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Abstract

In this paper finite groups factorized as product of pairwise totally
permutable subgroups are studied in the framework of Fitting classes.
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1 Introduction

All groups considered in this paper are finite. Within the framework of
factorized groups, products of totally permutable groups have been widely
investigated (c.f. [4], [7], [5] and [9]). We recall that the subgroups H and K
of a group G are totally permutable, if every subgroup of H permutes with
every subgroup of K. Moreover, a group G is the totally permutable product
of the subgroups H and K if G = HK and H and K are totally permutable.
One of the leading questions in this context asks about properties of the
factors which are inherited by the whole group (and vice versa). This can
be stated in the following way: Assume that L is a class of groups and
G = HK is the product of the totally permutable subgroups H and K.
Then:

(1) Do H,K ∈ L imply G ∈ L?

(2) Does G ∈ L imply H,K ∈ L?

These questions were given positive answers for suitable formations L con-
taining the formation U of all supersoluble groups. Even more, the corre-
sponding natural extensions for products of finitely many pairwise totally
permutable groups also hold. We refer to [1], [2] and [3] for details. For the
dual type of classes, namely for Fitting classes containing U , the questions
mentioned above were considered in [9]. Although they remain open for an
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arbitrary Fitting class L containing U , positive results were obtained for
important types of such Fitting classes, among them Fischer classes. In this
paper we take further this study by investigating the case of finitely many
factors in the context of Fitting classes. It turns out that whenever L is a
Fitting class containing U and satisfying either (1) or (2), then the respective
extensions for products of finitely many pairwise totally permutable groups
hold.

We refer to [8] for the notation and basic results on classes of groups.

2 Preliminaries

We recall in the next lemma a fundamental property of totally permutable
groups which will be often used in the sequel:

Lemma 1. ([5], Theorem 1)
Assume that H and K are totally permutable groups. Then H centralizes
KN and K centralizes HN , where N denotes the class of all nilpotent groups.
In particular, HN and KN are both normal subgroups of the product HK.

The following lemma is an extension of ([5], Corollary 2) for products of
pairwise totally permutable groups.

Lemma 2. Let G = G1G2 · · ·Gr be a group such that G1, G2, . . . , Gr are
pairwise totally permutable subgroups of G. Then [

∏
i∈I Gi,

∏
j∈J Gj ] is a

nilpotent normal subgroup of G, for any I, J ⊆ {1, 2, . . . , r} such that {I, J}
is a partition of {1, 2, . . . , r}.

Proof. We denote by Ti an N -projector of Gi, for each i ∈ {1, 2, . . . , r}.
Then Gi = GNi Ti, for each i ∈ {1, 2, . . . , r}. Since the group Gj centralizes
GNi , for each i, j ∈ {1, 2, . . . , r}, i 6= j, by Lemma 1, we have that:

[
∏
i∈I

Gi,
∏
j∈J

Gj ] = [
∏
i∈I

GNi Ti,
∏
j∈J

GNj Tj ] =

= [
∏
i∈I

Ti,
∏
j∈J

Tj ] ≤ (
∏
i∈I

Ti
∏
j∈J

Tj )′.

We notice that
∏r
i=1 Ti is a product of pairwise totally permutable nilpotent

subgroups. Then it is a supersoluble group by ([6], Theorem 1), and so the
result is clear.

Lemma 3. Let T = 〈x〉〈y〉 be a product of two permutable cyclic q-groups,
with q an odd prime. Assume that there exists a q′-group H acting on T
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by automorphisms such that T = [H,T ] and 〈x〉 and 〈y〉 are H-invariant
groups. Then T is an abelian group.

Proof. According to III. Satz 11.5 of [10], T is metacyclic, that is, there
exists a normal subgroup A of T such that A and T/A are cyclic. Now,
we deduce that T is an M -group, that is, a group with modular subgroup
lattice, by ([11], Lemma 2.3.4). Moreover, since q is odd, T does not involve
Q8, the quaternion group of order 8, and so T is an M∗-group, according to
[11], page 58.

Assume that T is nonabelian. Since T is an M∗-group, by ([11], Theorem
2.3.23) there exist characteristic subgroups R and S of T such that Φ(T ) ≤
S < R and [R,Aut(T )] ≤ S. Since T = [H,T ], with H ≤ Aut(T ), it is clear
that R < T . On the other hand, T/Φ(T ) ∼= Zq × Zq and so |T : R| = q and
S = Φ(T ). Consequently [R,H] ≤ Φ(T ). Moreover, R = [R,H]CR(H) by
coprime action and we know, by ([11], Lemma 2.3.2), that any two of the
subgroups of T permute. We may assume that 〈x〉 6⊆ R. Then

T = R〈x〉 = Φ(T )CR(H)〈x〉 = CR(H)〈x〉.

So
T = [H,T ] = [H,CR(H)〈x〉] = [H, 〈x〉] ≤ 〈x〉,

a contradiction which proves the result.

3 The results

Theorem 1. Let F be a Fitting class containing U and satisfying the fol-
lowing property:

(∗) If a group G = HK is the product of the totally permutable subgroups
H and K such that H ∈ F and K ∈ F , then G ∈ F .

Let the group G = G1G2 · · ·Gr be a product of the pairwise totally permutable
subgroups G1, G2, . . . , Gr. If Gi ∈ F , for all i ∈ {1, 2, . . . , r}, then G ∈ F .

Proof. Assume that the result is false and let G = G1G2 · · ·Gr be a
counterexample where G1, G2, . . . , Gr are pairwise totally permutable F-
subgroups of G with |G|+ |G1|+ · · ·+ |Gr| minimal. We split the proof into
the following steps:
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(1) We may assume that G2, . . . , Gr are nilpotent groups and G1 is not
nilpotent. We denote H = G1 and K = G2 · · ·Gr. Moreover, K ∈ U
and [K,HN ] = 1.

If Gi ∈ N for all i ∈ {1, 2, . . . , r}, then G ∈ U ⊆ F , by ([6], Theo-
rem 1), which is a contradiction. Assume now that there exist i, j ∈
{1, 2, . . . , r}, i 6= j, such that Gi 6∈ N and Gj 6∈ N . From Lemma 1
it follows that [Gk, G

N
t ] = 1, for all k, t ∈ {1, 2, . . . , r}, k 6= t. Then

Gt ≤ CG(GNi ) < G for every t 6= i, and Gt ≤ CG(GNj ) < G for every
t 6= j. Hence

CG(GNi ) =
( r∏
t=1
t6=i

Gt
)(
Gi ∩ CG(GNi )

)
is a product of pairwise totally permutable subgroups in F , as CGi(G

N
i )

� Gi ∈ F . We conclude that CG(GNi ) ∈ F , by the choice of G. In a
similar way, CG(GNj ) ∈ F . Then

G = CG(GNi )CG(GNj ) ∈ n0(F) = F ,

a contradiction.

Consequently there exists a unique i ∈ {1, 2, . . . , r} such that Gi 6∈ N .
Without loss of generality we may suppose i = 1. Now the conclusion
is clear, by ([6], Theorem 1) and Lemma 1.

(2) KG ∩H ∈ N and KG ∈ U .

Since [K,HN ] = 1 we can deduce that KG ∩HN ≤ Z(KG ∩H) and
so KG ∩ H ∈ N . Finally, since KG = (KG ∩ H)K is a product of
pairwise totally permutable nilpotent subgroups, then KG ∈ U , by
([6], Theorem 1).

(3) There exists a prime number p such that G = HNHpK
G, with Hp a

Sylow p-subgroup of H.

Since HNHqK
G is a normal subgroup of G, for all primes q, where Hq

is a Sylow q-subgroup of H, the result follows taking into account the
choice of G.

(4) For all primes q 6= p, HNHq[H,K] is a normal F-subgroup of G, where
Hq is a Sylow q-subgroup of H.

We notice first that HNHq[H,K] is a normal subgroup of G = HK
contained in HNKG by (3). Then the result follows from (2) and this
fact.
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(5) HNHp[Hp,K] 6∈ F
Suppose that HNHp[Hp,K] ∈ F . Since HNHp[Hp,K] = (HNHp)

G is
a normal subgroup of G, then

HG = H[H,K] = (HNHp[Hp,K])(
∏
q 6=p

HNHq[H,K]) ∈ n0(F) = F ,

by (4). Consequently G = HGKG ∈ n0(F) = F , a contradiction
which proves step (5).

(6) G = HNHpK.

If HNHpK < G, then HNHpK ∈ F by the choice of G. But this
contradicts step (5), since HNHp[Hp,K] is a normal subgroup of
HNHpK.

(7) H/HN is a p-group.

This follows from (6) by the choice of (G1, . . . , Gr).

(8) p ≤ q for all primes q dividing |K| and G = HNHpKpKp′ , where Kp is a
Sylow p-subgroup of K and Kp′ is a Hall p′-subgroup of K. Moreover,
Kp′ is a normal subgroup of G.

Suppose that p ≥ q, for all primes q dividing |K|. Since HpK is
a supersoluble group by ([6], Theorem 1), we can deduce that H =
HNHp is a subnormal subgroup of G = HNHpK. Hence, G = KGH ∈
n0(F) = F , a contradiction. Consequently there exists a prime q
dividing |K| with p < q.

Let π(K) ∪ {p} = {p1, p2, . . . , pt = p, pt+1, . . . , pn}, with p1 < p2 <
· · · < pt = p < pt+1 < · · · < pn. We denote π = {p, pt+1, . . . , pn}
and π′ = (π(K) ∪ {p})\π. Since HpK is a supersoluble group, Kπ′

normalizes HpKπ, where Kπ′ and Kπ are a Hall π′-subgroup and
the Hall π-subgroup of K, respectively. Hence HNHpKπ is a nor-
mal subgroup of G. Assume that HNHpKπ < G. We notice that
Kπ = Oπ(G2) · · ·Oπ(Gr) is a product of pairwise totally permutable
nilpotent subgroups each of which is totally permutable with H. Then
it follows that HNHpKπ ∈ F by the choice of G. Therefore G =
(HNHpKπ)KG ∈ n0(F) = F , a contradiction which implies that
G = HNHpKπ. Now, by the choice of (G1, . . . , Gr), it follows that
K = Kπ and p ≤ q for all primes q ∈ π(K). Since HpK ∈ U , it is clear
that Kp′ is a normal subgroup of G = HNHpKpKp′ and we are done.
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(9) K is a normal p′-subgroup of G.

We notice that Kp′ = Op′(G2) · · ·Op′(Gr). If HKp′ < G, then HKp′ ∈
F by the choice of G. Now, since HNKp′ is a normal subgroup of G
and G/HNKp′ is a p-group by (8), it follows that HKp′ is a subnormal
subgroup of G. This means that G = (HKp′)K

G ∈ n0(F) = F ,
a contradiction. Hence G = HKp′ and K = Kp′ by the choice of
(G1, . . . , Gr). By (8), K is normal in G.

(10) For all j ∈ {2, . . . , r}, Gj = [Gj , H]. Moreover,
∏t
k=1Gjk = [

∏t
k=1Gjk , H]

for each set of indices {j1, . . . , jt} ⊆ {2, . . . , r}. In particular, HG = G
and K = [H,K] is a nilpotent group.

First, we remark that for every j ∈ {2, . . . , r}, [Gj , H] = [Gj , Hp] ≤ Gj
because H = HNHp, [HN ,K] = 1 and HpK is a supersoluble group,
with p the smallest prime dividing its order. Now, since Gj is a
p′-group, by coprime action we know that Gj = [Gj , Hp]CGj (Hp),
for all j ∈ {2, . . . , r}. Then we have that HG = 〈HG2···Gr〉 ≤≤
H(
∏r
j=2[Gj , Hp]) ≤ HG. Since HG = H(

∏r
j=2[Gj , Hp]) is a product

of pairwise totally permutable subgroups in F , if we assume HG < G,
then by the choice of G we deduce that HG ∈ F and G = KHG ∈
n0(F) = F , a contradiction. Hence G = HG = H(

∏r
j=2[Gj , Hp]). By

the choice of (G1, . . . , Gr) we conclude that Gj = [Gj , Hp] = [Gj , H],
for all j ∈ {2, . . . r}.
Now, if we take {j1, . . . , jt} ⊆ {2, . . . r}, then we have that

∏t
k=1Gjk =∏t

k=1[Gjk , H] ≤ [
∏t
k=1Gjk , H] ≤

∏t
k=1Gjk . In particular, K =

[H,K] is a nilpotent group, by Lemma 2.

(11) For all j ∈ {2, . . . , r}, Gj is an abelian group and, moreover, H nor-
malizes each subgroup of Gj .

Choose any j ∈ {2, . . . , r}. We claim that H does not centralize any
non-trivial Sylow subgroup of Gj . Assume not and let (Gj)q 6= 1, a
Sylow q-subgroup of Gj , for some prime q, such that [(Gj)q, H] = 1.
Then HG ≤ H(

∏
16=i 6=j Gi)(Gj)q′ and, by (10), we deduce that G =

H(
∏

16=i 6=j Gi)(Gj)q′ . Now, by the choice of (G1, . . . , Gr), we obtain
that Gj = (Gj)q′ and (Gj)q = 1, a contradiction.

Since Hp(Gj)q is a product of totally permutable subgroups and it is
a supersoluble group, it follows that Hp normalizes each subgroup of
(Gj)q but does not centralize (Gj)q, for all primes q ∈ π(Gj). By ([5],
Lemma 1), (Gj)q is an abelian group, for all primes q ∈ π(Gj), and
hence Gj is an abelian group.
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Again, since HpGj is a supersoluble group which is a product of two
totally permutable subgroups, and p is the smallest prime dividing its
order, we deduce that Hp normalizes each subgroup of Gj . Now, since
[HN , Gj ] = 1, the result follows by (7).

(12) Gj is a cyclic pj-group, for some prime pj , for all j ∈ {2, . . . , r}.
Choose any j ∈ {2, . . . , r}. Since Gj is abelian by (11), it is a direct
product of cyclic subgroups of prime power orders. Let Gj = ×i Tji ,
Tji
∼= Zpαii

for some primes pi > 2 and some integers αi ≥ 0 for each

i. Then G = H(
∏

1 6=k 6=j Gk)(×i Tji) is a product of pairwise totally
permutable subgroups in F . Now, |H| +

∑
16=k 6=j |Gk| +

∑
i |Tji | <

|G1| + · · · + |Gr|, since
∑

i |Tji | <
∏
i |Tji | unless Gj = Tji for some

index ji. It follows that each Gj is a cyclic pj-group, for some prime
pj , by the choice of (G1, . . . , Gr).

(13) K = G2 · · ·Gr is an abelian group.

Since K is a nilpotent group by (10), it suffices to show that any
Sylow q-subgroup of K, for any prime q, is abelian. Take any pair of
indices i, j ∈ {2, . . . r} such that Gi and Gj are q-groups and denote
Tij = GiGj . By (10) Tij = [Tij , H] = [Tij , Hp]. And, moreover,
by (12), Tij is the product of two permutable cyclic H-invariant q-
subgroups, where q is an odd prime (we recall that p < q). Then Tij is
an abelian group by Lemma 3. This means that [Gi, Gj ] = 1 for every
pair of q-groups Gi and Gj . Consequently, we deduce that any Sylow
q-subgroup of K is abelian, by (12), and the result follows.

(14) The final contradiction.

Since K = G2 · · ·Gr is an abelian group and H normalizes each sub-
group of Gr, it is clear that HG2 · · ·Gr−1 is totally permutable with
Gr. IfHG2 · · ·Gr−1 is a proper subgroup ofG, then it is an F-group by
the choice of G. Consequently G = (HG2 · · ·Gr−1)Gr is a product of
two totally permutable subgroups in F . From our assumption we ob-
tain that G ∈ F , a contradiction. This implies that G = HG2 · · ·Gr−1.
By the choice of (G1, . . . , Gr) we have that G ∈ F , the final contra-
diction.

Theorem 2. Let F be a Fitting class containing U and satisfying the fol-
lowing property:
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(∗) If a group G = HK is the product of the totally permutable subgroups
H and K such that G ∈ F , then H ∈ F and K ∈ F .

Let the group G = G1G2 · · ·Gr be a product of the pairwise totally permutable
subgroups G1, G2, . . . , Gr. If G ∈ F , then Gi ∈ F for all i ∈ {1, 2, . . . , r}.

Proof. Assume the result is false and let G = G1G2 · · ·Gr ∈ F be
a counterexample where G1, G2, . . . , Gr are pairwise totally permutable
subgroups of G, not all of them in F , with |G|+ |G1|+ · · ·+ |Gr| minimal.
We split the proof into the following steps:

(1) We may assume that G2, . . . , Gr are nilpotent groups and G1 is not
nilpotent. We denote H = G1 and K = G2 · · ·Gr. Moreover, K ∈ U
and [K,HN ] = 1.

Obviously not allG1, G2, . . . , Gr are nilpotent. If we assume that there
exists i, j ∈ {1, 2, . . . , r}, i 6= j, such that Gi 6∈ N and Gj 6∈ N , we
can deduce, as in Theorem 1, step (1), that CG(GNi ) = (

∏r
t=1, t 6=iGt)

(Gi ∩ CG(GNi )) is a proper normal subgroup of G. By the choice of
G, we obtain that Gt ∈ F , for all t 6= i. In a similar way, arguing
with Gj , we deduce that Gl ∈ F , for all l 6= j. Then Gk ∈ F for all
k ∈ {1, 2, . . . , r}, a contradiction.

Consequently there exists a unique i ∈ {1, 2, . . . , r} such that Gi 6∈ N .
Without loss of generality we may assume that i = 1. Now, the
conclusion is clear by ([6], Theorem 1) and Lemma 1.

(2) KG ∩H ∈ N and KG ∈ U .

We can argue as in Theorem 1, step (2).

(3) There exists a prime number p such that G = HNHpK
G, with Hp a

Sylow p-subgroup of H.

Assume that HNHqK
G < G, for all primes q, where Hq is a Sylow

q-subgroup of H. For every prime q, since HNHqK
G is a normal sub-

group of G, we have that HNHqK
G ∈ sn(F) = F . But HNHqK

G =
HNHq(K

G ∩ H)K is a product of pairwise totally permutable sub-
groups. By the choice of G we deduce that HNHq(K

G ∩H) ∈ F . In
particular, HNHq ∈ sn(F) = F , for all primes q, and so H ∈ n0(F) =
F , a contradiction.

(4) For all primes q 6= p, HNHq ∈ F , where Hq is a Sylow q-subgroup of
H. Moreover, HNHp 6∈ F .
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We notice that HNHq is contained in HN (KG ∩H) by (3). But HN

(KG ∩H) ∈ F because it is the product of two normal F-subgroups
of H. Then HNHq ∈ sn(F) = F . Finally, if HNHp ∈ F , then
H ∈ n0(F) = F , a contradiction which proves (4).

(5) H/HN is a p-group, p ≤ q for all primes q dividing |K| and G =
HNHpKpKp′ , where Kp is a Sylow p-subgroup of K and Kp′ is a Hall
p′-subgroup of K. Moreover, Kp′ is a normal subgroup of G.

Since HNHp[Hp,K] = (HNHp)
G is a normal subgroup of G, we have

that HNHp[Hp,K] ∈ F .

We claim first that there exists a prime q dividing |K| with p < q.
Otherwise, we can obtain, as in Theorem 1, step (8), that HNHp is
a subnormal subgroup of HNHp[Hp,K]. Then HNHp ∈ sn(F) = F ,
which contradicts step (4).

Let π(K) ∪ {p} = {p1, p2, . . . , pt = p, pt+1, . . . , pn}, with p1 < p2 <
· · · < pt = p < pt+1 < · · · < pn. We denote π = {p, pt+1, . . . , pn}
and π′ = (π(K) ∪ {p})\π. We recall that K = G2 · · ·Gr = KπKπ′

is a supersoluble group, where Kπ′ ∈ Hallπ′(K) and Kπ ∈ Hallπ(K).
We may assume that Kπ′ = Oπ′(G2) · · ·Oπ′(Gr) is a product of pair-
wise totally permutable nilpotent subgroups each of which is totally
permutable with H. Then HpKπ′ is a supersoluble group by ([6], The-
orem 1). Consequently Kπ′ normalizes both Kπ and Hp and so we
have that

[Hp,K] = [Hp,Kπ′ ][Hp,Kπ] ≤ Hp[Hp,Kπ].

Therefore HNHp[Hp,Kπ] = HNHp[Hp,K] is a normal F-subgroup of
G. On the other hand, arguing as above, we have that HpKπ is also a
supersoluble group. This implies that Kπ is a subnormal subgroup of
HpKπ. Hence HNHpKπ = HNHp[Hp,Kπ]Kπ ∈ n0(F) = F .

If HNHpKπ < G, then HNHp ∈ F , by the choice of G, which contra-
dicts step (4). So we may assume that G = HNHpKπ. Now, by the
choice of (G1, . . . , Gr), we can deduce that H = HNHp, K = Kπ and
p ≤ q for all primes q ∈ π(K). Moreover, since HpK ∈ U , it is clear
that Kp′ is a normal subgroup of G, and the result follows.

(6) K is a normal p′-subgroup of G.

Since HNKp′ is a normal subgroup of G and G/HNKp′ is a p-group by
(5), then HKp′ is a subnormal subgroup of G. In particular, HKp′ ∈
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sn(F) = F . If HKp′ < G, then by the choice of G we can deduce that
H ∈ F , a contradiction. Hence G = HKp′ and K = Kp′ by the choice
of (G1, . . . , Gr).

(7) For all j ∈ {2, . . . , r}, Gj = [Gj , H]. Moreover,
∏t
k=1Gjk = [

∏t
k=1Gjk , H]

for each set of indices {j1, . . . , jt} ⊆ {2, . . . , r}. In particular, HG = G
and K = [H,K] is a nilpotent group.

From (1), (5) and (6), we can argue as in Theorem 1, step (10), to
obtain that [Gj , H] = [Gj , Hp] ≤ Gj , for every j ∈ {2, . . . , r}, and
that HG = H(

∏r
j=2[Gj , Hp]). In particular, HG is a normal sub-

group of G ∈ F , which is a product of pairwise totally permutable
subgroups. If HG < G, then H ∈ F by the choice of G, a contradic-
tion. Consequently G = HG = H(

∏r
j=2[Gj , Hp]) and, by the choice

of (G1, . . . , Gr), we conclude that Gj = [Gj , Hp] = [Gj , H], for all
j ∈ {2, . . . , r}.
The remainder follows easily as in Theorem 1, step (10).

(8) For all j ∈ {2, . . . , r}, Gj is an abelian group and, moreover, H nor-
malizes each subgroup of Gj .

It follows by arguing as in Theorem 1, step (11).

(9) Gj is a cyclic pj-group, for some prime pj , for all j ∈ {2, . . . , r}.
Arguing as in Theorem 1, step (12), and with the same notation, we ob-
tain that, for any j ∈ {2, . . . , r}, G = H(

∏
16=k 6=j Gk)(×i Tji) is a prod-

uct of pairwise totally permutable subgroups with |H|+
∑

16=k 6=j |Gk|+∑
i |Tji | < |G1|+ · · ·+ |Gr|, unless Gj is a cyclic pj-subgroup, for some

prime pj . Since H 6∈ F , the result follows analogously by the choice of
(G1, . . . , Gr).

(10) K = G2 · · ·Gr is an abelian group.

It follows from Lemma 3, (7) and (9), arguing as in Theorem 1, step
(13).

(11) The final contradiction.

By (8) and (10), it is clear that HG2 · · ·Gr−1 is totally permutable
with Gr. Then we can apply our assumption on the group G =
(HG2 · · ·Gr−1)Gr ∈ F to obtain that HG2 · · ·Gr−1 ∈ F . By the
choice of (G,G1, . . . , Gr) we can deduce that H ∈ F , which provides
the final contradiction.
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Final remarks.

(1) If F is either a Fischer class containing U or the Fitting class product
N3H, H being a Fitting class containing N , then F satisfies proper-
ties (∗) in Theorems 1 and 2 (see [9], Theorem 2 and Theorem 5).

(2) If F is a Fitting class containing U and satisfying the property that
G/N ∈ F , whenever G ∈ F and N ≤ ZU (G) (in particular, if F is a
q-closed Fitting class), then F satisfies the property (∗) in Theorem 1
(see [9], Theorem 3).

(3) If F is an r0–closed Fitting class containing U , then F satisfies the
property (∗) in Theorem 2 (see [9], Theorem 4).
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of R. Maier concerning formations, J. Algebra 182 (1996), 738-747.

[2] A. Ballester-Bolinches, M.C. Pedraza-Aguilera and M.D.
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