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Equalities of ideals associated with two

projections in rings with involution

Julio Benitez * and  Dragana Cvetkovi¢-Ilié T

Abstract

In this paper we study various right ideals associated with two
projections (self-adjoint idempotents) in a ring with involution. Re-
sults of O.M. Baksalary, G. Trenkler, R. Piziak, P.L. Odell, and R.
Hahn about orthogonal projectors (complex matrices which are Her-
mitian and idempotent) are considered in the setting of rings with
involution. New proofs based on algebraic arguments; rather than
finite-dimensional and rank theory; are given.

AMS classification: 16W10, 16D25
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1 Introduction

Throughout this paper, the symbol R will denote a unital ring (1 will be
its unit) with an involution and the term ring will mean unital ring. Let
us recall that an involution in a ring R is a map a — a* in R such that
(a4 b)* = a* +b*, (ab)* = b*a* and (a*)* = a for any a,b € R. The word

‘projection’ will be reserved for an element ¢ of R which is self-adjoint and
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idempotent, that is ¢* = ¢ = ¢>. With each element a € R we associate an
image ideal aR = {az : x € R}, and a kernel ideal a®° = {z € R : ax = 0}
The paper studies some ideals and functions depending on two projec-
tions of a ring with an involution. The results given here generalize to several
considered in [1, 14]. It is worthy to note that in the proofs of those results,
matrix theory is used (specifically, rank theory and singular value decom-
position). We believe that giving simpler and algebraic proofs (our proofs
only use algebraic reasonings) gives a greater insight of the problems con-
sidered here. We will notably consider the case of a #-reducing ring (where
there is an implication a*a = 0 = a = 0 for all a € R). One of the most
important tools in this case is the Moore-Penrose inverse theory, which will
be quickly revised together with useful results in section 2. Section 3 then
studies invertibility of p + ¢ and p — ¢ in rings with involution, together
with ideal properties. Section 4 finally focuses on *-reducing rings. In this
case, existence of particular Moore-Penrose inverses leads to certain ideal

equalities.

2 Moore-Penrose inverse and auxiliary lemmas

The link between generalized inverses and range or kernel ideals is not new.
See for instance [4, 5] in the case of semigroups, [13] in rings or [6, 7] in
C*-algebras. The study of sums and difference of idempotents has notably
been studied in connections with the Drazin inverse (see for instance [12]
and references therein). In this paper, we use the involutive structure of
the ring and properties of the Moore-Penrose inverse to study particular
idempotents, projections (self-adjoint idempotents).

It can be proved that for any a € R, there is at most one af € R such
that

aala = a, alaa’ = af, (aa")* = aal, (aTa)* = ala.

(see [3], [6], [7], [8], [16]). If there exists such af we will say that a is Moore-

Penrose invertible and call o' the Moore-Penrose inverse of a. The subset of



R composed of all Moore-Penrose invertible elements will be denote by RT.
We write R™! for the set of all invertible elements in R.

We say that a € R is relatively reqular if there exists b € R such that
aba = a. In this case b is called an inner generalized inverse of a. A known
result (see Theorem 1.4.11 of [3]) is the following: let R be a ring with
involution obeying the Gelfand-Naimark property. Then a € R is Moore-
Penrose invertible if and only if a is relatively regular. Let us recall that a
ring R with involution has the Gelfand-Naimark property if 1 + z*2 € R~!
for all x € R. It is known that any C*-algebra has the Gelfand-Naimark
property. See also [6] and [11].

An element a € R is left x-cancellable if a*axr = a*ay implies ax = ay.
Analogously, a € R is right *-cancellable if xaa* = yaa* implies xa = ya.
Finally, a € R is x-cancellable if it is both left and right *-cancellable. A ring
R is called *-reducing if every element of R is x-cancellable. Let us remark
that any C*-algebra is a *-reducing ring.

We use the following notation: If X, Y C R, then

X1lY <<= V(zy)eXxY, z'y=0.

Observe that if R is #-reducing and if X # & # Y, then X 1 Y implies
XnY ={0}.
Let € R and let p € R be an idempotent (p = p?). Then we can write

x=prp+pr(l—p)+ (1 —plzp+ (1 —p)xz(1l—p)

and use the notations

T11 = pIp, x12 = pr(1—p), x91 = (1—p)zp, xo2 = (1—p)x(1—p).

Every projection p € R induces a matrix representation which preserves the
involution in R, namely x € R can be represented by means of the following

matrix:

. pITp pr(1—p) ] _ [5511 5612]

(2.1)
(L=p)zp (1 =plzl=p)|

Ta1 T22
p



From now on, for an arbitrary projection p, we shall denote p = 1 — p.
Two elementary facts derived from the definition of the Moore-Penrose

inverse are the following:

(i) Let a € R. Then a € RT <= a* € RT, and under this situation one
has (a*)t = (ah)*.

(ii) Let a € Rf. Then af € R and (a") = a.
The following simple result also will be useful.
Lemma 2.1. Let R be a ring with involution and a € R. Then
(i) If a € RT, then a*a,aa* € Rt and

(a*a)t = al(a®), (aa*)! = (a")al, o = (a*a)Ta* = a*(aa®)!, o =alaa* = a*aal.

(ii) If R is x-reducing, then a*a € R = a € RT and aa* € Rt = a € R,

Proof. The proof of (i) is a consequence of direct computations. We will
prove only the first implication of (ii) since to prove the other one, it is
sufficient to make the same argument for a* instead of a. Assume that
a*a € RT, and let 2 = (a*a)fa*. Observe that the Moore-Penrose inverse
of a selfadjoint Moore-Penrose invertible element is again self-adjoint, and
thus, (a*a)! is self-adjoint. Now (az)* = [a(a*a)*a*]* = a(a*a)fa* = ax;
ra = (a*a)ta*a is selfadjoint; zax = (a*a)fa*a(a*a)la* = (a*a)la* = z.
Finally, a*aza = a*a(a*a)fa*a = a*a, and since R is *-reducing, we get
axa =a.

A simple consequence of Lemma 2.1 is the following: Let z € Rf be
self-adjoint. Then zz! = z'z and z is the commuting (or group) inverse
of x (see for instance [6]). In fact, zz! = z(a*z)tz* = 2*(22*)tz = 2fa.
For a better insight on the the formulas of Lemma 2.1, commutation and
cancellation properties, see [5]. For the class of elements x in a C*-algebra
such that zz! = 2fz, the reader is reffered to [2, 10]. More generally,
elements admitting both a group inverse and a Moore-Penrose inverse are

discussed in [15] in the case of a ring.



Let p and ¢ be two projections in a ring R with involution. Then

p 0 a b
— d — : 2.2
P [0 0] an q [b* d] (2.2)
p p

where

a=pgp, b=pe(l—p), d=(1-p)(l-p). (2.3)
Lemma 2.2. Let p,q € R be projections given by (2.2). Then
(i) a = a® + bb*,
(i1) b= ab+ bd,
(iii) d = d* + b*b,

Proof. All the equalities follow from the condition ¢ = ¢%. [

The following result is a generalization of Lemma 3 (v)-(x) from [1]:

Lemma 2.3. Let R be a *-reducing ring. If p,q € R are projections given
by (2.2), then the following hold:

(i) If a is Moore-Penrose invertible, then aatb = b,

(ii) If1—a is Moore-Penrose invertible, then (1—a)(1—a)fb= (p—a)(p—
a)tb=b,

(iii) If d is Moore-Penrose invertible, then bdd’ = b,

(iv) If 1 —d is Moore-Penrose invertible, then b(1 —d)(1 —d)t = b(1 —p —

(v) Ifa and 1 —d are Moore-Penrose invertible, then alb = b(1—p—d)f =
b(l - d)T}

(vi) If 1 —a and d are Moore-Penrose invertible, then bd' = (1 — a)Th =
(p — a)fb.



Proof. (i): Since a = pgp = pq(pq)* is Moore-Penrose invertible, by Lemma

2.1, we have that pq is Moore-Penrose invertible and

aa'd = pq(pq)*(pa(pa)*)'pe(1 —p)

= palpa)*((pa)*) (pa)Tpa(1 — p)

T

(
= pa(pa)'pa(pg)'pa(1 — p)

= b

To prove (ii), it is sufficient to use former item (i) for projections p and 1—g.
If we use item (i) for projections 1 — p and ¢, we get ddb* = b*, and (iii)
follows by taking * in both sides. Item (iv) follows by using item (i) for
projections 1 — p and 1 — gq.

(v): Observe that since ¢ is self-adjoint, then the representation of ¢
given in (2.2) implies that a is self-adjoint, hence aa! = afa. By condition
(ii) of Lemma 2.2 and by (i), it follows that a'b = a'(ab+bd) = aa’b+a'bd =
b+ a'bd. Hence,

b=a'b(1—d)=a'b(1—p—d).

Multiplying the last equality from the left side by (1 — d) and using (iv),
we get that b(1 — d)! = a'b. Similarly, a’b = b(1 — p —d)T. The proof of (vi)
follows by using item (v) for projections p and 1 — ¢. O
Lemma 2.4. Let R be a x-reducing ring. If p,q € R are projections and q
is partitioned as in (2.2), then
(i) If1—a and d are Moore-Penrose invertible, then a — bd'v* =1 — (1 —
a)1-a)f =p—(p-a)i(p-a),
(ii) If a and 1 —d are Moore-Penrose invertible, then d —b*a’b =1 — (1 —
d(l-d)f =1-p—(1-p-d)(1-p-d),
(iii) If 1 — a and d are Moore-Penrose invertible, then d + b*(1 — a)Tb =
d+b*(p—a)tb = ddf,

(iv) If a and 1 — d are Moore-Penrose invertible, then a + b(1 — d)b* =
a+b(l—p—d)t* =adl.



Proof. (i): As we pointed out in the proof of item (v), Lemma 2.3, we have
that a is self-adjoint, hence 1 —a is again self-adjoint, and thus, (1 —a)f(1 —
a) = (1 —a)(1 —a)f. Now we have

l—-a=(1-a)(l-a)1—a)=10-a)f(1-a)—1—-a)1l-a)a.

By Lemma 2.3 (vi), Lemma 2.2 (i), and the previous computation, we get
that bd'b* = (1—a)tod* = (1—a)f(1—a)a = (1—a)'(1—a)— (1—a). Hence,
a—bd'b* =1~ (1—a)(1—a)f. The proofs of (ii)-(iv) are similar. OJ

3 Projections in rings with involution

Theorem 3.1. Let R be a ring with involution and p,q € R be projections.
Then

(p — ¢)R = pgR &+ pgR.

Proof. It is evident that pgR L pgR. Now, we will prove that (p — q)R =
pgR+DpgR. Take any z € (p—q)R. We have that z = (p—q)x for some z € R.
If we take y = (1—2¢)z, we get (p—q)x = pqy+Dpqy, so (p—q)R S pgR+pgR.
For arbitrary a € pqR 4+ pgR, we have that a = pqy; + pqy;, for some
y1,y2 € R and

a = pqy1 +pqy2 = (p — q)(y1 — qy1 — qu2),

ie., a € (p—q)R. Hence pgR +pgR C (p — ¢)R. The proof is completed. O]
In [9, Th. 4.2] it was characterized when the difference of two projections

is invertible. Former Theorem 3.1 permits give another characterization.

Corollary 3.1. Let R be a ring with involution and p,q € R be projections.
Then p — q is invertible if and only if pgR &+ pgR = R.

Theorem 3.2. Let R be a ring with involution and p,q € R be projections.

The following statements are equivalent:

i) p+qgeR!,



(ii) There exists h € R such that 1 = ph+ q(1 — h) and (1 — h)p = hgq,
(iii) There exists h € R such that h = ph, g(1—h) = 1—h and (1—h)p = hq.

The element h in conditions (ii) and (iii) is unique and it satisfies h =

plp+q) .

Proof. (i) = (ii): Define h = p(p+¢q)~!. Obviously, one has (1 —h)p = hq.
Since (p + q)p = p + ¢ + 2gp — q(p + q), we have (p + ¢)h = 1+ 2¢gh — ¢,
which implies 1 = ph + ¢(1 — h).

(ii) = (i): From (1 — h)p = hq we get p = (p + q)h*. Now,

(p+¢q)(1 —h—h*+2h*h) = ph+q(1 — h) = 1.

Since p+q and 1 — h — h* 4+ 2h*h are self-adjoint, by taking * in (p+ ¢)(1 —
h—h* 4+ 2h*h) = 1 we get (1 — h — B* + 2h*R)(p + ¢) = 1.

(ii) = (iii): Since we have proved (ii) = (i), we get p+q € R~!. The sec-
ond condition of (ii) leads to h = p(p+ ¢)~'. Thus ph = h, and substituting
this into 1 = ph +¢q(1 — h) leads to 1 = h+ ¢q(1 — h), i.e.,, g(1 —h) =1 —h.

(ii) = (ii): It is evident. O

Theorem 3.3. Let R be a ring with involution and p,q € R be projections.

The following statements are equivalent:
(i) There exists h € R such that h = ph and q(1 —h) =1 —h,
(ii) R =pR+ ¢R.

Proof. (i) = (ii) follows from 1 = h+ (1 — h) = ph + q(1 — h) € pR + qR.
(ii) = (i): Let z,y € R be such that 1 = px+qy and let us denote h = px.
Now, ph =hand q(1 —h)=¢q(l —pz) =qqy=qy=1—pr=1—h. O

As a corollary of Theorem 3.2, Theorem 3.3 and [9, Theorem 4.4], we

have the following:

Corollary 3.2. Let R be a ring with involution and p,q € R be projections.

The following statements are equivalent:



1) p+q€ R and h =p(p+ q)~! is idempotent,

2) R=pRDqR,

3) p—qeR!

4) There exists idempotent k such that kR = pR and (1 — k)R = ¢R.

Proof. 1) = 2)h=p(p+¢)~' = (1—-h) =q(p+q)~" and hR = pR,
(1 — h)R = gR. h? = h then implies R = hR @ (1 — h)R = pR D ¢R.

2) = 3) = 4) by [9, Theorem 4.4].

4) = 1) By Lemma 4.1, we have that k satisfies pk = k, kp = p,
q(1 —k) =k and (1 — k)qg = q. It follows that (1 — k)p = 0 = kq and k

satisfies condition 7i7) of Theorem 3.2.

4 Projections in x-reducing rings
We shall need the following simple lemma:
Lemma 4.1. Let 2,y € R.

1) If x, y and xy are self-adjoint, then yx = zy.

2) Selfadjoint x is an invertible if and only if there exists y € R such that
xy =1 if and only if xR = R.

3) If e and f are idempotents, then eR = fR if and only if ef = f and
fe=e.

4) If p,q are projectors and pR = qR, then p = q.

Proof. The proofs of 1) and 2) are trivial.

3) Let e, f € R be two idempotents such that eR = fR. Since e € eR =
fR, then exists t € R such that e = ft, so fe = e. By reversing the roles of
e and f we have ef = f.

4) It follows by 3). O



The following result which will be of major importance in the sequel, give
sufficient conditions for the Moore-Penrose invertibility of several elements
in a *-reducing ring of the form f(p,q), where p and ¢ are two projections

and f is a polynomial in two non-commuting variables.
Theorem 4.1. Let R be a x-reducing ring. If p,q € R are projections, then

(i) If pgp and pgp are Moore-Penrose invertible, then p + q is Moore-

Penrose invertible and

(p+a)(p+a)' =p+Dapap)'.

(i1) If pgp is Moore-Penrose invertible, then pq is Moore-Penrose invertible

and

(pa)" = a(pap)".
(iii) If pgp and pgp are Moore-Penrose invertible, then p — q is Moore-

Penrose invertible and

(»—a)(p—a)' = (p — pap)(p — pap)" + a(pap)'.

(iv) If pgp is Moore-Penrose invertible, then pq — qp is Moore-Penrose in-

vertible and

(pg — ap)(pg — ap)" = pa(pap)’ + (pap)'qp.
Proof. (i): Let us suppose that the projections p and g are represented as in
(2.2). By hypothesis one has that p—a,d € Rt. Since 1 —a = (p—a)+(1—p)
and p —a,p € RT (observe that since P is a projection, obviously p € R and
pl =7) we get 1 —a € RF. Let
1

x:i(er(p—a)(p—a)T)—de—dTb*+2dT—ddT. (4.1)
We shall prove that = (p + ¢)T by verifying the four conditions of the
Moore-Penrose invertibility. We shall decompose x as in (2.1). Obviously

we have

pr = x11+T12 and qr = ax11+bro1+ax12+broe+b* 11 +dro +b" T12+dwos,

10



where

1

T11 = 3 (p +(p—a)(p— G)T) ; T12 = —bd', z91 = —d'b*, Loy = 2dT—dd".

2

Let us remark that p — a is self-adjoint. Then

p—a=@p—-a)p—alp-a)i=@p-ap-—a)—ap-—alp-a)l,

and thus, by utilizing Lemma 2.4 (i) we get

p+a) (p+p-ap-at) = p+E-a)p-a +a+ap-ap-a
= 2[(p-a)p—a) +d
= 2 [p+ deb*] .

Thus,

1
r11 + axiy + bxoy = §(p +a) (p +(p—a)p— a)T) —bd'b* = p.

Observe that Lemma 2.3 (ii) in conjunction with Lemma 2.3 (vi) can be

written bd' — b = abd!. Hence by Lemma 2.3 (iii), we get
T12 + azis + bros = —bd' — abd' + b(2alT - ddT) =0.

Lemma 2.3 (ii) and the self-adjointness of a imply b*(p — a)(p — a)" = b*.
Furthermore, from the definition of b given in (2.3) we trivially get b*p = b.
Now, Lemma 2.3 (iii) yields

1
b*z11 + dxoy = ib* (p +(p—a)p— a)T> —dd'p* = 0.

Since q is self-adjoint, the representation of ¢ given in (2.2) yields that d is
self-adjoint, hence dd" = d'd. In view of 2.2 (iii), we have

b* 219 + daoy = (d* — d)d" + 2dd" — d = dd.
The above computations show that
(p+ @z =p+dd. (4.2)

11



Thus, (p + ¢)x is self-adjoint. Since x, p + ¢, and (p + ¢)x are self-adjoint,
fact (??7) permits get that z(p+¢q) = (p+¢)z. By Lemma 2.3 (iii) and (4.2)
we easily have (p+q)x(p+q) =p+q and z(p + q)x = z.

Now, since d = (1 — p)q(1 — p), it is evident that (i) holds.

(ii): Since (pq)(pq)* = pgp € RT, by Lemma 2.1 we have pg € R' and

(P)' = (B0)" (PaP0)) = ap(Bap)" = a(P4p)"-
By computation we get that pg(pq)" = pgp(pgp). Now (pq)'pq is self-

adjoint, hence

*

pa] = ap (00| = ap1@0)"]" = aplap),

(Pq)'pg = [(ﬁq)

and thus, by Lemma 2.1,

pa = p4a(pa)'pa = pap(ap)' = pap(ap)” [ap(ap)"]" = Pa(ap)* [4P(aP)]" = Pa(ap)".
(iii): Let us denote z [ o) pr *aT *ZZ:]p By a direct computation

and Lemma 2.2 (iii), Lemma 2.3 (ii), (iii), (vi), and Lemma 2.4 (i) we get
(p—q)z = (p—a)(p—a)l +dd is self-adjoint. Since z is self-adjoint we get
that z(p—¢q) = (p—q)z. By Lemma 2.3 (ii), (iii) we get (p—¢q)z(p—q) =p—¢q
and z(p —q)z = z. Thus, p—q € Rt and z = (p — ¢).

(iv): Observe that pg — gp = b — b*. Since b = pgp € RT and bf =
b*(bb*)' € PRp, by a direct verification of the four Moore-Penrose equations
and using Lemma 2.1 we get (pg—qp)!t = bt — (b*)" and (pq—qp) (pg—qp)" =
bb' + bTh. O

Corollary 4.1. Let R be a x-reducing ring. If p,q € R are projections
such that pqp is Moore-Penrose invertible, then pq is also Moore-Penrose

invertible and (pq)t = q(pgp)?.

Proof. It follows from Lemma 4.1 (ii) by changing p by p. O
The following result is a generalization of the result given in [14, Th. 3,

Th. 4] for the matrix case:

Lemma 4.2. Let R be a *-reducing ring. and let p,q € R be projections
such that pgp and pgp are Moore-Penrose invertible. Then

12



(i) z =p+p(Pq)' is a projection and xR = pR + ¢R,
(ii) y =p — p(pg)" is a projection and yR = pR N ¢R.

Proof. (i): By Theorem 4.1 (i) and (ii) we have 2 = p + p(pg)’ = p +
pqa(Pgp)’ = (p + ¢)(p + ¢)f, which implies that z is a projection. Since,
z=pp+qt +qlp+q)F, it is evident that zR C pR + ¢R. Observe that
pa(Pa)’ = [pa(Pq)']” = [(Pq)']" qp, which yields zp = (p + Pq(pg)")p = p.
fromp+qg=p+@P+9'p+q =xp+q) =xp+xqand zp = x we
deduce zq = q. Finally, pR + qR = xpR + xqR C zR.

(ii): First of all, we must prove that the definition of y is meaningful,
in other words, we must prove that pg € R; but this follows easily from
p—rpep € R, (p7)(pg)* = pgp = p — pgp and Lemma 2.1. Since y =
p — pg(pq)t, we have that y is self-adjoint. Using that (pg)fp = (pg)t, we
trivially get y> = y. Let us remark that we can write y = p — pg(pq)p.
Evidently, y € pR, so yR C pR. Since yg = (p — pg(pq)'p)g = 0, we have
yq = y. By taking * in the last equality we have qy = y, hence yR C ¢R.
Thus yR C pR N gR.

To prove pR N qR C yR, take arbitrary z € pR N gR. Observe that

va)! = [patra)'| = [w0)'] @ = (b0 ) v = (@) o
Since z = pz = qz, it follows that yz = (p— (qp)'gp)z = 2. Hence, pRN¢R C
yR. O

Next four results continue the study of the sum p + ¢ and the ideals

(p+ ¢)R, (p + ¢q)° under the additional assumption that pgp and pgp are

Moore-Penrose invertible.

Theorem 4.2. Let R be a x-reducing ring and p,q € R be two projections
such that pgp and pgp are Moore-Penrose invertible. Then

(i) (p+ @R = pgpR ®* pR.
(ii) (p+ @R =pgR &+ pR.

(ili) (p+ @R =pR+qR.

13



(iv) (p+ R =(p—QR®*+ (PRNR).
(v) (p+4a)° = (Pg)° Np°.
(vi) (p+q)°=p°N¢°.
Proof. (i): It is evident that pgpRLpR. By Lemma 2.1 (i), we have that

p+q=pq+p(l+q) =5qe(pg)! pqap(pap

which implies that (p + ¢)R C pgpR + pR. To prove the opposite inclusion,
take arbitrary z € pgpR + pR. We have z = pgpx + py for some z,y € R.
By Theorem 4.1 (i), we get (p+ q)(p + q)Tz = z, so z € (p + q)R. Hence
(p + @)R = pgpR + pR.

(ii): Since for any Moore-Penrose invertible a € R, one has aR = aa'R,
by Theorem 4.1 (ii), we have pgR = pgpR. Now, the assertation follows by
item (i).

(iii): The inclusion C is evident. To prove the opposite, let us use the
notations given in (2.3) and let us demonstrate pg + dd'q = ¢. In fact,
Lemma 2.3 (iii) yields dd'b* = b* and now

pq+dd'q=pg+dd (1 —p)g=pg+dd (b*+d)=pg+b+d=q.

If x € pR + ¢R, then exist u,v € R such that = pu + qu. By Theorem 4.1

(i), one gets
(p+q)(p+q)z = (p+dd") (pu+ qu) = pu+pquv +dd'qu = pu+quv = x.

Thus, z = (p+ ¢)(p + @)’z € (p+ Q)R-

(iv): By Theorem 4.1 (i) and (iii) and (2.3), it follows that (p+q)(p+q)t =
p+dd and (p—q)(p—q)' = (p—a)(p — a)l + dd'. By Lemma 4.2 (i), it
follows that y = p — p(pg)' is a projection and yR = pRN¢R. If in Theorem
4.1 (ii), we replace p with p and ¢ with g, we get that (pq)! = g(pgp)T, so
y=p—(p—a)(p—a)l. Now, since p—(p—a)(p—a)' and (p—a)(p—a)’+dd’
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are commuting projections which product is equal to zero, we have

p+aR = p+ddR = ((p-a)p—a) +dd)+(p-(p-a)p-a))R
= (p-a@-of +dd ) Re* (- - a)p-a))R
= (p- R PRNGR).

(v ©): Let z € (p+ q)°. By Theorem 4.1 (i) and by employing the
notations given in 2.2 we have 0 = (p+¢)T(p+q)z = (p+dd" )z = pr+dd'z;
which by premultiplying by p and 7 we get 0 = pz and 0 = dd'z, respectively.
Notice that 0 = dd'z <= da = 0. Finally, pgzr = (b* + d)z = b*z + dz =
pqpx + dx = 0.

(vD): Let x € (pq)°Np°. we have 0 = pgr = (b*+d)x = (pgp+d)z = dx.
From Theorem 4.1 (i) we get (p+¢q)(p+q)'z = (p+dd")x = pzr +dd'z = 0,
which leads to (p + q)z = 0.

(vi): The inclusion p° Ng° C (p+ ¢)° is obvious. Let x € (p+¢)°. Asin
the proof of (i C) we get pxr = 0. Now, (p + ¢)x = 0 leads to gz = 0. O

Observe that Theorem 4.2 (ii) and (vi) generalize to [14, Cor. 2]. Remark
that Theorem 6 and Theorem 8 from [1] are equivalent (replacing P with
I — @ and @ with P in Theorem 6, we get Theorem 8). The following

corollary follows immediately from Theorem 4.2.

Corollary 4.2. Let R be a *-reducing ring and p,q € R be two projections
such that pgp and pgp are Moore-Penrose invertible. Then the following

statements are equivalent:
(i) p+ q is invertible,
(i) R = pgR &L pR,
(iii) R = pgpR &+ pR,
(iv) R =pR + ¢R.

Theorem 4.3. Let R be a *-reducing ring and p,q € R be two projections
such that pgp and pgp are Moore-Penrose invertible. Then

15



(i) A=-PPR=(p+ R,

(i) 1-p9)°=(p+q)°
Proof. (i): By Theorem 4.1 (i), using the notations given by (2.3), we get
that (p+¢q)(p+¢q)T = p+dd’. On the other side, since 1 —p g = p + b* +d,
by Lemma 2.3 it is easy to check that (1 —p ) = df — b*(p — a)T + p, so
(1-pQ(1-pq)" =p+dd. Hence, 1 =51 -2 )" =(p+q)(p+q)T
which is equivalent to (1 —p §)R = (p + q¢)R.

(ii): By Theorem 4.2 (v), we have (p + ¢)° = (pg)° Np°. Let us prove

(1-p79° = (pg)°Np° If z € (1 —p7q)°, then p gz = =z, which yields
pqr = pr+qz, hence pr = 0 and (1—p)gz = 0, in other words, = € (pq)°Np°.

The opposite inclusion is evident. [

Theorem 4.4. Let R be a x-reducing ring and p,q € R be two projections
such that pgp and pgp are Moore-Penrose invertible. Then

(i) (pg—ap)R C (p+ QR
(i) (p+q)° C (pg —ap)°.
Proof. (i): By Theorem 4.1 (i), we have that (p+q)(p+q)" = p+pe(pgp)'.
Now, by Lemma 2.3 (iii) using the notations from (2.3), we have that
(0 +a)(p+ ) (ba — ap) = (0 + Pa(aD)") (g — ap)
= pg — pap — Pa(pgp) ' Pap

= pq(1 — p) — pap(Bqp) ' Bap

= b —dd'b*
=b—0b"
= Pq — 4qp,
which implies that (pg — gp)R C (p + q)R.
(ii): It follows from Theorem 4.2 (vi).OI
Note that the inclusions in the previous theorem can be strict, as shows

the case ¢ = 1 — p. Next theorems study further the image ideal (pg — gp)R
together with the ideals (p — ¢)R and (1 —p — ¢)R.
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Theorem 4.5. Let R be a *-reducing ring and p,q € R be two projections
such that pqp, pqp, pqp, pgp and pgp are Moore-Penrose invertible. Then
Q) - -'+1-p-a)(1—p—a)T — (pg — qp)(pg — qp)’ = 1,

i) - R+ (1 -p—qR=2R,

(i) (p—a)p— )1 —p—q)1—p—q)' = (pg—ap)(pg — qp)'.

Proof. (i): Let z = (p—q)(p—q)'+(1—p—q)(1—p—q)"— (pg—aqp) (pg—qp)'.
By the proof of Theorem 4.10 we have (p—¢q)(p—q)t = (p—a)(p—a)' +dd'.
By doing the same computation having replaced p by p we get (1 —p —
)(1—p—q)f =1 —-p—d)(1—p—d)f+aa’. By Theorem 4.1 (iv) we get
(pq — qp)(pq — qp)T = bb' + b'b. Thus,

r=@p—-—a)p—a)+dd'+ (1 —p—d) 1 —p—d)t +aal —bb" —b'b.

Denote y = aa’ + (p — a)(p — a)T — bb'. Since a is self-adjoint, we get that
the elements of the set {a,af,p — a, (p — )} are mutually commuting by
Lemma 4.1. Now it is easy to prove by the definition of the Moore-Penrose

inverse that [a(p — a)]' = a(p — a)f. By Lemma 2.2 (i), we have
bbf = 00" (0b")" = (a — a®)(a — a®)' = a(p — @)[a(p — @) = aa’(p — a)(p — a)"(4.3)

so (p—a)(p—a)t —bbt = (1 —aa’)(p —a)(p—a)f. Using that (1 —aa®)(p —

a)(p — a)' is a self-adjoint idempotent we get

y = ad +(1—ad)(p—a)(p—a)f
= aaT—l—(l —aaT)((l—GGT)(p_a)(p_a)T)
= aa'+ (1 - aa)((1 - aa)p— a)(p — a)")".

By Lemma 4.2 (i), it follows that y is a projection and yR = aa'R + (p —
a)(p—a)fR=aR+ (p— a)R =pR. So, y = p. Similarly, we get that

dd'+(1-p—d)(1—p—d)f —blb=1-p. (4.4)
Hence x = 1.
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(ii): It follows from Theorem 3.1.
(iii): By the proof of the item (i) of this Theorem we have that

pP-ap-)'1-p-—q)(1—p—2q)

= (- a)p—a) +ad") (1 -p—d)(1 = p - &) +aal)
=(p-a)p—a)aa +dd"(1—p—d)(1—p—d).
As in (i), we have that bbT = aa’(p—a)(p—a) and similarly b'b = dd(1—p—
d)(1—p—d)t. Again, the proof of (i) distills (pqg — qp)(pq — qp)t = bbT + bTb.
The proof is completed. [

Theorem 4.6. Let R be a *-reducing ring and p,q € R be two projections
such that pgp, pqp, Dqp and pqp are Moore-Penrose invertible. The following

conditions are equivalent:
(i) (pg —ap)R = (p — Q)R
(i) (1-p-q)R=R,

f g = qp(gp)t.

(iii) p = pa(pq)
Proof. (i) < (ii): By Theorem 4.1 (iii) and (iv) using the notations given
in (2.3), we have that (i) is equivalent to

(p—a)(p—a)t =bb" and ddt = bfb. (4.5)

Similarly, (1 —p —¢)R = R is equivalent to (1 —p —¢)(1 —p—¢)T = 1. If in
Theorem 4.1 (iii) we replace p with 7, we have that (1—p—¢q)(1—p—q)f =
(1—p—d)(1 —p—d)f +aal. Hence, (ii) is equivalent to (1 —p—d)(1 —p —
At 4+ aat =1, ie.

1-p—-d)(1-p—d)f=1-p and aa’ =p. (4.6)

By (4.3), we have that bb' = aa'(p — a)(p — a)'. Now, multiplying the
equality given in Lemma 2.4 (i) by aa’ from the left side and using Lemma
2.3 (i), we get that

p—(p—a)p—a) =aa’ —aal(p—a)(p—a)l.
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Now, it is evident that (p —a)(p — a)’ = bb! if and only if aa’ = p. Analo-
gously, using (4.4), we get that dd' = bb if and only if (1—p—d)(1—p—d)' =
1 — p. Hence, (i) and (ii) are equivalent.

(ii) < (iii): By Corollary 4.1 and Lemma 2.3 (i), we have that (iii) is
equivalent to p = pg(pg)" = pg(pgp)’ = aal and ¢ = qp(qp)" = (pg)Tpq =
ap(pap)'pg = a + b + b* + b*a’b. Now, by Lemma 2.3 (i), we get that (iii)
is equivalent to p = aa’ and (1 —p —d)(1 —p — d)" = 1 — p, which together
with (4.6) implies that (ii) and (iii) are equivalent. [J

Theorem 4.7. Let R be a *-reducing ring and p,q € R be two projections
such that pgp, pgp, pqp, pqp and pgp are Moore-Penrose invertible. The

following conditions are equivalent:
(i) (pg—ap)R =R,
(i) P-@R=R, (1-p-g)R=2R,
(i) (pR+qR) N (PR +qR) =R, (pPR+qR) N (PR +qR) = R,
(iv) pR+qR =R, pR+GR =R, DR+ qR =R, PR+ GR = R.

Proof. (i) = (ii): Assume (pg — gp)R = R. By Theorem 2.1 (iv) we have
bbt + bTh = 1, which implies bb = p and b'b = 5. Obviously p — a € pR,
which shows (p —a)(p — a)IR = (p — a)R C pR. By Lemma 2.2 (ii) we get
p = bbl = (p—a)(p — a)Tbb, which proves pR C (p — a)(p — a)IR. Since
pR = (p—a)p—a)fR, then p = (p — a)(p — a). Also, from bfb = p and
Lemma 2.2 (iii), we get pdd’ = P, hence dd' = p. From Theorem 2.1 (iii)
we get (p—q)(p—q)f = (p—a)(p — @)t +dd" = p+p = 1, which yields
(p — ¢)R = R. Furthermore, since (pg — qgp)R = (p — q)R, by Theorem 4.6
we get (1—p—q¢@R=2R.

(ii) = (i) is evident in view of Theorem 4.6.

(ii) < (iv): By Theorem 4.1 (iii), we have (p —q)(p — ¢)T = (p — a)(p —
a)f+ddfand (1-p—q)1-p—¢@)f =1 -p—d)(1 —p—d)t + aa’. Hence

(ii) is equivalent to the following

(p—a)(p—a) =p, dd" =1—p, aa’ =pand (1-p—d)(1-p—d)f =1—p.
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From Lemma 4.2, we can conclude that pR + ¢R = R if and only if
()T = p. By Theorem 4.1 (ii), we have that B(pq)" = ddf. Hence,
pR + ¢R = R if and only if dd! = 1 — p. Similarly, changing p, ¢ with
1 —p, 1 — q, respectively, we get the following

(1—pR+¢R=R < aal =p,
PR+(1-gR=R & (1-p-d)1-p—d)f=1-p,
1-pR+(1-R=R & (p-a)p-a)f=p.

(iii) < (iv) is evident. [J

Theorem 4.8. Let R be a x-reducing ring and p,q € R be two projections

such that pgp is Moore-Penrose invertible. Then

(i) (pq — qp)R = pgpR & PepR,

(ii) (pg — qp)° = (pgp)° N (Pap)°.
Proof. (i): By Theorem 4.1 (iv), (pg — qp)R = (pq — qp)(pq — qp)'R =
(bbf + bTB)R. Since, bbf € pRp and b'b € PRP, we get that (bb1)(b'b) =
(b'b)(bbT) = 0 which implies that (pg — qp)R = bbTR 4 bR = bR 4 b*R and

furthermore that this sum is orthogonal. [J

(ii): By Theorem 4.1 (iv) and by Lemma 2.1 we have

(pg—aqp)z=0 <= (pg—qp)'(pa—qp)z =0 < (b +bib)z =0
— blz=0andblba =0 < blz=0andbz=0

< b'r=0and br =0 0O
Let us remark that when a and b are Hermitian commuting elements of

a ring with involution, the reverse order law for the Moore-Penrose inverse
holds, i.e. (ab)l = blal (see e.g., [3, Th. 6.3.2]).

Theorem 4.9. Let R be a *-reducing ring and p,q € R be two projections
such that pqp, p — pgp and pgp are Moore-Penrose invertible. Then

(i) pgR+(p— R = (p+ R,
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(il) pgR N (p — q@)R = {0} if and only if pq is a projection.

Proof. (i): By Lemma 4.2, we have that

z = pq(pg)" + (1 — pq(pg)") ((1 —pa(p))")(p — @) (p - q)*)T

is a projection and that 2R = pgR + (p — ¢)R. By Corollary 4.1, we have
that (pq)’ = q(pgp)T which using the notations introduced in (2.3), implies
that pq(pq)t = pap(pgp)’ = aa’. Also, by Theorem 4.1 (iii), we have that

(r—a)p— 9= —a)p—a)f +dd". Now,
z = aa' +(1—aadl) ((1 —aa")((p—a)(p—a)' + ddT)>Jr

T

= aa' 4 (1 —aa) ((1 —aa)(p—a)(p—a)l + ddT)

.I.
= ad' + (1 —adl) ((p —aa")(p—a)l + ddT> :
Since (p — aa’)(p — a)' € pRp and dd' € pRP, we have that ((p —aa’)(p —

T T T
a)f + ddT) = ((p —aal)(p - a)T) + (ddht = ((p —aal)(p - a)T) + ddt.
Since aa’ = paa’ = aalp, it follows that p — aa’ is a projection, which
implies that (p — aa‘L)T = p — aa’. Now, using the reverse order law for
the Moore-Penrose inverse and the fact that a,a’ commute, we get that
T

((p — aa®)(p — a)T) = (p—a)(p—aa') = p—a—aa + aaa' = p — aal.
Hence,

z=aa"+ (1 —aa)(p—aa +dd") =p+dd'.
Now, by Theorem 4.1 (i), it follows that z = (p+q)(p+q)7, i.e. 2R = (p+q)R.

(ii) From Lemma 4.2, we have that

y = pqa(pg)" = pa(pg)’ (pq(pq)T (1 (-9 - q>T>>T

is a projection and that yR = pgR N (p — q)R. As in the proof of item (i),

we have that

y = ad' —aal (aaT (1 ~(p-a)p—a) - ddT))

T
= aa' —aal (aaT —aa'(p —a)(p - a)T> .

.I.
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By Lemma 2.4 (i) and Lemma 2.3 (i), we have that aa! —aal(p—a)(p—a)’ =
p— (p—a)(p—a)f which is a projection, so we get that

y=ad' —ad (p— (p—a)(p— 0)') = ad (p — a)p — )"

By (4.3), we have that y = bbT. Now, pgR N (p — ¢)R = {0} if and only if
y = 0 if and only if b = 0 which is equivalent to pg = ¢p. Finally, since p, ¢

are projections, pg = gp is equivalent to the fact that pq is a projection. [

Theorem 4.10. Let R be a *-reducing ring and p,q € R be two projections
such that pgp and pgp are Moore-Penrose invertible. Then the following

conditions are equivalent:
(i) pRNgR = {0},
(i) (p— @R =pR+ R,
(iii) pgR &+ PR = pR + ¢R.

Proof. By Lemma 4.2 (ii), it follows that pR N ¢R = {0} is equivalent to
p = p(pg)". Now, by using the representations of p, ¢ given in (2.2) we have

p(a)t = p(a)* pa(pa)*]" = pap(pap)’ = (p — a)(p — ).

Hence, (i) is equivalent to p = (p — a)(p — a)'.
For the element x defined in item (i) of Lemma 4.2, we have that
z = p+pa(Pe)’ = p+Pa(pa)* [pa(pa))' = p+pap(pap)' = p+dd'. (4.7)
By (4.7) and Theorem 4.1 (iii) one has
p=a)p—a)'=@-a)p-a)+dd=@p-a@p-a+z-p

Thus, (i) is equivalent to (p — ¢)(p — ¢)f = .

(i) = (ii): If (p — q¢)(p — ¢)t = z, then by Lemma 4.2 (i), one has
(P—R=(p—q)(p—q)'R=2R=pR+qR.

(i) = (i): From the hypothesis and Lemma 4.2 (i), we get (p — q)(p —
q)'R = 2R. Since both (p — q)(p — ¢)' and 2 are projections we get (p —

p—qf =z
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(ii) < (iii): This part follows by Theorem 3.1. J
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