
Abstract

Today’s software systems are complex artifacts whose behavior is often
extremely di�cult to understand. This fact has led to the development of
sophisticated formal methodologies for program analysis, comprehension,
and debugging.

Trace analysis is concerned with techniques that allow execution traces
to be dynamically searched for specific contents. The search can be car-
ried out forward or backward. While forward analysis results in a form
of impact analysis that identifies the scope and potential consequences of
changing the program input, backward analysis allows provenance anal-
ysis to be performed; i.e., it shows how (parts of) a program output
depends on (parts of) its input and helps estimate which input data
need to be modified to accomplish a change in the outcome.

In this thesis, we investigate a number of trace analysis methodologies
that are suitable for analyzing complex, textually-large execution traces
in rewriting logic (RWL), which is a logical and semantic framework
particularly suitable for formalizing highly concurrent, complex systems.

The first part of the thesis is devoted to develop an incremental,
slicing-based backward trace analysis technique that achieves huge re-
ductions in the size of the trace. This methodology favors better analy-
sis and debugging since most tedious and irrelevant inspections that are
routinely performed during diagnosis and bug localization can be elim-
inated automatically. This technique is illustrated by means of several
examples that we execute by using the iJulienne system, an interac-
tive trace slicer that we developed which implements the backward trace
analysis technique.

The second part of the thesis formalizes a rich and highly dynamic,
parameterized scheme for exploring rewriting logic computations. The
scheme implements a generic animation algorithm that allows the nonde-
terministic execution of a given conditional rewrite theory to be followed
up by using di↵erent modalities, including incremental stepping and au-
tomated forward/backward slicing, which drastically reduce the size and
complexity of the traces under examination and allow users to evaluate



xiv

the e↵ects of a given statement or instruction in isolation, track input
change impact, and gain insight into program behavior (or misbehavior).
Moreover, cutting down the execution trace can expose opportunities for
program optimizations. With this methodology, an analyst can browse,
slice, filter, or search the traces as they come to life during the program
execution. The generic trace analysis framework has been implemented
into the Anima system and we report a thorough experimental evalu-
ation that we conducted which assesses the usefulness of the proposed
approach.


	Introduction
	Contributions of the Thesis
	Part I – Backward Trace Analysis
	Part II – Forward Trace Analysis

	Related Work

	 Preliminaries
	The Term-language of Maude
	Program Equations and Rules
	Conditional Rewrite Theories
	Rewriting in Conditional Rewrite Theories
	Instrumented Execution Traces
	Term Slices and their Concretizations
	(Instrumented) Trace Slices and their Concretizations
	Meaningful Descendants and Ascendants


	I Backward Trace Analysis
	 Backward Trace Slicing for Conditional Rewrite Theories
	Backward Slicing for Execution Traces
	The Function slice-step
	Correctness of Backward Trace Slicing

	 The iJulienne System
	iJulienne at Work
	Debugging Maude Programs with iJulienne
	Trace Querying with iJulienne
	Dynamic Program Slicing

	Experimental Evaluation


	II Forward Trace Analysis
	 Exploring Conditional Rewriting Logic Computations
	The Generic Exploration Scheme
	Inspecting the Instrumented Traces
	Exploring the Instrumented Computation Tree Slices


	 Exploration Modalities
	Interactive Stepper
	Partial Stepper
	Stepper and Partial Stepper Correctness
	Forward Trace Slicer
	Forward Trace Slicer Correctness
	Backward Trace Slicing as an Instance of the Generic Scheme

	 The Anima system
	The Anima Exploration Tool
	Implementation of the Tool


	Conclusions
	Bibliography
	 Maude Specification of the Experimental Evaluation Examples


