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Equalities of ideals associated with two

projections in rings with involution

Julio Beńıtez ∗ and Dragana Cvetković-Ilić †

Abstract

In this paper we study various right ideals associated with two

projections (self-adjoint idempotents) in a ring with involution. Re-

sults of O.M. Baksalary, G. Trenkler, R. Piziak, P.L. Odell, and R.

Hahn about orthogonal projectors (complex matrices which are Her-

mitian and idempotent) are considered in the setting of rings with

involution. New proofs based on algebraic arguments; rather than

finite-dimensional and rank theory; are given.

AMS classification: 16W10, 16D25
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1 Introduction

Throughout this paper, the symbol R will denote a unital ring (1 will be

its unit) with an involution and the term ring will mean unital ring. Let

us recall that an involution in a ring R is a map a 7→ a∗ in R such that

(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a for any a, b ∈ R. The word

‘projection’ will be reserved for an element q of R which is self-adjoint and

∗jbenitez@mat.upv.es. Instituto de Matemática Multidisciplinar, Universitat
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idempotent, that is q∗ = q = q2. With each element a ∈ R we associate an

image ideal aR = {ax : x ∈ R}, and a kernel ideal a◦ = {x ∈ R : ax = 0}
The paper studies some ideals and functions depending on two projec-

tions of a ring with an involution. The results given here generalize to several

considered in [1, 14]. It is worthy to note that in the proofs of those results,

matrix theory is used (specifically, rank theory and singular value decom-

position). We believe that giving simpler and algebraic proofs (our proofs

only use algebraic reasonings) gives a greater insight of the problems con-

sidered here. We will notably consider the case of a ∗-reducing ring (where

there is an implication a∗a = 0 ⇒ a = 0 for all a ∈ R). One of the most

important tools in this case is the Moore-Penrose inverse theory, which will

be quickly revised together with useful results in section 2. Section 3 then

studies invertibility of p + q and p − q in rings with involution, together

with ideal properties. Section 4 finally focuses on ∗-reducing rings. In this

case, existence of particular Moore-Penrose inverses leads to certain ideal

equalities.

2 Moore-Penrose inverse and auxiliary lemmas

The link between generalized inverses and range or kernel ideals is not new.

See for instance [4, 5] in the case of semigroups, [13] in rings or [6, 7] in

C*-algebras. The study of sums and difference of idempotents has notably

been studied in connections with the Drazin inverse (see for instance [12]

and references therein). In this paper, we use the involutive structure of

the ring and properties of the Moore-Penrose inverse to study particular

idempotents, projections (self-adjoint idempotents).

It can be proved that for any a ∈ R, there is at most one a† ∈ R such

that

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

(see [3], [6], [7], [8], [16]). If there exists such a† we will say that a is Moore-

Penrose invertible and call a† the Moore-Penrose inverse of a. The subset of
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R composed of all Moore-Penrose invertible elements will be denote by R†.

We write R−1 for the set of all invertible elements in R.

We say that a ∈ R is relatively regular if there exists b ∈ R such that

aba = a. In this case b is called an inner generalized inverse of a. A known

result (see Theorem 1.4.11 of [3]) is the following: let R be a ring with

involution obeying the Gelfand-Naimark property. Then a ∈ R is Moore-

Penrose invertible if and only if a is relatively regular. Let us recall that a

ring R with involution has the Gelfand-Naimark property if 1 + x∗x ∈ R−1

for all x ∈ R. It is known that any C∗-algebra has the Gelfand-Naimark

property. See also [6] and [11].

An element a ∈ R is left ∗-cancellable if a∗ax = a∗ay implies ax = ay.

Analogously, a ∈ R is right ∗-cancellable if xaa∗ = yaa∗ implies xa = ya.

Finally, a ∈ R is ∗-cancellable if it is both left and right ∗-cancellable. A ring

R is called ∗-reducing if every element of R is ∗-cancellable. Let us remark

that any C∗-algebra is a ∗-reducing ring.

We use the following notation: If X,Y ⊂ R, then

X ⊥ Y ⇐⇒ ∀ (x, y) ∈ X × Y, x∗y = 0.

Observe that if R is ∗-reducing and if X ̸= ∅ ̸= Y , then X ⊥ Y implies

X ∩ Y = {0}.
Let x ∈ R and let p ∈ R be an idempotent (p = p2). Then we can write

x = pxp+ px(1− p) + (1− p)xp+ (1− p)x(1− p)

and use the notations

x11 = pxp, x12 = px(1−p), x21 = (1−p)xp, x22 = (1−p)x(1−p).

Every projection p ∈ R induces a matrix representation which preserves the

involution in R, namely x ∈ R can be represented by means of the following

matrix:

x =

[
pxp px(1− p)

(1− p)xp (1− p)x(1− p)

]
p

=

[
x11 x12

x21 x22

]
p

. (2.1)
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From now on, for an arbitrary projection p, we shall denote p = 1− p.

Two elementary facts derived from the definition of the Moore-Penrose

inverse are the following:

(i) Let a ∈ R. Then a ∈ R† ⇐⇒ a∗ ∈ R†, and under this situation one

has (a∗)† = (a†)∗.

(ii) Let a ∈ R†. Then a† ∈ R† and (a†)† = a.

The following simple result also will be useful.

Lemma 2.1. Let R be a ring with involution and a ∈ R. Then

(i) If a ∈ R†, then a∗a, aa∗ ∈ R† and

(a∗a)† = a†(a∗)†, (aa∗)† = (a∗)†a†, a† = (a∗a)†a∗ = a∗(aa∗)†, a∗ = a†aa∗ = a∗aa†.

(ii) If R is ∗-reducing, then a∗a ∈ R† ⇒ a ∈ R† and aa∗ ∈ R† ⇒ a ∈ R†.

Proof. The proof of (i) is a consequence of direct computations. We will

prove only the first implication of (ii) since to prove the other one, it is

sufficient to make the same argument for a∗ instead of a. Assume that

a∗a ∈ R†, and let x = (a∗a)†a∗. Observe that the Moore-Penrose inverse

of a selfadjoint Moore-Penrose invertible element is again self-adjoint, and

thus, (a∗a)† is self-adjoint. Now (ax)∗ =
[
a(a∗a)†a∗

]∗
= a(a∗a)†a∗ = ax;

xa = (a∗a)†a∗a is selfadjoint; xax = (a∗a)†a∗a(a∗a)†a∗ = (a∗a)†a∗ = x.

Finally, a∗axa = a∗a(a∗a)†a∗a = a∗a, and since R is ∗-reducing, we get

axa = a. �
A simple consequence of Lemma 2.1 is the following: Let x ∈ R† be

self-adjoint. Then xx† = x†x and x is the commuting (or group) inverse

of x (see for instance [6]). In fact, xx† = x(x∗x)†x∗ = x∗(xx∗)†x = x†x.

For a better insight on the the formulas of Lemma 2.1, commutation and

cancellation properties, see [5]. For the class of elements x in a C*-algebra

such that xx† = x†x, the reader is reffered to [2, 10]. More generally,

elements admitting both a group inverse and a Moore-Penrose inverse are

discussed in [15] in the case of a ring.
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Let p and q be two projections in a ring R with involution. Then

p =

[
p 0

0 0

]
p

and q =

[
a b

b∗ d

]
p

, (2.2)

where

a = pqp, b = pq(1− p), d = (1− p)q(1− p). (2.3)

Lemma 2.2. Let p, q ∈ R be projections given by (2.2). Then

(i) a = a2 + bb∗,

(ii) b = ab+ bd,

(iii) d = d2 + b∗b,

Proof. All the equalities follow from the condition q = q2. �
The following result is a generalization of Lemma 3 (v)-(x) from [1]:

Lemma 2.3. Let R be a ∗-reducing ring. If p, q ∈ R are projections given

by (2.2), then the following hold:

(i) If a is Moore-Penrose invertible, then aa†b = b,

(ii) If 1−a is Moore-Penrose invertible, then (1−a)(1−a)†b = (p−a)(p−
a)†b = b,

(iii) If d is Moore-Penrose invertible, then bdd† = b,

(iv) If 1− d is Moore-Penrose invertible, then b(1− d)(1− d)† = b(1− p−
d)(1− p− d)† = b,

(v) If a and 1−d are Moore-Penrose invertible, then a†b = b(1−p−d)† =

b(1− d)†,

(vi) If 1 − a and d are Moore-Penrose invertible, then bd† = (1 − a)†b =

(p− a)†b.
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Proof. (i): Since a = pqp = pq(pq)∗ is Moore-Penrose invertible, by Lemma

2.1, we have that pq is Moore-Penrose invertible and

aa†b = pq(pq)∗(pq(pq)∗)†pq(1− p)

= pq(pq)∗((pq)∗)†(pq)†pq(1− p)

= pq(pq)†pq(pq)†pq(1− p)

= b.

To prove (ii), it is sufficient to use former item (i) for projections p and 1−q.

If we use item (i) for projections 1 − p and q, we get dd†b∗ = b∗, and (iii)

follows by taking ∗ in both sides. Item (iv) follows by using item (i) for

projections 1− p and 1− q.

(v): Observe that since q is self-adjoint, then the representation of q

given in (2.2) implies that a is self-adjoint, hence aa† = a†a. By condition

(ii) of Lemma 2.2 and by (i), it follows that a†b = a†(ab+bd) = aa†b+a†bd =

b+ a†bd. Hence,

b = a†b(1− d) = a†b(1− p− d).

Multiplying the last equality from the left side by (1 − d)† and using (iv),

we get that b(1− d)† = a†b. Similarly, a†b = b(1− p− d)†. The proof of (vi)

follows by using item (v) for projections p and 1− q. �

Lemma 2.4. Let R be a ∗-reducing ring. If p, q ∈ R are projections and q

is partitioned as in (2.2), then

(i) If 1− a and d are Moore-Penrose invertible, then a− bd†b∗ = 1− (1−
a)(1− a)† = p− (p− a)†(p− a),

(ii) If a and 1− d are Moore-Penrose invertible, then d− b∗a†b = 1− (1−
d)(1− d)† = 1− p− (1− p− d)(1− p− d)†,

(iii) If 1 − a and d are Moore-Penrose invertible, then d + b∗(1 − a)†b =

d+ b∗(p− a)†b = dd†,

(iv) If a and 1 − d are Moore-Penrose invertible, then a + b(1 − d)†b∗ =

a+ b(1− p− d)†b∗ = aa†.
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Proof. (i): As we pointed out in the proof of item (v), Lemma 2.3, we have

that a is self-adjoint, hence 1−a is again self-adjoint, and thus, (1−a)†(1−
a) = (1− a)(1− a)†. Now we have

1− a = (1− a)†(1− a)(1− a) = (1− a)†(1− a)− (1− a)†(1− a)a.

By Lemma 2.3 (vi), Lemma 2.2 (i), and the previous computation, we get

that bd†b∗ = (1−a)†bb∗ = (1−a)†(1−a)a = (1−a)†(1−a)− (1−a). Hence,

a− bd†b∗ = 1− (1− a)(1− a)†. The proofs of (ii)-(iv) are similar. �

3 Projections in rings with involution

Theorem 3.1. Let R be a ring with involution and p, q ∈ R be projections.

Then

(p− q)R = pqR⊕⊥ pqR.

Proof. It is evident that pqR ⊥ pqR. Now, we will prove that (p − q)R =

pqR+pqR. Take any z ∈ (p−q)R. We have that z = (p−q)x for some x ∈ R.

If we take y = (1−2q)x, we get (p−q)x = pqy+pqy, so (p−q)R ⊆ pqR+pqR.

For arbitrary a ∈ pqR + pqR, we have that a = pqy1 + pqy1, for some

y1, y2 ∈ R and

a = pqy1 + pqy2 = (p− q)(y1 − qy1 − qy2),

i.e., a ∈ (p− q)R. Hence pqR+ pqR ⊆ (p− q)R. The proof is completed. �
In [9, Th. 4.2] it was characterized when the difference of two projections

is invertible. Former Theorem 3.1 permits give another characterization.

Corollary 3.1. Let R be a ring with involution and p, q ∈ R be projections.

Then p− q is invertible if and only if pqR⊕⊥ pqR = R.

Theorem 3.2. Let R be a ring with involution and p, q ∈ R be projections.

The following statements are equivalent:

(i) p+ q ∈ R−1,
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(ii) There exists h ∈ R such that 1 = ph+ q(1− h) and (1− h)p = hq,

(iii) There exists h ∈ R such that h = ph, q(1−h) = 1−h and (1−h)p = hq.

The element h in conditions (ii) and (iii) is unique and it satisfies h =

p(p+ q)−1.

Proof. (i) ⇒ (ii): Define h = p(p+ q)−1. Obviously, one has (1−h)p = hq.

Since (p + q)p = p + q + 2qp − q(p + q), we have (p + q)h = 1 + 2qh − q,

which implies 1 = ph+ q(1− h).

(ii) ⇒ (i): From (1− h)p = hq we get p = (p+ q)h∗. Now,

(p+ q)(1− h− h∗ + 2h∗h) = ph+ q(1− h) = 1.

Since p+ q and 1−h−h∗+2h∗h are self-adjoint, by taking ∗ in (p+ q)(1−
h− h∗ + 2h∗h) = 1 we get (1− h− h∗ + 2h∗h)(p+ q) = 1.

(ii) ⇒ (iii): Since we have proved (ii) ⇒ (i), we get p+q ∈ R−1. The sec-

ond condition of (ii) leads to h = p(p+ q)−1. Thus ph = h, and substituting

this into 1 = ph+ q(1− h) leads to 1 = h+ q(1− h), i.e., q(1− h) = 1− h.

(iii) ⇒ (ii): It is evident. �

Theorem 3.3. Let R be a ring with involution and p, q ∈ R be projections.

The following statements are equivalent:

(i) There exists h ∈ R such that h = ph and q(1− h) = 1− h,

(ii) R = pR+ qR.

Proof. (i) ⇒ (ii) follows from 1 = h+ (1− h) = ph+ q(1− h) ∈ pR+ qR.

(ii)⇒ (i): Let x, y ∈ R be such that 1 = px+qy and let us denote h = px.

Now, ph = h and q(1− h) = q(1− px) = qqy = qy = 1− px = 1− h.

As a corollary of Theorem 3.2, Theorem 3.3 and [9, Theorem 4.4], we

have the following:

Corollary 3.2. Let R be a ring with involution and p, q ∈ R be projections.

The following statements are equivalent:
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1) p+ q ∈ R−1 and h = p(p+ q)−1 is idempotent,

2) R = pR⊕ qR,

3) p− q ∈ R−1

4) There exists idempotent k such that kR = pR and (1− k)R = qR.

Proof. 1) ⇒ 2) h = p(p + q)−1 ⇒ (1 − h) = q(p + q)−1 and hR = pR,

(1− h)R = qR. h2 = h then implies R = hR⊕ (1− h)R = pR⊕ qR.

2) ⇒ 3) ⇒ 4) by [9, Theorem 4.4].

4) ⇒ 1) By Lemma 4.1, we have that k satisfies pk = k, kp = p,

q(1 − k) = k and (1 − k)q = q. It follows that (1 − k)p = 0 = kq and k

satisfies condition iii) of Theorem 3.2.

4 Projections in ∗-reducing rings

We shall need the following simple lemma:

Lemma 4.1. Let x, y ∈ R.

1) If x, y and xy are self-adjoint, then yx = xy.

2) Selfadjoint x is an invertible if and only if there exists y ∈ R such that

xy = 1 if and only if xR = R.

3) If e and f are idempotents, then eR = fR if and only if ef = f and

fe = e.

4) If p, q are projectors and pR = qR, then p = q.

Proof. The proofs of 1) and 2) are trivial.

3) Let e, f ∈ R be two idempotents such that eR = fR. Since e ∈ eR =

fR, then exists t ∈ R such that e = ft, so fe = e. By reversing the roles of

e and f we have ef = f .

4) It follows by 3). �
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The following result which will be of major importance in the sequel, give

sufficient conditions for the Moore-Penrose invertibility of several elements

in a ∗-reducing ring of the form f(p, q), where p and q are two projections

and f is a polynomial in two non-commuting variables.

Theorem 4.1. Let R be a ∗-reducing ring. If p, q ∈ R are projections, then

(i) If pqp and pqp are Moore-Penrose invertible, then p + q is Moore-

Penrose invertible and

(p+ q)(p+ q)† = p+ pq(pqp)†.

(ii) If pqp is Moore-Penrose invertible, then pq is Moore-Penrose invertible

and

(pq)† = q(pqp)†.

(iii) If pqp and pqp are Moore-Penrose invertible, then p − q is Moore-

Penrose invertible and

(p− q)(p− q)† = (p− pqp)(p− pqp)† + pq(pqp)†.

(iv) If pqp is Moore-Penrose invertible, then pq − qp is Moore-Penrose in-

vertible and

(pq − qp)(pq − qp)† = pq(pqp)† + (pqp)†qp.

Proof. (i): Let us suppose that the projections p and q are represented as in

(2.2). By hypothesis one has that p−a, d ∈ R†. Since 1−a = (p−a)+(1−p)

and p− a, p ∈ R† (observe that since p is a projection, obviously p ∈ R† and

p† = p) we get 1− a ∈ R†. Let

x =
1

2

(
p+ (p− a)(p− a)†

)
− bd† − d†b∗ + 2d† − dd†. (4.1)

We shall prove that x = (p + q)† by verifying the four conditions of the

Moore-Penrose invertibility. We shall decompose x as in (2.1). Obviously

we have

px = x11+x12 and qx = ax11+bx21+ax12+bx22+b∗x11+dx21+b∗x12+dx22,
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where

x11 =
1

2

(
p+ (p− a)(p− a)†

)
, x12 = −bd†, x21 = −d†b∗, x22 = 2d†−dd†.

Let us remark that p− a is self-adjoint. Then

p− a = (p− a)(p− a)(p− a)† = (p− a)(p− a)† − a(p− a)(p− a)†,

and thus, by utilizing Lemma 2.4 (i) we get

(p+ a)
(
p+ (p− a)(p− a)†

)
= p+ (p− a)(p− a)† + a+ a(p− a)(p− a)†

= 2
[
(p− a)(p− a)† + a

]
= 2

[
p+ bd†b∗

]
.

Thus,

x11 + ax11 + bx21 =
1

2
(p+ a)

(
p+ (p− a)(p− a)†

)
− bd†b∗ = p.

Observe that Lemma 2.3 (ii) in conjunction with Lemma 2.3 (vi) can be

written bd† − b = abd†. Hence by Lemma 2.3 (iii), we get

x12 + ax12 + bx22 = −bd† − abd† + b(2d† − dd†) = 0.

Lemma 2.3 (ii) and the self-adjointness of a imply b∗(p − a)(p − a)† = b∗.

Furthermore, from the definition of b given in (2.3) we trivially get b∗p = b.

Now, Lemma 2.3 (iii) yields

b∗x11 + dx21 =
1

2
b∗

(
p+ (p− a)(p− a)†

)
− dd†b∗ = 0.

Since q is self-adjoint, the representation of q given in (2.2) yields that d is

self-adjoint, hence dd† = d†d. In view of 2.2 (iii), we have

b∗x12 + dx22 = (d2 − d)d† + 2dd† − d = dd†.

The above computations show that

(p+ q)x = p+ dd†. (4.2)
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Thus, (p + q)x is self-adjoint. Since x, p + q, and (p + q)x are self-adjoint,

fact (??) permits get that x(p+ q) = (p+ q)x. By Lemma 2.3 (iii) and (4.2)

we easily have (p+ q)x(p+ q) = p+ q and x(p+ q)x = x.

Now, since d = (1− p)q(1− p), it is evident that (i) holds.

(ii): Since (pq)(pq)∗ = pqp ∈ R†, by Lemma 2.1 we have pq ∈ R† and

(pq)† = (pq)∗ (pq(pq)∗)† = qp(pqp)† = q(pqp)†.

By computation we get that pq(pq)† = pqp(pqp)†. Now (pq)†pq is self-

adjoint, hence

(pq)†pq =
[
(pq)†pq

]∗
= qp

[
(pq)†

]∗
= qp [(pq)∗]† = qp(qp)†,

and thus, by Lemma 2.1,

pq = pq(pq)†pq = pqp(qp)† = pqp(qp)∗ [qp(qp)∗]† = pq(qp)∗ [qp(qp)∗]† = pq(qp)†.

(iii): Let us denote z =
[
(p−a)(p−a)† −bd†

−d†b∗ −dd†

]
p
. By a direct computation

and Lemma 2.2 (iii), Lemma 2.3 (ii), (iii), (vi), and Lemma 2.4 (i) we get

(p− q)z = (p− a)(p− a)† + dd† is self-adjoint. Since z is self-adjoint we get

that z(p−q) = (p−q)z. By Lemma 2.3 (ii), (iii) we get (p−q)z(p−q) = p−q

and z(p− q)z = z. Thus, p− q ∈ R† and z = (p− q)†.

(iv): Observe that pq − qp = b − b∗. Since b = pqp ∈ R† and b† =

b∗(bb∗)† ∈ pRp, by a direct verification of the four Moore-Penrose equations

and using Lemma 2.1 we get (pq−qp)† = b†−(b∗)† and (pq−qp)(pq−qp)† =

bb† + b†b. �

Corollary 4.1. Let R be a ∗-reducing ring. If p, q ∈ R are projections

such that pqp is Moore-Penrose invertible, then pq is also Moore-Penrose

invertible and (pq)† = q(pqp)†.

Proof. It follows from Lemma 4.1 (ii) by changing p by p. �
The following result is a generalization of the result given in [14, Th. 3,

Th. 4] for the matrix case:

Lemma 4.2. Let R be a ∗-reducing ring. and let p, q ∈ R be projections

such that pqp and pqp are Moore-Penrose invertible. Then
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(i) x = p+ p(pq)† is a projection and xR = pR+ qR,

(ii) y = p− p(pq)† is a projection and yR = pR ∩ qR.

Proof. (i): By Theorem 4.1 (i) and (ii) we have x = p + p(pq)† = p +

pq(pqp)† = (p + q)(p + q)†, which implies that x is a projection. Since,

x = p(p + q)† + q(p + q)†, it is evident that xR ⊆ pR + qR. Observe that

pq(pq)† =
[
pq(pq)†

]∗
=

[
(pq)†

]∗
qp, which yields xp = (p + pq(pq)†)p = p.

from p + q = (p + q)(p + q)†(p + q) = x(p + q) = xp + xq and xp = x we

deduce xq = q. Finally, pR+ qR = xpR+ xqR ⊆ xR.

(ii): First of all, we must prove that the definition of y is meaningful,

in other words, we must prove that pq ∈ R†; but this follows easily from

p − pqp ∈ R†, (pq)(pq)∗ = pqp = p − pqp and Lemma 2.1. Since y =

p − pq(pq)†, we have that y is self-adjoint. Using that (pq)†p = (pq)†, we

trivially get y2 = y. Let us remark that we can write y = p − pq(pq)†p.

Evidently, y ∈ pR, so yR ⊆ pR. Since yq = (p − pq(pq)†p)q = 0, we have

yq = y. By taking ∗ in the last equality we have qy = y, hence yR ⊆ qR.

Thus yR ⊆ pR ∩ qR.

To prove pR ∩ qR ⊆ yR, take arbitrary z ∈ pR ∩ qR. Observe that

pq(pq)† =
[
pq(pq)†

]∗
=

[
(pq)†

]∗
qp = [(pq)∗]† qp = (qp)†qp.

Since z = pz = qz, it follows that yz = (p−(qp)†qp)z = z. Hence, pR∩qR ⊆
yR. �

Next four results continue the study of the sum p + q and the ideals

(p + q)R, (p + q)◦ under the additional assumption that pqp and pqp are

Moore-Penrose invertible.

Theorem 4.2. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp and pqp are Moore-Penrose invertible. Then

(i) (p+ q)R = pqpR⊕⊥ pR.

(ii) (p+ q)R = pqR⊕⊥ pR.

(iii) (p+ q)R = pR+ qR.
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(iv) (p+ q)R = (p− q)R⊕⊥ (pR ∩ qR).

(v) (p+ q)◦ = (pq)◦ ∩ p◦.

(vi) (p+ q)◦ = p◦ ∩ q◦.

Proof. (i): It is evident that pqpR⊥pR. By Lemma 2.1 (i), we have that

p+ q = pq + p(1 + q) = pq(pq)†pq + p(1 + q) = pqp(pqp)†pq + p(1 + q),

which implies that (p+ q)R ⊆ pqpR+ pR. To prove the opposite inclusion,

take arbitrary z ∈ pqpR + pR. We have z = pqpx + py for some x, y ∈ R.

By Theorem 4.1 (i), we get (p + q)(p + q)†z = z, so z ∈ (p + q)R. Hence

(p+ q)R = pqpR+ pR.

(ii): Since for any Moore-Penrose invertible a ∈ R, one has aR = aa†R,

by Theorem 4.1 (ii), we have pqR = pqpR. Now, the assertation follows by

item (i).

(iii): The inclusion ⊆ is evident. To prove the opposite, let us use the

notations given in (2.3) and let us demonstrate pq + dd†q = q. In fact,

Lemma 2.3 (iii) yields dd†b∗ = b∗ and now

pq + dd†q = pq + dd†(1− p)q = pq + dd†(b∗ + d) = pq + b+ d = q.

If x ∈ pR+ qR, then exist u, v ∈ R such that x = pu+ qv. By Theorem 4.1

(i), one gets

(p+ q)(p+ q)†x = (p+ dd†)(pu+ qv) = pu+ pqv+ dd†qv = pu+ qv = x.

Thus, x = (p+ q)(p+ q)†x ∈ (p+ q)R.

(iv): By Theorem 4.1 (i) and (iii) and (2.3), it follows that (p+q)(p+q)† =

p + dd† and (p − q)(p − q)† = (p − a)(p − a)† + dd†. By Lemma 4.2 (ii), it

follows that y = p− p(pq)† is a projection and yR = pR∩ qR. If in Theorem

4.1 (ii), we replace p with p and q with q, we get that (pq)† = q(pqp)†, so

y = p−(p−a)(p−a)†. Now, since p−(p−a)(p−a)† and (p−a)(p−a)†+dd†
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are commuting projections which product is equal to zero, we have

(p+ q)R = (p+ dd†)R =
(
((p− a)(p− a)† + dd†) + (p− (p− a)(p− a)†)

)
R

=
(
(p− a)(p− a)† + dd†

)
R⊕⊥

(
p− (p− a)(p− a)†

)
R

= (p− q)R⊕⊥ (pR ∩ qR).

(v ⊆): Let x ∈ (p + q)◦. By Theorem 4.1 (i) and by employing the

notations given in 2.2 we have 0 = (p+q)†(p+q)x = (p+dd†)x = px+dd†x;

which by premultiplying by p and p we get 0 = px and 0 = dd†x, respectively.

Notice that 0 = dd†x ⇐⇒ dx = 0. Finally, pqx = (b∗ + d)x = b∗x + dx =

pqpx+ dx = 0.

(v ⊇): Let x ∈ (pq)◦∩p◦. we have 0 = pqx = (b∗+d)x = (pqp+d)x = dx.

From Theorem 4.1 (i) we get (p+ q)(p+ q)†x = (p+ dd†)x = px+ dd†x = 0,

which leads to (p+ q)x = 0.

(vi): The inclusion p◦ ∩ q◦ ⊆ (p+ q)◦ is obvious. Let x ∈ (p+ q)◦. As in

the proof of (i ⊆) we get px = 0. Now, (p+ q)x = 0 leads to qx = 0. �

Observe that Theorem 4.2 (ii) and (vi) generalize to [14, Cor. 2]. Remark

that Theorem 6 and Theorem 8 from [1] are equivalent (replacing P with

I − Q and Q with P in Theorem 6, we get Theorem 8). The following

corollary follows immediately from Theorem 4.2.

Corollary 4.2. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp and pqp are Moore-Penrose invertible. Then the following

statements are equivalent:

(i) p+ q is invertible,

(ii) R = pqR⊕⊥ pR,

(iii) R = pqpR⊕⊥ pR,

(iv) R = pR+ qR.

Theorem 4.3. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp and pqp are Moore-Penrose invertible. Then
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(i) (1− p q)R = (p+ q)R,

(ii) (1− p q)◦ = (p+ q)◦.

Proof. (i): By Theorem 4.1 (i), using the notations given by (2.3), we get

that (p+ q)(p+ q)† = p+ dd†. On the other side, since 1− p q = p+ b∗ + d,

by Lemma 2.3 it is easy to check that (1 − p q)† = d† − b∗(p − a)† + p, so

(1 − p q)(1 − p q)† = p + dd†. Hence, (1 − p q)(1 − p q)† = (p + q)(p + q)†

which is equivalent to (1− p q)R = (p+ q)R.

(ii): By Theorem 4.2 (v), we have (p + q)◦ = (pq)◦ ∩ p◦. Let us prove

(1 − p q)◦ = (pq)◦ ∩ p◦: If x ∈ (1 − p q)◦, then p qx = x, which yields

pqx = px+qx, hence px = 0 and (1−p)qx = 0, in other words, x ∈ (pq)◦∩p◦.
The opposite inclusion is evident. �

Theorem 4.4. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp and pqp are Moore-Penrose invertible. Then

(i) (pq − qp)R ⊆ (p+ q)R.

(ii) (p+ q)◦ ⊆ (pq − qp)◦.

Proof. (i): By Theorem 4.1 (i), we have that (p+q)(p+q)† = p+pq(pqp)†.

Now, by Lemma 2.3 (iii) using the notations from (2.3), we have that

(p+ q)(p+ q)†(pq − qp) = (p+ pq(pqp)†)(pq − qp)

= pq − pqp− pq(pqp)†pqp

= pq(1− p)− pqp(pqp)†pqp

= b− dd†b∗

= b− b∗

= pq − qp,

which implies that (pq − qp)R ⊆ (p+ q)R.

(ii): It follows from Theorem 4.2 (vi).�
Note that the inclusions in the previous theorem can be strict, as shows

the case q = 1− p. Next theorems study further the image ideal (pq− qp)R

together with the ideals (p− q)R and (1− p− q)R.
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Theorem 4.5. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that p q p, pqp, pqp, pqp and pqp are Moore-Penrose invertible. Then

(i) (p− q)(p− q)† + (1− p− q)(1− p− q)† − (pq − qp)(pq − qp)† = 1,

(ii) (p− q)R+ (1− p− q)R = R,

(iii) (p− q)(p− q)†(1− p− q)(1− p− q)† = (pq − qp)(pq − qp)†.

Proof. (i): Let x = (p−q)(p−q)†+(1−p−q)(1−p−q)†−(pq−qp)(pq−qp)†.

By the proof of Theorem 4.10 we have (p−q)(p−q)† = (p−a)(p−a)†+dd†.

By doing the same computation having replaced p by p we get (1 − p −
q)(1− p− q)† = (1− p− d)(1− p− d)† + aa†. By Theorem 4.1 (iv) we get

(pq − qp)(pq − qp)† = bb† + b†b. Thus,

x = (p− a)(p− a)† + dd† + (1− p− d)(1− p− d)† + aa† − bb† − b†b.

Denote y = aa† + (p − a)(p − a)† − bb†. Since a is self-adjoint, we get that

the elements of the set {a, a†, p − a, (p − a)†} are mutually commuting by

Lemma 4.1. Now it is easy to prove by the definition of the Moore-Penrose

inverse that [a(p− a)]† = a†(p− a)†. By Lemma 2.2 (i), we have

bb† = bb∗(bb∗)† = (a− a2)(a− a2)† = a(p− a)[a(p− a)]† = aa†(p− a)(p− a)†,(4.3)

so (p− a)(p− a)† − bb† = (1− aa†)(p− a)(p− a)†. Using that (1− aa†)(p−
a)(p− a)† is a self-adjoint idempotent we get

y = aa† + (1− aa†)(p− a)(p− a)†

= aa† + (1− aa†)
(
(1− aa†)(p− a)(p− a)†

)
= aa† + (1− aa†)

(
(1− aa†)(p− a)(p− a)†

)†
.

By Lemma 4.2 (i), it follows that y is a projection and yR = aa†R + (p −
a)(p− a)†R = aR+ (p− a)R = pR. So, y = p. Similarly, we get that

dd† + (1− p− d)(1− p− d)† − b†b = 1− p. (4.4)

Hence x = 1.
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(ii): It follows from Theorem 3.1.

(iii): By the proof of the item (i) of this Theorem we have that

(p− q)(p− q)†(1− p− q)(1− p− q)†

=
(
(p− a)(p− a)† + dd†

)(
(1− p− d)(1− p− d)† + aa†

)
= (p− a)(p− a)†aa† + dd†(1− p− d)(1− p− d)†.

As in (i), we have that bb† = aa†(p−a)(p−a)† and similarly b†b = dd†(1−p−
d)(1− p− d)†. Again, the proof of (i) distills (pq− qp)(pq− qp)† = bb†+ b†b.

The proof is completed. �

Theorem 4.6. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp, pqp, pqp and p q p are Moore-Penrose invertible. The following

conditions are equivalent:

(i) (pq − qp)R = (p− q)R,

(ii) (1− p− q)R = R,

(iii) p = pq(pq)†, q = qp(qp)†.

Proof. (i) ⇔ (ii): By Theorem 4.1 (iii) and (iv) using the notations given

in (2.3), we have that (i) is equivalent to

(p− a)(p− a)† = bb† and dd† = b†b. (4.5)

Similarly, (1− p− q)R = R is equivalent to (1− p− q)(1− p− q)† = 1. If in

Theorem 4.1 (iii) we replace p with p, we have that (1− p− q)(1− p− q)† =

(1− p− d)(1− p− d)† + aa†. Hence, (ii) is equivalent to (1− p− d)(1− p−
d)† + aa† = 1, i.e.

(1− p− d)(1− p− d)† = 1− p and aa† = p. (4.6)

By (4.3), we have that bb† = aa†(p − a)(p − a)†. Now, multiplying the

equality given in Lemma 2.4 (i) by aa† from the left side and using Lemma

2.3 (i), we get that

p− (p− a)(p− a)† = aa† − aa†(p− a)(p− a)†.
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Now, it is evident that (p − a)(p − a)† = bb† if and only if aa† = p. Analo-

gously, using (4.4), we get that dd† = b†b if and only if (1−p−d)(1−p−d)† =

1− p. Hence, (i) and (ii) are equivalent.

(ii) ⇔ (iii): By Corollary 4.1 and Lemma 2.3 (i), we have that (iii) is

equivalent to p = pq(pq)† = pq(pqp)† = aa† and q = qp(qp)† = (pq)†pq =

qp(pqp)†pq = a + b + b∗ + b∗a†b. Now, by Lemma 2.3 (ii), we get that (iii)

is equivalent to p = aa† and (1− p− d)(1− p− d)† = 1− p, which together

with (4.6) implies that (ii) and (iii) are equivalent. �

Theorem 4.7. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp, pqp, pqp, p q p and pqp are Moore-Penrose invertible. The

following conditions are equivalent:

(i) (pq − qp)R = R,

(ii) (p− q)R = R, (1− p− q)R = R,

(iii) (pR+ qR) ∩ (pR+ qR) = R, (pR+ qR) ∩ (pR+ qR) = R,

(iv) pR+ qR = R, pR+ qR = R, pR+ qR = R, pR+ qR = R.

Proof. (i) ⇒ (ii): Assume (pq − qp)R = R. By Theorem 2.1 (iv) we have

bb† + b†b = 1, which implies bb† = p and b†b = p. Obviously p − a ∈ pR,

which shows (p − a)(p − a)†R = (p − a)R ⊆ pR. By Lemma 2.2 (ii) we get

p = bb† = (p − a)(p − a)†bb†, which proves pR ⊆ (p − a)(p − a)†R. Since

pR = (p − a)(p − a)†R, then p = (p − a)(p − a)†. Also, from b†b = p and

Lemma 2.2 (iii), we get pdd† = p, hence dd† = p. From Theorem 2.1 (iii)

we get (p − q)(p − q)† = (p − a)(p − a)† + dd† = p + p = 1, which yields

(p − q)R = R. Furthermore, since (pq − qp)R = (p − q)R, by Theorem 4.6

we get (1− p− q)R = R.

(ii) ⇒ (i) is evident in view of Theorem 4.6.

(ii) ⇔ (iv): By Theorem 4.1 (iii), we have (p− q)(p− q)† = (p− a)(p−
a)† + dd† and (1− p− q)(1− p− q)† = (1− p− d)(1− p− d)† + aa†. Hence

(ii) is equivalent to the following

(p−a)(p−a)† = p, dd† = 1−p, aa† = p and (1−p−d)(1−p−d)† = 1−p.
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From Lemma 4.2, we can conclude that pR + qR = R if and only if

p(pq)† = p. By Theorem 4.1 (ii), we have that p(pq)† = dd†. Hence,

pR + qR = R if and only if dd† = 1 − p. Similarly, changing p, q with

1− p, 1− q, respectively, we get the following

(1− p)R+ qR = R ⇔ aa† = p,

pR+ (1− q)R = R ⇔ (1− p− d)(1− p− d)† = 1− p,

(1− p)R+ (1− q)R = R ⇔ (p− a)(p− a)† = p.

(iii) ⇔ (iv) is evident. �

Theorem 4.8. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp is Moore-Penrose invertible. Then

(i) (pq − qp)R = pqpR⊕⊥ pqpR,

(ii) (pq − qp)◦ = (pqp)◦ ∩ (pqp)◦.

Proof. (i): By Theorem 4.1 (iv), (pq − qp)R = (pq − qp)(pq − qp)†R =

(bb† + b†b)R. Since, bb† ∈ pRp and b†b ∈ pRp, we get that (bb†)(b†b) =

(b†b)(bb†) = 0 which implies that (pq − qp)R = bb†R+ b†bR = bR+ b∗R and

furthermore that this sum is orthogonal. �
(ii): By Theorem 4.1 (iv) and by Lemma 2.1 we have

(pq − qp)x = 0 ⇐⇒ (pq − qp)†(pq − qp)x = 0 ⇐⇒ (bb† + b†b)x = 0

⇐⇒ bb†x = 0 and b†bx = 0 ⇐⇒ b†x = 0 and bx = 0

⇐⇒ b∗x = 0 and bx = 0. �

Let us remark that when a and b are Hermitian commuting elements of

a ring with involution, the reverse order law for the Moore-Penrose inverse

holds, i.e. (ab)† = b†a† (see e.g., [3, Th. 6.3.2]).

Theorem 4.9. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp, p− pqp and pqp are Moore-Penrose invertible. Then

(i) pqR+ (p− q)R = (p+ q)R,
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(ii) pqR ∩ (p− q)R = {0} if and only if pq is a projection.

Proof. (i): By Lemma 4.2, we have that

x = pq(pq)† + (1− pq(pq)†)
(
(1− pq(pq)†)(p− q)(p− q)†

)†

is a projection and that xR = pqR + (p − q)R. By Corollary 4.1, we have

that (pq)† = q(pqp)† which using the notations introduced in (2.3), implies

that pq(pq)† = pqp(pqp)† = aa†. Also, by Theorem 4.1 (iii), we have that

(p− q)(p− q)† = (p− a)(p− a)† + dd†. Now,

x = aa† + (1− aa†)
(
(1− aa†)((p− a)(p− a)† + dd†)

)†

= aa† + (1− aa†)
(
(1− aa†)(p− a)(p− a)† + dd†

)†

= aa† + (1− aa†)
(
(p− aa†)(p− a)† + dd†

)†
.

Since (p− aa†)(p− a)† ∈ pRp and dd† ∈ pRp, we have that
(
(p− aa†)(p−

a)† + dd†
)†

=
(
(p − aa†)(p − a)†

)†
+ (dd†)† =

(
(p − aa†)(p − a)†

)†
+ dd†.

Since aa† = paa† = aa†p, it follows that p − aa† is a projection, which

implies that (p − aa†)† = p − aa†. Now, using the reverse order law for

the Moore-Penrose inverse and the fact that a, a† commute, we get that(
(p − aa†)(p − a)†

)†
= (p − a)(p − aa†) = p − a − aa† + aaa† = p − aa†.

Hence,

x = aa† + (1− aa†)(p− aa† + dd†) = p+ dd†.

Now, by Theorem 4.1 (i), it follows that x = (p+q)(p+q)†, i.e. xR = (p+q)R.

(ii) From Lemma 4.2, we have that

y = pq(pq)† − pq(pq)†
(
pq(pq)†

(
1− (p− q)(p− q)†

))†

is a projection and that yR = pqR ∩ (p − q)R. As in the proof of item (i),

we have that

y = aa† − aa†
(
aa†

(
1− (p− a)(p− a)† − dd†

))†

= aa† − aa†
(
aa† − aa†(p− a)(p− a)†

)†
.
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By Lemma 2.4 (i) and Lemma 2.3 (i), we have that aa†−aa†(p−a)(p−a)† =

p− (p− a)(p− a)† which is a projection, so we get that

y = aa† − aa†
(
p− (p− a)(p− a)†

)
= aa†(p− a)(p− a)†.

By (4.3), we have that y = bb†. Now, pqR ∩ (p − q)R = {0} if and only if

y = 0 if and only if b = 0 which is equivalent to pq = qp. Finally, since p, q

are projections, pq = qp is equivalent to the fact that pq is a projection. �

Theorem 4.10. Let R be a ∗-reducing ring and p, q ∈ R be two projections

such that pqp and pqp are Moore-Penrose invertible. Then the following

conditions are equivalent:

(i) pR ∩ qR = {0},

(ii) (p− q)R = pR+ qR,

(iii) pqR⊕⊥ pqR = pR+ qR.

Proof. By Lemma 4.2 (ii), it follows that pR ∩ qR = {0} is equivalent to

p = p(pq)†. Now, by using the representations of p, q given in (2.2) we have

p(pq)† = p(pq)∗ [pq(pq)∗]† = pqp(pqp)† = (p− a)(p− a)†.

Hence, (i) is equivalent to p = (p− a)(p− a)†.

For the element x defined in item (i) of Lemma 4.2, we have that

x = p+pq(pq)† = p+pq(pq)∗ [pq(pq)∗]† = p+pqp(pqp)† = p+dd†. (4.7)

By (4.7) and Theorem 4.1 (iii) one has

(p− q)(p− q)† = (p− a)(p− a)† + dd† = (p− a)(p− a)† + x− p.

Thus, (i) is equivalent to (p− q)(p− q)† = x.

(i) ⇒ (ii): If (p − q)(p − q)† = x, then by Lemma 4.2 (i), one has

(p− q)R = (p− q)(p− q)†R = xR = pR+ qR.

(ii) ⇒ (i): From the hypothesis and Lemma 4.2 (i), we get (p − q)(p −
q)†R = xR. Since both (p − q)(p − q)† and x are projections we get (p −
q)(p− q)† = x.
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(ii) ⇔ (iii): This part follows by Theorem 3.1. �
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