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Abstract

Many industrial sectors are concerned on developing optimal maintenance plan-
ning because of the importance of maintenance on the economy and safety. Tra-
ditionally, the maintenance planning is formulated in terms of a multi-objective
optimization problem where reliability, availability, maintainability and cost act
as decision criteria and surveillance test and maintenance strategies act as de-
cision variables. However, the appropriate development of each maintenance
strategy depends not only on the maintenance intervals but also on the re-
sources available to implement such strategies. To solve the multi-objective
optimization problem Particle Swarm Optimization (PSO) can be used. PSO
is a stochastic global optimization technique inspired by social behavior of bird
flocking or fish schooling. In this paper the multi-objective optimization of the
maintenance of a nuclear power plant safety equipment using PSO is presented.

Keywords: Reliability,Maintainability, Availability, Particle Swarm
Optimization

1. Introduction

Traditionally, maintenance planning in complex systems such as Nuclear
Power Plants (NPPs) is focused on achieving high levels of reliability, availabil-
ity, maintainability and a minimum cost. To find the best planning usually, only
surveillance tests and maintenance task intervals are taken into consideration.
Many studies have been developed in this period aimed at improving safety
systems, with the main focus on developing designs that use more reliable and
redundant equipment (e.g. intrinsic reliability allocation) and implementing an
appropriate surveillance and maintenance policy to assure that an acceptable
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standard of reliability, availability and maintainability (RAM) of the safety sys-
tems is kept during all the plant operational life (e.g. testing and preventive
maintenance optimization) [1, 2, 3, 4, 5]. However the appropriate development
of each maintenance strategy depends not only on the maintenance intervals
but also on the human resources available.Recent studies concluded that the im-
plementation of a given maintenance plan adopting adequate test surveillance
and maintenance frequencies together with and workforce can suppose large
deviations from the RAM and cost goals obtained when only surveillance test
and maintenance frequencies are considered [6]. Therefore, the consideration of
workforce to perform a surveillance test or maintenance activity becomes an im-
portant variable to design an optimum maintenance plan. In other fields, as in
manufacturing systems, the effect of workforce is taken into consideration to ob-
tain an optimal production plan [7]. This paper proposes an approach to include
the effect of the number of workers and their skills to perform maintenance in
unavailability and cost analytical models. Thus in section 2 the extended mod-
els are presented. Section 3 is devoted to the problem formulation and section
4 briefly describes the fundamentals of Particle Swarm Optimization. In sec-
tion 5 a case of application focused on the maintenance plan optimization of
a set of motor-driven pumps is presented. Finally, section 6 presents the main
conclusions obtained from this application.

2. Unavailability and Cost models

The total unavailability of a safety equipment is obtained by quantifying the
following contributions [1]:

ur =

(

1 −

1

λI

(

1 − e−λI
)

)

≈ ρ +
1

2
λI , (1)

us = fsds , (2)

un = fndn , (3)

where Eqn. (1) represents the unavailability associated with an undetected fail-
ure corresponding to the particular sort of failure cause being considered, I is the
interval to perform a scheduled maintenance task that is intended or supposed
to detect the occurrence of such failure, ρ represents a cyclic or per-demand
failure probability and λ is the standby failure rate. Eqn. (2) represents the
unavailability contribution associated with a scheduled testing or maintenance
task, where fs is the scheduled activity frequency, given by fs = 1/I, and ds is
the duration of such activity. Eqn. (3) represents the unavailability contribu-
tion associated with a non-planned maintenance task, where fn and dn represent
the frequency and downtime of the activity, respectively. Regarding the cost,
the yearly cost contribution of performing planned testing or maintenance, and
non-planned maintenance can be evaluated as [1]:

cs = 8760 fs c1s , (4)

cn = 8760 fn c1n , (5)
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where c1s and c1n represent the unitary cost as a consequence of performing
one single task, scheduled or non-planed, respectively, which can be formulated
using the following relationship:

c1i = NP cHP TP + NEcHETE , (6)

where TP and TE , represent the time spent by the NP own and NE external per-
sonnel, respectively. In addition, cHE is the hourly cost for external personnel
and cHP is the hourly cost for own personnel.

To consider the effect of human resources in the analytical models, it is
necessary to extend the existing models to include the workforce [1], i.e. the
number of workers involved in a maintenance task and theirs skills to perform
such maintenance [7] influences the unavailability and cost criteria. Thus, more
skilled workers will result in less time to perform an activity and this will in-
fluence the equipment unavailability level. On the other hand, as more workers
are assigned to perform a maintenance task, its duration will decrease until
a certain value, what improves the equipment unavailability but increases the
cost. So, the effect of the workforce assigned to perform a surveillance or main-
tenance task results in a different duration of the activity depending on the
human resources available. In a similar way, as it is done in production systems
to quantify this effect, the real duration of the activity, d, i.e. ds and dn in
equations (2) and (3), can be calculated using the following expression:

d = d′ (c + (1 − c) (ηP NP + ηENE)
ra) , (7)

where d′, is the scheduled time to perform an activity, c is the percentage of
the scheduled time that cannot be reduced regardless the number of workforce
assigned to that activity, NP and NE are the number of own and external per-
sonnel involved in a task, respectively. And ηP and ηE , represent the efficiency of
own personnel and external workforce to perform a task. Finally, ra in Eqn. (7)
represents the reduction in time due to the total amount of workforce involved
in such activity. which can be evaluated, based on the expression proposed in
[7], as :

ra =
log10

(

rP Np+rENe

Np+Ne

)

log10 2
, (8)

Where rP and rE , are similar to the learning rate introduced in [7], but in
this case they depend on the number of workers involved in the activity. In
Fig. 1, the reduction in time depending on the human resources assigned to
perform such activity is shown. It can be observed that the downtime cannot
be reduced below a certain value (20 hrs. in the example). Additionally, Fig.
1 shows that the reduction is faster if the workforce assigned to perform this
work corresponds to external personnel since they are more skilled to perform
such work.
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Figure 1: Time reduction vs workforce.

3. Problem formulation

The extended models can be used as objective functions in a multi-objective
optimization process to obtain a set of solutions corresponding to optimum
maintenance plan. This work, transforms the multi-objective into a Single-
objective optimization problem (SOP) using the concept of effectiveness:

y = f(x) = 1 − (ωeu (x) + (1 − ω) ec (x)) , (9)

where eu (x) and ec (x) are the unavailability and cost effectiveness, defined as:

eu (x) =
Ur − U

Ur − Um

, ec (x) =
Cr − C

Cr − Cm

, (10)

where Ur represents the equipment unavailability for the initial maintenance
plan, and Cr is the associated cost. And Um and Cm are the optima values
obtained from solving to SOPs corresponding to the unavailability and cost
optimization, respectively. ω, in Eqn. (9) is the weighting coefficient that range
in the interval [0, 1].

4. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) method is a member of the wide
category of Swarm Intelligence methods [8]. It was originally proposed by J.
Kennedy as a simulation of social behavior, and it was initially introduced as
an optimization method in 1995 [9]. PSO is related with Artificial Life, and
specifically to swarming theories. This optimization technique has been proved
to obtain good results in constrained optimization problems [10].
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PSO is similar to Evolutionary Computation techniques in that, a popula-
tion of potential solutions to the problem under consideration, is used to probe
the search space. However, in PSO, each individual of the population has an
adaptable velocity (position change), according to which it moves in the search
space. Moreover, each individual has a memory, remembering the best posi-
tion of the search space it has ever visited. Thus, its movement is an aggregated
acceleration towards its best previously visited position and towards the best in-
dividual of a topological neighborhood. Since the acceleration term was mainly
used for particle systems in Particle Physics, the pioneers of this technique de-
cided to use the term particle for each individual, and the name swarm for the
population, thus, coming up with the name Particle Swarm for their algorithm
[9].

Assuming that the search space is D-dimensional, the i − th particle of the
swarm is represented by the D-dimensional vector Xi = (xi1, xi2, ..., xiD) and
the best particle in the swarm, i.e. the particle with the smallest function value,
is denoted by the index g. The best previous position (i.e. the position giving
the best function value) of the i − th particle is recorded and represented as
Pi = (pi1, pi2, ..., piD), while the position change (velocity) of the i− th particle
is represented as Vi = (vi1, vi2, ..., viD). Following this notation, the particles
are manipulated according to the following equations:

vid = w vid + c1r1 (pid − xid) + c2r2 (pgd − xid) (11)

xid = xid + ξvid , (12)

where d = 1, 2, . . . , D; i = 1, 2, . . . , N, and N is the size of the swarm, w
is called inertia weight; c1, c2 are two positive constants, called cognitive and
social parameter respectively; r1, r2 are random numbers, uniformly distributed
in [0, 1] and ξ is a constriction factor, which is used, alternatively to w to limit
velocity.

The inertia weight, w, is employed to control the impact of the previous
history of velocities on the current one. This parameter regulates the trade-off
between the global and local exploration abilities of the swarm. A large iner-
tia weight facilitates global exploration, while a small one tends to facilitate
local exploration. A suitable value for the inertia weight w usually provides
balance between global and local exploration abilities and consequently results
in a reduction of the number of iterations required to locate the optimum solu-
tion. Initially, the inertia weight was constant. However, experimental results
indicated that it is better to initially set the inertia to a large value, in order
to promote global exploration of the search space, and gradually decrease it to
get more refined solutions [10]. Thus, an initial value about 1.2 and a gradual
decline towards 0 can be considered as a good choice for w.

The parameters c1 and c2, in Eqn. (11), are not critical for PSOs con-
vergence. However, proper fine-tuning may result in faster convergence and
alleviation of local minima. Experimental results indicate that c1 = c2 = 0.5
might provide even better results.
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Table 1: Motor-driven pump dominant failure causes.

Cause Code Description
fc1 IAL Inadequate lubrication
fc2 DEM Damaged electric or electronic module
fc3 MBW Motor bearing wear
fc4 PIW Pump impeller wear
fc5 SPD Set point drift
fc6 MIS Misalignment

Table 2: Maintenance plan selected to cover dominant failures causes.

Task I (hrs) Failure causes
fc1 fc2 fc3 fc4 fc5 fc6

Lub oil change (t1) 26000 Yes No Yes No No No
Operational test (t2) 13000 Yes No No No Yes No
Visual inspection Motor (t3) 26000 Yes Yes No No No No
Visual inspection Pump (t4) 26000 No No No Yes No Yes

5. Case of application

The case of application is focused on optimizing the maintenance plan of a
set of motor-driven pumps, which is a Nuclear Power Plant safety equipment,
considering as decision criteria the equipment unavailability and cost and as
decision variables the maintenance and test frequency, the number of own per-
sonnel and external workforce.

Table 1, shows the six dominant failure causes considered for the motor-
driven pump analyzed. In addition, Table 2, shows the maintenance plan
selected in [11], which allows covering all the dominant failure causes of the
equipment, and the maintenance intervals, I, actually implemented in plant.
Each couple failure cause and task introduces a contribution to the equipment
unavailability and cost. These contributions are quantified using the models
introduced in section 2. The total unavailability and cost are computed by the
aggregation of all contributions.

Table 3, shows the data related to human resources, needed to quantify
the cost using the Eqn.(6), Eqn.(7) and Eqn.(8). Data related to the equipment
reliability characteristic and others not included herein are the same as proposed
in Ref. [12].

The optimization has been performed using a Particle Swarm Algorithm,
implemented in MatLab [13], using Eqn. (9) as objective function, and the
equations presented in section 2 to quantify the unavailability and cost criteria.
The decision variables considered are the maintenance intervals of the four tasks
identified in table 2 to cope with all the dominant failure causes and the number
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Table 3: Data related to human resources.

Parameter Own Personnel External Personnel
Efficency 0.9 1
Delay for unscheduled tasks 0 hrs. 3 hrs.
Delay for scheduled tasks 0 hrs. 0 hrs.
Cost 2000 euros/year 30 euros/hour
Neq 100 −

Efficency 0.9 1
Persons (N) [0 − 10] [0 − 10]

Table 4: PSO parameters.

Parameter Value
c1 0.5
c2 0.5
w 1.2 − 0.8
Swarm Size 25
Number of iterations 100
Number of runs 20

of own and external personnel. The values selected for the PSO parameters,
which have been obtained after running the algorithm for a number of trials,
are shown in Table 4.

Figure 2 shows a set of non dominated solutions considering in the opti-
mization process the maintenance and test intervals compared with the result
obtained when workforce is considered as a variable. In this Figure, it can be
observed that the optimization result is quite different in the two cases ana-
lyzed and that inclusion of workforce provides better solutions for the region
of the Pareto Front where unavailability and cost have similar importance in
the objective function. In order to study the effect of each decision variable
the partial correlation coefficients have been calculated. From this analysis it
can be concluded that the interval maintenance tasks t1 and t2 are the decision
variables with a greater influence on unavailability with a correlation coefficient
of 0.976 and 0.982, respectively. The other decision variables present a correla-
tion coefficients lower than 0.310. Thus, for example the correlation coefficient
corresponding to external personnel has a value of -0.304. Regarding the cost,
the number of the external personnel is the most influencing variable, with a
correlation coefficient of 0.956, followed by the number of own personnel with
a correlation coefficient of 0.738. In this case the maintenance intervals present
correlation coefficients lower than 0.450 and negative.
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Figure 2: Comparison of non dominated solutions.

6. Conclusions

An adequate maintenance plan depends not only on the maintenance and
test intervals, but also on the human resources available to perform such main-
tenance. The analytical models developed have been extended to take into
consideration this effect. Particle Swarm has succeeded in finding an adequate
set of non-dominated solutions of the maintenance optimization, and the com-
parison of the results obtained in the optimization process considering workforce
with the results obtained by simply considering the surveillance test and main-
tenance frequencies, show the importance of including human resources as a
variable in the optimization procedure.
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