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Beam focusing in reflections from flat subwavelength diffraction gratings
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We predict that narrow beams, reflecting from flat subwavelength diffraction gratings, can focus. The effect is
shown for the beams of electromagnetic radiation; however, it should be observable for beams of waves of arbitrary
nature (microwaves, surface plasmons, and acoustic and mechanical waves). We present analytical estimations
of the focusing performance obtained by multiple scattering calculations and demonstrate the focusing effect
numerically for an optical system (reflections from an array of dielectric cylinders), using the finite-difference
time-domain calculations.
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I. INTRODUCTION

Diffraction gratings, for both transmission and reflection,
are conventionally used in superwavelength regime, i.e., when
the grating period d is larger than the wavelength λ of
the diffracting wave. The angle of the mth-order diffraction
component β obeys a well-known relation: |sin(β) − sin(α)| =
mλ/d, where α is the incidence angle. In subwavelength
regime d < λ neither the first m = 1 nor the higher m > 1
diffraction orders appear, and the reflection and transmission
of the zero component m = 0 depend on the averaged char-
acteristics of the grating, as the wave does not distinguish its
subwavelength structure. Subwavelength gratings are applied,
e.g., for exciting the surface waves: surface plasmons in optics
[1], or surface modes of sound waves in acoustics [2], for
enhancement of Raman scattering [3], or for reduction of
thermo-refractive noise in reflections [4]. Other applications
of subwavelength gratings rely on transmission and reflection
dependence on polarization and on frequency [5].

All the above applications of subwavelength gratings
consider the transmission and reflection of the plane waves,
whereas the transformations of the narrow beams reflecting
from or transmitting through such gratings have never been
considered to the best of our knowledge. In this paper,
we predict that the narrow beams, with the width of few
wavelengths, can transform in a peculiar and unexpected way
reflected from such subwavelength gratings. In particular,
the beams can broaden (diffuse) or narrow (antidiffuse) in
reflections depending on the beam carrier wave frequency.
However, most unexpectedly, the beam wave fronts can obtain
additional curvature in reflection, which implies that the
reflected beams could focalize.

First, in Sec. II we describe the physical mechanism of
the phenomenon basing on simple multiple scattering wave
propagation theory, which is a common model for waves
of arbitrary nature. Next, in Sec. III we justify the idea
by exact numerical calculations in optical systems using
the finite difference time domain (FDTD) method, which
shows the beam transformations predicted by a semianalytic
treatment, and, in particular, proves the main result of the
paper: the focusing of the beams in reflection from a flat
subwavelength grating. The analytical estimations and the

main part of exact numerical calculations are performed for a
two-dimensional (2D) model (the wave is propagating in 2D
space and reflects from the one-dimensional grating); however,
we also generalize the idea for the three-dimensional (3D)
cases (the beam is propagating in 3D space and reflecting
from 2D gratings of different symmetries) in Sec. IV. Finally,
in Sec. V we show that the effects of focusing can be enhanced
when the beams reflect from several layers of subwavelength
grating.

We note that we consider the grating as a perfectly
periodic structure, in contrast to recent studies [6,7], where
the subwavelength gratings with the local modulation period
or local modulation amplitude varying across the grating are
shown to provide the far field focusing in transmission [6] as
well as in reflection [7]. Such modulation evidently introduces
an optical axis, which breaks the lateral invariance. The grating
in our case is laterally invariant (on a scale larger than the
grating period).

II. MULTIPLE SCATTERING ANALYSIS

The idea is illustrated in Fig. 1. A conventional approach
of wave reflection from a grating considers the grating as
an array of secondary sources for the reflecting wave. For
simplicity of analytical treatment we consider a periodic array
of point scatterers; however, in FDTD numerical studies, the
scatterers are circles of dielectric material (the cylindrical rods
in the 3D case) of finite radii. For subwavelength gratings the
character of reflection in the lowest order is analogous to the
reflection from a plane interface: the reflected beam propagates
as emitted by an image source positioned symmetrically on the
opposite side of the grating [Fig. 1(a)].

This simple approach of substitution of the grating by a flat
semitransparent mirror does not take into account a possible
secondary scattering, when the waves reflect subsequently
from two neighboring point scatterers, or generally also from
more remote scatterers. If the direct reflection coefficient is
s in terms of the amplitude, then the secondary reflection is
of the order of magnitude of O(s2). The image source now is
a superposition of several images: the primary image source
emitting the wave with the amplitude s, and the secondary
images, laterally shifted by the grating period and emitting the
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FIG. 1. (Color online) Illustrations of the focusing effect: (a)
direct (primary) reflection of the beam from subwavelength gratings
and the primary image of source; (b) multiple scattering scheme for
calculations of primary and secondary reflections, where the laterally
shifted secondary images appear due to secondary reflections (only
scattering from nearest neighbors is considered); the case (c) of
focusing and (d) of defocusing.

waves of amplitude of O(s2). As Figs. 1(c) and 1(d) illustrate,
the image sources will be diffused or antidiffused due to this
secondary scattering, depending on the phase shift between
the primary and secondary image sources. The phase of the
composed image can become curved so the composed image
source can emit the beam with a curved wave front, which
implies focusing or defocusing.

Summarizing the above discussion: the image source is
expected to be diffused for a zero or for a multiple of a 2π

phase shift between the primary and secondary image sources,
i.e., when the grating period is approximately equal to the
wavelength d ≈ λ. For the smaller grating period d ≈ λ/2,
on the other hand, the primary and secondary images sources
emit in antiphase. The image source can be then considered as
an “antidiffused” source, as the secondary images truncate the
fronts of a primary image. Finally, in intermediate cases, the
composed image source emits wave with curved wave front.
The emitted wave fronts will be convex for λ/2 < d < λ,
as the phase of the secondary image source is advanced with
respect to the phase of primary source [Fig. 1(c)], and therefore
the focalization of reflected beam is expected. The phase shift
is represented by a corresponding shift of the secondary image
sources along the z axis. For comparison the defocusing case
is shown in Fig. 1(d), occurring for, e.g., λ < d < 3λ/2, and
resulting in concave wave fronts of the beam emitted by image
sources.

The above discussion is below made rigorous by multiple
scattering calculations. Considering primary reflections only,
the reflected field is calculated as a sum over all point
scatterers:

∑
j sA0(�rj )p(�r − �rj ), where p(�r − �rj ) is the wave

propagation factor from the scatterer at �rj to the position
�r , and A0(�rj ) is the amplitude of the incident wave. In a
2D case, p(�r) ∝ |�r|−1/2exp(i�k�r) for the point scatterers [8].
For the objects of a finite extent the scattering is described
by the more complicated Mie theory (see, e.g., Ref. [9]),
which does not lead to analytical estimations. Considering
the intermediate propagation from �rj−1 to �rj in secondary

reflections, the corresponding reflected field is calculated as∑
j s2A0(�rj−1)p(�r − �rj )p(�rj − �rj−1). Since p(�rj − �rj−1) =

p1 is independent of the position in grating j , the latter sum
represents a field in position �r from a respectively shifted image
source. Analogously the secondary reflections from all other
scatterers are to be calculated, resulting in correspondingly
shifted image sources.

Next, we estimate the magnitude of the effect. The spatial
shape of the image source, considering the primary and all
secondary sources, is

Aim(x) = sA0(x) + s2
∑

n=1,∞
pn[A0(x + nd) + A0(x − nd)],

(1)

with pj described by a Hankel function with the asymptotic
pj ≈ ei2πnd/λ[λ/(nd)]1/2 [8].

The analysis of (1) is simpler in the transverse wave-number
domain (i.e., the angular or the far-field domain) A(x) →
A(kx), [A(x) = ∫

A(kx)eikxxdkx]:

Aim (kx) = sA0 (kx)

[
1 + 2s

∑
n=1,∞

pncos (kxnd)

]
, (2)

which gives the angular distribution of the coefficient of
reflection [note that kx , the transverse component of the wave
vector, is a function of the incidence angle: kx = |k|sin(α)].
The infinite sum over all neighbors in (1) and (2) converges
and can be expressed by special functions [10], but, however,
does not lead to analytically tractable results. In following we
retain in (2) only the scattering from the nearest neighbors
n = 1. First, the secondary scattering due to nearest neighbors
dominates: |p1| > |p2|,|p3|, . . .; second, the analysis of the
complete sum (2) results in the same qualitative results, at
least in the range of our interest λ/2 < d < λ [10].

We note that Eq. (2) provides an alternative interpretation
of beam focusing considering the process in angular (or the
far-field) domain. Figure 1 interprets the focusing due to the
appearance of the phase curvature of the image directly, in a
space domain. Equation (2) considering only nearest-neighbor
scattering simplifies to r(kx) = s[1 + 2sp1cos(kxd)]. As the
propagation factor p1 is a complex value, then the phase of
the reflection coefficient becomes angle dependent, showing
asymptotically the parabolic function for small angles kx .
The parabolic angular dependence of the phase in an angular
domain is equivalent to the parabolic dependence of phase
in space domain (for Gaussian beams) and also indicates the
focusing.

In the following we consider an incident Gaussian beam
A0(x) = e−x2/�x2

0 with the transverse distribution in the
angular spectrum A0(kx) = �x0/

√
2e−k2

x/�k2
0 (�k0�x0 = 2).

Expanding (2) around the propagation axis (directed normally
to the grating) kx � |k|, we obtain in the frame of a Gaussian
beam approximation:

Aim (kx) ≈ sexp

[
−k2

x

(
1

�k2
0

+ sd2 |p1| ei2πd/λ

)]
, (3)

which is valid for small angles kx � k, and for weak reflection
coefficients s � 1.
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Diffractive propagation of waves in homogeneous media
results in a parabolic shift of the phases of the angular
wave components: ϕ(kx) = −l k2

x/(2k0) within the paraxial
(parabolic) wave propagation theory. The reflection (3) is,
therefore, equivalent to the propagation of the beam in free
space over the distance:

lrefl = 2k0sd
2 |p1| sin (2πd/λ) , (4)

which for λ/2 < d < λ becomes negative. The −lrefl therefore
has a physical sense of a focal distance of the focusing lens. The
maximum focal distance occurs at d ≈ 3λ/4 and reaches the
value −lrefl ≈ sλ|p1| 9π/4, as follows from (4). This estimates
that the focal distance f = −lrefl can reach the values of
several wavelengths so that the effect can be measurable for
sufficiently narrow beams.

In addition to the above discussed phase transformations of
angular beam components (which is equivalent to the diffrac-
tive propagation of the beam), the narrowing and broadening
of the angular spectrum also follow from the Gaussian beam
approach (3). In a coordinate space, the latter represents the
diffusion or antidiffusion of the beam, depending on the phase
difference between the primary and secondary image sources.
Inspection of (3) yields the minimum of the width of focused
beam:

�x2 = �x2
0 + 4sd2 |p1| cos (2πd/λ) , (5)

which for d ≈ λ/2 gives an estimation �x2 = �x2
0 − s|p1|,

which is also a measurable effect for sufficiently narrow beams.
Next we calculate the most relevant characteristics of the

beam reflected from a grating applying the multiple scattering
theory (1). The results are shown in Fig. 2, which summarizes
the focal distance and the half-width of the reflected beam
in a focal plane depending on frequency. The half-width of a
reflected beam in a particular parameter range indeed becomes

FIG. 2. (Color online) (a) The normalized focal lengths, (b) the
normalized minimum width of the focussed beam (at the waist), and
(c) the width of the beam for different propagation distances l from 0
to 10λ (l is the total propagation distance from the source to the grating
and from grating to detecting plane) vs the normalized grating period.
Half-width of the incident beam is �x0 = 1.0λ, primary reflection
coefficient is s = 0.25, and |p1| = 1, |p2|,|p3|, . . . = 0.
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FIG. 3. (Color online) (a) Intensity distributions of the field for
TE polarized radiation. The inset shows the intensity distribution of
reflected field only. (b) The transverse beam profiles at a particular
plane (indicated by vertically red dashed line). The boundaries of the
reference beam (reflecting from the flat interface in the same position)
are shown by two green dashed lines for comparison (at e−2 intensity
level).

smaller than that of the reference beam, which indicates the
focusing effect.

Most importantly, the minimum width of the reflected beam
can become even smaller than the width of the initial beam.
This indicates that a subwavelength grating can show a real
focusing rather than imaging such as by flat photonic-crystal
lenses. A flat lens can restore the initial width of the beam but
cannot focus the beam to a smaller focal spot than the source
beam itself.

III. FINITE DIFFERENCE TIME DOMAIN (FDTD)
ANALYSIS

In order to demonstrate the phenomenon in real systems,
exact numerical simulations of the beam reflection and
propagation were performed by using the FDTD approach.
The typical space distributions of the reflected fields are given
in Fig. 3. The source is positioned at a fixed distance of 3 μm in
front of the subwavelength grating as indicated in Fig. 3(a). The
full beam width is considered to be 5 μm, which corresponds
to the Rayleigh distance of 12 μm at the frequency f =
0.6 (d/λ). The grating is made of dielectric cylinders with
a reflective index of n = 3 in an air background of n = 1. The
grating period d is 1 μm, and the radius of cylinder is r =
0.2d. The intensity distribution of the back-propagating beam
shows clear signatures of focusing for the TE polarization (the
electric field is normal to the plane of incidence, i.e., is parallel
to the axis of cylindrical scatterers). For the TM polarization,
the effect of focusing is absent or very weak, as the secondary
reflections (the scattering) at 90° approach zero for this TM
polarization.

The FDTD calculations yield that the focal distances are
slightly larger than those analytically estimated, reaching
values of around 10 μm for the given set of parameters.
The width of the reflected beam is obtained smaller than
that of the reference beam in a measurable parameter range,
as expected. We also could find a range of the parameters
(centered around the optimum period of the grating d = 0.6λ)
where the reflected beams in focus are slightly narrower than
the incident beam. The reflected energy varies from 20% to
40% of the initial energy depending on the parameters; under
optimum focusing conditions shown in Fig. 3 the reflected
energy is 27%.
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FIG. 4. (Color online) Summary of the quantitative performance
of the focusing. (a) Map of transverse distribution of intensity of
reflected beam at a distance 10 μm in front of the grating, depending
on frequency. The width of the reference beam is shown by dashed
lines. (b) The width of the reflected beam (normalized by the width
of reference beam) depending on frequency at different propagation
distances l from the grating. (c) The dependence of beam width
(normalized to the width of the reference beam) on frequency
(horizontal) and propagation distance l (vertical).

The quantitative performance of the focusing is summarized
in Fig. 4, where the width of the focused beam versus fre-
quency is represented, in good correspondence with analytical
estimations [Fig. 2(c)].

IV. FOCUSING BY TWO-DIMENSIONAL GRATINGS

Furthermore, we extended our analysis to the 3D case
studying reflection of the axisymmetric Gaussian beam from
the 2D grating. The semianalytic calculations in the 3D case
are performed by superposing the shifted images of sources
depending on the symmetry of the lattice, in a similar way as
in the 2D case. For the square lattice the composed image is
the following:

Aim(x,y) = sA0 (x,y)

+ s2
∑

n=1,∞
pn [A0 (x + nd,y) + A0 (x − nd,y)]

+ s2
∑

n=1,∞
pn [A0 (x,y + nd) + A0 (x,y − nd)]

(6)
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FIG. 5. (Color online) Reflections of a Gaussian beam from a
2D grating of different symmetries as obtained by semianalytic study
[Eq. (6)]. (a) The reference beam (reflection from the flat surface)
for comparison; (b) one-dimensional periodic array of cylinders;
(c) periodic grating of square symmetry; (d) quasiperiodic grating of
octagonal symmetry, where the intensity distributions are calculated
at 5.5λ in front of grating; (e) intensity distributions calculated by
FDTD with the same parameters (�x0 = 1.0λ,r = 0.2d ,d = 0.6λ).

The results are summarized in Fig. 5. For the grating in the
form of parallel cylinders, the focusing occurs only along the
grating direction, whereas the diffractive broadening in the
vertical direction coincides with that of the reference beam.
The elliptic shape of the spot, as shown in Fig. 5(b), indicates
the focusing by subwavelength grating in one quadrature.
For grating of square or of octagonal symmetry, the focusing
occurs in both quadratures [Figs. 5(c) and 5(d)]. The focused
beam in Fig. 5(c) shows a weak (hardly visible) square
symmetry, which is due to the square symmetry of the grating.
The grating of higher order symmetries, e.g., hexagonal
or octagonal [see Fig. 5(d)], results in perfectly isotropic
focusing. The exact 3D calculations using the FDTD method,
presented in Fig. 5(e), prove the analytical predictions, as
follows from comparison with Fig. 5(b).

x

z x

FIG. 6. (Color online) (a) Intensity distributions of the reflected
beam from 3 rows of scatterers as obtained by FDTD simulations.
The inset shows the intensity distributions of reflected field only. (b)
The transverse beam profiles at particular (indicated by vertically red
dashed line) plane. The boundaries of the reference beam are shown
by two green dashed line for comparison. The rows are separated by
λ/2 in the z direction. The other parameters and conditions are as in
Fig. 3.
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V. FOCUSING WITH SEVERAL PARALLEL ARRAYS

The reflectivity from one array of scatterers ranges between
20% and 40% under optimum focusing conditions. However,
the reflectivity, and the focusing performance in general,
can be enhanced using several parallel arrays of scatterers
(or several parallel planes of gratings in a 3D case). The
strongest reflection is observed when the arrays are arranged
in a configuration following the Bragg reflection condition
in a longitudinal direction (for separation between arrays
dz ≈ λ/2). Our numerical calculations show enhancement of
the effect: the increase of the focal distance, as well as the
increase of reflectivity to 71%, in this particular case. Figure 6
shows a case where a single grating (from Fig. 3) is substituting
by an array of three gratings separated by dz ≈ λ/2 in a
longitudinal direction.

VI. CONCLUSIONS

Summarizing, we predict and describe a physical phe-
nomenon: beam focusing in reflections from flat subwave-
length diffraction gratings. We estimate the parameters by
a semianalytic multiple scattering technique, and by exact
FDTD numerical calculations, and show that the effect is
observable in optical systems. The phenomenon could also
be observable in other wave systems, such as sound waves
reflecting from acoustic gratings, for surface plasmon polariton
waves on periodically corrugated surfaces on a subwavelength
scale, or from subwavelength period gratings of metallic
nanowires (probably the effect enhanced by plasmonic res-
onances in the latter cases). However, the focusing effect is
demonstrated only by arrays of dielectric cylinders in this
paper.

The effect is also possible in transmissions, which follows
from the analytical expressions Eqs. (1)–(3), and which
follows from our FDTD simulations (not presented). However,
the effect in transmissions is weaker than in reflections, as it
relies on the interplay between the zero order transmission
of O(1) and secondary reflections of O(s2). In reflections
the interplay between the first order reflection of O(s) and
the secondary reflections of O(s2) of more similar orders of
magnitude is at the root of more pronounced focusing effect.

One of the potential applications of the proposed effect is a
design of Fabri-Perrot microresonators with zero or negative
diffraction (equivalently with zero or negative equivalent
length). It is known that the zero or negative diffraction of
the resonators can be achieved by (fully or partially) filling the
resonator by metamaterials with negative refraction [11] or
by photonic crystals providing negative diffraction [12]. Such
a configuration in particular can support spatial solitons for
defocusing nonlinearity [13]. The subwavelength diffraction
gratings, serving as focusing mirrors of the resonator, could be
also implemented in order to modify the diffraction properties
of the resonators and to support the cavity solitons in cavities
filled by nonlinear media, among others.

We note finally that the proposed focusing occurs at a
normal incidence (and normal reflection) from the grating.
A similar effect, the beam focusing from flat chirped dielectric
mirrors, recently demonstrated in Ref. [14], occurs for large
incidence angles of the beams and never at a normal incidence.
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