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Abstract.  Airlines schedules can been modeled by using time-space networks.
One of the core problems of the management of rent-a-car companies is to auto-
mate the process of the acceptance of vehicles reservations from the clients. We
propose a model to deal with this problem. Our solution is based on the admis-
sibility of flows on these networks. The right choice of the edges of the network
and which are their maximum and minimum constraints constitute the base of
our work.
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1. Introduction

Scheduling problems concerning acceptance of reservations for air travel have
been widely studied since travelers frequently buy flight tickets with 1 or 2
scales, see for instance [3, 4, 5]. These problems can be modeled using flows
and networks, where nodes stand for airports at different hours and edges
are used for representing flights or for staying at the airport waiting for a
connection. Capacities of the flights and the number of reservations that
are already confirmed impose the restrictions in order to accept or reject a
future petition of a reservation. With such a model, the acceptance of a
reservation can be decided by an application of Ford-Fulkerson algorithm.
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This application of Graph Theory lets companies to accept or not on-line
reservations via web in few seconds.

The structure of the aforementioned problem in air travel can be partially
taken into account in order to model car reservations for a rent-a-car company
that operates at a multi-city level. In this case, nodes play again the role of
cities at different hours and days, and edges represent either reservations or
to stay at the parking. Nevertheless, both problems have some differences:
Firstly, the flow in the first one are the passengers and in the second one, the
cars; and secondly, in the case of flight scheduling the flow is maximized, and
in the case of rent-a-car scheduling the goal is to find an admissible flow tied to
some constraints. These restrictions are minimum capacities at certain edges,
that are either used to force the flow to respect reservations between pairs of
nodes, or to represent the parkings that are used at every moment at each
city.

In this note we give an overview of how the reservations for a rent-a-car
company can be managed. In the first section, we will recall some definitions
about flows and networks. Later, we will introduce time-space networks, and
finally, we will see how flows can be introduced in these networks in order to
deal with our problem.

2. Flows and networks

We start with a brief summary on the fundamentals of flows and networks:

Definition 1 A network N is a weakly connected directed graph G = (V, E),
where V' is the set of vertex and E is the set of edges, with two special vertex:

e s, called source, with dyo(s) > 0 (positive outgoing degree), and
o t, called sink, with d;(t) > 0 (positive incoming degree);

and a non-negative function ¢ : E — N, called the capacity of the network N.
We will denote this network as N(G, s,t,c).

Definition 2 Let N(G,s,t,c) be a network. A flow f on N is a function
f+E — N such that

e 0 < f(u,v) < c(u,v) for every (u,v) € E (the flow from u to v
cannot exceed the capacity).

° Euev,(u,v)eE flu,v) = Zweww,u)eE flw,u), u # s,t (for every vertex
that is not a source nor a sink the Flow Conservation Law holds).
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We can define the value of the flow f on a network N = (G, s,t, ¢), namely
f(N), either as the sum of the total flow that departs from s, or as the total
flow that arrives to ¢:

f(N): Z f(37u>: Z f(u7t)

ueV,(s,u)eE ueV,(ut)eE

The flow can be maximized using Ford-Fulkerson algorithm, see for in-
stance [1].

There are several modifications that can be considered on a network so as
to adapt it in order to model different types of problems. Among others, we
can also consider networks with:

e several sources and several sinks,
e maximum capacities at the vertex, and

e minimum capacities on the edges.

3. Time-space networks

Usually, vertex in networks are considered to represent physical places. Never-
theless, we can also consider that a vertex can represent a location at a certain
time. Therefore, if we want to consider n locations at m different times, then
we will need nm vertex to represent this situation. Such networks are called
time-space networks, and they will be the main tool used for representing the
flow of passengers and vehicles through several places along the time.

These networks are commonly used in air transportation when we want to
represent flights between several cities at different hours. Here, vertex stand
for airports at different hours and edges are used for three different things:
to represent flights, to stay at the airport, and to connect the source (resp.
the sink) with the airports at the initial (resp. final) time. In the first case,
the capacity of the edge represents the number of free seats in the plane. In
the second case, capacities are infinity since no limitation is required. In the
third case, maximum capacities are introduced depending on the problem to
be solved.

Example 3 In Figure 1 we have a representation of 3 airports (Barcelona
(BCN), Madrid (MAD), and Valencia (VLC) with 4 flights (no minimum

connection time between flights is considered):

e Flight 1 departs from Valencia at 9:00 and arrives to Barcelona at 10:00
with 75 free seats.
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Figure 1: Example of a time-space network for representing flights connecting
different airports

e Flight 2 departs from Valencia at 9:00 and arrives to Madrid at 10:00
with 85 free seats.

e Flight 8 departs from Barcelona at 10:00 and arrives to Madrid at 11:00
with 50 free seats.

o Flight 4 departs from Madrid at 10:00 and arrives to Barcelona at 11:00
with 60 free seats.

Suppose that we want to know how many people can travel from Barcelona or
Valencia to Madrid. We suppose that the restrictions are only given by the
number of free seats in the flights. Therefore, neither a restriction on how
many people want to travel from Barcelona or Valencia is imposed, nor on
how many people can arrive to Madrid. All these facts are introduced in the
network by assigning an infinite mazimum capacity to the edges (S,BCN 9:00),
(S,VLC 9:00), and (MAD 11:00, T). Since we exclude the people that are at
9:00 in Madrid and the people that at 11:00 are still in Barcelona or Valencia,
then we assign a mazimum capacity of 0 to the edges (S, MAD 9:00), (BCN
11:00,T), (VLC 11:00,T). So that, the solution of our problem is given by the
mazimum flow from S to T on this network.

4. Acceptance of reservations

When we are dealing with air transport, if we have to decide whether to accept
a reservation or not, we only have to look for augmenting paths in the network
(see the proof of Ford-Fulkerson algorithm). These paths can be easily found,
since no edges in reverse order can appear in any of them.

In the case of rent-a-car companies it must be taken into account that the
flow represents the movement of the vehicles along the time. The acceptance
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of a reservation depends on having a car available at the departure destination
(without leaving unattended any other previously scheduled reservation) and
on having an empty parking space at the arrival destination (at the arrival
time and later on). Therefore this problem can be solved by looking for an
admissible flow on a network with minimum capacities at certain edges, see
[2], which are related to the number of cars at every destination at the initial
moment, and to the number of reservations that have been requested.

Let us see how to assign these capacities. Firtsly, suppose that we consider
n dealers of a rent-a-car company at different cities. Let k;, 1 <7 < n, be the
number of cars at the dealer 7 at the initial time. To represent this fact, we
assign the value k; to the maximum and minimum capacities of the edge that
departs from the source and arrives to the vertex for dealer ¢ at the initial
time. These capacities allow us to affirm that the k; cars will remain at dealer
i until we got a reservation departing from this dealer.

Furthermore, for every reservation of m cars between two (different) deal-
ers at different times, we define the maximum and minimum capacities of the
edge connecting both places at the corresponding times as m. If not, the flow
through this edge could be smaller than m and the reservation will not be
considered.

In this work, by using a simulation of petitions of reservations for a rent-a-
car company and taking into account the above constraints, a computational
model is proposed. This method also helps to study the real costs of one-way
reservations and to determine if it is advisable for the company to increase the
fleet of cars or the size of the parking at a certain dealer.
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