithms,
taking profit of different high performance environments.

In bioinformatics, the term alignment refers to the comparison of two poten-
tially dissimilar reads of DNA, RNA or proteins. This comparison is made in terms
of the relationships between its nucleotides: matches, mismatches, insertions and
deletions. When aligning short reads, the more concrete term sequence mapping
is employed. Several algorithms for the inexact mapping of short biological se-
quences are presented in this thesis, along with its parallelisation in environments
like GPGPU and shared memory.

Currently, inexact mapping methods consist on a combination of seeding tech-
niques followed by local alignment techniques. On the one hand, seeding algo-
rithms are usually based on backward search methods, using the Burrows-Wheeler
Transform, the Ferragina and Manzini Index and Suffix Arrays to locate the align-
ment candidate areas of a read. On the other hand, local alignment algorithms
generate matrices of weights using dynamic programming, obtaining the best scor-
ing alignment among the candidate areas.

This thesis focuses in backward search methods. Concretely, we describe the
relationships between the Burrows-Wheeler Transform, the Suffix Array and the
FM-Index of a reference text.

Two backward search algorithms using the FM-Index have been parallelised
using GPGPUs in this thesis. The first one covers exact mapping on GPUs. It
can be used to accelerate seeding techniques. The second one is an hybrid CPU-
GPU implementation, which performs inexact mapping with one error and returns
the pair-ends of a read. Both approaches outperform existing implementations.

Also, an inexact mapping algorithm supporting any number of differences has
been implemented. Such algorithm combines backward search with search tree
exploration techniques, implementing pruning strategies specifically suited for ge-
nomic data. This new approach constitutes the most significant contribution of
this thesis, achieving higher sensitivity and a 7x speed-up over similar algorithms.
This speed-up has been achieved without employing parallelism techniques.

Finally, during the internship in Japan the algorithm has been modified to sup-
port an out-of-core index. This index allows to use the inexact mapping algorithm
with large genomes on systems without expensive primary memory configurations.
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Resumen

Durante los últimos años, los secuenciadores de ADN han sido mejorados en velo-
cidad y costes de funcionamiento, generando una avalancha de datos genómicos.
Esto ha fomentado la mejora y paralelización de los algoritmos de alineamiento,
buscando aprovechar los distintos entornos de computación de alto rendimiento.

En bioinformática, el término alineamiento se define como la comparación de
dos lecturas de ADN, ARN o protéınas potencialmente diferentes. Esta compara-
ción se hace en base a las relaciones entre sus nucleótidos: aciertos, fallos, inser-
ciones y borrados. Más espećıficamente, cuando se comparan secuencias cortas se
emplea el término mapeo de secuencia. En esta tesis se describen varios algoritmos
para el mapeo inexacto de secuencias biológicas cortas, junto con su paralelización
en entornos como GPGPU o memoria compartida.

Actualmente, los métodos de mapeo inexacto consisten en una combinación
de técnicas de semilleo seguidas de técnicas de alineamiento local. Por un lado,
los algoritmos de semilleo suelen basarse en técnicas de búsqueda hacia atrás,
utilizando la transformada de Burrows-Wheeler, el ı́ndice de Ferragina y Manzini
y matrices de sufijos para localizar las áreas donde podŕıa alinearse una lectura. Por
otro lado, los algoritmos de alineamiento local generan matrices de pesos usando
programación dinámica, obteniendo aśı el alineamiento mejor puntuado de entre
todas las áreas destacadas.

La tesis se enfoca en el estudio de los métodos de búsqueda hacia atrás. Con-
cretamente, describimos las relaciones entre la transformada de Burrows-Wheeler,
las matrices de sufijos y el FM-Index de un texto de referencia.

Dos algoritmos de búsqueda hacia atrás que usan el FM-Index se han parale-
lizado en GPGPUs. El primero permite mapeo exacto en GPUs y puede usarse
para acelerar las técnicas de semilleo. El segundo es una implementación CPU-
GPU h́ıbrida, la cual permite mapeo inexacto con un error y devuelve los pares
finales de una lectura. Los dos superan a las implementaciones existentes.

Además, se ha implementado un algoritmo de mapeo inexacto que permite
cualquier número de diferencias. Dicho algoritmo combina búsqueda hacia atrás
con técnicas de exploración de árboles de búsqueda, implementando estrategias de
poda espećıficas para datos genómicos. Este nuevo método constituye la contribu-
ción más significativa de la tesis, alcanzando mayor sensibilidad y un speed-up de
7x respecto a algoritmos similares.

Finalmente, durante la estancia en Japón el algoritmo ha sido modificado pa-
ra trabajar con un ı́ndice out-of-core. Dicho ı́ndice permite usar el algoritmo de
mapeo inexacto con genomas grandes en sistemas con configuraciones de memoria
primaria limitadas.
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Resum

Durant els últims anys, els seqüenciadors d’ADN han estat millorats en velocitat i
costos de funcionament, generant una allau de dades genòmiques. Això ha fomen-
tat la millora i paral·lelització dels algorismes d’alineament, buscant aprofitar els
diferents entorns de computació d’alt rendiment.

En bioinformàtica, el terme alineament es defineix com la comparació de dues
lectures d’ADN, ARN o protëınes potencialment diferents. Aquesta comparació
es fa d’acord amb les relacions entre els seus nucleòtids: encerts, errors, insercions
i esborrats. Més espećıficament, quan es comparen seqüències curtes s’empra el
terme mapatge de seqüència.

En aquesta tesi es descriuen diversos algorismes per al mapatge inexacte de
seqüències biològiques curtes, amb la seua paral·lelització en entorns com GPGPU
o memòria compartida.

Actualment, els mètodes de mapatge inexacte consisteixen en una combinació
de tècniques de cerca de llavors seguides de tècniques d’alineament local. D’una
banda, els algorismes de cerca de llavors solen basar-se en tècniques de recerca
cap enrere, utilitzant la transformada de Burrows-Wheeler, l’́ındex de Ferragina
i Manzini i matrius de sufixos per localitzar les àrees on podria alinear-se una
lectura. D’altra banda, els algorismes d’alineament local generen matrius de pesos
usant programació dinàmica, obtenint aix́ı l’alineament millor puntuat d’entre
totes les àrees destacades.

La tesi s’enfoca en l’estudi dels mètodes de recerca cap enrere. Concretament,
descrivim la relació entre la transformada de Burrows-Wheeler, les matrius de
sufixos i el FM-Index d’un text de referència.

Dos algorismes de recerca cap enrere que usen el FM-Index s’hi han paral·lelitzat
en GPGPUs. El primer permet mapatge exacte en GPUs i pot usar-se per acce-
lerar les tècniques de cerca de llavors. El segon és una implementació CPU-GPU
h́ıbrida que permet mapeig inexacte amb un error i retorna els parells finals d’una
lectura. Els dos superen les implementacions existents.

A més, s’ha implementat un algorisme de mapatge inexacte que permet qualse-
vol nombre de diferències. L’algorisme combina recerca cap enrere amb tècniques
d’exploració d’arbres de cerca, implementant estratègies de poda espećıfiques per
a dades genòmiques. Aquest nou mètode és la contribució més significativa de
la tesi, aconseguint major sensibilitat i un speed-up de 7x respecte a algorismes
similars.

Finalment, durant l’estada al Japó l’algorisme ha estat modificat per treballar
amb un ı́ndex out-of-core. Aquest ı́ndex permet usar l’algorisme de mapeig in-
exacte amb genomes grans en sistemes amb configuracions de memòria primària
limitades.
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Chapter 1

Introduction

Nowadays, the cost reduction of new sequencing technologies has fostered the con-
sideration of much more data than before. A single biological experiment launched
on a current sequencing machine [Church, 2006][Hall, 2007] can easily produce hun-
dreds of Gigabytes or even Terabytes of data. It is forecasted that this situation
will aggravate, as Next Generation Sequencers (NGS) are continuously improved.
This well-known data deluge poses bioinformaticians against the challenge of pro-
cessing and analysing an avalanche of biological information [Editorial, 2009]. In
this scenario, leveraging support for high performance environments may provide
the necessary computational power to undertake this challenge.

1.1 Overview

A topic actively revised to satisfy NGS needs is the alignment of DNA sequences [Li
and Homer, 2010]. In the field of bioinformatics, the term alignment refers to the
representation and comparison of the similarity areas between two or more chains
of DNA, RNA or protein primary structures. More concretely, when aligning short
sequences the term sequence mapping is employed.

In an experiment, there can be as many as one billion of reads with an average
length of 100 nucleotides. We need an effective solution for mapping billions of
short reads.

Moreover, during the sequence mapping process differences may appear, mainly
due to the natural genetic variability but sometimes originated by failures in the
sequence digitalisation phase. Sequence mapping is the first step in most studies of
functional or evolutionary relationships between genes or proteins. Furthermore,
the study of the genetic similarities between a patient and an individual with a
detected disease may be effectively used in diagnostic medicine.

For these reasons, a mapping algorithm must allow a certain number of vari-
ations, guaranteeing that reads slightly different to the reference will be found.
Based on the nucleotides in the compared sequences, four different kinds of rela-
tionships can be established: matches, mismatches (a difference between a read
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Chapter 1. Introduction

nucleotide and a reference nucleotide), insertions (an additional nucleotide in the
read) and deletions (a missing nucleotide in the read). We refer to these algorithms
as inexact sequence mapping techniques.

Current inexact mapping tools consist on a combination of seeding techniques
followed by local alignment techniques. Seeding algorithms usually divide the read
into small pieces or seeds. Then, these seeds are searched using backward search
methods. The locations of the reference where many seeds appear are consid-
ered alignment candidate areas. Local alignment algorithms generate matrices of
weights using dynamic programming. For each candidate area a matrix of weights
is generated, obtaining the best scoring alignment of each area. At the end, the
best alignment among all candidate areas is selected. Local alignment algorithms
also return the list of differences between the read and the reference string.

1.2 Motivation

The alignment of huge NGS data is an intensive task that requires high-capacity
and high-capability computing resources. Among the different available choices
that provide faster computation models, General Purpose Graphic Processing Units
(GPGPUs) based on CUDA [NVIDIA, 2014] or OpenCL [Munshi et al., 2011] are
a very cost-effective option. Thanks to these frameworks the GPGPU architec-
ture can be exploited efficiently in general purpose problems, taking into account
its micro-grain parallelism following the SIMD model and its complex memory
hierarchy.

Studying how to improve backward search methods by enabling GPGPU par-
allelisation has a great interest. A parallelised backward search algorithm would
result in an speed-up of the seeding phase of sequence mapping tools.

The methodology to support inexact mapping using backward search methods
is based on the exact mapping procedure, combining a backward search algorithm
with a search tree exploration routine that checks all the possible solutions within
the number of errors allowed.

Although the search tree exploration routine does not seem to fit the SIMD
parallelism model of the GPU, it would also be of great interest to develop and
study a hybrid CPU-GPU computation model capable of accelerating the exact
mapping procedure on the GPU while using the CPU to check for dissimilarities.

Nevertheless, inexact backward search methods performance exponentially de-
creases with the number of errors allowed during the alignment. In order to prevent
the excessive growth of the search tree, existing solutions limit the number of er-
rors, the type of errors (i.e. not allowing insertions and deletions) or does not allow
errors in the first positions of the read.

Developing novel bounding techniques to reduce the search tree growth would
increase the number of errors allowed during inexact backward search alignment.
Also, it would be of great interest to study bounding techniques that do not
limit the kind and position of the errors. Such techniques would guarantee 100%
sensitivity during backward search analysis.

2



1.3 Contents of the PhD thesis

Although the combination of seeding techniques with local alignment tech-
niques is faster than performing a local alignment against the full reference and
its sensitivity is undisputed when dealing with long reads and big gaps, it is still
desirable to further improve mapping algorithms based only in backward search
methods. In fact, if more errors are supported by these methodologies, then more
occurrences would be mapped faster without the need of the combined approach.
Moreover, an increased error granularity in either the seeds or the mapping would
result in less sequences lost.

1.3 Contents of the PhD thesis

The contents of this document are organised as follows. Chapter 2 overviews pre-
vious research on the main topics discussed in this thesis, along with a review of
currently available sequence mapping tools. Chapter 3 summarizes the objectives
of this PhD thesis. Chapter 4 explains the parallelisation of two FM-Index based
sequence mapping algorithms on GPU. Chapter 5 depicts a backward search algo-
rithm for inexact mapping supporting any number of errors. Chapter 6 contains
the contributions of this work. Finally, chapter 7 provides a list with the pub-
lications related with this thesis and links to the source code of all the original
programs.

3





Chapter 2

State of the Art

Here, we revise previous research on the main topics of this thesis. Regarding our
mapping algorithms, we explain the process to build the Ferragina and Manzini
index (FM-Index) and how to perform backward search using it. We outline the re-
lationships between the FM-Index, the Suffix Array (SA) and the Burrows-Wheeler
transform (BWT). Also, we describe the GPGPU architecture, the organisation
of its SIMD processors and its memory hierarchy. We mention the sensitivity, a
statistical measure used in the experiments. Finally, we overview existing sequence
mapping techniques and tools.

2.1 Backward search with the FM-Index

When not using an external library, the backward search method employed by
our mapping algorithms is based on our own implementation of the FM-Index
data structures. This section briefly introduces the reader to the FM-Index search
theory.

The FM-Index data structures are obtained from the BWT of a reference string.
The BWT [Burrows and Wheeler, 1994] is a reversible transform. Its output is
composed by the same symbols as its input, but in a different order. This order-
ing allows data to be compressed efficiently using RLE (Run Length Encoding)
techniques [Manzini, 1999]. Traditionally, the BWT has been used in many com-
pression algorithms. In this approach, it is used to create the FM-Index and align
short genome sequences [Li and Durbin, 2009].

5



Chapter 2. State of the Art

2.1.1 BWT calculation
First of all, we need to generate the BWT of a reference genome X. Let Σ =
{A,C,G, T} be an alphabet, and $ a symbol not included in Σ with less lexico-
graphic value than all the symbols in Σ. Let X be a reference string of length
n + 1, where n is the length of the full reference genome. Let X[i] be the i-th
symbol of string X. X is composed by symbols of Σ and terminated with the $
symbol.

We construct a matrix M with all the possible suffixes of the reference string X
by rotating its values. For example, given the reference string X = “AGGAGC$”
the suffix matrix is as follows:

M =



A G G A G C $
G G A G C $ A
G A G C $ A G
A G C $ A G G
G C $ A G G A
C $ A G G A G
$ A G G A G C



0
1
2
3
4
5
6

We sort alphabetically the rows of M . The sorted matrix is commonly known
as the SA of reference string X:

SA =



$ A G G A G C
A G C $ A G G
A G G A G C $
C $ A G G A G
G A G C $ A G
G C $ A G G A
G G A G C $ A



6
3
0
5
2
4
1

(2.1)

Let S be an array composed by a permutation of the integers from 0 to n. S
contains the original positions of each suffix in the reference, being a representation
of the SA:

S =
(

6 3 0 5 2 4 1
)

Let R be an array composed by a permutation of the integers from 0 to n,
which satisfies that R[S[i]] = i. Vector R is commonly used as a representation of
the Inverse Suffix Array (ISA). Given a position in the reference, we can use R to
obtain the position of a short read in the SA (the inverse of the operation allowed
by S vector). This vector is used by our inexact mapping approach:

R =
(

2 6 4 1 5 3 0
)

Let B be an array of symbols of the alphabet Σ where the BWT will be stored,
we define it as follows:

B[i] =

{
$ if S(i) = 0

X[S(i)− 1] if S(i) 6= 0
6
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Vector B contains the BWT. It always corresponds with the elements of the
last column of the SA:

B =
(
C G $ G G A A

)
2.1.2 Suffix Array sorting algorithms
As it is obtained only once for each reference genome, the calculation of the BWT
is not a key processing step when performing sequence mapping. Nevertheless, the
memory and time requirements of the BWT generation process can be reduced by
using better SA sorting algorithms.

If we sort the suffixes as if they were non-related strings, we will end up with a
worst-case asymptotic cost of O(n2 ∗ log n). This worst-case always appears when
dealing with genomic data, because there are many regions in which nucleotide
chains are arbitrarily repeated. Due to this, typical string sorting algorithms can
not be used to obtain the ordered SA.

Fortunately, sorting suffix arrays has a much lower computational cost than
sorting non-related strings. A taxonomy of suffix array sorting methods is available
in [Puglisi et al., 2007]. As it can be seen in the taxonomy, there are many algo-
rithms with an asymptotic cost of O(n∗ (log n)2), like the Larsson approach [Lars-
son and Sadakane, 2007], based on a ternary quicksort [Bentley and Sedgewick,
1997]. In this approach, a partial ordering considering only the first k symbols
of each suffix contains enough information to allow a subsequent partial ordering
with the first 2k symbols. This is because we are ordering suffixes of the same
reference string.

Recent solutions to the problem include the DC3 algorithm [Kärkkäinen et al.,
2006], with a parallel implementation [Kulla and Sanders, 2006]. The fastest
approach to the problem is the SA-IS algorithm [Nong et al., 2009], with a memory
efficient version that computes the BWT directly [Okanohara and Sadakane, 2009],
obtaining the compressed SA positions later [Grossi and Vitter, 2005]. We selected
this approach to compute the BWT because it does not need to store the full S
vector into memory.

When performing short read alignments, the calculation of the BWT can be
accelerated considerably by reducing the complexity of the sorting process. Con-
cretely, we do not need to fully sort the suffixes of the reference string. We could
only sort the first k characters of each suffix, where k must be greater than the
length of the longest read we are going to map.

For example, in order to map reads with a maximum length of two elements
(k = 2) in the reference string “AGGAGC$”, we will only apply the sorting algo-
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rithm to the two first characters of each suffix matrix row:

SA′ =



$ A G G A G C
A G G A G C $
A G C $ A G G
C $ A G G A G
G A G C $ A G
G C $ A G G A
G G A G C $ A


In this case:

B′ =
(
C $ G G G A A

)
which is a different value with respect to the full ordering. Rows 2 and 3 are not
alphabetically ordered but continue providing an interval with all the occurrences
of string “AG”. The values of S and R also change:

S′ =
(

6 0 3 5 2 4 1
)

R′ =
(

1 6 4 2 5 3 0
)

Given that we know the maximum length of the reads to align (k), SA sorting
algorithms can be greatly simplified using this consideration (section 2.1.2). How-
ever, many compression techniques will not work properly without a full ordering
of the SA, so we do not use this optimisation (this is explained in section 4.1).

2.1.3 FM-Index data structures
The FM-Index data structures [Ferragina and Manzini, 2000] needed by the search
algorithm are obtained from the BWT stored in vector B. These data structures
are vector C and matrix O.

Let C(a) be the number of symbols in B (excluding $) lexicographically smaller
than a ∈ Σ. For example, contents of vector C for B = “CG$GGAA” are the
following:

C =
(

0 2 3 6
)

The positions in vector ‘C’ correspond to ‘A’, ‘C’, ‘G’ and ‘T’. For example, the
value of the first element of C means that there are no characters lexicographically
smaller than ‘A’. Accordingly, the rest of the elements denote that there are two
characters smaller than ‘C’ (two ‘A’), three ones smaller than ‘G’ (two ‘A’ plus
one ‘C’) and six characters smaller than ‘T’ (three additional ‘G’).

Let O(a, i) be the number of occurrences of symbol a ∈ Σ in B[0 : i− 1]. The
size of O is (|B|+ 1)× |Σ|, because the first column represents an empty interval
in B and its values are always 0. For example, content of matrix O for B =
“CG$GGAA” is as follows:

O =


0 0 0 0 0 0 1 2
0 1 1 1 1 1 1 1
0 0 1 1 2 3 3 3
0 0 0 0 0 0 0 0


A
C
G
T

8
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For example, the value at position O(G, 4) is 2 (‘G’ occupies the third row),
this means that ‘G’ appears twice in B[0 . . . 3].

We also define Br, Or, Sr and Rr as the data structures of the reversed reference
text Xr. This reverse index allows to change the direction of the analysis during
the search, but increases the memory requirements. Bidirectional methods [Lam
et al., 2009] solve this issue but may not be efficient in all cases, see section 5.3 for
a more detailed discussion.

We may want to calculate B without directly storing vector S, drastically
reducing the memory requirements of the BWT generation process [Okanohara
and Sadakane, 2009]. In such case a version of S and R compressed with a k ratio
can be obtained from the FM-Index data structures. We use the decompression
algorithms described in sections 5.1.1 and 5.1.2, starting at the position of the $
symbol in B and storing only the values of S and R every k positions.

2.1.4 FM-Index of the complementary strand
Sequenced DNA has two different possible strand orientations, which are called the
forward and complementary strand respectively. The segments in the complemen-
tary strand orientation appear in the opposite direction and the bases are swapped
with its complementary ones (A ↔ T , C ↔ G). In this case the DNA segments
have been inserted into the double helix in the opposite direction. In order to
search for mappings in segments oriented in the complementary strand direction,
we can apply two minor modifications to the FM-Index search algorithm.

First, the search direction is inverted, as we need to search for the reverse
string. Second, we search for the complementary bases (A ↔ T , C ↔ G) so it is
necessary to swap elements of vector C and rows of matrix O, obtaining Cc and
Oc as follows:

Cc =
(

6 3 2 0
)

Oc =


0 0 0 0 0 0 0 0
0 0 1 1 2 3 3 3
0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 2


T
G
C
A

2.1.5 Recursive Backward Search algorithm
Once the FM-Index is calculated, we can use it to perform backward search. Now,
we explain the basic methodology of backward search algorithms, after that we
describe the specific formulas for searching with the FM-Index. Finally, we clarify
these mechanics with an example.

Let W be a substring of X. The SA is alphabetically sorted (equation 2.1), so
all suffixes that contain W as prefix appear in a continuous interval IN = [k, l] of
SA rows. We define the upper and lower values of this interval as follows:

bIN(W )c = min [k | W is a prefix of SA(k, . . .)]

dIN(W )e = max [l | W is a prefix of SA(l, . . .)]
9
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The starting locations in X of each SA row are stored in vector S. Therefore,
given a string W , its appearances in X can be obtained from the defined interval
IN = [k, l], being S[k] the first element of S that points to a location of W in X
and S[l] the last element of S that points to a location of W in X. If W is an
empty string then k = bIN([ ])c = 0 and l = dIN([ ])e = |S| − 1, denoting that all
the suffixes in SA accept an empty string as prefix.

For example, searching W = “AG” in the reference X = “AGGAGC$”, we
obtain the interval [k, l]← [1, 2], with S[1] = 3 and S[2] = 0:

$ A G G A G C
bIN(W )c → A G C $ A G G
dIN(W )e → A G G A G C $

C $ A G G A G
G A G C $ A G
G C $ A G G A
G G A G C $ A

6
3
0
5
2
4
1

Backward search methods allow to recursively obtain the IN = [k, l] interval
of a read W , starting from its last symbol up to the first one. In the following
recursive equation, BSK and BSL are respectively generic functions that return
the lower and upper values of the next interval IN(aW ′), given the previous
interval IN(W ′) and the preceding symbol a:

bIN(a : W ′)c = BSK(a, bIN(W ′)c)

dIN(a : W ′)e = BSL(a, dIN(W ′)e)
In this function, operator : extracts the head symbol from a string until reaching
the base case of the interval, IN([]). Then the recursive calls are solved performing
the search in backward direction. If W is a substring of X, then the interval values
must always satisfy bIN(W )c ≤ dIN(W )e.

Backward search methods determine if W is a substring of X in O(|W |) time.
On each step, a symbol of W is analysed obtaining new values of bIN(W ′)c and
dIN(W ′)e for the current substring W ′. As more steps are performed the interval
[bIN(W ′)c, dIN(W ′)e] becomes thinner, until the first symbol.

We can use the FM-Index to perform backward search and obtain bIN(W )c
and dIN(W )e. The recursive function uses the auxiliary vectors C and O. In
[Ferragina and Manzini, 2000] the following relation is demonstrated:

bIN(a : W ′)c = C(a) + O(a, bIN(W ′)c − 1) + 1

dIN(a : W ′)e = C(a) + O(a, dIN(W ′)e)
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Following the example in section 2.1.1, we search for string W = “AGG” on the
reference X = “AGGAGC$”, the iterations of the FM-Index function for backward
search are:

1. Initialise.
bIN([ ])c → $ A G G A G C

A G C $ A G G
A G G A G C $
C $ A G G A G
G A G C $ A G
G C $ A G G A

dIN([ ])e → G G A G C $ A
B

bIN([ ])c ← 0

dIN([ ])e ← 6← |S| − 1

At the beginning no symbols of W have been analysed yet, so we initialise
the interval values to the first and last row values of SA. This means that
the empty string is a prefix of all the suffixes of X. As stated before, the
last column of the SA is vector B.

2. Substring “G”. Previous interval [0, 6].

$ A G G A G C
A G C $ A G G
A G G A G C $
C $ A G G A G

bIN(G)c → G A G C $ A G
G C $ A G G A

dIN(G)e → G G A G C $ A
B

bIN(G : [])c ← C(G) + O(G, 0) + 1 = (3) + (0) + 1 = 4

dIN(G : [])e ← C(G) + O(G, 6 + 1) = (3) + (0 + 3) = 6

The first symbol to analyse is the last symbol of W . We apply the FM-Index
equation to update the interval values. Vector C indicates that there are 3
symbols with a smaller lexicographic value than ‘G’ in B. For the lower value
of the interval, matrix O gives the number of appearances of symbol ‘G’ in
B[∅], which is always 0 because column 0 of O represents an empty interval
of B. For the upper value of the interval, matrix O returns the number of
appearances of ‘G’ in B[0 : 6], wich is 3.

The symbols of the first column of SA are sorted alphabetically, so we can
intuitively see that in the lower value of the interval the C(G) value points
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to the last symbol smaller than ‘G’ in the first column of SA. In the upper
value of the interval we add to the value of C(G) the value of O(G, 6 + 1),
which is a count of all the appearances of ‘G’ in B.

3. Substring “GG”. Previous interval [4, 6].

$ A G G A G C $
A G C $ A G G → A
A G G A G C $ A
C $ A G G A G → C
G A G C $ A G → G
G C $ A G G A G

bIN(GG)c, dIN(GG)e → G G A G C $ A G
B

bIN(G : [G])c ← C(G) + O(G, 4) + 1 = (3) + (2) + 1 = 6

dIN(G : [G])e ← C(G) + O(G, 6 + 1) = (3) + (2 + 1) = 6

As in the previous step, the value of C(G) points to the last symbol smaller
than ‘G’ in the first column of SA, but in this case we search for appearances
of substring “GG”.

The SA is constructed by shifting the values of X in rows and sorting them
(section 2.1.1). The symbols in the last column of SA (vector B) have the
property of preceding the symbols in the first column of SA, which is alpha-
betically sorted. So, the previous interval values [4, 6] indicate that the sym-
bols in B[0 : 3] precede suffixes lexicographically smaller than the previously
analysed symbols (in this case the single symbol ‘G’), while the symbols in
B[0 : 6] precede suffixes lexicographically smaller or equal to the previously
analysed symbols.

For the lower value of the interval, we obtain from O(G, 4) = (2) the number
of ‘G’ symbols in the first column that precede suffixes lexicographically
smaller than the previously analysed symbols. For the upper value of the
interval, we obtain from O(G, 6+1) = 3 = (2+1) the number of ‘G’ symbols
in the first column that precede suffixes lexicographically smaller or equal to
the previously analysed symbols.

We split the value of O(G, 6+1) into two values, indicating with an underline
the number of ‘G’ preceding suffixes lexicographically smaller than “G” (2),
and with a bold font the number of ‘G’ preceding suffixes lexicographically
equal to “G” (1). Such suffixes have been highlighted in the example matrix,
both in the first and last rows, using the same convention.
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4. Substring “AGG”. Previous interval [6, 6].

$ A G G A G C $ A
A G C $ A G G A G

bIN(AGG)c, dIN(AGG)e → A G G A G C $ A G
C $ A G G A G C $
G A G C $ A G G A
G C $ A G G A → G C
G G A G C $ A → G G

B

bIN(A : [GG])c ← C(A) + O(A, 6) + 1 = 0 + (1) + 1 = 2

dIN(A : [GG])e ← C(A) + O(A, 6 + 1) = 0 + (1 + 1) = 2

This step is similar to the previous one, but now the previously analysed
symbols are suffix “GG”. For the lower value of the interval, we obtain from
O(A, 6) = (1) the number of ‘A’ symbols in the first column that precede
suffixes lexicographically smaller than “GG”. For the upper value of the
interval, we obtain from O(A, 6 + 1) = 2 = (1 + 1) the number of ‘A’
symbols in the first column that precede suffixes lexicographically smaller or
equal to “GG”. In this case there are no symbols lexicographically smaller
than ‘A’, so C(A) value is 0.

Notice that the interval lower and upper positions change according to the
last analysed symbol, in this case ‘A’. This means that although on each
iteration the interval size becomes equal or narrower, the new interval may
not be contained within the range of the previous interval.

5. Result. The final interval IN is [k, l] = [2, 2]. S = (6 3 0 5 2 4 1).

There is only a single position in X: S[2]→ X[0]→ “AGGAGC$”.

2.1.6 Iterative Backward Search algorithm
From here, we refer to the bINc and dINe interval range as [k, l]. The positions
of all the occurrences of a string W in X is the contiguous interval S[k . . . l],
containing all the suffixes of X that start with W . To obtain [k, l] of a string W
we can use algorithm 2.1, which is the iterative version of the recursive function
explained before. The initial values are k = 0 and l = |S| − 1. The variable index
is a generalisation of the index used for the backward search.

If we perform backward search using the FM-Index, then the index variable
will contain the C and O data structures and the function search iteration of
algorithm 2.1 will be defined as in algorithm 2.2.

On each search iteration a symbol of W is analysed obtaining an equal or
narrower [k, l] interval for the larger substring. At the end, if k ≤ l string W
belongs to X.
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Algorithm 2.1: Exact Backward Search

1: exact backward(IN: W, index. OUT: r.)
2: [k, l]← [0, size(index)− 1]
3: for i← |W | − 1 . . . 0
4: [k, l]← search iteration([k, l],W [i], index)
5: if k > l break
6: end for
7: r ← [k, l] at i with [ ]
8: end function

We return the result in variable r using a special notation ([k, l] at i with [ ]),
this means that we return interval [k, l], pointing to the symbol of W at position i
(where the search stopped) and setting and empty error list (this is exact search).

Algorithm 2.2: Search iteration with the FM-Index

1: search iteration(IN: [k, l], b, index. OUT: [k′, l′].)
2: k′ ← index.C[b] + index.O[b][k] + 1
3: l′ ← index.C[b] + index.O[b][l + 1]
4: end function

Any backward search method providing an implementation of the function
search iteration and wrappers to access the SA (vector S) and ISA (vector R)
will be compatible with the algorithms described in this thesis. We employ different
indexes on each implementation, including CPU and GPU implementations of the
FM-Index and the csalib [Sadakane, 2010] out-of-core implementation.

2.2 General Purpose GPU

The Moore’s law states that the number of transitors on a chip doubles every
two years [Moore, 1998][Moore, 1975]. This statement was consistent with what
was observed since 1965. The continuous improvement of CPU computer power
has always been driven by the Moore’s law, enabling more complex operators
and better architectures in a reduced space (instruction pipelines, super-scalar
architectures, out-of-order executions, vectorial instructions).

Since the beginning of 2000s, the frequency of CPUs has ceased to raise. Heat
dissipation is a problem that prevents increasing the clock frequency of electronic
circuits and, as a consequence, the Moore’s law is no longer valid. Currently, this
problem is addressed by designing parallel architectures with low energy consump-
tion. In this type of architectures, machines have many processing cores that are
optimized to work efficiently together.

The evolution of mainstream CPU is currently driven by the multiplication
of the number of computational cores, rather than dedicating efforts to improve
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single-core architectures. However, multi-core processors produced by both Intel
and AMD use too much energy per instruction, which impedes connecting a large
number of them in parallel.

More recently, a new parallel architecture with low energy consumption has
appeared. Thanks to the development effort done by the electronic entertain-
ment industry, video cards have greatly increased their computing capacity with
a high integration level of concurrent execution cores. General Purpose Graphi-
cal Processing Units (GPGPU) include the necessary logic to execute any kind of
program, becoming powerful general purpose CPU featuring an unbeatable degree
of parallelism for specific tasks. These modern graphic cards rely on many-core
processors, whose energy per instruction is reduced by sharing the same hardware
logic among several simultaneous instructions.

These solutions are not so different today, multi-core CPU have increased the
number of cores, while many-core GPUs have more complex hardware design.
Applications for these architectures follow the parallel programming model, instead
of the previously existing serial programming model. When following the parallel
programming model, there are several degrees of parallelism depending on the
underlying architecture, namely inter-core parallelism and intra-core parallelism.

Inter-core parallelism is achieved when several cores execute different code
concurrently, synchronising their execution to access the same memory space. This
degree of parallelism is also called coarse-grain parallelism. This is the maximum
degree of parallelism that can be achieved between independent cores. Inter-
core parallelism can be defined in the programs by using explicit multi-thread
programming or with the help of high level frameworks such as OpenMP [Board,
2013]. This parallelism naturally applies to both multi-core CPU and many-core
GPGPU processors.

Intra-core parallelism involves parallelism inside a computational core, for ex-
ample through the Single Instruction Multiple Data (SIMD) model. This degree
of parallelism is also called fine-grain parallelism. The intra-core parallelism can
be defined in the programs by using specific calls to vector instructions or can be
automatically inferred by an optimising compiler. Again, this parallelism applies
to both multi-core CPU and many-core processors. However, the SIMD model
is fundamental for the performance of GPGPU, because the SIMD instructions
involve much more simultaneous data elements than a mainstream CPU. Another
example of intra-core parallelism is out-of-order execution, where independent in-
structions can be executed simultaneously, regardless of their execution order in
the program.

The very good ratio of performance versus cost of GPGPU has fostered bioin-
formatics researchers to consider such platforms for data analysis [Varré et al.,
2011]. Previous scientific research was based on custom designed hardware and
parallel supercomputing technologies, whose cost is not within the reach of every
research group. High-end GPGPUs can deliver computational capabilities greater
than those provided by CPUs. These capabilities became accessible thanks to
the CUDA programming environment [NVIDIA, 2014] by Nvidia and more re-
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cently with the OpenCL open standard [Khronos, 2011][Munshi et al., 2011] by
the Khronos Group.

In some cases, when the memory and computational requirements of an algo-
rithm fit the GPGPU architecture constraints, graphic cards provide a great com-
putational power at an affordable price. However, and due to the programming
complexity that GPGPUs imply, the application of these computational resources
has been limited to few approaches.

A Nvidia GPU is composed of several multithreaded multiprocessors (SM). An
SM is composed of an unique instruction decoder and several thread processors
(SP). This configuration allows thread parallelism inside the SM only if each SP
executes the same instruction on different data. For this reason the parallelism
model of the GPU is often referred as Single Instruction Multiple Thread (SIMT),
instead of SIMD.

Hence, conditional constructs must be avoided in order to take full profit of the
parallelism at SP level. As it can be seen in figure 2.2 several MP can be included
in a single Texture Processor Cluster (TPC), sharing the same access channel to
the global memory. Due to this, memory accesses must be minimised to obtain a
good speed-up using the GPU.

Programs that are launched on the GPU are divided into threads of execution.
These threads are the operations in which the main program is parallelised. The
main program is coded as what is called a kernel. CUDA execution threads are
organised in blocks and blocks are organised into a execution grid. Each CUDA
kernel parallel execution is structured following its corresponding grid hierarchy
(figure 2.3). The details about the development and execution of CUDA kernels
can be found at chapter 2 of [NVIDIA, 2014].

At execution time, threads are grouped by warps inside each SM and sched-
uled to be executed in the SP automatically, this part of the execution process is
transparent to the user and can not be controlled. The user only controls which
threads are in the same block and can share information using the shared memory
of a SM.

A CUDA GPU has different memory types (figure 2.2):

• The main memory is the global memory, which allows to store gigabytes of
information. All the SM are able to access it. Main memory has a great per-
formance penalty because the information resides outside all the SM chips.

• On the other side, the shared memory is the memory of each SM. All the
threads within the same block are able to access this memory. This memory
is really fast, but of small size and a thread on an SM cannot access the
shared memory of another SM.

• Registers and local memory reside also in the SM hierarchy. However, they
contain elements which are private of each thread.

• Texture cache and constant cache are memory caches that the programmer
can use to accelerate the access to the global memory. These caches can
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be accessed by all the SM. The texture cache provides 2D locality. The
constant cache provides 64K of space to accelerate repeated access to the
same constant values.

All the threads of a block are executed in the same SM, accessing the same
shared memory and executing concurrently (figure 2.2). When a thread reads
information from the GPGPU global memory the execution speed is reduced. In
order to avoid this bottleneck programs must take profit from the shared memory
and the registers as much as possible.

General Purpose Graphic Processing Units (GPGPUs) constitute an inexpen-
sive resource for computing-intensive applications able to exploit its memory hi-
erarchy and intrinsic fine-grain parallelism. The industrial effort made to convert
GPU into GPGPU has led to an improved architecture, increasing the transfer
rate of the bus that connects the GPU to the CPU memory, optimizing certain
machine instructions that in principle are not necessary to accelerate graphics and
even including in the latest models a double precision floating point unit.

These new functionalities have also led to the emergence of two GPU devel-
opment frameworks: CUDA [NVIDIA, 2014] and OpenCL [Khronos, 2011][Mun-
shi et al., 2011]. CUDA is a mature solution, but only works on Nvidia GPUs.
OpenCL has been designed as a standard GPGPU development framework, being
the programming environment of several brands of GPGPUs. OpenCL allows code
generation at runtime without the aid of external tools.

The portability of the OpenCL code does not imply that it will work optimally
on all GPGPU models without an extra effort from the programmer. Furthermore,
CUDA allows C++ language constructs, while the OpenCL standard only allows
C language constructs. The CUDA framework also includes several debugging
utilities which are not present in OpenCL.

2.3 Sensitivity (TPR)

The sensitivity is a statistical measure of the performance of a binary classification
test, also known in statistics as classification function. Sensitivity (also called the
True Positive Rate (TPR), or the recall rate in some fields) measures the propor-
tion of actual positives which are correctly identified as such and is complementary
to the false negative rate.

The equation to obtain the sensitivity in an experiment is the following:

TPR =
TP

TP + FN

where TP are the true positives and FN are the false negatives.
We use this parameter to compare our sequence mapping algorithm with similar

approaches. Our algorithms focus on strategies to obtain full sensitivity during
the search (TPR = 1). This means that there are no reads not being found in the
reference given the amount of errors allowed (there are no false negatives). The
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sensitivity value shows how close to our approach are the results of other backward
search mapping algorithms.

2.4 Sequence alignment tools

Currently, several algorithms address the sequence alignment problem. As we
have explained in the preceding state-of-the-art sections, there are different design
approaches, each one suitable for distinct experimental scenarios [Li and Homer,
2010]. Different bioinformatics applications employ these algorithms. In this sec-
tion we overview the existing sequence alignment tools, with a special focus on
sequence mapping tools [Hatem et al., 2013].

Several alignment solutions available in the literature focus on dynamic pro-
gramming approaches, like the Needleman-Wunsch algorithm [Needleman and
Wunsch, 1970] for global alignment or the Smith-Waterman [Smith and Waterman,
1981] and Gotoh [Gotoh, 1982] algorithms for local alignment. In such approaches
an implicit matrix of weights or likelihoods is generated and the maximum scoring
path for that matrix is obtained, allowing to select the most biologically probable
results. Among the different scoring schemes available, those based on the Hidden
Markov Models [Durbin et al., 1998] (HMM) are the most complete ones. Working
with such mathematical models provides good error sensitivity when searching for
homologies, so they are typically used to align dissimilar or gapped sequences of
average length; however, their computational cost depends on the length of the
read multiplied by the length of the reference genome.

Several tools follow this approach, including FASTA [Lipman and Pearson,
1985][Pearson and Lipman, 1988] and BLAST [Altschul et al., 1990][Altschul et al.,
1997]. Concretely, FASTA includes SSEARCH [Pearson, 1991] implementation of
the SW algorithm. BLAST adds the concept of high score pairs to speed up the
process. Both tools feature different alignment kernels with code optimisations for
CPU vector instruction sets (Altivec, SSE) and support for parallel computing on
specific hardware, among other features.

Statistical models have also been employed to align biological sequences [Durbin
et al., 1998]. Concretely, HMMER [Eddy, 1998], SAM [Hughey and Krogh, 1995],
Clustal Omega [Sievers et al., 2011] and T-Coffee [Notredame et al., 2000] Rhmm
package are based on Hidden Markov models [Durbin et al., 1998] and feature com-
putational requirements similar to SW solutions. These tools focus on improving
result scoring accuracy by using more precise mathematical models.

Therefore, these options are not efficient when performing the alignment of
short reads. State-of-the-art short read mapping techniques are based in back-
ward search methods over Suffix arrays [Manber and Myers, 1990] (SA). Some
of these methods require the generation of an index with the Burrows Wheeler
Transform (BWT). One of these indexes is the Ferragina and Manzini Index [Fer-
ragina and Manzini, 2005] (FM-Index). The BWT has been originally used in
data compression techniques [Burrows and Wheeler, 1994][Manzini, 1999], but the
FM-Index [Ferragina and Manzini, 2000] allowed the design of recursive backwards
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searching algorithms for inexact mapping [Li and Durbin, 2009]. Backward search
techniques using the FM-Index reduce the computational complexity of the ex-
act mapping process to the order of the length of the read. It is nevertheless
true that this comes at the expense of greatly reducing the error sensitivity and,
consequently, the length of the sequences mapped.

Early short read aligners are based on FM-Index [Ferragina and Manzini, 2005]
backward search methods. This is the case of early versions of BWA [Li and
Durbin, 2009], SOAP2 [Li et al., 2009], and the currently maintained Bowtie 1 [Lang-
mead et al., 2009]. However, these tools allow a limited number of alignment er-
rors, due to restrictions in memory and performance. For this reason, backward
search techniques are employed to locate small segments of the reads (seeds) in
the genome, revealing alignment candidate areas that are analysed using dynamic
programmming approaches. BWA [Li and Durbin, 2010], Bowtie 2 [Langmead
and Salzberg, 2012] and SeqAlto [Mu et al., 2012] combine FM-Index multi-seed
preprocessing with dynamic programming methods.

Other approaches create a hash table to store the positions in the reference
of all the possible substrings of the read with a given length. This hash table
provides all the starting search points of any input sequence, namely k-mers. This
technique has been very successful for the alignment of short reads. For larger
sequences, increasing the size of the segments in the hash table could reduce the
execution time, but exponentially increases the size of the hash table. Tools like
SSAHA [Ning et al., 2001a], SOAP or BLAT [Kent, 2002] implement this approach.
More modern tools like SSAHA2 [Ning et al., 2001b] and GEM [Marco-Sola et al.,
2012] locate k-mers to be used as prefixes that are also explored using dynamic
programming approaches.

Additionally, there are prefix search techniques based on Suffix array (SA) [Man-
ber and Myers, 1990] and enhanced SA [Abouelhoda et al., 2002] theory with appli-
cations to bioinformatics. Concretely, essaMEM [Vyverman et al., 2013] and Psi-
Ra [Oguzhan Kulekci et al., 2011] tools are based on sparse SA. Backward search
methods can also be applied to SA in a similar fashion as the FM-Index [Sadakane,
2003]. The computational cost of prefix search methods depends on the length of
the prefix and a scalar value that can be improved depending on the data struc-
tures employed.

One of the first steps in the adaptation of alignment tools to GPGPU archi-
tectures is an implementation on OpenGL (an environment totally oriented to
graphics and very restricted for general programming) of the Smith-Waterman al-
gorithm [Liu et al., 2006], developed in 2006. Nowadays, with the aid of specialised
toolkits like CUDA [NVIDIA, 2014] and OpenCL [Khronos, 2011][Munshi et al.,
2011] the complexity of this task has been reduced considerably.

There are several implementations on GPUs of Smith-Waterman [Manavski
and Valle, 2008][Ligowski and Rudnicki, 2009][Striemer and Akoglu, 2009] and
BLAST [Vouzis and Sahinidis, 2011][Ling and Benkrid, 2010] algorithms. In [Man-
avski and Valle, 2008] an implementation of the Smith-Waterman algorithm using
CUDA is presented, achieving a speed-up between 2 and 30 with respect to the
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execution of the same algorithm on conventional CPU architectures. Improving
access to data, which is the main bottleneck in CUDA, and using several process-
ing boards concurrently [Ligowski and Rudnicki, 2009] and [Striemer and Akoglu,
2009] achieve improvements five times larger.

Regarding sequence mapping tools based on the FM-Index, CUSHAW3 [Liu
et al., 2014] and Barracuda [Klus et al., 2012] support GPU computing. SOAP3 [Liu
et al., 2011] allows short-read mappings in the GPU using the BWT transform,
and supports inexact searches up to 4 errors without indels. SOAP3-dp [Luo et al.,
2013] includes the functionality of SOAP3 an also includes a new sequence map-
ping pipeline that combines pair-end searching and dynamic programming both
on the GPU, this provides a functionality similar to Bowtie 2 and BWA. Also,
there are FPGA implementations [Xin et al., 2013].
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Figure 2.1: Nvidia Tesla GPU architecture
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Figure 2.2: Nvidia GPU memory hierarchy
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Figure 2.3: Nvidia kernel
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Chapter 3

Objectives

The main objective of this thesis is to increase the sensitivity and performance of
mapping algorithms based on backward search methods. To achieve this objective,
we developed efficient algorithms for exact and inexact alignment capable of taking
advantage of different parallel infrastructures, including GPGPU and multi-core
processors. Each development in this thesis has a main objective, which implies
analysing several other sub-objectives that have guided our work.

The first development focuses on using GPGPUs for solving the exact align-
ment of short reads with respect to a reference indexed using the FM-Index. This
algorithm will be used to find the location of read seeds. This main objective
implies:

• To implement a version of the algorithm based on CPUs, including support
for inexact searches. This sequential code will be the basis for the GPGPU
enabled version of the algorithm.

• To study the data dependencies and parallel symmetry of the BWT searching
methods. It is very important to analyse and identify the different parallel
flows in the algorithm.

• To define the parallelisation approach of the algorithm considering the re-
strictions of GPGPUs. According to the study developed in the previous
sub-objective, the most effective parallelisation approach could be defined.

• To implement a base version of the algorithm adapted to the restrictions of
GPGPUs. Although GPGPU algorithms could be recursive, recursion is only
supported on recent cards and iterative versions are more efficient. Moreover,
memory size constraints at the different memory hierarchical levels (registry,
textures, shared, general, etc.) impose conditions to recursive algorithms
that do not fit the present case, since different threads could be at different
levels of the recursion, being inefficient.
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• To evaluate the different alternatives to reduce the overall response time.
There are many features that could be fine-tuned, such as the size of CUDA
blocks, the size of the read blocks from the input sequences file or the overlap-
ping between transferring and processing. These features can be evaluated
after the algorithm is ported to GPGPU.

• To measure and compare the performance gain with respect to the fastest
algorithms in the state of the art and considering the same working condi-
tions. Comparison with respect to representative algorithms using the same
approach should be performed for a reasonable large case and considering
different working conditions. All the executions should be performed con-
sidering the same arguments, ensuring that the output is comparable in all
cases.

The second development focuses on extending the exact search parallelisation
on GPU to create an hybrid CPU-GPU algorithm. This algorithm allows one
error mappings and returns the pair-ends of each read. The sub-objectives for this
development further extend the objectives of the previous development:

• To develop various compression and decompression algorithms in order to
store and retrieve auxiliary data structures efficiently. The FM-Index gen-
erated by the BWT requires tens of gigabytes of main memory during the
execution of the search routine. The compression is needed to load the index
in the memory of current GPU cards.

• To detect which parts of the computation will execute better on the GPGPU
architecture and which ones will execute better on the CPU, separating them
into two subroutines.

• To implement a version of the algorithm in which the two previous subrou-
tines are executed on the CPU. This version is compared with the implemen-
tation using a single subroutine in order to check the overhead of separating
the logic of the program.

• To implement the GPU subroutine using CUDA. We must again fine-tune
the CUDA execution variables for the new subroutine.

• To measure and compare the performance and sensitivity with respect to
existing algorithms performing a similar task.

The third development consists on an inexact mapping algorithm compatible
with different backward search methods and index implementations. We studied
the genomic variability, presenting several pruning techniques that speed-up the
mapping process. This main objective implies also:

• To develop compression and decompression algorithms for the suffix array
vectors, whose size is too big for current desktop workstations.
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• An inexact mapping algorithm based on backward search is presented. The
algorithm seeks all possible combinations of errors, including insertions, dele-
tions and mismatches.

• To describe the proposed pruning techniques and how they contribute to
accelerate the search tree exploration during the mapping process.

• To evaluate the application under different conditions. There are many ex-
perimental variables that would affect the performance of the new algorithm,
including the size of the reads, the number of errors allowed, the size of the
reference genome studied or the size of the spanning tree.

• To compare the alignment sensitivity and execution times of our applica-
tion with those of other representative tools using the same approach. This
comparison should be performed for a reasonable large case, considering the
same input arguments and execution environment.

• To use the new algorithm as a preprocessing step for modern sequence map-
pers. Experiments must be conducted in order to measure the performance
gain of modern sequence mappers when using the new algorithm.

• To measure the execution time of the algorithm using an out-of-core imple-
mentation of the FM-Index, in order to study its viability on systems with
low main memory configurations.
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Chapter 4

FM-Index search on hybrid
CPU-GPU environments

In this chapter we describe the parallelisation of two sequence mapping algorithms
on GPU. The first one covers exact mapping on GPUs [Salavert et al., 2012].
The second one is an hybrid CPU-GPU implementation, which performs inexact
mapping with one error and returns the pair-ends of a read [Salavert et al., 2014].

4.1 FM-Index compression

In order to store the FM-Index into GPU we need to compress its data structures,
concretely matrix O. The compression technique employed in our experiments is
discussed in this section.

Matrix O has a size that depends on the length of the genome times the size of
the alphabet. Each element in O is a long integer, so therefore, O is a huge matrix
to keep in memory.

In order to compress this matrix, [Li and Durbin, 2009] proposes partially
storing vector O in memory, computing the missing values on the fly from B. This
technique greatly augments the cost per iteration of the search algorithm. As the
main memory of current desktop computers is continuously increasing, we employ
an approach with a lower compression ratio than other existing techniques, but
also with a lower computational cost increase.

The information of matrix O is split into two matrices Ocount and Odisp. Each
row of these matrices stores the information of a different nucleotide, like matrix
O does. In our notation matrix O has n columns.

Let Ocount be a matrix whose elements are bit vectors of size r, such vectors
can be stored as integer values. The size of each row is n/r elements of r bits.
If the i-th bit of a row is set to 1 this indicates that in the i-th position of B a
nucleotide corresponding to the current row symbol appears.

29



Chapter 4. FM-Index search on hybrid CPU-GPU environments

Let Odisp be a matrix of integers with size n/r, where each element corresponds
to a bit vector in Ocount. Odisp[a, k] contains the number of nucleotides of type
a ∈ [A,C,G, T ] before the first bit of Ocount[a, k].

Following the example of section 2.1.3, the values of Ocount and Odisp are:

Ocount =


0000 0011
0100 0000
0010 1100
0000 0000

 =


0 3
4 0
2 12
0 0


A
C
G
T

Odisp =


0 0
0 1
0 1
0 0


A
C
G
T

The function in algorithm 4.1 obtains the value of O[a, i] from Ocount and
Odisp. Notice that a bit-count operation is employed after a bit shift to extract
the number of 1 before position i mod r of Ocount[a, i/r] (the last bit corresponding
to B[0..i]), then we add this value to the total count of 1 in Odisp[a, i/r].

Algorithm 4.1: Matrix O decompression

getOcompValue(a, i, O, r)
{
pos← i/r
disp← i mod r
bits← bitcount(Ocount(a, pos) >> (r − (disp + 1)))
return Odisp(a, pos) + bits
}

The bit-count operation is implemented at hardware level in many CPU and
GPU, being a fast implementation. Matrix O reaches 48 Gigabytes when indexing
the Homo sapiens genome, requiring only 2 Gigabytes with r = 64. An acceptable
size in current workstations.

4.2 GPU exact search algorithm

In order to parallelise exact mapping on GPU several reads are analysed at the
same time using the multi-threaded architecture of the GPU. Recursive program-
ming is not an efficient approach for GPU parallelisation, so we decided to employ
an iterative algorithm in order to improve the speed-up. The algorithm presented
in section 2.1.6 establishes the basis for the parallel implementation on GPU.

This section presents a simplification of the real code of the CUDA kernel, out-
lining the differences and optimisations needed to take full advantage of the Nvidia
architecture. The complementary strand variations of the FM-Index described in
section 2.1.4 are implemented in GPU following the same principles.
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4.2.1 Implementation details
The function in algorithm 4.2 receives the following parameters: W is a vector
with the reads to be matched by the kernel in four bases per byte format, nW is a
vector with the length of each formatted read and nWe is a vector with the length
of the real unformatted read, C and O are the FM-Index of the reference genome
and k and l are vectors whose components are initialised to the start values of
bRc = 0 and dRe = |B| − 1. MAXLINECOMP is the maximum length of an
encoded sequence.

Algorithm 4.2: GPU exact search algorithm

exact iterative search gpu(W,nW,nWe,C,O, k, l)
{
offset ← blockIdx.x ∗ blockDim.x + threadIdx.x
if threadIdx.x < 4 then
Cshared[threadIdx.x]← C[threadIdx.x]

end if
syncthreads()
k2← k[offset]
l2← l[offset]
// Modulo operator can be expensive
shift← index[nWe[offset ] mod 4]
syncthreads()
b = W [offset ∗MAXLINECOMP + nW [offset ]− 1]
for i← nW [offset ]− 1 . . . 0 do

// This loop (j) must be unrolled
for j ← shift . . . 0 do
val← (b� (j ∗ 2))&3 // Unencoded W [i]
k2← Cshared[val] + O[val, k2] + 1
l2← Cshared[val] + O[val, l2 + 1]

end for
shift← 3
if k2 > l2 then break

end for
syncthreads()
k[offset ] = k2
l[offset ] = l2
}

The algorithm returns two vectors k and l, with the final values of bR(W )c
and dR(W )e of all the search strings analysed in parallel.

Each thread of the exact search algorithm is responsible of mapping a different
read, which is selected by calculating the offset of the thread at the beginning of
the algorithm.
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The decision on which component should be stored in which memory is im-
portant for performance. The C vector, which is composed of only 4 elements, is
stored in shared memory in order to increase the speed of the algorithm. Vector O
must be fetched by the SM from global memory due to its size, and this constitutes
the most expensive operation in the kernel execution.

As each element of the C vector is copied into shared memory by a differ-
ent thread, the syncthreads() function is called to avoid accesses to uninitialised
shared memory.

The CUDA kernel is invoked several times. Before each invocation, new reads
must be transferred from system main memory to the GPU global memory (vector
O is transferred to GPU only once at the beginning of execution). We propose to
encode the reads into a four bases per byte format in order to accelerate memory
transfers from CPU to GPU. Depending on the CUDA hardware version and the
configuration (plain desktop vs high-end workstation) this approach can provide
faster results. We noticed that in newer CUDA hardware these memory transfers
have been significantly improved, mitigating this issue. Moreover, recent CUDA
versions include the cudaMallocHost function, which enables faster memory access
by improving memory addressing performance. This means that currently we can
encode the reads using one byte per base, allowing the treatment of special symbols
like N (unknown base). Another consideration is that in our implementation the
inner loop is unrolled, processing each byte element in separate code.

Also, we need to know how many bases the last element of the formatted read
has. Although the pseudo-code includes a modulo operation, we should avoid it
on the implementation since modulo operations can be slow on GPU. However in
our case it does not affect the performance of the CUDA kernel implementation.

The k2 > l2 condition will end the execution earlier if the substring is not
found in the reference genome. When programming in the GPU we normally
avoid conditional clauses, but in this case it just ends the analysis of a read,
stopping further computation and improving the speed-up. We did not expected a
performance increase when adding the k2 > l2 condition. Nevertheless, stopping
a thread will not stop the rest of threads executed in the same context. This is
reflected in section 4.2.3, where the optimum number of threads per block appears
to be 32, the lowest value possible. Avoiding this scenario is difficult as we are not
able to know the iteration in which the k2 > l2 condition will become true, but
this optimisation reduces the problem.
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4.2.2 Pthread multi GPU version
Many Nvidia CUDA professional solutions come with multiple graphic cards (com-
monly two). In this section we describe how to enhance the algorithm to take
advantage of multi-card systems. In addition, input and output operations can be
serialised with the GPU computation.

As we want to take profit of the parallelism that segmentation allows, the whole
mapping process has been segmented into several steps (read, load to GPU, match
sequences, copy results from GPU, write results...). CUDA threads are suited for
the management of multiple GPUs at the same time, but lack many features
needed for concurrent execution and process synchronisation, this is why we have
implemented our solution using pthreads. Figure 4.1 illustrates the behaviour of
the application, we have split the process into four concurrent CPU threads.

Figure 4.1: Multiple threads in CPU

Concretely, the read and write threads are responsible of disk input/output
operations, loading blocks of reads and saving the results of the mappings respec-
tively. The threads search + and search - set up some variables, load to GPU
the reads provided by the read thread, launch forward (+) and reverse (−) strand
versions of the mapping kernel on each GPU and return results to main memory.
This set up allows to load new reads from disk while simultaneously mapping in
multiple cards the sequences read previously. This approach is really effective
and we recommend it as an intelligent an effective way of taking full advantage of
hybrid CPU-GPU computational power.
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4.2.3 Experimental results
All the tests in this section where executed in an Nvidia Tesla S1070 solution, with
two Intel R© Xeon R© E5520 CPU running at 2.27GHz (8 threads), 24GB of RAM
and 2 PCI Express interfaces attached to 2 Bull R422E2 nodes. Each of the Bull
nodes features 2 Tesla T10 processor GPUs with 30 multiprocessors running at
1.30 GHz (which provide 240 simultaneous CUDA threads). In the experiments
we only use one of the Bull nodes with an Intel CPU.

The disk drive is a 2TB Seagate ST3250310NS, with 7200 RPM spin speed,
SATA 3Gb/s serial connection, 64MB cache and a sustained data transfer rate of
140 MB/s.

The dataset is composed by reads extracted from the Drosophila melanogaster
genome with an average length of 100 nucleotides (ranging from 30 to 200 nu-
cleotides). This is the worst case scenario possible because all the nucleotides of
each read will be analysed by the backward search implementations.

Profiling of the GPU algorithm

In this section we realise a profiling of the algorithm, measuring separately the
different steps of the mapping process. Such steps are the following: read vector
O from disk, copy vectors C and O to GPU memory, read the reads from disk,
copy the reads to GPU, execute the GPU mapping kernel, copy the results back
to CPU main memory and copy the results to disk.

By studying the time that takes to complete each task, we can detect the
bottlenecks easily. Also, this study allows us to separate the tasks that rely on
the input/output capabilities of the system and are common to all the compared
sequencers from those whose performance depends only on the implementation
and optimisation of the algorithm.

We executed a single threaded GPU version of the algorithm and aligned 2 mil-
lion reads with a length ranging from 30 to 200 nucleotides against the Drosophila
melanogaster genome. The results depicted in figure 4.2 show that loading from
disk the vector O consumes about 60% of the execution time. Size of vector O
is constant, so we need to accelerate the load or align more sequences in order to
take profit of the algorithm.

In any case, if the operative system has enough main memory, the vector O file
will remain cached and the following executions will not suffer this initialisation
penalty, as it can be seen in figure 4.3. Another solution would be to implement a
search service that loads at start-up the vector O and waits for user calls requiring
the mapping of reads.

Figure 4.3 also shows that reading and copying the results to disk are the most
time consuming parts. This is partially solved in the pthread multi GPU version,
in which the tasks of reading the reads from disk and executing the GPU mapping
kernel are overlapped. Overlapped tasks should consume approximately the same
amount of time.

Tesla S1070 has a very good memory transfer compared to other solutions, so
the copy of the vector O to GPU is performed quite efficiently. Also, we observed

34



4.2 GPU exact search algorithm

that the time of the copy the reads to GPU and copy the results back to CPU
steps is negligible. On lower-end GPUs this behaviour is not so optimal, forcing
us to encode the reads in a four bases per byte format. This measure improves
the performance of the copy the reads to GPU step by 3x on such hardware.

The chart reveals that a monetary investment in fast hard drives should be
considered when performing mapping. Moreover, using one hard disk to load
reads and a second disk drive to write results simultaneously should increase the
performance of the application on systems with limited input/output cache. This
might be applicable to all the short-read alignment tools studied in this article.

Figure 4.2: Profiling of the algorithm without operative system disk cache

Parameter tweak

After profiling the algorithm we decided to optimise various execution parameters.
This task should be performed for every system and experiment configuration,
leaving the application ready for a production environment.

The first one is the optimum CUDA block size. CUDA blocks group many GPU
threads that are executed in the same SM, sharing its internal memory resources.

In order to obtain the optimum block size for our GPGPU configuration we
launched different experiments mapping 2 million of sequences and measuring only
the GPU kernel execution time of a single graphic card.

Results in figure 4.4 demonstrate that 32 is the optimum CUDA block size,
while bigger blocks slow down the algorithm significantly and smaller sizes are not
allowed on our Tesla T10 GPU.
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Figure 4.3: Profiling of the algorithm with operative system disk cache

In general, GPGPU memory transfers have a great initial latency. This means
that if we apply an algorithm in scenarios that require small data quantities to be
transfered to GPU and little amount of GPU processing cycles, then we will suffer
a great execution penalty.

Consequently, we present here an study of the algorithm performance against
the number of reads to be aligned. These strings are copied into GPU memory
before each kernel execution. In this experiment, we measured the overall time of
the following three steps of the GPU algorithm: copy the reads to GPU, execute
the GPU mapping kernel and copy the results back to CPU main memory. Also, we
executed the CPU version of the algorithm on one of the CPU cores and obtained
the alignment time for each amount of reads.

Figure 4.5 displays the speed-up of the GPU algorithm in one Tesla T10 when
compared to the execution time in one core of our Intel R© Xeon R© E5520 CPU.
We noticed that unless we exceed a data threshold of 4096 reads, we will not
take full advantage of the GPU computational power. The maximum number of
reads depends on the free space left in the device after copying vector O. The
chart reveals that copying more than 256000 reads results in a very low speed-up
increase.

Each read has a maximum of 200 elements, encoded in 4 bases per byte format,
so each read has a size of 50 bytes. With 4096 reads there is a peak in the speed-
up, which means that our graphic card is able to store in cache about 200 MBytes
of data. A read block of 4096 reads is a good configuration, but if we have to
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process an enormous amount of strings, we can see on the chart that as the read
block size is increased so does the speed-up, until reaching a limit.

Also, this study reveals that the GPU algorithm has a convenient 12x speed-
up over CPU. For the tools analysed, the maximum speed-up in a current CPU
launching 8 concurrent threads has been 6x-7x. This tendency is expected to be
maintained as GPGPUs are constantly becoming faster. Moreover, our multi-
threaded version of the aligner supports multiple cards, being able to employ one
graphic card for the forward strand and other for the reverse strand, reading the
search sequences only once.
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Figure 4.4: Obtaining the optimum GPU block size

Comparison against similar applications

In this last study we compare the performance of similar tools based on the
Burrows-Wheeler transform when performing an alignment against the Drosophila
melanogaster dataset. This section describes the results published in [Salavert
et al., 2012]. A more modern comparison against the exact mapping algorithm in
SOAP3-dp in modern SSD disks is presented in section 4.3.3.

In this last study we employ 2 GPUs, one for the reverse and another for the
strand mapping, against a CPU with 8 concurrent execution threads. We executed
all the CPU mappers with 8 threads, allowing parallelism on the CPU. Moreover,
all the comparisons were performed activating the ‘exact search’ map options of
every program.
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Figure 4.5: Speedup impact of the number of reads per GPU kernel execution

SOAP3 is compared under the same conditions. The execution time of SOAP3
is obtained by adding the execution time of the alignment binary to the view script
execution, which converts the binary alignment output into a SAM file. We add
these values because all the tools in the comparison write its results directly in a
human readable format of bigger size.

Notice that as the internals of the mappers are different, it is difficult to perform
a totally equal comparison. We want to show with these tests the effectiveness of
the optimisation for exact searches of our GPU implementation. Also, we want to
demonstrate that a hybrid CPU/GPU thread model with concurrent CPU threads
dedicated to input/output tasks improves disk throughput significantly. It is out
of the scope of this article to perform a full feature comparison.

Figure 4.6 shows the resulting times when looking only for the first appearance
of each sequence in the reference. This is a bad scenario for an algorithm that
returns the interval of all the occurrences in BWT of the correct mappings, but
the results are less conditioned by the input/output load.

It can be seen that our GPU implementation is 3x faster compared to Bowtie
implementation and 4x faster than SOAP2. Also, the graph shows that SOAP2
loses against Bowtie in this particular configuration of the experiment.

SOAP3 times reflect that our approach is 3x faster due to a better handle of
disk operations and the intermediate step needed by SOAP3 to convert the results
from binary to SAM format and be comparable to the rest of tools in the study.
We discuss this aspect in the comments to the second graph.
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Figure 4.7 studies the execution of the algorithm when looking for all the
occurrences of each sequence in the reference (-a option). There are short reads in
the input files that will produce a considerable amount of mappings in this test.
Our tool focuses on obtaining 100% accuracy and its output will contain all these
matches, showing the results of all the reverse and strand alignments.

Before discussing the times, we comment the size of the output files of each
tool for 40 million of reads, in order to obtain a global view and present an equal
comparison.

Our tool writes a file with 190 million alignments, SOAP2 and Bowtie provide
around 150 million of results (not the same number) and SOAP3 provides only 80
million of alignments. The output of our program has been modified to be similar
to the output of the CPU solutions.

Bowtie and SOAP2 reflect similar times in the chart (being SOAP2 a little
faster), as they are based in the same algorithm and write to disk the same amount
of data. Our solution achieves a speed-up greater than 2.5 against CPU imple-
mentations, while showing more alignments in its results.

SOAP3 is only showing 80 millions of alignments in its results, due to this its
execution time can not be compared equally with the rest of the tools without
studying the input/output load. Benchmark results for 40 million of reads show
that our tool takes less time to write a 27GB file with 190 million of results than
SOAP3 writing two files of 9GB with 80 million of results (one for the binary
output and another for the file converted into SAM format).

While our tool takes 317 seconds to perform all the alignments, SOAP3 finishes
its tasks in 475 seconds. Of these 475 seconds, 190 seconds are spent in the
alignment and writing the binary intermediate file and 285 seconds are employed
in converting the binary file into SAM format.

As stated in section 4.2.3, although the algorithm shows a 12x speed-up the
disk operations consume the major part of the execution time. This is the reason
why the execution times between the GPU and the CPU approaches do not differ
so much.

We also observed that SOAP3 reduces significantly the time consumed when
performing output operations by writing the results to disk using its own binary
format. This accelerates SOAP3 when working with the rest of the SOAP pipeline.
We consider this a good approach, but needs an extra step to convert the output
to SAM format and attain compatibility.
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Figure 4.6: Short sequence mapping tools comparison finding only the first occurrence
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4.3 Hybrid CPU-GPU inexact search algorithm

Some bioinformatics applications, like RNAseq analysis [Mart́ınez et al., 2013b]
[Mart́ınez et al., 2013a], take advantage of backward search methods to find the
pair-ends of a sequence, whose contents are then analysed with a local alignment
algorithm.

In the first step of gene expression a particular segment of DNA is copied into
RNA by the enzyme RNA polymerase, this is called a transcript. An exon is any
nucleotide sequence encoded by a gene that remains present within the final mature
RNA product of that gene, after introns have been removed by RNA splicing.

Mapping reads in the context of transcripts is a problem of much higher com-
plexity than simply mapping reads onto the genomic sequence. Eukaryotic tran-
scriptomes are complex, with an average of more than nine transcripts per gene 11
with exons of a 250bp average length that span over several hundreds of kilobases,
and more new transcript isoforms are continuously being discovered.

Particularly, splices near the ends of reads can be especially difficult to align,
given that a minimum amount of sequence is needed to confidently identify exon
boundaries. In addition, new strategies to speed-up runtimes are needed.

The computation of the pair-ends can be effectively done in a GPGPU and
then combined in an hybrid pipeline with a lightweight CPU function allowing
one error sequence mapping. This special case is an improvement over non-hybrid
exact mapping on GPU. Its main advantage is that it allows to find the pair-ends
plus one error mappings with very little overhead. Moreover, it constitutes a real
hybrid computation approach: some steps are executed on the GPU and the rest
on the CPU (algorithm 4.3).

4.3.1 Implementation details
The hybrid inexact mapping method is based on the pseudo-code in algorithms 4.4
and 4.5, which describe the backward direction routines. In these algorithms,
functions exact backward and search iteration are defined in algorithms 2.1
and 2.2.

Algorithm 4.3: Sequential execution

1: main()
2: vk, vl, pair ← backward vector gpu(W, index)
3: vki, vli, pairi ← forward vector gpu(W, index)
4: results += backward helper cpu(W, vk, vl, pairi, index)
5: results += forward helper cpu(W, vki, vli, pair, index)
6: end program

This design separates the code that will execute better in the Single Instruction
Multiple Thread (SIMT) architecture of the GPU from the code that will be faster
on the CPU.
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The backward vector gpu function (algorithm 4.4) returns the values of all
the subsequent [k, l] intervals calculated during an exact search of a read W . These
values are stored in vectors vk and vl. Also, it returns the last position with an
interval satisfying k ≤ l in variable pair; this is used to obtain the pair-ends after
the execution of the algorithm.

When an interval does not satisfy k ≤ l, all the remaining elements of the vector
are filled with the last non-satisfying values of [k, l]. The time consumed by the
filling loop in the GPU is insignificant and it is needed to stop the exploration in the
backward helper cpu algorithm when reaching the position where a substring
is not present.

Algorithm 4.4: Backward Vector GPU

1: backward vector gpu(IN: W, index. OUT: vk, vl, pair.)
2: [k, l]← [0, size(index)− 1]
3: pair ← 0
4: for i← |W | − 1 . . . 0
5: [k, l]← search iteration([k, l],W [i], index)
6: if k > l then
7: pair ← i + 1
8: break
9: end if

10: [vk(i), vl(i)]← [k, l]
11: end for
12: for i← pair − 1 . . . 0
13: [vk(i), vl(i)]← [k, l]
14: end for
15: end function

The backward helper cpu function (algorithm 4.5) performs the inexact
search. It receives as parameters the value pairi, which is calculated by the for-
ward vector gpu function, and the interval vectors vk and vl, which are calcu-
lated by the backward vector gpu function. Before starting the analysis with
one error, we check the values of vk and vl at the starting position to include the
exact matching case in the results. In each iteration the helper function reads the
values of the vectors, instead of spending time calculating them.

The analysis starts in the position of the last valid interval of the opposite
direction (pairi), but only if it is smaller than the middle position of the read.
The pairi value indicates the longest valid substring of the read starting from the
beginning. As we are searching allowing just one error and we know that at pairi
position we must allow a dissimilarity, we will only find mappings if the substring
between pairi and the end of the read is present in the reference. This is similar
to the strategy presented in [Li and Durbin, 2009], but in this case we do not need
to implicitly calculate a bounding vector.
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Algorithm 4.5: Backward Helper CPU

1: backward helper cpu(IN: W, vk, vl, pairi, index. OUT: results
2: if vk(0) ≤ vl(0) then
3: results += [vk(0), vl(0)] with [ ]
4: end if
5: pos← min(|W |/2, pairi) + 1
6: range← vl(pos + 1)− vk(pos + 1)
7: for i← pos . . . 0
8: rangep ← range
9: range← vl(pos)− vk(pos)

10: if rangep = range continue
11: results += exact backward(W, [vk(i + 1), vl(i + 1)], i− 1, D(i), index)
12: for b ∈ {A,C,G, T}
13: [k, l]← search iteration([vk(i), vl(i)], b, index)
14: if k ≤ l then
15: if b 6= W [pos] then
16: results += exact backward(W, [k, l], i, I(i, b), index)
17: results += exact backward(W, [k, l], i− 1,M(i, b), index)
18: end if
19: end if
20: end for
21: end for
22: end function
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During the mapping with one error, the algorithm only explores the possi-
ble deletions, insertions and mismatches (D,I,M) if the number of suffixes in
the current [vl(pos), vk(pos)] interval is different to the values of the last inter-
val (rangep = range). When the range value becomes smaller after analysing a
symbol, it indicates that we have lost some strings that could be mapped allowing
errors in that position. Notice that after a position with an invalid [k, l] interval
rangep = range will always be true, as we filled the rest of the vector with the
same value in the vector gpu function.

4.3.2 Bounding techniques explanation
Given X = “AGGAGC$” and W = “AGGATC”, the forward and backward vec-
tor gpu subroutines calculate all the intermediate [k, l] values. If we subtract l−k
for all vector positions we obtain the number of appearances of each substring mi-
nus one.

Backward results on each position (←):

0 1 2 3 4 5
A G G A T C
−1 −1 −1 −1 −1 0

Forward results on each position (→):

0 1 2 3 4 5
A G G A T C
1 1 0 0 −1 −1

The one error analysis starts from the middle of the read, taking the interval
values from the previously calculated vectors. This reduces the variability when
looking for possible errors, as strings already have some length when allowing
insertions deletions and mismatches [Lam, Li, Tam, Wong, Wu, and Yiu, 2009].

Backward search (←):

Forward search (→):

The initial exact search may not reach the middle position with a valid sub-
string. In such cases the analysis in the opposite direction must reach the last
correct position before allowing dissimilarities. In the example, during the exact
search in backward direction we detect an error at position 4 (←). In this case we
must search without errors in the forward direction until that position, allowing
errors only at positions 4 and 5 (→).
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Moreover, only the read positions where the number of results change are
studied for possible errors. Looking at the forward results vector these positions
are 2 and 4 (→), needing to search for errors only at position 4 when using all the
pruning strategies.

4.3.3 Experimental results
All the executions have been performed in a PC with an Intel(R) Core(TM) i7-
3930K CPU running at 3.20GHz speed, 64GB of DDR3 1066 MHz RAM and a
Raid 0 of two OCZ-VERTEX4 SSD drives.

The machine has two Nvidia GeForce GTX 680 GPGPUs with 4GB of RAM.
In the hybrid CPU-GPU tests the reads are mapped against the Drosophila mela-
nogaster genome. Two million exact matches with lengths 50-200 bps have been
extracted from this genome. As all the reads mapped are present in the refer-
ence this constitutes a worst-case scenario in which the bounding techniques lose
effectiveness.

Profiling of the hybrid algorithm

The test in table 4.1 demonstrates the effectiveness of the hybrid parallelisation
model. We mapped a small set of 4000 reads against the Drosophila melanogaster
genome, extracted from the two million dataset. First, we measure the execution
time of the original algorithm on one CPU core, this algorithm only allows one
error. Second, we divide the logic of the original algorithm in the two subroutines
described (vector and helper). We observe only a 7% overhead when separating
the logic. Also, we see that the vector function performs the 92% of the compu-
tation. Finally we execute the vector subroutine on the GPU, obtaining a 10.5
speed-up (including memory transfers).

As we did not introduced the code of the helper function on the GPU, we can
still parallelise it on the CPU. This parallelisation will be more effective, since the
helper function contains all the conditional execution code which is not suited for
the GPU SIMT model. Moreover, the CPU workload will be reduced in normal
use as this is a worst-case scenario.

Function call Microseconds
Original CPU 61868

Vector CPU + Helper CPU 60450 + 5289
Vector GPU + Helper CPU 5786 + 5289

Table 4.1: Effectiveness of the hybrid model

The test in table 4.2 consisted in executing all the function calls of the hybrid
algorithm sequentially. We also employed a small set of 4000 reads, in this case to
measure the impact of each step in the total execution time. Notice that writing
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the results to disk takes almost half of the time. For this reason, while the GPU
is working we concurrently write to disk.

Function call Microseconds Percentage
disk read 1045 4.5%

cpu to gpu 417 1.8%
vector gpu 3392 14.76%
gpu to cpu 1977 8.6%
helper cpu 5289 23%
disk write 10849 47%
TOTAL 22969 100%

Table 4.2: Sequential execution of the hybrid CPU-GPU algorithm

Comparison against similar algorithms

In figure 4.8, we compare the execution times of our GPU implementations for
exact and one error mapping against our CPU implementation and SOAP3-dp
with the dynamic programming functionality disabled. SOAP3-dp provides a full
solution combining backward search and dynamic programming, but we want to
validate our backward search implementation against a similar approach.

We employed the 2 million dataset and measured the tools under the most
similar conditions possible. As we already demonstrated in [Salavert et al., 2012],
we outperform SOAP3-dp when performing exact mapping on GPU.

The hybrid CPU-GPU approach is slightly slower than SOAP3-dp when allow-
ing 1 error, but as it can be seen in figure 4.9 and table 4.3 we are finding 63%
more mapping locations due to the support for insertions and deletions with one
error (SOAP3-dp is not using dynamic programming). Also, notice that in these
tests most of the time is spent in disk writes (almost 50%).

We obtained similar results following different approaches. So, we can conclude
that the hybrid model presented in this paper is a valid and different approach for
backward search inexact mapping using the GPU.

The main advantage of this algorithm is that it allows to increase the sensi-
tivity of backward search mapping with one error on GPU without decreasing the
speed-up provided by the architecture. In addition, when a read is not found the
algorithm returns its pair-ends. The pair-ends can be used as seeds for a secondary
local alignment algorithm (like Smith-Waterman), which may not be executed on
the GPU.
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Table 4.3: Comparison with SOAP3-dp.

Time Locations Sensitivity

GRyCAP-CPU

0 errors 22s 7698222 1
1 errors 48s 20797694 1

SOAP3

0 errors 9.97s 7698222 1
1 errors 13.38s 13101388 0.6299

GRyCAP-GPU

0 errors 6.7s 7698222 1
1 errors 18.98s 20797694 1

4.3.4 Conclusions
GPGUs are clearly a good alternative to provide the computing power required
by modern genomic challenges. The capabilities of having close-to-data comput-
ing resources is critical for problems dealing with terabytes and, in a short time,
petabytes of data. We described the design and implementation of two align-
ment algorithms based on the FM-Index on GPUs. The algorithms consider only
error-free and one error alignments. This may not be adequate for long sequence
mapping or in the advent of single nucleotide polymorphisms, mutations or read-
ing errors. However, the algorithms are suited for finding seeds and pair-ends of
reads before a more in-depth analysis using dynamic programming algorithms. It
is important to remark that these algorithms alone do not constitute a mapping
solution, they have to be combined with other dynamic programming algorithms
for sequence mapping.

The exact algorithm achieves a good speed-up factor, between 2.5 and 4 with
respect to state-of-the-art alignment methods using the FM-Index (figures 4.6
and 4.7), and also considering the same execution conditions (no reading errors,
same I/O load and same number of matches requested). Excluding the I/O and
using only one graphic card (measuring only strand matching), the speed-up factor
of the algorithm is 12x in GPU when compared to CPU (figure 4.5).

The one error hybrid implementation has been tested against SOAP3-dp in a
modern SSD disk drive, showing a similar execution time, but finding 50% more
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mapping locations (figure 4.9). Excluding the I/O and using only one graphic card
(measuring only strand matching), the speed-up factor of the GPU subroutine is
10x when compared to CPU. The speed-up achieved is greater than the GPU
parallelisation of the complete one error algorithm.

The performance of these implementations is bounded by the disk performance.
We performed tests in HDD and SSD disk drives. For the exact mapping case,
I/O operations take two thirds of the total processing time (using a HDD). For
the hybrid one error algorithm, I/O operations take half of the total processing
time (using a SSD). However, tendency on I/O drive optimisation has a positive
effect that increases the algorithm execution speed.

The sensitivity of the algorithms has been studied and results are even better.
Since the algorithms presented in this thesis do not take any heuristic assumption
that could prevent sequences from being found in the reference, we find more
mapping locations.

Notice that the use case proposed (the exact alignment of short reads with
respect to known reference genomes), could reasonably be solved in a large extent
by exact searching, due to the short frequency of errors in short reads and the
comparison against known references. The GPU algorithms can be used in a first
step to quickly remove the matchings without errors, lightening the workload of a
secondary inexact mapper based on dynamic programming.

Finally, the inexact alignment problem is generally tackled in CPU by combin-
ing the exact alignment algorithm with a depth first tree exploration strategy [Li
and Durbin, 2009]. Other solutions try to support inexact searches on GPU paral-
lelising these methods, but as the search tree grows exponentially with the number
of errors supported (breaking GPU parallelism) there is an error limit conditioned
by the hardware. Finding alternative strategies to enable fast inexact searching
on CPU with the aid of GPU is the key for further research achievements. The
one error mapping algorithm presented in this thesis is an original research effort
in this direction.
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Chapter 5

Faster and more accurate inexact
mapping using advanced tree
exploration on backward search
methods

In this chapter we describe a backward search algorithm for inexact mapping sup-
porting any number of errors. We support all type of errors (insertions, deletions
and mismatches) in all read positions. This algorithm is intended as an extra
preprocessing step before the seed location phase of current sequence mapping
tools.

The algorithm relies in several techniques, which together deal with the vari-
ability of the genomic data. None of these strategies decrease the sensitivity of
the search. Moreover, many of these optimisations are standalone concepts, this
means that other algorithms could benefit from the optimisations compatible with
their approach.

In this study, we used both our own implementation of the FM-Index and
csalib [Sadakane, 2010] implementation. In csalib, the data structures are not
loaded into main memory [Mäkinen et al., 2004], but accessed from disk by demand
using mmap. Such properties may be useful in memory demanding tasks, like
mapping against big genomes.
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backward search methods

5.1 Suffix Array compression

In order to deal with large genomes, like the human genome, we need to compress
the BWT data structures, concretely vectors S and R. In this section we describe
how to compress and expand the suffix array and the inverse suffix array vectors.

5.1.1 Vector S compression
Vector S allows to obtain the original positions in the reference of the matchings
and is often referred as the SA.

Let Scomp be an integer vector (32 bit are enough to index all the positions of
the human genome). Let n be the size of vector S. Scomp size is n/r where r is
the compression ratio. Each element of Scomp satisfies that Scomp[k] = S[k ∗ r].

It is possible to reconstruct S from Scomp following the principles in [Grossi
and Vitter, 2005], as stated in [Li and Durbin, 2009]:

S[k] = S[(Ψ−1)(j)(k)] + j

Where Ψ−1 is the inverse compressed suffix array and (Ψ−1)(j) denotes apply-
ing it for j times:

Ψ−1(i) = C(B[i]) + O(B[i], i + 1)

As it can be seen in algorithm 5.1, in order to obtain S[k] we repeatedly apply
Ψ−1 until we reach some j value which satisfies that the position S[(Ψ−1)(j)(k)]
is a multiple of r whose value is stored in Scomp.

Algorithm 5.1: Vector S decompression

getScompValueB(k, Scomp,C,O, n, r)
{

i← k
j ← 0

while i mod r 6= 0 do
if B[i] = −1 then
i← 0

else
i← C[B[i]] + O[B[i]][i + 1] {Col. 0 is -1 in O}

end if
j ← j + 1

end while

return (Scomp[i/r] + j) mod (n− 1)

}
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Vector S size reaches 12 Gigabytes when indexing the human genome, this size
is divided by r using this compression routine. However, the number of iterations
required to compute each position is not fixed, and varies between 1 and r.

For example, given the suffix array of the reference X = “AGGAGC$”, we want
to find the value of S[5], but we only know the values of S[0] = 6 and S[6] = 1
because r = 6. We can employ algorithm 5.1 to obtain the value of S[5] using the
Ψ−1 function:

$ A G G A G C
Ψ−1(5) = 1 → A G C $ A G G j = 1

A G G A G C $
C $ A G G A G

Ψ−1(Ψ−1(5)) = 4 → G A G C $ A G j = 2
k = 5 → G C $ A G G A j = 0

Ψ−1(Ψ−1(Ψ−1(5))) = 6 → G G A G C $ A j = 3
B

Each time that the function Ψ−1 is recursively applied we obtain the position
in the SA of the suffix that is shifted one symbol to the right in relation with the
current one. We know that the position of this shifted suffix in the reference is
the position of the previous suffix minus one, this is why we keep the number of
recursive calls in variable j and add it at the end. In this case:

S[5] = S[Ψ−1(Ψ−1(Ψ−1(5)))] + 3 = S[6] + 3 = 1 + 3 = 4

which is the position in X of substring “GC$”, the suffix in S[5].
As stated in section 2.1.3, given vector B and the position of the suffix ending

with ‘$’ (the position of the ‘$’ symbol in B) we can obtain all the values of vector
S. This also applies for vector R decompression, discussed in next section.

5.1.2 Vector R compression
Vector R size also reaches positions in the SA of the reference substring and is
often referred as the ISA. The formulas used to compress the inverse suffix array
rely on the same Ψ−1 function used in suffix array compression.

Let Rcomp be an integer vector (32 bits are enough to index all the positions
of the human genome). Let n be the size of vector R. Rcomp size is n/r where r is
the compression ratio. Each element of Rcomp satisfies that Rcomp[k] = R[k ∗ r].

Vector R is useful to change the direction of the search without employing
bidirectional methods [Lam et al., 2009], but duplicates the memory needs of the
algorithm. We discuss how to change the direction of the search in section 5.3.

It is possible to reconstruct R from Rcomp by designing an algorithm that
applies the compression routines found in [Sadakane, 2003] and [Li and Durbin,
2009]:

R[k] = (Ψ−1)(j)(R[k + j])
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Where Ψ−1 is the inverse compressed suffix array and (Ψ−1)(j) denotes apply-
ing it for j times:

Ψ−1(i) = C(B[i]) + O(B[i], i + 1)

We calculate j as follows:

j ← (r − (k mod r)) mod r

As it can be seen in algorithm 5.2, with the j value we are able to obtain the
value of the first R[k + j] position, as it is a multiple of r stored in Rcomp. After
that, we apply Ψ−1 for j repeated times to obtain R[k].

Algorithm 5.2: Vector R decompression

getRcompValueB(k,Rcomp,C,O, n, r)
{

j ← (r − (k mod r)) mod r
aux← k + j

if aux < n then
i← Rcomp[aux/r]

else
i← Rcomp[0] {Special case}
j ← n− k

end if

while j > 0 do
if B[i] = −1 then
i← 0

else
i← C[B[i]] + O[B[i]][i + 1] {Col. 0 is -1 in O}

end if
j ← j − 1

end while

return i

}

Vector R reaches 12 Gigabytes when indexing the human genome, this size is
divided by r using this compression routine. Also, the number of iterations to
recover the positions varies between 1 and r.

For example, given the suffix array of the reference X = “AGGAGC$”, we
want to find the value of R[4], but we only know the values of R[0] = 2 and
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R[6] = 0 because r = 6. We can employ algorithm 5.2 to obtain the value of R[4]
using the Ψ−1 function.

First, we need to obtain the value of j, in this case:

j = (r − (k mod r)) mod r = (6− (4 mod 6)) mod 6 = 2

The value of j represents the difference between the position in the reference X for
which we want to obtain the SA position and the next reference position with its
SA position stored in R. In this case we look for the SA position of the substring
starting at X[4] “C$”, as we do not have the value of R[4] stored in memory we
apply (Ψ−1)(j) = (Ψ−1)(2) function to the value at position R[4 + j] = R[6].

R[k] = R[6] = 0 → $ A G G A G C
A G C $ A G G
A G G A G C $

Ψ−1(0) = 3 → C $ A G G A G
G A G C $ A G

Ψ−1(Ψ−1(0)) = 5 → G C $ A G G A
G G A G C $ A

B

Each time that the function Ψ−1 is recursively applied we obtain the position
in the SA of the suffix that is shifted one symbol to the right in relation with the
current one. As we obtained the position in the SA of X[4 + j] = X[6] with R[6],
we have to apply Ψ−1 two times to obtain the position in the SA of X[4]. In this
case:

R[4] = Ψ−1(Ψ−1(R[4 + 2]) = Ψ−1(Ψ−1(0) = 5

which is the position in the SA of substring “GC$” the substring starting at
position X[4].

As stated in section 2.1.3, given vector B and the position of the suffix ending
with ‘$’ (the position of the ‘$’ symbol in B) we can obtain also the values of vector
R. As both vectors S and R can be obtained by iteratively applying the Ψ−1

function we can calculate both at the same time, using a single call to function
Ψ−1. However, the most time-consuming part of this procedure is writing the
values of these vectors to main memory in a non-sequential order.

5.2 Search tree exploration prototype

When performing inexact mapping a recursive approach over a search tree can be
employed [Li and Durbin, 2009]. This analysis depends on three factors. The first
one is the current state of the backward search, each path from the root to any
node of the tree represents a sequence of symbols that has lead to a different [k, l]
interval. The second one is the specific variability of the reference genome studied,
on the initial tree levels only few symbols have been processed, so branches for all
possible errors widely satisfy k ≤ l and grow uncontrollably. The third one is the
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uniqueness of each read, which can be initially studied to determine the minimum
number of errors needed to map it.

We developed a search tree exploration algorithm that greatly reduces the tree
growth during inexact search. It employs a faster iterative approach, using several
lists to store partial results. These lists store previous results, next results to
explore and final results. We named these lists rlp, rln and rlf in the pseudo-
code.

Algorithm 5.3 is a simplified prototype of the final approach. It lacks the
bounding techniques described in next section, so its execution is not as efficient.
We use it to explain the behaviour of the complete algorithm as it is based on the
same subroutines: a selective exact search procedure that detects and annotates
the positions where it is worth to study sequence errors and a conservative branch
procedure with specific rules for genomic data.

Algorithm 5.3: Search prototype

1: prototype (IN: W, index, errors. OUT: rlf .)
2: rlp.add([0, size(index)− 1] at |W | − 1 with [ ])
3: for errors . . . 1
4: rln, rlf ← exact(W,True, 0, rlp, index)
5: rlp ← branch(W, rln, index)
6: end for
7: rlf ← exact(W,False, 0, rlp, index)
8: end function

The execution starts by adding a single partial result to the previous results list.
This first single result contains the initial interval, no symbols of W analysed and
an empty error list. After that, the exact and branch subroutines are executed
alternatively, increasing the partial results stored in the previous and next lists.
At the end, the last exact call returns the final results.

The exact subroutine (algorithm 5.4) input variables are inexact, which indi-
cates if it must perform an exact search or allow errors, and last, which indicates
the last symbol to analyse (in this case the full string). It takes partial results
from rlp and analyses them, inserting in rln new partial results for each position
requiring branches. These partial results denote other possible mappings in the
reference that differ from the current read at the detected positions. In order to
detect these positions we demonstrate the following condition.

Let [k′, l′] ← search iteration([k, l], a) be two subsequent SA intervals in a
forward search, where a = W [i]. We define res = l − k + 1 and res′ = l′ − k′ + 1,
these values indicate respectively the number of appearances of substrings V =
W [0 : i − 1] and V ′ = W [0 : i] in the reference X. We demonstrate that for any
read W and any BWT index res′ ≤ res is always true. If V appears res times in
X, then res′ ∈ [0, res], because V is the prefix of V ′ (V ′ = V a).
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Algorithm 5.4: Exact Subroutine

1: exact(IN: W, inexact, last, rlp, index. OUT: rln, rlf )
2: for r ← rlp[1 . . . rlp.size]
3: [k′, l′]← r.[k, l]
4: res′ ← l′ − k′

5: for i← r.position . . . last
6: [k, l]← [k′, l′]
7: if k > l break
8: [k′, l′]← search iteration([k, l],W [i], index)
9: res← res′

10: res′ ← l′ − k′

11: if res′ < res and inexact = True then
12: rln.add([k, l] at i with r.er)
13: end if
14: end for
15: if k′ ≤ l′ then
16: rlf .add([k′, l′] at last− 1 with r.er)
17: end if
18: end for
19: emptyStack(rlp)
20: end function

We observed that the number of potential results remains stable (res = res′)
and near its final value after several search iteration (15 in Drosophila melano-
gaster and 31 in Homo sapiens). The positions with possible errors are the ones
in which res′ < res, showing that the interval has lost reads that could be mapped
allowing errors. This pruning is based on the current state of the search.

0 1 2 3 4 5
A G G A T C
1 1 0 0 −1 −1

Figure 5.1: Number of partial solutions. Values of res during a forward search of
string “AGGATC” against the reference “AGGAGC$”

Figure 5.1 shows the res values of the substrings of “AGGATC” during a
forward search against the reference “AGGAGC$”. The possible error branches
should only be studied at positions 2 and 4 of the string, the substrings “AG” and
“AGGA” where the values of res change. For substring “AG” this means that
there is an alternative solution with “AGC” in the reference, instead of “AGG”. For
substring “AGGA” the alternative solution is “AGGAG” instead of “AGGAT”.
When res = −1 the string does not belong to the reference (k > l). When studying
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larger reads, the pruning is not effective in the first iterations, but later on the
values of res stabilise.

This technique also eliminates redundant results, i.e. when mapping string
“TGGGGGA” into reference “. . . TGGGGA. . . ”, we would obtain five different
results, one for each possible deletion of any of the ‘G’ nucleotides. Now, the
res′ < res condition is only true in the last ‘G’, obtaining a single deletion as
result.

The branch subroutine (algorithm 5.5) extracts partial results from rln, gener-
ates new branches by studying the outcomes of adding different errors at r.position
and stores the valid ramifications in rlp. The notation p.{D, I(b),M(b)} : r.er in-
dicates that we add a deletion, insertion or mismatch with symbol b in position p
to the list of errors of the current partial result r.er. Unlike this approach, algo-
rithms that use backward search only for seeding do not need to obtain alignment
information before the dynamic programming alignment phase.

As the branches that do not satisfy k ≤ l are eliminated, this pruning depends
on the variability of the reference genome.

Algorithm 5.5: Branch Subroutine

1: branch(IN: W, rln, index. OUT: rlp)
2: for r ← rln[1 . . . rln.size]
3: p← r.position
4: rlp.add(r.[k, l] in p− 1 with p.D : r.er)
5: for b ∈ {A,C,G, T}
6: [k′, l′]← BWiteration(r.[k, l], b, index)
7: if k′ ≤ l′ then
8: if b 6= W [pos] then
9: rlp.add([k′, l′] in p with p.I(b) : r.er)

10: rlp.add([k′, l′] in p− 1 with p.M(b) : r.er)
11: end if
12: end if
13: end for
14: end for
15: emptyStack(rln)
16: end function

Matches have precedence over insertions, so insertions of the currently match-
ing symbol are not studied. Moreover, all the pairs of consecutive errors are
analysed in order to further reduce the growth of the search tree, forbidding those
equivalent to a single error.

For simplicity, the following restrictions are not described in the pseudo-code
of the branch subroutine:

• Pairs of consecutive insertions and deletions (I-D or D-I) are not allowed.
Inserting a nucleotide and immediately removing it has no significance. This
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rule avoids indel chains like I-D-I-D-I. Also, I-I-I-D-D chains are avoided,
as I-M-M chains are equivalent.

• A mismatch after an insertion is not allowed if the original nucleotide in the
mismatch position is the same as the nucleotide of the insertion. In such
cases I-M is equivalent to I.

• A mismatch after a deletion is not allowed if the nucleotide of the mismatch
is the same as the nucleotide eliminated by the deletion. In such cases D-M

is equivalent to D.

• An insertion after a mismatch is not allowed if the nucleotide of the insertion
is the same as the original nucleotide in the mismatch position. In such cases
M-I is equivalent to I.

• A deletion after a mismatch is not allowed if deleted nucleotide is the same
as the nucleotide of the mismatch. In such cases M-D is equivalent to D.

After applying these rules the growth of the spanning tree is halved. In addi-
tion, inexact searches with up to 2 errors will not produce repeated results.

5.3 Search tree exploration complete algorithm

The bounding strategies of branch and exact are based on k ≤ l and res′ < res
conditions, being not effective with few symbols analysed. The final algorithm
depicted in figure 5.2 and algorithm 5.6 solves this issue with no penalty in sensi-
tivity.

Figure 5.2: Complete inexact search algorithm. Example for 2 errors.
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For the complete algorithm to work we need backward and forward versions of
the branch and exact subroutines (branchB and branchF) and a new function
to change the direction of the search in the partial results that reach the end of
the read (change direction).

The complete algorithm is based on the work presented in [Lam et al., 2009],
with improvements to avoid repeated computations and extended support for more
than two errors with insertions, deletions and mismatches. We do not use bidi-
rectional BWT, as it may not be so efficient with backward search methods based
on SA that need a binary search in each iteration. Moreover, keeping track of the
reverse and strand SA intervals also increases the number of memory writes when
managing the partial results. Nevertheless, a bidirectional method would reduce
the memory requirements of the algorithm.

In order to allow e errors we conceptually divide the read in e+1 segments and
perform e+ 1 steps. Figure 5.2 shows an example for two errors (e = 2): the steps
are in roman numerals, the arrows indicate the direction of the analysis in each
segment and the arrow numbers the order in which the segments are analysed.

The first segment of each step is analysed using an exact search, if the segment
is not found in the reference the whole step is skipped. After this initial exact
analysis the pruning methods are effective and the remaining segments can be
analysed with inexact search. Due to this, the number of errors allowed by the
algorithm depends on the length of the read and the minimum segment size (31
for human genome and 15 for Drosophila melanogaster, segsize in algorithm 5.6).
Also, it is worth to mention that these exact segments could be reused later as
seeds to find local alignment regions.

In step I (algorithm 5.6), after analysing block of arrow 2 the direction of the
search is changed. As we have the SA and ISA of the reference and its reverse in
memory we can use the change direction subroutine to change the direction of
the search.

The change direction function takes the [k, l] interval of a partial result and
obtains the [k′, l′] interval in the SA of the reverse reference. For each position
i ∈ [k, l] we obtain the original positions in the reference with the S vector. Then,
we correct this position with the error and current position displacement. Finally,
the Ri vector containing the positions in the SA of the reverse reference is used to
obtain the values in [k′, l′]. These values are not sorted, so we have to search all
the values and select the maximum and the minimum.

k′ = Ri[S.siz − S[k]− (r.end− r.start + 2)− err]

In practical use the size of the SA intervals when changing direction is very
small (almost always equal to 1), so this computation does not affect the perfor-
mance. Notice that at each step the starting block and the direction maximises
the number of symbols analysed before a direction change.

In step II and III, during the analysis of partial results in the blocks marked
with errors > 0 the next partial results must contain at least one error within the
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Algorithm 5.6: Complete Inexact Search (Step I figure 5.2)

1: InexactSearch(W, index, rlp, rln, rlpi, rlni, rlf , segsize)
2: {
3: . . .
4:

5: e← (size(W )/segsize)− 1
6: seg ←The last position of the central block
7:

8: r ← [0, size(index)− 1] at |W | − 1 with [ ]
9: r, rlf ← exactF(W,False, seg, r, index)

10:

11: if r.k ≤ r.l then
12: add result(r, rlpi)
13: while e > 0
14: seg ← The last position of the current segment
15: rlni, rlp ← exactF(W,True, seg, rlpi, index)
16: change direction(rlp, index)
17: rln, rlf ← exactB(W,True, seg, rlp, index)
18: rlpi ← branchF(W, rlni, index)
19: rlp ← branchB(W, rln, index)
20: e← e− 1
21: end while
22:

23: rlni, rlp ← exactF(W,False, seg, rlpi, index)
24: change direction(rlp, index)
25: rln, rlf ← exactB(W,False, seg, rlp, index)
26:

27: end if
28:

29: . . .
30: }

61



Chapter 5. Faster and more accurate inexact mapping using advanced tree exploration on

backward search methods

block, due to this when the analysis reaches the end of the block the partial result
with no errors in that segment is not added to the next results list. The logic
of this bounding can be added to the exact subroutine with an extra condition
in line 15 of algorithm 5.4 to discard exact segments. This behaviour avoids
repeated computation as the segments with no errors where already checked in
the exact blocks of previous steps. Notice that the order of the steps maximises
the appearances of errors > 0 blocks immediately after the exact block.

The tree exploration is a combination of breadth first search (BFS) and depth
first search (DFS), being a bit more complex than the pseudo-code in algorithm 5.6.
The initial levels are explored using BFS while the last ramification, where many
partial results are discarded and only a few final results are kept, is explored using
DFS. This avoids a great amount of memory writes in the partial results lists.
Using DFS in the initial levels has little effect in the overall performance.

The last bounding technique depends on the uniqueness of the read and is
based on what was presented in [Li and Durbin, 2009], but adapted to the new
algorithm and the direction changes. Before each step of the complete algorithm,
a vector D with the same size of the read is built. The D vectors contain an
approximation of the number of errors needed to map the read at each position,
based on the sub-strings of X present in W .

In algorithm 5.7, vector D for step I of the complete algorithm is obtained.
It receives as parameters the read W and the start and end positions of the
exact segment of the current step, returning vector D. The values of D for the
exact segment are already calculated (D[start . . . end] = 0). The direction of the
calculation is changed in the second loop. In the last loop the values are adjusted
as we calculate vector D in the same direction of the search, which benefits caching.
The condition “is not a substring” is implemented using a search iteration.

In order to implement this bounding, an extra condition at line 11 of algo-
rithm 5.4 must check the current number of errors against the value of D[i].

5.4 Compatibility interface

The implementation of the search tree exploration algorithm is based on replace-
able components. So we added support for a new backward search runtime using
csalib interfaces. The csalib library provides several backward search implemen-
tations which are either based on the FM-Index or SA. The main difference of
csalib with our current implementation is that the data structures are not loaded
into main memory [Mäkinen et al., 2004], but accessed from disk by demand using
mmap. Such properties may be useful in memory demanding tasks, like mapping
against big genomes. We benchmark our inexact mapping algorithm, compar-
ing our in memory implementation of the FM-Index with the csalib out-of-core
implementation for DNA.
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Algorithm 5.7: Calculate D forward (Step I figure 5.2)

1: calculateDF (IN: W, start, end. OUT: D.)
2: D[. . .]← 0
3: z ← 0
4: j ← start
5: for i← end + 1 . . . |W |
6: if W [j, i] is not a substring of X then
7: z ← z + 1
8: j ← i + 1
9: end if

10: D[i]← z
11: end for
12:

13: j ← start− 1
14: for i← start− 1 . . . 0
15: if W [j, i] is not a substring of X then
16: z ← z + 1
17: j ← i + 1
18: end if
19: D[i]← z
20: end for
21:

22: last← D[0]
23: for i← 0 . . . |W |
24: D[i]← last−D[i]
25: end for
26: end function
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Our CPU algorithm is compatible with any backward search implementation
providing the following interfaces:

[k′, l′] ← search iteration([k, l], symbol, index ) (5.1)

position ← get sa(suffix , index ) (5.2)

suffix ← get isa(position, index ) (5.3)

size ← size sa(index ) (5.4)

This simplicity eases portability. Function 5.1 is a single backward search
iteration. In a single iteration we have an initial [k, l] interval in the suffix array
and after analysing a symbol we end with an equal or narrower [k′, l′] interval.
This function must also work in forward direction by only changing the index.

Function 5.2 returns the original position in the reference of a given suffix array
position, while function 5.3 is its inverse. Finally, function 5.4 returns the size of
the suffix array.

5.5 Experimental results

All the executions have been performed in a PC with an Intel(R) Core(TM) i7-
3930K CPU running at 3.20GHz speed, 64GB of DDR3 1066 MHz RAM and a
Raid 0 of two OCZ-VERTEX4 SSD drives. The operative system is Ubuntu Linux
14.04 64 bit. Compiler is gcc 4.8.2. All the tests in the results section have been
launched sequentially, using a single execution thread with no parallelism involved.

The same index has been generated for all tools: Ensembl 68 human genome
built upon GRCh37. The program dwgsim 0.1.8 from SAMtools was used to sim-
ulate two datasets of 2 million high quality Illumina reads. One dataset contains
250 bps reads while the other contains 400bps reads. The datasets contain reads
with a maximum of 2 N’s and 0.1% of mutations with 10% indels.

5.5.1 Comparison with other FM-Index only algorithms
As we stated before, our algorithm is not intended as a full sequence mapper, only
a preprocessing step for modern sequence mappers. The purpose of this study is
to provide a fair comparison against similar algorithms based only on FM-Index
backward search, performing the experiments under the same input, execution
arguments and system environment.

We only found similar implementations to our algorithm in Bowtie 1, SOAP 2
and BWA-backtrack. Comparing with these tools gives an idea of the impact in
the performance of the improvements described in this paper.

The tools have been run with -a option in order to find all the possible map-
pings of each read; except BWA-backtrack, which focuses on finding the best
mapping for each read.

Our algorithm has been run with a stack size of 50.000 partial results, big
enough to deal with all the partial results without discarding any read locations.
We also conducted tests with an stack size of 500 partial results, which increases
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performance without significant mapping location loss. The minimum segment
size needed to deal with the human genome variability is 31 nucleotides, allowing
up to 7 errors with the 250bps dataset.

Results in table 5.1 and figure 5.3 show that our algorithm with a stack size of
50000 achieves a 8x speed-up over Bowtie 1 when aligning with 3 errors and a 7x
speed-up over SOAP2 when aligning with 2 errors. Our algorithm can map with
5 errors in less time than Bowtie 1 with 3 errors. Execution times for the exact
mapping case with no errors were similar for all the algorithms studied except
BWA-backtrack. In general our algorithm is faster than the other approaches.
This difference increases with the number of errors.

Table 5.1 also shows the percentage of reads found and the total mapping
locations. The percentage represents if a read is found at least once in the reference,
while in the mapping locations a read may appear several times. These values
demonstrate that our algorithm performs an equivalent computation to Bowtie
1 and Soap 2, finding a similar amount of reads and mapping locations when
allowing the same number of errors. Compared with BWA-backtrack we find the
same percentage of reads.

Regarding the experiments with an stack size of 500 elements, our algorithm is
13x faster than BWA-backtrack when mapping with 6 errors. Results in table 5.1
and figure 5.4 show that limiting the stack size to 500 elements has little effect
in the percentage of reads found (up to 2% less with 6 errors). However, the
execution time is greatly decreased as the number of total mapping locations is
reduced. As the mapping locations found with a small stack size are the ones with
less errors, this approach is very useful for finding the best alignments.

During execution, our implementation has a memory footprint of 7GB, while
Bowtie 1, SOAP 2 and BWA-backtrack consumed around 3 GB of RAM. This
difference is because our algorithm is using indices for both forward and backward
search. Although our algorithm requires more memory, it is still able to run in
current desktop computers.

5.5.2 Preprocessing step for modern aligners
The purpose of the experiments in this section is to quantify how well our algorithm
would perform as a preprocessing step for modern sequence mappers, concretely
Bowtie 2 v2.2.3 and BWA-MEM v0.7.10. Such mappers combine backward search
seeding with local alignment algorithms based on dynamic programming.

We compare the execution times of these modern sequence mappers alone
against a pipeline that launches our algorithm, annotates the reads found when
it has finished and then launches one of the mappers to find the remaining reads.
Using this configuration the sensitivity is not modified, finding the same amount
of reads.

Bowtie 2 and BWA-MEM have been run with its default execution parameters,
finding in most cases the best occurrence of each read. Our algorithm has been
run with a similar configuration by limiting the size of the partial result lists to
500 elements.
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Figure 5.3: Backtracking tools all mapping locations. 2 Million 250bps reads. Execu-
tion times from 0 to 6 errors.
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Figure 5.4: Backtracking tools best mapping locations. 2 Million 250bps reads. Exe-
cution times from 0 to 6 errors.
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Figure 5.5 shows execution times for mapping the whole 250bps dataset. Bowtie
2 execution took 21m 47s and BWA-MEM execution took 19m 52s. For the com-
bined alignment our algorithm was executed allowing up to 5 errors, finding 54.46%
of the reads in 3m 2s. The remaining reads where feed to Bowtie 2 and BWA-
MEM resulting in a total execution time of 12m 37s and 15m 1s respectively.
This combined approach improves total alignment time by 42% for Bowtie 2 and
25% for BWA-MEM. Bowtie 2 found 94.26% of the reads and BWA-MEM found
94.48%, the same amount of reads where found when using our algorithm as a
preprocessing step.

Figure 5.6 shows execution times for the 400bps dataset, Bowtie 2 took 40m
35s and BWA-MEM took 33m 09s. Our algorithm was executed allowing up to
9 errors, finding 62.21% of the reads in 9m 24s. The combined approach with
Bowtie 2 took 24m 33s (40% faster) and with BWA-MEM took 25m 57s (21%
faster). Bowtie 2 found 94.46% of the reads and BWA-MEM found 94.48%, the
same amount of reads where found when using our algorithm as a preprocessing
step.

Interestingly, these results reveal a greater performance improvement when
combining our algorithm with Bowtie 2. In these experiments, BWA-MEM is
faster than Bowtie 2 for aligning all reads. However, when using the preprocessing
proposed in this paper Bowtie 2 becomes faster.
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Figure 5.5: BWT and SW tools. 2 Million 250bps reads. Execution times comparing
the new algorithm, the modern mappers and the combination of both.
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Figure 5.6: BWT and SW tools. 2 Million 400bps reads. Execution times comparing
the new algorithm, the modern mappers and the combination of both.

5.5.3 Comparison between BWT and csalib runtimes
When dealing with big genomes, the size of the SA may be greater than the
memory capacity of the machine. In this section we compare the speed of our
algorithm using the BWT and the csalib out-of-core runtimes. This library is
developed at the National Institute of Informatics in Tokyo (Japan) [Sadakane,
2010].

The BWT runtime uses about 7GB of RAM for the human genome index, while
the csalib runtime does not load the index into memory. With csalib the index is
directly read from disk using mmap, needing only a few hundreds of Megabytes of
RAM to map reads.

Figure 5.7 shows a 100% increase in execution time when using the csalib
runtime, across all error configurations. When using csalib the asymptotic cost of
the algorithm is not modified, demonstrating the viability of this approach with
currently affordable SSD disk configurations.
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Figure 5.7: BWT and csalib runtimes. 2 Million 250bps reads. Execution times from
0 to 7 errors.

5.5.4 Asymptotic analysis
In this section we analyse the asymptotic cost of the algorithm. We also compare
it with the other approaches studied.

The function that defines the growth of a search tree is O(ke), where k is the
branching factor and e is the depth of the tree. The branching factor of a search
tree is obtained by dividing the total number of branches by the number of nodes
with descendants.

In a trivial algorithm a full search tree is spawn at every position of the search
string. The branching factor of the tree depends on the alternatives available:
match, 4 mismatches and 4 insertions (one for each symbol). So, the asymptotic
cost for an algorithm without optimisations is O(9e), where the depth of the tree
e is the number of errors allowed during the search.

Bowtie 1 and SOAP2 do not support indels, reducing the cost to O(5e). This
cost reduction comes at the expense of exploring less options and finding less
mapping locations.

We employ the pruning techniques described previously to reduce the tree
growth. The effectiveness of these techniques depends on the read analysed and
the variability of the genome. Also, the worst case happens when few symbols of
W are analysed, because all the branches exist in the reference. In practice, we
perform exact search on the first symbols allowing errors later (figure 5.2). This
way the number of branches is reduced.
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Due to these variant factors, we studied the average branching factor of the
search tree experimentally. We have randomly chosen 1000 reads from the 2 Million
250bps dataset. We aligned these reads with our algorithm allowing different
number of errors in order to obtain the average branching factor. This parameter
is an estimation of the growth of the tree, obtaining an asymptotic cost ofO(2.53e).

This is a great improvement compared with an algorithm without optimisations
(O(9e)), while still allowing errors in any position of the read (including indels).

5.6 Conclusions

Improving previous research [Li and Durbin, 2009; Lam et al., 2009], we have de-
veloped a fast backward search algorithm for inexact sequence mapping (including
mismatches, insertions and deletions). This algorithm is up to 13x faster than
similar algorithms implemented in Bowtie, SOAP2 and BWA-backtrack. This im-
pressive speed-up allows to handle more errors than before within a reasonable
amount of time.

The proposed algorithm has been validated as a mapping preprocessing step,
reducing the number of reads to align by 55%. This improves execution time of
Bowtie 2 and BWA-MEM by about 40% and 20% respectively, mapping the same
amount of reads in the same positions. The practical limit of errors allowed in this
preprocessing appears when the seeding and local alignment becomes faster. We
obtain good results with both 250bps and 400bps datasets, allowing up to 5 and
9 errors respectively.

Our implementation is built upon a modular architecture, being compatible
with different backward search techniques. We tested an out-of-core implementa-
tion of the FM-Index provided by csalib library, obtaining reasonable execution
times, showing the viability of cost-effective secondary memory configurations.

As future work, the computation of the exact segments done by the algorithm
could be reused in the seeding phase, improving even further the speed of the
overall process.

Furthermore, the mapping locations obtained by the algorithm must processed
taking into account quality scores and gap penalties to match the criteria of the
mapping tool on which is integrated. This post-process will not affect the logic
nor the performance of the proposed algorithm.
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Table 5.1: Results for Soap 2, Bowtie 1 and the new algorithm. The dataset contains
2 million 250bps reads.

Time % Found Locations
Soap 2
0 errors 25s 0.51% 11025
1 errors 41s 3.22% 71365
2 errors 6m 34s 10.25% 243599

Bowtie 1
0 errors 24s 0.51% 11025
1 errors 51s 3.22% 71365
2 errors 4m 58s 10.25% 243599
3 errors 12m 13s 22.53% 594626

BWA-backtrack
0 errors 1m 17s 0.51%
1 errors 1m 19s 3.22%
2 errors 1m 30s 10.29%
3 errors 2m 2s 22.65%
4 errors 4m 35s 38.73%
5 errors 16m 28s 55.44%
6 errors 60m 17s 69.78%

GRyCAP-BWT Stack size 50000
0 errors 21s 0.51% 11025
1 errors 35s 3.22% 72546
2 errors 52s 10.29% 253479
3 errors 1m 28s 22.66% 644415
4 errors 2m 45s 38.74% 1188595
5 errors 7m 24s 55.46% 1820725
6 errors 23m 45s 69.78% 2830556

GRyCAP-BWT Stack size 500
0 errors 21s 0.51% 11025
1 errors 31s 3.22% 72546
2 errors 51s 10.29% 246841
3 errors 1m 21s 22.60% 515399
4 errors 2m 1s 38.44% 881503
5 errors 3m 3s 54.46% 1296682
6 errors 4m 40s 67.46% 1716369
7 errors 7m 12s 76.19% 2135443
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Chapter 6

General conclusions

In this section we overview the achievements of the developments presented in this
thesis, along with their practical applications in several bioinformatics pipelines.
Section 6.1 covers the contributions of the exact mapping algorithm on GPU.
Section 6.2 covers the contributions of the hybrid CPU-GPU pair-end algorithm
allowing one error. Finally, section 6.3 describes the contributions related to the
advanced search tree exploration algorithm for inexact mapping using backward
search methods.

6.1 Exact mapping on GPU algorithm

The first contribution of this thesis is the parallelisation on GPU of a backward
search algorithm using the FM-Index. We developed an exact GPU sequence
mapper that outperforms the state-of-the-art FM-Index GPU implementation of
SOAP3 [Salavert et al., 2012].

Our algorithm takes advantage of GPU parallel granularity by performing mul-
tiple searches at the same time, one for each GPU execution thread. This max-
imises memory locality and symmetric access to the reads. All the searches are
performed with respect to the same reference search tree.

The thesis analyses the behaviour of the algorithm in GPU, showing a good
scalability in the performance, only limited by the size of the GPU shared memory.
The FM-index is too large to fit into the GPU SM shared memory, being stored
in global memory, which is slower.

Another contribution of this development is the description of useful theory
regarding the FM-index compression and how to access the shrank information
efficiently during the search process on the GPU (see section 4.1).

Results in our hardware configuration indicate that, excluding disk transfers,
the exact search on GPU works 12 times faster than the same algorithm on CPU.
Moreover, the GPU computations and the IO operations have been effectively
parallelised in a concurrent pipeline.
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We measured the performance of our algorithm against existing CPU mapping
tools based in similar approaches, namely SOAP2 and Bowtie, obtaining a 3-4x
speed-up. When compared with SOAP3, which is also based on GPU, we also
obtained a 3x speed-up. The bottleneck of this problem are the input and output
operations, which consume 60% of the execution time. The tests where done in
a regular hard drive, showing that our algorithm manages better the input and
output operations. This is the reason of the better execution times.

This algorithm can be employed to quickly identify matchings without errors
and to accelerate the seeding step of combined aligners, highlighting the regions
to be studied with a local alignment algorithm.

The algorithm has been used in third party developments. Concretely, it has
been included into the Open source for Computational Biology (OpenCB) toolkit
(https://github.com/opencb). OpenCB is a complete set of open source bioin-
formatics tools available for the research community. In this pipeline, the mapping
locations highlighted by the GPU exact search routine are analysed with a paral-
lelised version of the Smith-Waterman algorithm using the Intel AVX instruction
set.

Backward search methods may also have applications in the alignment of pro-
teins. However, in this case the alphabet needed to represent all the aminoacids
is much bigger and the spatial cost of the FM-Index depends on the alphabet
size (matrix O has a row for each alphabet symbol). For this problem a back-
ward search technique relying only on the SA [Manber and Myers, 1990] must be
employed.

Additionally, there are prefix search techniques based on Suffix array (SA) [Man-
ber and Myers, 1990] and enhanced SA [Abouelhoda et al., 2002] theory with
applications to bioinformatics.

6.2 Hybrid CPU-GPU pair-end algorithm

As an extension of the exact mapping on GPU study case, we developed an algo-
rithm to find one error mappings that also returns the pair-ends of a read [Salavert
et al., 2014].

This algorithm takes advantage of concurrent CPU and GPU execution, be-
coming a real hybrid CPU-GPU implementation. Some parts of the algorithm are
executed on the GPU, while other parts are executed on the CPU with a very
litlle overhead. The computation done in the GPU is used to obtain the pair-ends
of a read and, with very little CPU overhead, the mappings with one error.

The logic of this algorithm allows to build a pipeline to execute concurrently
both computations. The speed-up of this hybrid CPU-GPU implementation is 10x
when compared with the CPU only implementation, including the data transfers
between CPU and GPU memory.

In this case we compared our algorithm with the latest version of SOAP3,
called SOAP3-dp. Our implementation outperforms SOAP3-dp in terms of paral-
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lelism and sensitivity. For these experiments we employed a raid of SSD drives,
accelerating the speed of the write operations.

Analysis applications requiring the pair-ends of a read can take advantage of
this algorithm. Moreover, alignment tools based on backward search seeding can
employ seeds with one error using this development.

The hybrid pair-end algorithm was also included in the OpenCB pipeline, con-
cretely in the RNA-seq analysis tool [Mart́ınez et al., 2013b] [Mart́ınez et al.,
2013a]. During RNA-seq mapping the pair-ends highlight the exon-exon junctions
of the mRNA.

GPGPU provide computer power at a reasonable price. Currently, a great
amount of research effort is focused on finding problems suitable for this rela-
tively new architecture. However, the SIMT parallelism model and the memory
architecture impose many restrictions.

Sequence mapping is a concrete problem with a good speed-up when executed
on GPU. The main drawback of this problem is the size of the search index, which
forces to access global memory instead of using the shared memory.

An hybrid approach allows more complex problems to take advantage of the
GPGPU. This is the case of the inexact sequence mapping algorithm allowing one
error. This implementation was possible because memory transfers between the
system main memory and the GPGPU memory take only a small fraction of the
GPU execution time.

When implementing programs on the GPU we must take into account the archi-
tecture restrictions. Otherwise we may put our efforts in a program that executes
properly on the GPU but does not take enough advantage of the parallelism.

Recently, Nvidia announced a change in the arquitecture of their new GPGPU.
The new hardware will have less SM processors, but each one of the SM will have
more SP. This may affect algorithms that can not take full advantage of the SP
and depend on the amount of SM to achieve an acceptable speed-up.

6.3 Advanced search tree exploration inexact mapping
algorithm

Existing sequence mapping approaches based only on backward search techniques
combine the exact mapping procedure with a search tree exploration of all the
possible solutions. Due to this, the complexity of the search tree grows exponen-
tially when the number of errors allowed is increased. Available backward search
algorithms based on this approach only allow a maximum of 4 errors during the
alignment and even forbid insertions and deletions. Moreover, in some implemen-
tations errors in the first nucleotides of the reads are not considered in order to
decrease the complexity of the search tree exploration.

Another significant contribution of this thesis is a backward search algorithm
for inexact mapping supporting any number of errors. This algorithm is intended
as an extra preprocessing step before the seed location phase of current sequence
mapping tools. Our main goal is to reduce the number of read locations to be
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analysed by more expensive combined strategies. This goal is achieved with a more
efficient algorithm capable of dealing with longer reads and able to reuse part of the
backward search preprocessing to accelerate the seeding phase. Similar existing
algorithms only support efficiently about 2 errors, our objective is to demonstrate
that this support may be increased by improving previous research [Li and Durbin,
2009][Lam et al., 2009].

This new algorithm is based on advanced search tree exploration techniques.
We support all type of errors (insertions, deletions and mismatches) in all the
positions of the read. We employ bounding strategies that directly deal with the
genomic variability and considerably reduce the complexity of the search tree.
The bounding strategies focus on full sensitivity, so the algorithm can find all the
existing matches within the number of errors allowed. Nevertheless, the user can
limit the size of the search tree and perform faster searches that discard mapping
locations, obtaining a similar behaviour to the mappers that return only the best
mapping of each read.

The proposed algorithm achieves higher sensitivity and a 13x speed-up over
similar algorithms, allowing 6 errors. These results have been obtained under
the same circumstances and without employing parallelisation techniques. Our
algorithm supports insertions, deletions and mismatches in all the positions of the
read by using a simple bidirectional BWT implementation.

The tests have been performed with the human genome. Smaller gnomes like
Drosophila melanogaster have less variability. In such genomes the segment size
parameter of the algorithm will be considerable smaller (concretely 35 for the
human genome and 15 for the Drosophila melanogaster genome). So, given two
datasets with reads of the same size the algortihm will allow more errors when
studying the Drosophila melanogaster genome.

With a dataset simulating high quality Illumina reads and searching the human
genome our algorithm can deal with 400bps reads with an alignment distance of up
to 10 errors. Longer reads need more errors to be mapped. Increasing the number
of errors the amount of reads aligned grows, but the maximum number of errors
allowed by the algorithm depends on the length of the read and the variability of
the reference genome. Moreover, the execution time grows exponentially with the
number of errors, so there is a limit in the length of the reads determined by the
maximum number of errors and the resulting execution time. Concretely, we were
able to deal with reads of a maximum length of 500 nucleotides.

Modern aligners combine backward search with local alignment algorithms.
Although our algorithm is only based on backward search and it is not intended
as a complete sequence mapping tool, it could be used as a preprocessing step to
modern sequence mappers. In our experiments the algorithm reduces by 55% the
number of reads to be aligned, reducing the overall execution time of BWA-MEM
and Bowtie2 about a 20–40%. Furthermore, the algorithm has being designed to be
easily ported to high performance computing platforms and part of its computation
could be reused in the seeding location phase.
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This algorithm is based on replaceable components, providing the necessary
interfaces to be compatible with any tool using a backward search method. We
performed an study using both our own backward search implementation of the
FM-Index and the implementation for DNA in csalib [Sadakane, 2010], this library
implements several backward search methods based on either the FM-Index or
SA [Sadakane, 2003].

In csalib, the data structures are not loaded into main memory [Mäkinen et al.,
2004], but accessed from disk by demand using mmap. When using currently
affordable SSD disks, these techniques allow to perform inexact mapping against
long reference indexes in systems with low memory configurations. The overhead
of the out-of-core index only increases the execution time by a 60%.

We described the compatibility interfaces that allow to use our algorithm with
different index implementations easily. In the future, the algorithm will be modi-
fied to support faster indexes based on SA supporting backward search.
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Relevant publications and source
code

Regarding the algorithm for exact search on GPU, we published a paper entitled
“Using GPUS for the exact alignment of short-read genetic sequences by means of
the Burrows-Wheeler transform” in the magazine “IEEE/ACM Transactions on
Computational Biology and Bioinformatics” [Salavert et al., 2012].

The colaboration with Centro de Investigación Pŕıncipe Felipe in the develop-
ment of the OpenCB pipeline resulted in a paper entitled “Acceleration of short
and long DNA read mapping without loss of accuracy using suffix array” in the
magazine “Bioinformatics” [Tárraga et al., 2014].

Regarding the hybrid CPU-GPU algorithm that finds the pair-ends of the reads
and allows one error sequence mapping, we published a paper entitled “Inexact
sequence mapping study cases: Hybrid GPU computing and memory demanding
indexes” in the proceedings of the “International Work-Conference on Bioinfor-
matics and Biomedical Engineering” [Salavert et al., 2014] this paper was also
selected for magazine publication. An extended version is under revision.

Regarding the inexact mapping algorithm a paper entitled “Faster and more
accurate inexact mapping using advanced tree exploration on backward search meth-
ods” has been submitted to the “BMC Bioinformatics” magazine and is still under
revision.

The colaboration with Universitat Jaume I de Castelló has resulted in a pa-
per entitled “Highly sensitive and ultrafast read mapping for RNA-seq analysis”,
submitted to “Bioinformatics” and still under revision.

The developments described in this thesis are part of a collaboration between
Universitat Politècnica de València, Centro de Investigación Pŕıncipe Felipe of
València and Universitat Jaume I de Castelló.
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The source code of the implementations described in this thesis is available at:

http://josator.github.io/gnu-bwt-aligner/

The code integration with the OpenCB pipeline is available at:

https://github.com/josator/bioinfo-libs

The OpenCB code is available at:

https://github.com/opencb
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J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construc-
tion. J. ACM, 53(6):918–936, 2006.

W. J. Kent. BLAT - the BLAST-like alignment tool. Genome Res., 12(4):656–664,
2002.

Khronos. The opencl specification. http://www.khronos.org/registry/cl/

specs/opencl-1.0.29.pdf, 2011. Version 1.1 Revision 44.

P. Klus, S. Lam, D. Lyberg, M. Cheung, G. Pullan, I. McFarlane, G. Yeo, and
B. Lam. Barracuda - a fast short read sequence aligner using graphics processing
units. BMC Research Notes, 5(1):27, 2012.

F. Kulla and P. Sanders. Scalable parallel suffix array construction. In Proceedings
of the 13th European PVM/MPI User’s Group Conference on Recent Advances
in Parallel Virtual Machine and Message Passing Interface, EuroPVM/MPI’06,
pages 22–29. Springer-Verlag, Berlin, Heidelberg, 2006.

T. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. Yiu. High throughput short read
alignment via bi-directional bwt. In Bioinformatics and Biomedicine, 2009.
BIBM ’09. IEEE International Conference on, pages 31 –36. 2009.

B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nat
Meth, 9(4):357–359, 2012.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biology, 10(R25), 2009.

82

http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf


Bibliography

N. J. Larsson and K. Sadakane. Faster suffix sorting. Theoretical Computer Sci-
ence, 387(3):258 – 272, 2007. The Burrows-Wheeler Transform.

H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinformatics, 25(14):1754–1760, 2009.

H. Li and R. Durbin. Fast and accurate long-read alignment with Bur-
rows–Wheeler transform. Bioinformatics, 26(5):589–595, 2010.

H. Li and N. Homer. A survey of sequence alignment algorithms for next-
generation sequencing. Briefings in Bioinformatics, 11(5):473–483, 2010.

R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang. Soap2: an
improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–
1967, 2009.

L. Ligowski and W. Rudnicki. An efficient implementation of smith waterman
algorithm on GPU using CUDA, for massively parallel scanning of sequence
databases. In [IEEE, 2009], pages 1–8.

C. Ling and K. Benkrid. Design and implementation of a CUDA-compatible GPU-
based core for gapped BLAST algorithm. Procedia CS, 1(1):495–504, 2010.

D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches.
Sci., 227:1435–1441, 1985.

C. Liu et al. Soap3: Gpu-based compressed indexing and ultra-fast parallel align-
ment of short reads. In Third Workshop on Massive Data Algorithmics, Paris,
France. 2011.

W. Liu, B. Schmidt, G. Voss, A. Schroder, and W. Muller-Wittig. Bio-sequence
database scanning on a GPU. In Proceedings of the fifth IEEE International
Workshop on High Performance Computational Biology. Rhodes Island, Greece,
2006.

Y. Liu, B. Popp, and B. Schmidt. Cushaw3: Sensitive and accurate base-space and
color-space short-read alignment with hybrid seeding. PLoS ONE, 9(1):e86869,
2014.

R. Luo, T. Wong, J. Zhu, C.-M. Liu, X. Zhu, E. Wu, L.-K. Lee, H. Lin, W. Zhu,
D. W. Cheung, H.-F. Ting, S.-M. Yiu, S. Peng, C. Yu, Y. Li, R. Li, and T.-W.
Lam. Soap3-dp: Fast, accurate and sensitive gpu-based short read aligner. PLoS
ONE, 8(5):e65632, 2013.
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H. Mart́ınez, J. Tárraga, I. Medina, S. Barrachina, M. Castillo, J. Dopazo, and
E. S. Quintana-Ort́ı. Concurrent and accurate rna sequencing on multicore
platforms. CoRR, abs/1304.0681, 2013a.
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