Unlocked evanescent waves in periodic structures

Muriel Botey,1,* Yu-Chieh Cheng,2 Vicent Romero-García,2 Ruben Picó,3 Ramon Herrero,2 Victor Sánchez-Morcillo,2 and Kestutis Staliunas4

1Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Urgell 187, Barcelona 08036, Spain
2Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, Terrassa 08222, Spain
3Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Paranimf 1, Gandia 46730, València, Spain
4Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010, Spain

Received February 26, 2013; accepted April 12, 2013; posted April 29, 2013 (Doc. ID 185982); published May 23, 2013

Periodic nanophotonic structures allow precise control over both temporal and spatial dispersion of light. Photonic crystals (PhCs) form band gaps (BGs), i.e., bands of frequencies at which plane waves do not propagate or, more precisely, propagate evanescently. Recently, attention was paid to the possibility of engineering the propagation of light beams in such structures, mediated by anomalous spatial dispersion. Among the reported novel effects are propagation without diffractive broadening (self-collimation) or negative diffraction (flat PhC lensing). Flat PhC lensing is accounted for by convex-curved isofrequency contours in wave vector, k, space. The anomalous phase shift accumulated through a PhC slab are compensated by normal diffraction behind the structure, determining the focalization distance of the flat PhC lens. Beam focalization, however, has never been considered for frequencies within BGs.

Although evanescent waves decay exponentially, their transmission through finite-sized PhCs is never zero, and they can still lead to relevant effects. In one-dimensional (1D) modulated structures, the phase of evanescent waves is fixed by the periodicity. The real part of their wave vectors locks to a multiple of the lattice vector of the host modulation, laying on straight lines in real k-space at the Brillouin zone (BZ) edges. The situation is generally analogous in two-dimensional (2D) PhCs. Note that neither beam focalization nor flat lens imaging is possible with locked waves.

We report here an unexpected observation: apart from the conventional locked evanescent waves, we find a new class of “unlocked” evanescent solutions. The wave vectors of such waves have a nonzero imaginary part, but its real part is not fixed by the host periodicity. Hence, they are able to present curved isofrequency contours and, potentially, “evanescent beams” constructed from them can show focalization behind a PhC slab, similar to flat PhC lensing for propagating modes. We show that, under particular conditions, a substantial focalization can be obtained. Since all evanescent solutions are excluded from conventional ω(k) methods, such as the plane wave expansion (PWE), we apply an inverted or extended PWE (EPWE) method or k(ω) method, which allows complex solutions, to determine the unlocked evanescent waves and to obtain the complex dispersion relations. We confirm the predicted beam spatial effects by a numerical integration based on the finite-difference time-domain (FDTD).

The various theoretical approaches to PhCs can be regarded either as an initial or a boundary condition problem. In the first case, the frequency of each spatial mode is determined for each given real-valued k; therefore, these methods are useful to describe infinite periodic structures. Frequency is purely real-valued in PhCs; only for gain/loss modulated materials can the imaginary part be nonzero, indicating the nonstationary growth or decay of propagating field. The standard PWE is a modal method following this approach, widely used while limited to the description of propagating fields. On the other hand, to properly solve propagation through finite-sized PhCs, all field modes have to be considered, both propagating and evanescent, in a boundary condition problem where the amplitude, phase and frequency of the incident wave are fixed, and frequency is a real-valued magnitude. The exponential decay or growth of each mode in space is accounted for by the imaginary part of a complex-valued k, while its real part determines spatial dispersion. In particular, the EPWE method considers the stationary Maxwell equations, fixes frequency and solves a non-Hermitian eigenvalue problem for k.

Light propagation in 2D PhCs, for certain directions and frequencies, can be approximately regarded as a 1D problem, if essentially only forward and backward waves come into play. This is the case for low frequencies in the crystallographic ΓX direction of a square lattice. Figure 1(a) displays the real and imaginary parts...
of k, depending on frequency, as obtained by the EPWE
method for TM polarization. As expected, the real part
of k locks to the boundary of the first BZ within the first
BG. However, for propagation along ΓM the situation is
different [see Fig. 1(b)]. Within the first BG, the EPWE
method yields the appearance of additional unlocked
evanescent modes, where the real part of k is not con-
stant but depends on frequency. A careful inspection
of Fig. 1(b) shows that at the lower part of the BG the
evanescent mode remains locked, while increasing fre-
cquency the attenuation rates of two locked evanescent
modes approach and merge, resulting in the appearance
of an unlocked evanescent mode. Evanescent modes are
represented by lines connecting the closest points of the
dispersion curves from two adjacent propagation bands.
If the frequency maxima and minima from both bands are
not at high symmetry points of the BZ, the modes become
unlocked, bearing some analogy with “indirect band
gaps” known in semiconductors, e.g., [21]. The existence
of such unlocked evanescent modes is the first basic re-
sult presented in this work. Moreover, analog solutions
are also present in higher order BGs along the same ΓM
direction as well as in the ΓX direction. We also report
that for TE polarization unlocked evanescent modes appear,
connecting the closest points of higher bands.

In the following, we concentrate on the diffractive
propagation of monochromatic beams. Beam propaga-
tion is determined by isofrequency contours in k-space,
shown in Fig. 2 for the first and second propagation
bands. The top small frames, Figs. 2(a) and 2(d), show
the real part of k, while the bottom frames, Figs. 2(b)
and 2(e), depict the corresponding imaginary part, for
the same frequency. We first consider a frequency lying
already in the first BG for the ΓX direction, but still on
the first propagation band for the ΓM direction [the
inferior line on Fig. 2(c)]. Propagation is evanescent
along ΓX, the wave vectors are complex in this direction
and their real parts lock to the boundary of the BZ, see
Fig. 2(a). The flower-like pattern on Fig. 2(b) indicates
the decay of evanescent modes along ΓX. In ΓM direction
k’s are purely real-valued, and propagation is free or
unlocked. Precisely this regime has previously been con-
sidered for self-collimation [2], or for PhC lensing [13],
either due to flat or negatively curved segments in the
spatial dispersion, respectively. The frames on the right-
hand side, Figs. 2(d) and 2(e), describe another situation.
A constant frequency line at the top part of the BG in
Fig. 2(c) intersects the second band along ΓX, but still lays
in the BG along ΓM direction. However, as shown in
Fig. 2(d), the propagation is unlocked along both ΓX
and ΓM directions. Comparing Figs. 2(b) and 2(e), the
flower-like pattern in Fig. 2(e) is now rotated, indicating
evanescent propagation in the ΓM direction). Most im-
portantly, the character of the evanescent wave is now
completely different. The real part of k is not locked to
the edge of the BZ, and the dispersion curve is no longer
flat. In this particular case, as the frequency is close to
the second band and hence laying in the second BZ, the
curvature is slightly concave indicating normal diffra-
ction. Note that the second BZ is adjacent to the depicted
one translated by a reciprocal lattice vector. Hence, a
convex segment of the spatial dispersion curve indicates
negative diffraction, and may enable focalization of a
beam by a thin PhC. However, differently from flat PhC
lensing, we report here an analogous effect mediated by
evanescent modes.

Next, we examine the predicted focalization of evan-
escent beams by direct numerical simulations. We gener-
ally find that strongly modulated PhCs with large index
contrast and large filling factor result in concave spatial
dispersion curves, leading to normal diffraction. Never-
thess, for low index contrasts, we obtain the opposite
result: the curvature becomes positive along ΓM [see
Fig. 3(a)]. As a consequence, focalization of an evanescent
beam behind a thin PhC can be expected. Figure 3(b)
shows the propagation of a linearly polarized Gaussian
beam, obtained numerically by FDTD, where the intensity
distribution clearly indicates focalization. Although the
beam is relatively weak after evanescent propagation,
the focalization behind the PhC is evident, especially when
compared with a reference beam propagated in free space
[see Fig. 3(b)]. Figures 3(c) and 3(d) summarize beam
transmission in a frequency scan around the area of evan-
escent propagation. The intensity along the optical axis
shows a maximum at a particular distance depending
on frequency. Moreover, the x-position of the maximum
(focusing distance) follows the tendency obtained from the
calculation of isofrequency curves: increasing
frequency, decreasing wavelength, curvature and focal distance increase. For completeness we also show the conventional focalization at the upper part of the first propagation band. Further increasing the crystal length the evanescent focusing is no longer observable.

In conclusion, we predict and numerically demonstrate unlocked evanescent waves in 2D PhCs. The common understanding is that evanescent waves in BGs lay at the edges of the BZ; i.e., that the field oscillations lock to the modulation of the host material. We show that, in addition, another class of unlocked evanescent modes exists. The arguments of the present work allow the expectation of them also in 3D. Unlocked evanescent waves are predicted by modifying the EPWE method, which extends the class of possible solutions including all evanescent modes. Besides, in order to prove their physical character, we show that beams formed by evanescent waves with unlocked wave vectors, hold spatial effects. Indeed, significant focalization of a Gaussian beam propagating within the BG, in the unlocked evanescent regime through a low index contrast PhC slab, is numerically shown using direct FDTD simulations. For high contrast PhCs, we do not observe beam focalization in full accordance with our calculations. All calculations presented throughout the Letter are performed in TM polarization. Nevertheless, unlocked evanescent solutions are also found for the TE polarization. This suggests that the effect could be generic, originating from the periodicity and symmetry of the modulation rather than from the specific field and matter. Hence, we expect the predicted effect to be observed for the other kinds of waves in periodic structures, e.g., acoustic waves propagating in sonic crystals [22] or surface polariton waves, among others.

We acknowledge financial support by Spanish Ministerio de Ciencia e Innovación and European Union FEDER through project FIS2011-29731-C02-01 and -02. V. R. G. is grateful for the contract UPV CEI-01-11.

References