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Abstract. Person recognition using facial features, e.g., mug-shot images, has

long been used in identity documents. However, due to the widespread use of

web-cams and mobile devices embedded with a camera, it is now possible to re-

alise facial video recognition, rather than resorting to just still images. In fact, fa-

cial video recognition offers many advantages over still image recognition; these

include the potential of boosting the system accuracy and deterring spoof attacks.

This paper presents the first known benchmarking effort of person identity veri-

fication using facial video data. The evaluation involves 18 systems submitted by

seven academic institutes.

1 Introduction

With an increasing number of mobile devices with built-in web-cams, e.g., PDA, mo-

bile phones and laptops, face is arguably the most widely accepted means of person

verification. However, the biometric authentication task based on face images acquired

by a mobile device in an uncontrolled environment is very challenging. One way to

boost the face verification performance is to use multiple samples.

Previous attempts at assessing the performance of face verification algorithms have

been restricted to matching still images, e.g., the three FERET evaluations1 (1994, 1995

and 1996), the face recognition vendor tests (FRVTs 2000, 2002 and 2006)2, and assess-

ment on XM2VTS and BANCA databases [1, 2]. The well known Face Recognition

1 http://www.itl.nist.gov/iad/humanid/feret/feret master.html
2 http://www.frvt.org



Grand Challenge [3] includes queries with multiple still images but this is far from the

vast amount of data available in video matching.

The evaluation exercise presented here is the first known effort in assessing video-

to-video matching, i.e., in both enrolment and verification phases, the data captured is

in the form of video sequence. This is different from still-image-to-video matching,

one of the evaluation scenarios currently examined by the NIST Multiple Biometric

Grand Challenge3 (MBGC). Note that NIST MBGC aims at “portal application” where

the task is to verify the identity of person as he/she walks through an access control

check point. The video-to-video matching adopted here has a slightly different applica-

tion, with a focus on mobile devices, where a sequence of unconstrained (talking) face

images can be expected.

The video-to-video face verification assessment has several objectives, among which

are:

– to promote the development of algorithms for analysing video sequences (e.g., ex-

ploring the talking face dynamics)

– to assess the merit of multi-template face representation

– to compare whether early integration ( e.g., feature-level fusion) is better than late

integration (e.g., decision-level fusion) in dealing with sequences of query images.

2 Database, Protocols, Facial Video Annotations

Towards the above goal, we have opted to use the publicly available BANCA database [4]4.

It has a collection of face and voice biometric traits of up to 260 persons in 5 different

languages, but only the English subset is used here. It contains a total of 52 persons;

26 females and 26 males. The 52 persons are further divided into two sets of users,

which are called g1 and g2, respectively. Each set (g1 or g2) is designed to be bal-

anced in gender, i.e., having 13 males and 13 females. According to the experimental

protocols reported in [4], when g1 is used as a development set (to build the user’s

template/model), g2 is used as an evaluation set. Their roles are then switched. This

corresponds to a two-fold cross-validation procedure.

The BANCA database was designed to examine matching under the same recording

conditions (as the enrolment session) and two different challenging conditions: record-

ing under a noisy (adverse) environment and with a degraded device. In each of the

three conditions, four recordings were performed. The clean conditions apply to ses-

sions 1–4; adversed conditions to sessions 5–8; and degraded conditions to sessions

9–12. There are altogether seven experimental protocols specifying the sessions to be

used for enrolment and for testing in an exhaustive manner. In this face video recog-

nition evaluation, we focused on two protocols, namely the match controlled (Mc) and

unmatched adversed (Ua) protocols. The first protocol was intended as a vehicle to de-

sign and tune their face verification systems. The second protocol aims at testing the

systems under more realistic and challenging conditions.

3 http://face.nist.gov/mbgc
4 http://www.ee.surrey.ac.uk/CVSSP/banca



In the Mc protocol, session 1 data is used for enrolment whereas the data from

sessions 2–4 are reserved for testing. In the Ua protocol, the session 1 data again is

used for enrolment but the test data is taken from session 5–8 (recorded under adversed

conditions). The ICB2009 face video competition was thus naturally carried out in two

rounds, with the first round focusing on the Mc protocol and the second round on the

Ua protocol.

In order to be consistent with the previous BANCA evaluations [1, 2], we also di-

vided a query video sequence into 5 chunks, each containing 50 frames for convenience;

the remaining frames were simply not used.

In order to standardise the evaluation, we provided a pair of eye coordinates, based

on the face detector provided by the OmniPerception’s SDK5. However, the partici-

pants could use their own face detectors. For each image in a video sequence, the SDK

also annotated the following quality measurements. Note that the entire processes from

detection to annotation were done automatically. No effort was made to fine tune the

system parameters, and in consequence, some imperfectly cropped images were ob-

served. The image quality measures assessed.

1. Overall reliability

2. Brightness

3. Contrast

4. Focus

5. Bit per pixel

6. Spatial resolution (be-

tween eyes)
7. Illumination
8. Background unifor-

mity
9. Background brightness

10. Reflection

11. Presence of glasses

12. In-plane rotation

13. In-depth rotation

14. Frontalness

In the above list, “frontalness” quantifies the degree of similarity of a query image to

a typical frontal (mug-shot) face image. The overall reliability is a compounded qual-

ity measure obtained by combining the remaining quality measures. Two categories

of quality measures can be distinguished: face-specific or generic. The face-specific

ones strongly depend on the result of face detection, i.e., frontalness, rotation, reflec-

tion, between-eyes spatial resolution in pixels, and the degree of background uniformity

(calculated from the remaining area of a cropped face image). The generic ones are de-

fined by the MPEG standards. All the annotation data (including eye coordinates and

quality measures) has been published on the website “http://face.ee.surrey.ac”.

A preliminary analysis shows that when the frontalness measure is 100%, the de-

tected face is always frontal. On the other hand, any value less than 100% does indeed

suggest an imperfect face detection, or else a non-ideal (non-frontal) pose.

3 System Descriptions

3.1 University of Vigo (UVigo)

The video-based face verification system submitted by the University of Vigo for the

pre-registered test uses the annotated eyes coordinates in order to set the eyes posi-

tion in the same coordinates for all the faces, using simple rotation and scaling op-

5 http://www.omniperception.com



erations. Then a two-step illumination normalisation is performed on the geometri-

cally normalised faces. First step is the anisotropic illumination normalisation described

in [5]. Second step is a local mean subtraction. We denote the video frame sequence as

V = {IV,1, . . . , IV,NV}, where IV,i represents the ith frame of video V , and NV is the

number of frames in the video. Gabor jets [6], J V,i
k =

{

a
V,i
k,0, . . . , a

V,i
k,39

}

are extracted

from the ith frame (magnitude of the responses of Gabor filters with 5 scales and 8 ori-

entations, encoded in the second subindex) at fixed points, k, along a rectangular grid

of dimensions D = 10× 10 superimposed on each normalised face image. Frame IV,i

is characterised by all the extracted Gabor jets {J V,i
1 , . . . ,J V,i

D }.

GMM-UBM verification paradigm is adapted to video-based verification. Gabor

jets extracted from each grid location are divided in NS = 2 separate vectors x
i
k,m

constituted by sets of subjets:
{

a
V,i
k,l | mod (l, NS) = m

}

, where i is the frame in-

dex, k is the grid point index, l ∈ {0, . . . , 39} is the filter index and m ∈ {0, 1} is the

subset index. 64 mixtures UBMs are trained for both vectors x
V,i
k,0 and x

V,i
k,1 at each grid

location. Number of subjets NS was fixed as a trade-off between discrimination capa-

bility and dimensionality. First subset includes the coefficients from filters with an even

filter index (l | mod (l, NS) = 0), and second subset includes the coefficients with an

odd filter index (l | mod (l, NS) = 1). Independence between the subjets from each

node is assumed in order to avoid the curse of dimensionality in the UBM training.

This assumption leads us to independent training for each subjet at each grid location.

The nth UBM probability density function fUBM,n (·), where n ∈ {0, . . . , 199} , is

estimated using LBG [7] initialisation and the EM algorithm. Gaussian mixtures are

constrained to have diagonal covariance matrices. Input vectors for this training pro-

cess are x
V,i

⌊n

2
⌋, mod (n,2)

, where V ∈ WM, i.e., the world model set videos. Grid node

is indexed by
⌊

n
2

⌋

, which is the integer part of n
2 . Subjet set is indexed by mod (n, 2).

fUBM,n (·) is then adapted to the corresponding vectors obtained from the user u

enrolment video by means of the MAP technique [8], obtaining user model pdf fu,n (·).
The verification score for the video V and claimed identity u is computed as the follow-

ing log-likelihood ratio [9]:

sV,u = log









NV
∏

i=1

2D−1
∏

n=0

fu,n

(

x
V,i

⌊n

2
⌋, mod (n,2)

)

fUBM,n

(

x
V,i

⌊ n

2
⌋, mod (n,2)

)









(1)

3.2 IDIAP

Two types of systems were submitted by Idiap, these being holistic (PCA and PCAxLDA)

and parts-based (GMM and HMM). In all cases the world model (for PCA, LDA, GMM

and HMM world) are computed on the world model data defined by the provided pro-

tocol. This results in one specific world model for each group of clients g1 and g2.

All of the face verification systems use the automatic annotations (eye centres and

frontalness) provided by the OmniPerception SDK. More precisely, the eye-centre coor-

dinates are used to extract the 10-best faces from each video according to the frontalness

measure.



Geometric and Photometric Normalisation: For all systems the face is first ge-

ometrically normalised as described in [10] rotated to align the eye coordinates, then

cropped and scaled to a size of 64 × 80 (width × height pixels). The face image is

then photometrically normalised using two methods: (1) standard Histogram Equalisa-

tion (HEQ) as in [10] or (2) a pre-processing based on Local Binary Patterns (LBP) as

proposed in [11].

Feature Extraction: The two holistic systems are based on well-known dimension-

ality reduction methods, namely PCA and PCAxLDA. For PCA dimensionality reduc-

tion was achieved by retaining 96% of the variance of the vector space. This resulted

in 181 and 180 dimensions being retained for groups g1 and g2 respectively, instead of

the 5120 dimensions (64 × 80 pixels). Face images projected in the PCA subspace are

then further projected into an LDA subspace (PCAxLDA), where only 55 dimensions

are retained for both group.

The parts-based approaches decompose the face image into blocks and then use

statistical models such as GMMs or HMMs. For each block the DCT (2D DCT) or

its DCTmod2 variant is computed, as described in [10], resulting in one feature vector

per block. An extension to these methods is provided where the 2D coordinate (xy) of

each block is appended to its corresponding feature vector, this was done to incorporate

spatial information.

Classification: Classification for the holistic methods, PCA and PCAxLDA, is ex-

amined using three different similarity measures, these being: Pearson, Normalised Cor-

relation and Standard Correlation. Classification for the DCT and DCTmod2 features

is performed using GMMs and HMMs as described in [12].

3.3 Manchester Metropolitan University (MMU)

The General Group-wise Registration (GGR) algorithm is used to find correspondences

across the set of images. This shares similar ideas with others [13, 14] which seek to

model sets efficiently, representing the image set and iteratively fitting this model to

each image. The implementation of GGR [15] proceeds through a number of stages.

Firstly, one image is selected as a reference template and all other images are registered

using a traditional template match. Next, a statistical shape and texture model is build to

represent the image set. Each image is represented in the model and the correspondences

are refined by minimising a cost function. Finally the statistical models are updated and

the fitting repeated until convergence.

The model used here is a simple mean shape and texture built by warping all the

faces to the mean shape using a triangular Delauney mesh. A coarse-to-fine deformation

scheme is applied to increase the number of control points and optimise their position.

In the final iterations, the points are moved individually to minimise the cost. The cost

function includes both shape and texture parts,

E = λ
∑

i

(

c −
0.5‖di − (∆di + dneig)‖

σ2
s

)

−
|r|

σr

(2)

where r is the residue between the model and the current image after deformation, σr

and σs are the standard deviations of the residue and shape, c is a constant, di is the



position of the ith control point, dneig is the average of the positions of the neighbour-

hood around point i and ∆di represents the offset of the point from the average mean

shape.

A set of 68 sparse correspondent feature points are initialised manually on the mean

image of the image set. When GGR has found the dense correspondences across the

images, all the sparse feature points are warped to each image using the triangulation

mesh. Once the correspondences have been found for the ensemble images, a combined

Appearance Model [16] is built for each individual and the points are encoded on it.

Pixels defined by the GGR points as part of the face are warped to a standard shape,

ensuring that the image-wise and face-wise coordinates of images are equivalent. Be-

cause of the size of the database, representative frames are selected for each ensemble

subject using k-means clustering of their encoding on their individual model to give

approximately 10 groups (one for each 50 frames). The frame most representative of

each group is then selected and used to build both an Appearance Model of the full

ensemble. This provides a single 48-dimensional vector which encodes both the shape

and grey-level aspects of the face for a given frame. It models the whole of the inner

tile face, using 5000 grey scale samples (and the 68 feature points), describing 98% of

the ensemble variation, but without any photometric normalization.

In the same sequence, regardless of parameter change due to different poses, light-

ing and expressions, the identity can be expected to be constant. However, in this case,

the model will encode (even after averaging) both identity and non-identity variation.

To remove the latter, a Linear Discriminate Analysis subspace [17] is used. This pro-

vides a subspace which maximises variation between individuals and minimises that

within them. Each frame in a gallery or probe sequence is projected onto this subspace,

before taking the mean of the identity parameters and assessing similarity with another

sequence,

Sc =
d̄1

|d̄1|
·

d̄2

|d̄2|
. (3)

where Sc is the correlation-based similarity and d̄ represents the mean LDA param-

eters of a sequence. Behavioural consistency is a possible addition which improves

discrimination performance within this framework when longer probe sequences can

be exploited [18]. However, it is not useful in this short-sequence situation.

3.4 Universidad Politécnica de Valencia (UPV)

The approach we adopted for the verification of a sequence of face images was as fol-

lows. The first NA frames from the input video are analysed using the quality measures

and the best NQ frames are selected. Afterwards a verification score is obtained for each

of the selected frames using the local feature algorithm [19–21]. The final verification

score is the average of the scores for each of the selected frames.

The parameters NA and NQ were kept fixed for all of the videos of the same sce-

nario. For each scenario NA and NQ were varied and their value was chosen making a

compromise between the performance of the algorithm on the development set and the

computational cost. For the matched controlled scenario (Mc) the chosen parameters

were NA=10 and NQ=5, and for the unmatched adverse scenario (Ua) the parameters



were NA=20 and NQ=6. The number of frames used to build the user models was NT=5

for both scenarios.

For each video frame several quality measures were supplied. Therefore in order

to choose the best frames the quality measures were fused into a single quality value,

and the frames with highest quality were selected. To fuse the quality measures we

trained a classifier of good and bad frames and used the posterior probability of being

a good frame as a quality measure. The classifier used was the nearest neighbour in a

discriminative subspace trained using the LDPP algorithm [22]. To train this classifier

the quality values of the frames of the background model videos were used, and each

frame was labelled as being good or bad based on the result of face identification using

the local feature algorithm [21].

In the local feature face verification algorithm, from a face image several feature

vectors are extracted. Each feature is obtained using only a small region of the image,

and the features are extracted all over the image at equal overlapping intervals. Given a

test image, the nearest neighbours of its local features are found among the feature vec-

tors from the background model and the user model. The verification score is simply the

number of nearest neighbours from the user model divided by the number of extracted

local features. For further details refer to [19, 20]. The parameters of the algorithm were

chosen based on previous research and were not adjusted to minimise the error rates of

the scenarios. In the algorithm grey scale images were used, the faces were cropped to

a size of 64×64 pixels, and the local features were of size 9×9 extracted every 2 pixels.

3.5 University of Ljubljana (UniLJ)

The UniLj face recognition technique is based on a feature extraction approach which

exploits Gabor features and a combination of linear and non-linear (kernel) subspace

projection techniques. The training, enrolment and test stages of the employed approach

can be summarised as follows:

The training stage: Facial images from various sources (such as BANCAs world

model, the XM2VTS, the AR, the FERET, the YaleB and the FRGC databases) were

gathered to form a large image set that was employed for training. This training set

was subjected to a pre-processing procedure which first extracted the facial regions

from the images based on manually marked eye-centre locations, then geometrically

aligned and ultimately photometrically normalised the facial regions by means of zero-

mean-and-unit-variance normalisation and a subsequent histogram equalisation step.

The normalised facial images cropped to a standard size of 100 × 100 pixels were

then filtered with a family of Gabor kernels with 5 scales and 8 orientations. From the

complex filter responses features encoding Gabor-magnitude as well as Gabor-phase

information [23] were derived and concatenated to form the final Gabor feature vectors.

Next, the constructed feature vectors were partitioned into a number of groups and for

each a non-linear subspace was computed based on the multiclass kernel Fisher analysis

(KFA) [24]. The Gabor feature vectors from all groups were projected into all created

KFA subspaces and the resulting vectors were then subjected to a Principal Component

Analysis (PCA)[25] to further reduce their dimensionality.

The enrolment stage: Using the provided quality measures associated with the video

sequences of the BANCA database a small number of images was chosen from each



enrolment video of a given subject6. These images were processed in the same manner

as the training images, i.e., feature vectors were extracted from each image by means

of Gabor filtering and subsequent subspace projections. The processed images served

as the foundation for computing the client templates - the mean feature vectors.

The test stage: From each test video sequence a small subset of randomly selected

frames which passed our quality check (using the same quality measures as in the enrol-

ment stage) were processed to extract the facial features. The resulting feature vectors

were then matched with the template corresponding to the claimed identity using the

nearest neighbour classifier and the whitened cosine similarity detailed in a recently

proposed correction scheme [26]. Depending on the cumulative value of the matching

score, a decision regarding the validity of the identity claim was made in the end.

3.6 Centrum voor Wiskunde en Informatica (CWI)

In CWI approach, the ground truth for eye-locations is used to crop and rectify the face

area at each frame. Each cropped frame is then normalised to 64×64, and split into 8×8
windows, from which 2D-DCT coefficients are extracted [27]. Each window supplies

nine coefficients in zig-zag fashion, bar the DC value, which are then concatenated

into the final feature representation for the face. During testing, DCT coefficients are

extracted from a face localised in a given frame and the similarity of vectors i and j is

computed as:

S(i, j) =
i.j

|i||j|
. (4)

During training, 15-means clustering is applied to DCT features extracted from the

training images of each person, and cluster means are selected as templates. Our ex-

perimental results suggest that using a mixture model for the genuine class and one

model for the generic impostor class, combined with a likelihood ratio based decision

is suboptimal to the DCT-based method [28]. From each video frame, a number of rel-

evant quality measures (i.e. bits per pixel, spatial resolution, illumination, background

brightness, rotation in plane, and frontalness) are summed and a ranked list is prepared.

The ranked images are evaluated in succession, and a pre-selected distance threshold

is selected for authentication. If the similarity score is above this threshold (0.75), it is

reported as the score. Else, the next best ranked frame is evaluated, up to eight frames

per sequence. The maximum similarity score is returned as the final score. Since there

is no early stopping for rejecting claims, the ROC-curves produced for this method do

not fully reflect the possible operation range of the algorithm. The pre-set similarity

threshold is a second parameter (the first being the final score threshold for acceptance)

that controls the system output.

Cwi’s submission has four variations: depending on the dichotomies: system com-

plexity, i.e., Cheap (C) versus Exepnsive (E); and strategy for choosing the query sam-

ples, i.e, random (r) versus quality-based (q). For the so-called cheap (resp. expensive)

version, 5 (resp. 15) templates are used for each client and only 4 (resp. up to 8) images

are used for query. Increasing the number of templates for each gallery subject leads

6 It has to be noted that only the quality measures corresponding to the overall reliability of the

face detector and the spatial resolution were considered for the frame selection process.



to diminishing returns. Since the DCT feature dimensionality is high than the number

of available frames, an automatic model selection approach usually justifies only a few

clusters. During our simulations, we contrasted random selection of frames vs. quality-

based selection of frames. We observed that higher quality faces produced both higher

genuine similarity scores, and higher impostor scores, leading to greater false accept

rates.

3.7 Summary

The submitted face verification systems can be categorised according to whether they

are image-set-based or frame-based (comparison) approach. In the image-set based ap-

proach, a video sequence is analysed and treated as a set of images. When comparing

two video sequences, this approach, in essence, compares two sets of images. On the

other hand, the frame-based approach directly establishes similarity between two im-

ages, each obtained from their respective video sequence. If there are P and Q images in

both sequences, there will be at most PQ similarity scores. The frame-based approach

would select, or otherwise combine these similarity scores to obtain a final similarity

score. Among the systems, only the MMU system belongs to the image-set based ap-

proach, while the remaining systems are the frame-based approach.

Face verification systems can also be further distinguished by the way a face image

is treated, i.e, either holistic or local (parts-based) appearance approach. In the former,

the entire (often cropped) image is considered as input to the face classifier. In the latter,

the face images are divided into (sometimes overlapping) parts which are then treated

separately by a classifier. Table 1 summarises the systems by this categorisation. Princi-

pal component analysis (PCA), or Eigenface, and local discriminant analysis (LDA), or

Fisherface, are perhaps the most representative (and popular) examples of the holistic

approach due to the pioneer work of Turk and Pentland [29]. Many of these systems

were submitted by IDIAP as baseline systems, tested on the Mc protocol (and not the

Ua protocol). Recent face verification research has been dominated by the local appear-

ance approach, as exemplified by most of the submissions in this competition.

4 Evaluation Metrics

We use two types of curves in order to compare the performance: the Detection Error

Trade-off (DET) curve [30] and the Expected Performance Curve (EPC) [31]. A DET

curve is actually a Receiver Operator Curve (ROC) curve plotted on a scale defined

by the inverse of a cumulative Gaussian density function, but otherwise similar in all

aspects. We have opted to use EPC because it has been pointed out in [31] that two

DET curves resulting from two systems are not comparable. This is because such com-

parison does not take into account how the decision thresholds are selected. EPC turns

out to be able to make such comparison possible. Furthermore, the performance across

different data sets, resulting in several EPCs, can be merged into a single EPC [32].

Although reporting performance in EPC is more meaningful than DET as far as perfor-

mance comparison is concerned, it is relatively new and has not gained a widespread



Systems Pre-pro- Face Feature Classifier Quality Process

cessing rep. Extraction measure used all images

Holistic

idiap-pca-pearson HEQ PCA Pearson No Yes

idiap-pca-nc HEQ PCA NC No Yes

idiap-pca-cor HEQ PCA StdCor No Yes

idiap-lda-pearson HEQ PCAxLDA Pearson No Yes

idiap-lda-nc HEQ PCAxLDA NC No Yes

idiap-lda-cor HEQ PCAxLDA StdCor No Yes

mmu AM LDA Avg(NC) No Yes

Local

idiap-dcthmmt-v1 HEQ DCT HMM No Yes

idiap-dcthmmt-v2 HEQ DCT HMM No Yes

idiap-dctgmm HEQ DCTmod2+xy GMM No Yes

idiap-LBP-dctgmm LBP DCTmod2+xy GMM No Yes

cwi-Cq DCT Max(NC) Yes

cwi-Eq DCT Max(NC) Yes

cwi-Cr DCT Max(NC) No

cwi-Er DCT Max(NC) No

upv Local-HEQ LF PCA Avg(KNN) Yes No

uni-lj ZMUV + HEQ Gb2 KDA+PCA WNC Yes No

uvigo Ani Gb1 GMM Yes No

Table 1. Overview of the submitted face verification systems.

The following keys are used: AM = Appearance model, ZMUV = zero mean and unit-variance,

Ani = Anisotropic+local mean subtraction, LF = Local feature Gb1 = Gabor(magnitude) Gb2

= Gabor(phase+magnitude, NC = Normalised correlation, WNC = Sum of whitened NC Note:

OmniPerception’s face detector was used by all systems.

acceptance in the biometric community. As such, we shall also report performance in

DET curves, but using only a subset of operating points.

The EPC curve, however, is less convenient to use because it requires two sets

of match scores, one used for tuning the threshold (for a given operating cost), and

the other used for assessing the performance. In our context, with the two-fold cross-

validation defined on the database (as determined by g1 and g2), these two match scores

can be conveniently used.

According to [31], one possible, and often used criterion is the weighted error rate

(WER), defined by:

WER(β, ∆) = β FAR(∆) + (1 − β) FRR(∆), (5)

where FAR is the false acceptance rate, FRR is the false rejection rate at a given thresh-

old ∆ and β ∈ [0, 1] is a user-specified coefficient which balances FAR and FRR.

The WER criterion generalises the criterion used in the annual NIST’s speaker evalua-

tion [33] as well as the three operating points used in the past face verification competi-

tions on the BANCA database [1, 2]. In particular the following three coefficients of β

are used:

β =
1

1 + R
for R = {0.1, 1, 10}

which yields approximately β = {0.9, 0.5, 0.1}, respectively.



The procedure to calculate an EPC is as follows: Use g1 to generate the develop-

ment match scores; and g2, the evaluation counterpart. For each chosen β, the devel-

opment score set is used to minimise (5) in order to obtain an operational threshold.

This threshold is then applied to the evaluation set in order to obtain the final pair of

false acceptance rate (FAR) and false rejection rate (FRR). The EPC curve simply plots

half total error rate (HTER) versus β, where HTER is the average of FAR and FRR.

Alternatively, the generalisation performance can also be reported in WER (as done in

the previous BANCA face competitions). To plot the corresponding DET curve, we use

the pair of FAR and FRR of all the operating points, as determined by β. Note that this

DET curve is a subset (in fact discrete version) of a conventional continuous DET curve

because the latter is plotted from continuous empirical functions of FAR and FRR. By

plotting the discrete version of the DET curve, we establish a direct correspondence

between EPC and DET, satisfying both camps of biometric practitioners, while retain-

ing the advantage of EPC which makes performance comparison between systems less

biased.

5 Results

The DET curves of all submitted systems for the g1 and g2 data sets, as well as for the

Mc and Ua protocols, are shown in Figure 1. By merging the results from g1 and g2, we

plotted the EPCs for Mc and Ua in Figure 2 (plotting β versus HTER). To be consistent

with the previous published BANCA evaluations [1, 2], we also listed the individual g1

and g2 performance, in terms of WER, in Table 2 for the Mc protocol and in Table 3

for the Ua protocol.

The following observations can be made:

– degradation of performance under adversed conditions: It is obvious from Fig-

ure 2 that all systems systematically degrade in performance under adversed con-

ditions.

– holistic vs. local appearance methods: From Figure 1(a) and (b) as well as Fig-

ure 2(a), we observe that the performance of the holistic appearance methods (PCA

and LDA) is worse than that of the local appearance methods, except for the CWI

classifier (where photometric normalisation was not performed). Thus, we can ex-

pect that the performance of CWI to be similar to the performance of other local

appearance methods in the raw image space, such as idiap-dctgmm, idiap-dcthmmt-

v2 and upv if photometric normalisation were to be performed.

– still vs. video comparison: Among the submitted systems, only IDIAP’s DCT-

HMM system was involved in the previously reported results for the Mc proto-

col [1] which was based on 5 still images taken from a video sequence (as opposed

to five video chunks as done here). The results for this classifier are shown in Ta-

ble 2 (comparing rows 1-2 with row 3). In theory, one would expect the classifier

tested on video sequence to be better than still images. Unfortunately, such conclu-

sion cannot be made except for R = 0.1.

– Pre-processing: In dctgmm methods, the performance of applying HEQ is better

than that of applying LBP as a pre-processing method for Mc protocol. However,



the case is reversed for Ua protocol because HEQ enhances shadows while LBP fea-

tures are invariant to such monotonic transformation (in relation to the neighbour-

hood pixels cast under shadows). In other words, the selection of the pre-processing

methods should be dependent on the environmental conditions.

– Sample size: Cwi’s submission has four variations: depending on the dichotomies:

system complexity, i.e., Cheap (C) versus Exepnsive (E); and strategy for choosing

the query samples, i.e, random (r) versus quality-based (q) (see Section 3.6). Two

observations can be noted: First, the performance of cwi-Eq and cwi-Er are better

than that of cwi-Cq and cwi-Cr. Second, using more template and query features

can improve the cwi system. A rigorous and systematic design of experiments is

still needed to find out the usefulness of the provided quality measures, and more

importantly, the most effective ways of using such auxilliary information. This is

a challenging problem for two reasons. First, not all 14 quality measures provided

are relevant to a face matching algorithm, e.g., an algorithm that is robust to illu-

mination changes would, in principle, be invariant to some photometric measures

used here (brightness, contrast, etc). This implies that a quality measure selection

strategy is needed. Second, quality measures are themselves not discriminatory for

distinguishing subjects but discriminatory in distinguishing environmental condi-

tions.

– Multi resolution Contrast Information: The best algorithm of this competition

for MC protocol is UVigo where the WER at R=1 is 0.77% for G1 and 2.31% for

G2. For UA protocol, the best algorithm is uni-lj where WER at R=1 is 8.78% for

G1 and 6.99% for G2. In fact, the performance of these two systems is very close

but uni-lj is slightly better overall as the average of WER at different R is 3.96%

for G1 and 3.98% for G2, while the result of UVigo is 3.97% for G1 and 4.34% for

G2. The success of these two algorithms derives from the use of multi resolution

contrast information.

6 Discussion and Future Evaluation

Because the target application scenario of this assessment is on mobile devices, com-

putational resources are crucial. For this reason, when benchmarking a face verification

algorithm, the cost of computation has to be considered. For instance, a fast and light

algorithm, capable of processing all images in a sequence, may be preferred over an

extremely accurate algorithm only capable of processing a few selected images in a

sequence. However, the former algorithm may be able to achieve better performance

since it can process a much larger number of images within the same time limit and

memory requirement. The above scenario highlights that the performance of two algo-

rithms cannot be compared on equal grounds, unless both use comparable computation

costs, taking the time, memory and computational resources into consideration.

The current evaluation has not taken this cost factor into consideration, but this will

be carried out in future. The idea is to request each participant to run a benchmarking

program, executable in any operating system. The time registered by the program will

be used as a standard unit time for the participant’s system. Thus the time to process



Table 2. Performance of g1 and g2 based on the Mc protocol using video sequences

WER (%)

systems R = 0.1 R = 1 R = 10
G1 G2 G1 G2 G1 G2

idiap-dcthmm† 7.52 4.90 5.45 0.64 2.56 0.12

idiap-dcthmm‡ 7.78 3.76 5.13 2.08 1.17 2.74

idiap-dcthmmT-v2 1.34 2.03 4.20 4.29 1.92 3.93

idiap-dctgmm 0.82 5.14 1.12 5.48 0.82 1.96

idiap-LBP-dctgmm 0.75 6.26 1.63 7.37 1.22 2.77

uvigo 1.05 0.42 0.77 2.31 0.45 4.20

mmu 5.94 2.14 9.84 9.07 5.21 9.64

upv 3.01 1.81 5.06 7.50 4.00 5.86

cwi-Cq 3.80 9.84 14.20 18.14 7.28 12.76

cwi-Cr 3.66 11.72 13.14 18.69 6.49 12.40

cwi-Eq 2.84 9.51 10.90 16.83 6.32 11.49

cwi-Er 2.59 9.73 9.87 16.63 6.25 11.68

uni-lj 0.86 2.18 2.34 4.81 2.32 2.02

†: Experimental results on still images, taken from [1] with automatic localisation. ‡: Similar to

†, except with manual localisation.

a video file for a participant, for instance, will be reported in terms of multiples (or

fractions) of the participant’s standard unit time.

7 Conclusions

This paper presents a comparison of video face verification algorithms on BANCA

database. Eighteen different video-based verification algorithms from a variety of aca-

demic institutions participated in this competition. The results show that the perfor-

mance of the local appearance methods is better than that of the holistic appearance

methods. Secondly, using more query and selected template features to measure simi-

larity improve the system performance. Finally, the best algorithm in this competition

clearly shows that multi resolution contrast information is important for face recogni-

tion.
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Table 3. Performance of g1 and g2 based on the Ua protocol

WER (%)

systems R = 0.1 R = 1 R = 10
G1 G2 G1 G2 G1 G2

idiap-dcthmmT-v2 8.52 8.66 18.65 17.08 6.37 12.61

idiap-dctgmm 9.10 11.03 27.31 24.49 10.54 13.31

idiap-LBP-dctgmm 8.34 10.08 23.85 24.94 10.58 11.47

uvigo 2.81 5.06 8.75 9.49 10.00 4.55

mmu 13.61 9.88 27.72 31.96 10.97 18.21

upv 4.00 6.60 9.29 13.46 3.98 11.45

cwi-Cq 9.06 14.18 28.08 34.46 16.54 11.19

cwi-Cr 9.43 11.41 26.60 31.79 14.50 11.79

cwi-Eq 8.72 14.73 24.23 27.98 16.50 8.48

cwi-Er 8.00 12.23 21.38 24.29 12.86 8.80

uni-lj 4.67 3.03 8.78 6.99 4.78 4.83

References

1. K. Messer, J. Kittler, M. Sadeghi, M. Hamouz, A. Kostyn, S. Marcel, S. Bengio, F. Car-

dinaux, C. Sanderson, N. Poh, Y. Rodriguez, K. Kryszczuk, J. Czyz, L. Vandendorpe, J. Ng,

H. Cheung, and B. Tang, “Face authentication competition on the banca database,” in Intl.

Conf. Biometric Authentication, 2004, pp. 8–15.

2. K. Messer, J. Kittler, M. Sadeghi, M. Hamouz, A. Kostin, F. Cardinaux, S. Marcel, S. Ben-

gio, C. Sanderson, N. Poh, Y. Rodriguez, J. Czyz, L. Vandendorpe, C. McCool, S. Lowther,

S. Sridharan, V. Chandran, R. P. Palacios, E. Vidal, L. Bai, L-L. Shen, Y. Wang, Chiang Yueh-

Hsuan, H-C. Liu, Y-P. Hung, A. Heinrichs, M. Muller, A. Tewes, C. vd Malsburg, R. Wurtz,

Zg. Wang, Feng Xue, Yong Ma, Qiong Yang, Chi Fang, Xq. Ding, S. Lucey, R. Goss, , and

H. Schneiderman, “Face authentication test on the banca database,” in Int’l Conf. Pattern

Recognition (ICPR), 2004, vol. 4, pp. 523–532.

3. P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques,

J. Min, and W. Worek, “Overview of the Face Recognition Grand Challenge,” in IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2005, pp. 947–

954.

4. E. Bailly-Baillière, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler, J. Marithoz, J. Matas,

K. Messer, V. Popovici, F. Porée, B. Ruiz, and J.-P. Thiran, “The BANCA Database and

Evaluation Protocol,” in LNCS 2688, 4th Int. Conf. Audio- and Video-Based Biometric Per-

son Authentication, AVBPA 2003. 2003, Springer-Verlag.

5. Ralph Gross and Vladimir Brajovic, “An Image Preprocessing Algorithm for Illumination

Invariant Face Recognition,” in Audio- and Video-Based Biometric Person Authentication,

Springer Berlin / Heidelberg, Ed. June 2003, vol. 2688/2003 of Lecture Notes in Computer

Science, pp. 10 – 18, Springer.

6. Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger, and Christoph von der Malsburg,
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Fig. 1. DET curves of the submitted systems evaluated on the g2 (evaluation set) of the BANCA

video based on the Mc protocol. Note that the uvigo system achieved zero EER on the Mc g2

datasets. As a result, its DET curve reduces to a single point at the origin ((∞,∞) in the above

normal inverse scales.
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Fig. 2. EPC curves of the submitted systems evaluated on the g2 (evaluation set) of the BANCA

video based on the Mc protocol.


