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ABSTRACT

This thesis presents the implementation of a framework to work with
term rewriting systems. Term rewriting systems provide a complete compu-
tational model which is very close to functional programming. Its formulation
is equational logic and it can also be used to reason about program proper-
ties, not only of functional programs but also of programs written in other
programming languages.

Our framework has been implemented in a tool called TRS.Tool (built
on .Net and available at http://TRS.JarCode.Net) that covers three
main objectives:

1. Determine the basic properties of a given term rewriting system (sig-
nature, set of rules conservativeness, linearity, etc. . . ).

2. Calculate the critical pairs of the term rewriting system and determine
its orthogonality.

3. Apply the rewriting rules over a given term.

The tool is available as a web based application created using this framework.
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RESUMEN

Esta tesis presenta la implementación de un marco para trabajar con
sistemas de reescritura de términos. Los sistemas de reescritura de términos
proporcionan un modelo de cómputo completo que es muy cercano a la pro-
gramación funcional. Su formulación es la de la lógica ecuacional y puede
ser utilizado también para razonar sobre las propiedades de los programas,
no solo de los programas funcionales, sino también de programas escritos en
otros lenguajes de programación.

Nuestro marco que ha sido implementado en una herramienta llamada
TRS.Tool (creada en .Net y disponible en http://TRS.JarCode.Net)
que cubre tres objetivos principales:

1. Determinar las propiedades básicas de un sistema de reescritura de tér-
minos dado (signatura, conjunto de reglas, conservativo, lineal, etc. . . ).

2. Calcular los pares críticos del sistema de reescritura de términos y de-
terminar su ortogonalidad.

3. Aplicar las reglas de reescritura sobre un término dado.

La herramienta está disponible como una aplicación web creada utilizando
este marco.
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CHAPTER 1

INTRODUCTION

In Software Engineering and Programming, formal methods are under-
stood as a collection of mathematical techniques for developing software and
hardware systems. In software engineering they can be used to exploit the
power of mathematical notations and proofs. Formal methods cover hun-
dreds of methodologies, languages and notations that can be used to specify
and verify properties.

Some formal methods rely on the use of Term Rewriting Systems
(TRSs). There are various areas where the term rewriting systems play
an important role in the study of computational procedures. Rewrite rules
can be used to specify properties and requirements of programs. And using
the theory of rewriting systems, we can check them.

We all have used rewriting systems, without knowing it, since school.
When we simplify an arithmetic equation, we can do it as follows:

(3 + 4) · (4 + 2)→ 7 · (4 + 2)→ 7 · 6→ 42 (1)

We can see this sequence as performing elementary simpli�cation steps
within some context. The elementary steps are the basic operations of addi-
tion and multiplication that we can easily represent by means of simple rules
like (0 + 1 → 1, 0 + 2 → 2, 0 + 3 → 3, . . . , 0 · 1 → 0, 0 · 2 → 0, . . .). The
contexts are arithmetic expressions with a `hole' where the elementary step

1
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is done. On the �rst step of the sequence (1) the context is � · (4 + 2), where
� denotes the hole, and 3 + 4→ 7 is the elementary step. This means that
� is 3 + 4 before and 7 after.

We are applying a sequence of elementary steps, till we obtain a term
(i.e., 42) that can't be reduced anymore: this is the normal form.

Some important properties of this system are:

• Non deterministic: there are steps where we can choose di�erent
rules to be applied, for instance:

(3+4)·(4+2)→ 7·(4+2)→ 7·4+7·2→ 7·4+14→ 28+14→ 42 (2)

It's another valid rewrite sequence. In general, the rewriting process is
non-deterministic.

• Uniqueness of normal forms: all possible di�erent rewrite sequences
will always produce the same normal form.

• Terminating: Every rewrite sequence can be extended to reach a
normal form. This property is not easy to check. Note that we have
excluded the usual commutative property of addition and product to
make it terminating. Otherwise we could have a sequences like 0+1→
1 + 0→ 0 + 1→ . . .

• Con�uent: Divergent sequences starting from a given expression ad-
mit a join into a common expression.

Each of those properties can be used to investigate how to choose �nite
computation sequences (normalization), the absence of in�nite computations
(termination), the determinism of computations (con�uence), the possibility
of obtain completely de�ned information at the end of the computations
(completely de�nedness), etc. . .

Two of these properties are specially important for what they represent:
con�uence and termination. Termination ensures that there is no in�nite
computation and some outcome will be obtained in �nite time from an ini-
tial expression. Con�uence guarantees that such an outcome will be unique
if computations are exhaustive i.e., they stop yielding a normal form. Over-
all, we can think of such rewriting computations (to normal form) as being
deterministic.
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Decidability of these properties is a main problem, so most studies in
the �eld restrict the attention to speci�c classes of term rewriting systems
(left-linear, ground, growing,. . . ) to develop decision methods.

Term rewriting systems can be used to model algorithms and then study
their properties or check their correctness. In the following we show two sim-
ple examples that illustrates the importance of the properties of con�uence
and termination, and why having tools to automatically check them is useful.

Example 1: Con�uence.

Consider the following term rewriting system1 R:

add(0, x)→ x (3)

add(s(x), y)→ s(add(x, y)) (4)

prod(0, x)→ 0 (5)

prod(s(x), y)→ add(y, prod(x, y)) (6)

fact(0)→ s(0) (7)

fact(s(x))→ prod(s(x), fact(x)) (8)

It implements the computation of the factorial of a number. The natural
numbers are represented in Peano notation, i.e. with a constant symbol 0
and a function symbol s (called successor), we write 0 for 0, s(0) for 1, s(s(0))
for 2,. . . , and so on. In general n ∈ N is represented as the n− th application
of s to 0 (written sn(0)).

This rewrite system is terminating and con�uent, so we will always get
a result (a normal form) from the evaluation of an expression like fact(sn(0))
and this result will always be the same (namely, sn!(0), i.e., the Peano repre-
sentation of n!), disregarding of the particular choice of reduction sequence.

We can try to improve the algorithm by adding a new rule to try to
speed up the execution by reducing the number of steps that are needed to
obtain the solution2:

prod(s(0), y)→ y (9)

This new rule represents the property 1·y = y. If we study the properties

1You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-1
2You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-2

http://TRS.JarCode.Net/?t=-1
http://TRS.JarCode.Net/?t=-2
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of the new system, now it is not con�uent. This means that we may get
di�erent answers depending on the reduction sequence.

Example 2: Termination.

Consider now the following term rewriting system3 R:

add(0, x)→ x (10)

add(s(x), y)→ s(add(x, y)) (11)

prod(0, x)→ 0 (12)

prod(s(x), y)→ add(y, prod(x, y)) (13)

that implements the addition and multiplication operations. We can
prove it terminating and con�uent. We can try to improve it adding by a
new rule4:

add(x, x)→ prod(s(s(0)), x)) (14)

Which represents the fact x+ x = 2 · x. What we are trying to do with
this new rule is to reduce the number of rewriting steps by transforming the
addition of a number to itself, into the multiplication of that number by 2.

Unfortunately, again we have obtained a worse system, because now it
is not terminating nor con�uent.

As a conclusion of these examples, we can say that when designing
or optimizing rewrite systems, we greatly bene�t from having appropriate
analysis tools available.

Our TRS.Tool, whose design and use is described in this document,
is able to prove that the TRS R in Example 1 is con�uent before adding
the �optimizing rule� (9). Furthermore, TRS.Tool can also prove that the
extended TRS R′ which is obtained after adding the rule (9) to R fails to be
con�uent.

With regard to the TRS R in Example 2, termination tools like MU-
TERM5 can prove termination of R before adding the rule (14). And tools
like AProVE6 are able to disprove termination of the extended TRS. Fur-
thermore, TRS.Tool can be used to show not only that R is con�uent, but
also that R′ is neither con�uent nor terminating.

3You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-3
4You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-4
5http://zenon.dsic.upv.es/muterm/
6http://aprove.informatik.rwth-aachen.de/

http://TRS.JarCode.Net/?t=-3
http://TRS.JarCode.Net/?t=-4
http://zenon.dsic.upv.es/muterm/
http://aprove.informatik.rwth-aachen.de/
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1.1 Objectives

The main goal of this thesis is the implementation of a framework that
enables the user (programmer, software developer, or interested searcher) to
work with term rewriting systems.

This framework provides for three main functionalities:

1. Determine the basic structure of a given term rewriting system: signa-
ture, arity functions, set of rules and syntactic properties like conser-
vativeness, linearity, etc . . . .

2. Compute the critical pairs of the term rewriting system and determine
its orthogonality.

3. Apply the rewriting rules over a given term.

Because of my personal experience with programing languages I decided
to implement it using C#.Net as it provides some bene�ts over other lan-
guages and technologies as: total object orientation, a complete class library,
fully integrated IDE, . . . and the library created can be used directly in F#,
a functional language integrated in the .Net framework.

We have also developed a web tool using this framework to show how
does it work. The tool is suitable to be used in teaching the main concepts
ans notions of term rewriting as done in several courses of the Master of
Software Engineering, Formal Methods and Information Systems like:

• 32574 / FSA / Fundamentos de Ingeniería del Sofware Automática.

• 32582 / DLP / Diseño de Lenguajes de Programación.

• 32576 / TEP / Terminación de Programas.

• 30184 / TSD / Tecnología Software Declarativa.

• 32575 / ATM / Métodos Ágiles y Tecnología Multiparadigma.

1.2 Plan of the Thesis

This thesis is organized in the following chapters:
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• Chapter 2: we present a brief introduction to term rewriting theory.
We present the basic concepts and the notation used.

• Chapter 3: we explain the implementation model of our framework
to work with term rewriting systems.

• Chapter 4: we explain in detail the main algorithms implemented in
the framework.

• Chapter 5: we present the web tool created with the use of the frame-
work.

• Chapter 6: we conclude with the analysis of the framework created
and the future work that can be done to made it more powerful.



CHAPTER 2

PRELIMINARIES

This is a brief introduction to the theory of term rewriting. We present
the basic concepts and the notation used. More detailed information can be
found in [1, 2, 6]

2.1 Basic concepts

2.1.1 Signature, variables and terms

A signature F is a �nite set of function symbols {f, g, h . . .}, each having
a �xed arity, which establishes the number of its `arguments', given by a
mapping ar : F → N. A function symbol a with arity of 0 (ar(a) = 0) is
called a constant.

Let X be a countable in�nite set of variables {x, y, z, . . .} where
F ∩ X = ∅. The set of terms over F and X , denoted by T (F ,X ), is the
least set satisfying:

1. All variables are terms: if x ∈ X , then x ∈ T (F ,X ),

2. All constants are terms: if {a ∈ F ∧ ar(a) = 0}, then a ∈ T (F ,X ),

7
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3. A function call is a term if all the parameters are terms: if
{f ∈ F ∧ ar(f) = k > 0 ∧ ti ∈ T (F ,X ) ∀ i ∈ [1, k]}, then
f(t1, . . . , tk) ∈ T (F ,X ).

For any term t ∈ T (F ,X ), the set of variables occurring in t is denoted
as Var(t). If Var(t) = 0, then we say that t is ground. The set of ground
terms is denoted by T (F) (rather than T (F ,∅)).

A term is said to be linear if it has no multiple occurrences of a single
variable.

The symbol labeling the root of t is denoted as Root(t):

1. The root of a variable x is x: if x ∈ X , then Root(x) = x,

2. The root of a constant a is a: if {a ∈ F ∧ ar(a) = 0}, then
Root(a) = a,

3. The root of a term f(t1, . . . , tk) is f : Root(f(t1, . . . , tk)) = f .

Positions are represented by a (possibly empty) sequence of natural
numbers. The empty sequence Λ denotes the root position of a term. The
length of a position p is |p|.

p ∈ Pos = {Λ} ∪ {i.q | i ∈ N>0 ∧ q ∈ Pos} (15)

Pos(t) denotes the set of positions in t, and refer to sub-trees in the
syntactic (tree) structure of the terms. We write t|p to denote the sub-term
of t at position p. The depth of sub-term s = t|p is the length |p| of p.

Pos(t) =

{
{Λ} if t ∈ X (16a)

{Λ} ∪
⋃

1≤i≤ki.Pos(ti) if t = f(t1, . . . , tk) (16b)

Positions of non-variable symbols in t are denoted as PosF(t), and
PosX (t) are the positions of variables.

PosF(t) = {p ∈ Pos(t) | Root(t|p) ∈ F} (17)

PosX (t) = {p ∈ Pos(t) | Root(t|p) ∈ X} (18)

Example 3: Signature, variables and terms.
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Let F = {f, g, h, a, b} be a set of symbols such that ar(f) = 2, ar(g) =
1, ar(h) = 3, ar(a) = 0, ar(b) = 0.

Let X = {x, y, z} be a set a variables.

The following terms do not belong to T (F ,X ):

f(a) (19)

g (20)

x(b) (21)

h(f(a, b), a) (22)

j(a, b) (23)

Functions f , g and h are used with a wrong arity on (19), (20) and (22)
respectively. On (21) the symbol x is used as a function when it is a variable
and on (23), the symbol j does not belongs to F .

The following terms belong to T (F ,X ):

t1 = f(x, b) (24)

t2 = g(b) (25)

t3 = f(a, f(g(x), f(h(f(x, b), a, g(y)), g(b)))) (26)

t4 = h(f(a, b), g(x), a) (27)

t5 = h(f(a, z), g(x), a) (28)

t6 = h(f(x, b), a, g(y)) (29)

t7 = x (30)

t8 = b (31)

t9 = f(g(a), a) (32)
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Some properties of terms t1, . . . , t8 are:

Var(t1) = Var(t4) = Var(t7) = {x} (33)

Var(t2) = Var(t8)Var(t9) = ∅ (34)

Var(t3) = Var(t6) = {x, y} (35)

Var(t5) = {x, z} (36)

{t2, t8, t9} ∈ T (F) (37)

Root(t1) = Root(t3) = Root(t9) = f (38)

Root(t2) = g (39)

Root(t4) = Root(t5) = Root(t6) = h (40)

Root(t7) = x (41)

Root(t8) = b (42)

t6|1 = t1 (43)

t3|2.2.2 = t2 (44)

t3|2.2.1 = t6 (45)

t1|1 = t7 (46)

t1|2 = t8 (47)

PosF(t5) = {Λ, 1, 2, 3, 1.1} (48)

PosX (t5) = {1.2, 2.1} (49)

PosF(t2) = {Λ, 1, 1.1} (50)

PosX (t2) = ∅ (51)

Terms {t2, t8} are ground, terms {t1, t2, t4, t5, t6, t7, t8} are lineal.

Figure 1 shows the tree representation of term t3.
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fΛ

f2

f2.2

g2.2.2

b2.2.2.1

h2.2.1

g2.2.1.3

y2.2.1.3.1

a2.2.1.2f2.2.1.1

b2.2.1.1.2x2.2.1.1.1

g2.1

x2.1.1

a1

Figure 1: Term tree structure

2.1.2 Substitutions, matching and uni�cation

We denote with t[s]p the term obtained from t by replacing the subterm
at position p (t|p) with the term s.

A substitution σ is a mapping from X into T (F ,X ) such that only a
�nite number of non-trivial bindings (σ(x) 6= x) are allowed.

σ : X → T (F ,X ) (52)

Therefore, we write substitutions as a set of the form σ =
{x1 7→ t1, . . . , xn 7→ tn} denoting that for each i ∈ {1, n}, the variable xi
is mapped to term ti. The domain of a substitution σ is denoted by Dom(σ),
and is the �nite set:

Dom(σ) = {x ∈ X | σ(x) 6= x} (53)

The identity, or empty substitution, is denoted by ε (Note that
Dom(ε) = ∅):

ε(x) = x ∀x ∈ X (54)

Let l, s, t ∈ T (F ,X ):

• A substitution σ such that σ(l) = t is called a matcher of l against t (we
also say that l matches t with substitution σ, or that t is an instance
of l).
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• A substitution σ such that σ(l) = σ(t) is called a uni�er of s and t (we
also say that s and t unify with substitution σ).

• A substitution σ such that σ−1 ◦ σ = σ ◦ σ−1 = ε ∧ Dom(σ) = X is
called a renaming substitution.

• If two terms s and t unify, then there is a unique (up to renaming)
most general uni�er (mgu) θ such that for every other uni�er σ , there
is a substitution τ such that τ ◦ θ = σ

Example 4: Matching and uni�cation.

Consider the terms t1, . . . , t8 in Example 3.

The substitution σ = {z → b} uni�es t4 and t5, because σ(t4) = σ(t5).
Dom(σ) = {z}. This substitution is also a matcher of t5 against t4 because
σ(t5) = t4.

The substitution σ is the mgu of t4 and t5. We can use σ′ = {z →
b, x → b} to unify t4 and t5, but it is not the mgu (the substitution τ such
that τ ◦ σ = σ′ is τ = {x → b}). In this case Dom(σ′) = {z, x}. The new
substitution σ′ is not a matcher of t5 against t4 because σ′(t5) 6= t4.

2.1.3 Rewrite Rules and Term Rewriting Systems

A rewrite rule is an ordered pair (l, r), written l→ r, where l and r
are terms over a signature F and a set of variables X such that l is not a
variable, and all variables occurring in r already occur in l. Formally:

• l, r ∈ T (F ,X )

• l /∈ X

• Var(r) ⊆ Var(l)

We say that the left-hand side (lhs) of the rule is l, and the right-hand
side (rhs) is r.

A rewrite rule l→ r, is:

• Left-linear if l is a linear term.
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• Right-linear if r is a linear term.

• Linear if both l and r are linear terms.

• Collapsing if r ∈ X . That is, if the right side is just a variable.

• Duplicating if there is a variable x with more occurrences in r than in
l.

• Conservative if Var(l) = Var(r). (All variables in the left-hand side,
also occur in the right-hand side)

• Destructive if Var(l) ⊃ Var(r). (Some variables in the left-hand side,
are missing in the right-hand side)

• Right-ground if r is a ground term.

• Ground if both l and r are ground terms.

Given a signature F , a Term Rewriting System (TRS) is a pair
R = (F , R) such that R is a set of rewrite rules over the signature F .

An instance σ(l) of the left-hand side l of a rule l→ r is called a redex
(reducible expression) of the rule.

A term t rewrites to a term u at position p with the rule l→ r and
the substitution σ, written t

p−−→
l→r

u, (or simply t→ u), if s|p = σ(l) and

s = t[σ(r)]p. Such a term t is called reducible. Irreducible terms are said
to be in normal form.

A term rewriting system R = (F , R) is called left-linear (right-linear,
linear, conservative) if each rule l→ r ∈ R is left-linear (right-linear, linear,
conservative). On the other hand, R is called collapsing (duplicating) if at
least one of the rules l→ r ∈ R is collapsing (duplicating).

A term rewriting system is called looping if it admits a rewrite sequence
t→∗ C[σ(t)]) for some term t, some context C[], and some substitution σ

Example 5: Rewrite Rules.

The following rules are non-valid rewrite rules:

x→ f(a, b) (55)

g(x)→ f(x, y) (56)
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In (55) the lhs is a variable, and in (56) the rhs contains variables than
doesn't occur in the lhs.

Let's consider the Term Rewriting System formed by the following valid
rewrite rules1:

f(a, x)→ h(x, x, a) (57)

g(x)→ f(a, x) (58)

f(y, y)→ y (59)

h(x, y, a)→ g(x) (60)

f(g(x), a)→ g(g(x)) (61)

b→ a (62)

f(a, x)→ a (63)

We can say:

• Rewriting rules (57), (58), (60), (61), (62) and (63) are left-linear.

• Rewriting rules (58), (59), (61), (62) and (63) are linear.

• Rewriting rules (58), (59), (60), (61), (62) and (98) are right-linear.

• Rewriting rule (59) is collapsing.

• Rewriting rule (57) is duplicating.

• Rewriting rules (57), (58), (59), (61) and (62) are conservative.

• Rewriting rules (60) and (63) are destructive.

• Rewriting rules (62) and (63) are right-ground.

• Rewriting rule (62) is left-ground.

• Rewriting rule (62) is ground.

If we take t9 = f(g(a), a) from Example 3, the next rules can be applied:

• Rule (58) at position 1 with σ = {x→ a}.

• Rule (61) at position Λ with σ = {x→ a}.
1You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-5

http://TRS.JarCode.Net/?t=-5
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After applying them, we get:

• f(f(a, a), a) and

• g(g(a)),

respectively.

2.2 Con�uence

Con�uence is the property of term rewriting systems ensuring that
terms in a system can be rewritten in more than one way, to yield the same
�nal result.

Termination is another fundamental property of rewrite systems which
guarantee the existence of at least one normal form for any term. For termi-
nating and con�uent systems such normal form is unique.

Formally a term rewriting system is terminating if ther is no in�nite
sequence t = t1 → t2 → . . . for any term t.

In the following, we concentrate the attention in the con�uence prop-
erty. We formally de�ne it and also introduce some simple methods to prove
con�uence of term rewriting systems.

2.2.1 Local con�uence and Con�uence

Let R = (F , R) be a term rewriting system. We say that R is:

• Locally con�uent if, for all s, t, t′ ∈ T (F ,X ), whenever s→ t and
s→ t′, there is u ∈ T (F ,X ) such that t→∗ u and t′ →∗ u.

• Con�uent if, for all s, t, t′ ∈ T (F ,X ), whenever s→∗ t and s→∗ t′,
there is u ∈ T (F ,X ) such that t→∗ u and t′ →∗ u.
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Figure 2: Local con�uence and Con�uence

2.2.2 Critical pairs

Let l → r and l′ → r′ be two rules of a term rewriting system and
suppose these rules share no variables (Var(l) ∩ Var(l′) = ∅). If lp is a sub-
term of l at position p (lp = l|p) such that lp is not a variable (lp /∈ X ), and
lp and l′ unify with mgu σ (σ(lp) = σ(u)), then the pair 〈σ(l)[σ(r′)]p, σ(r)〉 is
called the critical pair and p is called critical or overlapping position of the
pair.

A critical pair 〈s, t〉 is convergent if there is a term u such that s→∗ u
and t→∗ u

Example 6: Critical Pais.

The term rewriting system in the Example2 5, has four critical pairs:

1. Rule (61) with rule (58) at position 1.

2. Rule (57) with rule (59) at position Λ.

3. Rule (57) with rule (63) at position Λ.

4. Rule (63) with rule (59) at position Λ.

Let's study the �rst critical pair:

l→ r = (61) = f(g(x), a)→ g(g(x)) (64)

l′ → r′ = (58) = g(x′)→ f(a, x′) (65)

2You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-5

http://TRS.JarCode.Net/?t=-5
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Notice that l and l′ should not share any variable, because that, we
must rename the variables in l′ and r′

p = 1 (66)

lp = l|1 = g(x) (67)

σ = {x′ → x} (68)

σ is the m.g.u. of lp and l′ (σ(lp) = σ(l′) = g(x)).

σ(l) = f(g(x), a) (69)

σ(r′) = f(a, x) (70)

σ(r) = g(g(x)) (71)

s = σ(l)[σ(r′)]p = f(f(a, x), a)[f(a, x)]1 = f(f(a, x), a) (72)

Now we have the two terms that form the critical pair: 〈(72), (71)〉, i.e.:

〈f(f(a, x), a), g(g(x))〉 (73)

The study of critical pairs is essential for the analysis of con�uence of
term rewriting systems. The existence of a critical pair implies a point of
divergence in the rewriting computation, i.e. the same redex can be rewritten
in di�erent ways.

As we said before, a critical pair represents a divergence. For instance,
the critical pair (73) is the result of the divergence that exist when we try to
reduce the term σl = f(g(x), a): we have two choices: either using the rule
(61) at position Λ or else use the rule (58) at position 1. If we try both rules,
we will get f(f(a, x), a) and g(g(x)) respectively, this is the critical pair.
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f(f(a, x), a)

f(g(x), a)

(115)
77

(118)

''

g(g(x))

Figure 3: Critical Pair graph

2.2.3 Orthogonality

There are two kinds of critical pairs that are relevant for the analysis of
local con�uence:

• When the critical position is the root position (p = Λ) the critical pair
is an overlay.

• When the two terms of the critical pair are equal, the critical pair is
called trivial. Note that trivial critical pairs are trivially convergent

A critical pair with both properties is called a trivial overlay.

A suitable criterion to determine the con�uence of a term rewriting
system relies on the notions of orthogonality. A left-linear term rewriting
system is:

• Orthogonal if it has no critical pair.

• Almost orthogonal if its critical pairs are trivial overlays.

• Weakly orthogonal if its critical pairs are trivial.

An Orthogonal term rewriting system is almost orthogonal, and almost or-
thogonal term rewriting systems are weakly orthogonal.

The interest of orthogonality for proving con�uence is due to Huet and
Lévy's theorem [4]:

Weakly orthogonal term rewriting systems are con�uent. (74)
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If a term rewriting system has nontrivial critical pairs, we can study
their convergence. According to Huet's theorem [3]:

A Term rewriting system is locally con�uent if only if

all its critical pairs are convergent.
(75)

If all critical pairs of a TRSR are convergent, thenR is locally con�uent.
Obviously, con�uence implies local con�uence, but the opposite claim is not
true.

Example 7: Critical Pairs convergence.

Consider again the critical pair (73) in Example 6.

This critical pair is not trivial. We must try to test it for convergence.
If the term rewriting system is terminating we only need to apply rules until
we get to the normal forms. Otherwise we must apply the rules carefully to
avoid entering into a loop.

For the �rst term f(f(a, x), a), we have this rewriting sequence:

f(f(a, x), a) (76)
1−−−−−→

f(a,x)→a σ=ε

(77)

f(a, a) (78)
Λ−−−−−→

f(y,y)→y σ={y→a}
(79)

a (80)

And for the second one, g(g(x)), the rewriting sequence is:

g(g(x)) (81)
Λ−−−−−−−→

g(x)→f(a,x) σ={x→g(x)}
(82)

f(a, g(x)) (83)
Λ−−−−−→

f(a,x)→a σ={x→g(x)}
(84)

a (85)
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So, the critical pair is convergent

f(f(a, x), a)

∗
%%

f(g(x), a)

(115)
77

(118)

''

a

g(g(x))

∗
99

Figure 4: Critical Pair convergence graph

The rest of critical pairs are:

〈a, h(a, a, a)〉 (86)

〈a, h(x, x, a)〉 (87)

〈a, a〉 (88)

Critical pair (88) is trivial, hence convergent. The other two critical
pairs ((86) and (87)) are not trivial, but they are convergent.

Huet's Theorem ensures that the system is locally con�uent because all
critical pairs are convergent.

2.2.4 Decidability

The problem of checking con�uence of a term rewriting system is unde-
cidable, but it is decidable for some special cases.

The Newman's lemma, states that:

A terminating term rewriting system is con�uent if

it is locally con�uent.
(89)

As a consequence of Huet's Theorem and Newman's Lemma, we have
the following secidability result for terminating term rewriting systems [5]:

Con�uence of terminating term rewriting systems with

a �nite number of rules is decidable.
(90)
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Given a terminating and �nite term rewriting system, as the number of
rules is �nite, the number of critical pairs will be �nite too.

If not all the critical pairs are trivial, as the term rewriting system
is terminating, we can reduce the terms to its canonical forms, in �nite
time, and determine whether the critical pairs are convergent or not by just
checking the obtained normal forms for equality.



CHAPTER 3

FRAMEWORK MODEL

The Framework is divided into three main submodules:

• Term Rewriting System Module: This module is the responsible
to store the data structure representing a term rewriting system.

• Critical Pair Module: Contains the necessary classes to calculate
and manage the critical pairs of a term rewriting system.

• Execution Module: It is used to trace the execution of a term rewrit-
ing system over a term.

22
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Term Rewriting System

Signature

0..*

Arguments

0..*

0..1

1

0..*

0..*

2

TermRewritingSystem Symbol

Term

Rule

Figure 5: Term Rewriting System Module Diagram

Critical Pair

1
2

1

2
0..* 0..*

CriticalPair Position

Substitution

Symbol Term

Rule

Figure 6: Critical Pair Module Diagram
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Execution

1

0..*

0..*

11 1 1

ExecutionNode

ExecutionTree

Position Rule Substitution Term

TermRewritingSystem

Figure 7: Execution Module Diagram

Additionally there is an auxiliary class, Parser, which is responsible
to parse the .trs �les and build a TermRewritingSystem object.

3.1 Term Rewriting System Module

The Term Rewriting System Module is the core of the framework. It
represents the data structure that stores a term rewriting system and allows
access to its properties.

The data structure which has been chosen to represent a Term is based
on the syntactic tree. Each Term object represents a node in that tree, and
has a reference to Symbol on it. This representation is show more clear in
�gure 14. Each symbol on the term rewriting system is represented by one
(and only one) Symbol object, and it stores a list of all the nodes on the
trees where it is used.

The reason for proceeding in this way was that this makes the code for
the implementation of the matching, uni�cation and substitution algorithms
clearer. The implementations has been done in the recursive mode, and the
cost for all of them is linear (see Chapter 4).
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Signature

0..*

Arguments

0..*

0..1

1

0..*

0..*

2

TermRewritingSystem

Comments: String[]
IsCollapsing: Bool
IsConservative: Bool
IsDestructive: Bool
IsDuplicating: Bool
IsLeftLinear: Bool
IsLinear: Bool
IsRightLinear: Bool Symbol

Arity: Int
Name: String
Notation: FunctionNotation
Type: TermType

Term

IsLinear: Bool

GetRedexes(term: Term): Position[]
GetSubTerm(pos: Position): Term
Matching(term: Term): Substitution
Replace(term: Term, pos: Position):Term
Uni�cation(term: Term): Substitution

Rule

HasExtraVariables: Bool IsCollapsing: Bool
IsDestructive: Bool
IsDuplicating: Bool
IsLeftLinear: Bool
IsLinear: Bool
IsRightLinear: Bool

Figure 8: Term Rewriting System Module Class Diagram
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3.1.1 Symbol Class

The Symbol Class is used to store the characteristics of each symbol
in the term rewriting system signature. A Symbol could be a �variable�,
a �function� or a �constant�. A Symbol object represents only one kind of
them, and all the uses of it on the terms are stored in a array of instantiations
(.Instances[0], .Instances[1], .Instances[2], ...)

Symbol

Arity: Int
Instances: List<Term>
Name: String
Notation: FunctionNotation
Type: TermType

Init(type: TermType, name: String, arity: Int, notation: FunctionNotation)
Instantiate(Parent: Term): Term

Figure 9: Symbol Class

The data types of Type and Notation (TermType and
FunctionNotation) are enumerations, whose possible values are
[Function, Variable, Constant] and [Null, Prefix, Infix,
Postfix] respectively.

The Notation attribute represents the way a function is printed out,
and on non function symbols must be Null.

The Arity attribute is used on function symbols only. For all other
symbols must be 0. As its theorical counterpart, it represents number of
`arguments', this is, the number of child subterms it must have.

The Init function is used by the constructor method and checks the
class constraints, i.e.:

• If the symbol is a variable or a constant, then the Arity must be 0
and the Notation Null.

• If the symbol is a function the Arity must be greater than 0 and
Notation distinct than Null.

• If the symbol is a function with Infix Notation the Arity must
be 2.
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• If the symbol is a function with Postfix Notation the Arity must
be 1.

The Instantiate methods create an new Term object and adds it
on the instances list.

In the design phase, a �rst version for this class was representing more
accurately the concepts `Function', `Variable' and `Constant' from the the-
ory, because they were separated classes for each one, with the appropriate
inheritance structure.

Symbol

Instances: List<Term>
Name: String

Instantiate(Parent: Term): Term

Function

Arity: Int
Notation: FunctionNotation

Variable

Constant

Figure 10: Symbol inheritance structure

With this implementation the Type property and the Init method is
not longer necessary, because each class has the restrictions about its own
attributes.

The reason for not choosing this structure is making the code simpler.
Since the term object must work with the super class Symbol, it will be nec-
essary to check the real class of the object each time and do the appropriate
casting to access its properties and methods. So we think will be more easy
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to have only one class with a property that identi�es its type and control by
code the restrictions in the rest of properties.

3.1.2 Term Class

Each Term object represents an instantiation of a symbol, so it has a
reference to its Symbol object. The Term object acts as a node into the tree
representation of the term, and each one is the root symbol of the subterm
it represents. If the Term is not a root of the main term, then it has a
reference to its Parent, and if it is a function, then it also has references to
the Arguments sub-terms.

The attribute IsLinear represents the �Linear� property of the term,
this is if it has no multiple occurrences of a single variable.

To speed up the execution time of some algorithms, each Term object
keeps a dictionary to track the number of instantiations each Symbol has
into the term represented by the object. This corresponds to the Symbols
attribute. Each time the term changes (by adding, removing or replacing
subterms at any depth in the tree structure) this dictionary updates its val-
ues.

Term

Arguments: List<Term>
IsLinear: Bool
Parent: Term
Symbol: Symbol
Symbols: SortedList<Symbol, Int>

Clone(term: Parent): Term
GetSubTerm(pos: Position): Term
Matching(term: Term): Substitution
Replace(pos: Position, term: Term): Term
Split(pos: Position): String[]
ToString(): String
Uni�cation(term: Term): Substitution

Figure 11: Term Class

The public methods of the class are:
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• Clone: It clones the current Term and returns a duplicate.

• GetSubTerm: Returns the subterm at an speci�ed position.

• Matching/Uni�cation: Calculates the substitution which is neces-
sary to match/unify the given term. If no matching/uni�cation is pos-
sible, it returns null

• Replace: Replaces the subterm at the speci�ed position with the one
which is passed as an argument.

• Split: It takes a position as an argument and splits the textual repre-
sentation of the term into three parts: the part before the position, the
subterm at the position and the part after the position. This method is
useful to print out the Term when you need to mark a subterm inside
(e.g. by underlining it).

• ToString: Converts the Term into its text representation.

The storage in memory of a term corresponds to the syntactic tree
structure of the term. Each node in the tree is a Term Object. The leaves
on the tree are Term Objects whose Symbol value is of arity 0. The number
of branches each node has is determined by the arity of the symbol.

3.1.3 Rule Class

Each rule in a term rewriting system is represented by a Rule object.
It has references to two Term objects: the left-hand side term and the right-
hand side.

The object also has properties representing the main Rule attributes
(Collapsing, Destructive, Duplicating, ...), based on the attributes of left
and right terms.
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Rule

HasExtraVariables: Bool
IsCollapsing: Bool
IsConservative: Bool
IsDestructive: Bool
IsDuplicating: Bool
IsLeftLinear: Bool
IsLinear: Bool
IsRightLinear: Bool
Left: Term
Right: Term

Clone(term: Parent): Term
Apply(term: Term, pos: Position, sub: Substitution): Term
GetCriticalPairs(r: Rule): List<CriticalPair>
GetRedexes(t: Term): List<Pair<Position, Substitution>>
ToString(): String

Figure 12: Rule Class

The Rule class has three important methods:

• Apply: It takes a term, a position, and a substitution as parameters.
It returns the result of applying the current rule to the speci�ed term
at the position with the given substitution.

• GetCriticalPairs: It takes another (or the same) rule as parameter,
and returns the list of critical pairs for both rules.

• GetRedexes: Given a Term returns the list of redexes of the rule for
that term. A redex is a pair formed by a Position of the Term and
a Substitution.

It also has some methods that are implemented in all classes of the
framework: Clone and ToString. These methods works in a similar way
in all classes, as explained for the Term class.
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3.1.4 TermRewritingSystem Class

The TermRewritingSystem Class is the main class of the framework.
It allows the creation of a term rewriting system and provides methods to
check its properties.

TermRewritingSystem

Comments: List<String>
Constants: SortedList<String, Symbol>
Functions: SortedList<String, Symbol>
IsCollapsing: Bool
IsConservative: Bool
IsDestructive: Bool
IsDuplicating: Bool
IsLeftLinear: Bool
IsLinear: Bool
IsRightLinear: Bool
Rules: List<Rule>
Terms: List<Term>
Variables: SortedList<String, Symbol>

Clone(): TermRewritingSystem
GetCriticalPairs(): List<CriticalPair>
Instantiate(Parent: Term): Term
NewRule(left: Term, right: Term): Rule
NewSymbol(type:TermType,name:String,notation: FunctionNotation,arity:int):Symbol
Parse(String term): Term
ToString(): String

Figure 13: TermRewritingSystem Class

Each TermRewritingSystem object contains four collections:

• List of Rules: An array of the rules that form the term rewriting sys-
tem. Each one is accessible by its position in the array (.Rules[0],
.Rules[1], .Rules[2], ...).

• List of Variables: A dictionary storing the Symbol objects represent-
ing each variable used in the term rewriting system. The variables are
accessible by the string representing its name (.Variables[“x”],
.Variables[“y”], .Variables[“z”], ...)

• List of Functions: A dictionary storing the Symbol objects represent-
ing each function used in the term rewriting system. The functions are
accessible by the string representing its name (.Functions[“f”],
.Functions[“g”], .Functions[“h”], ...)
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• List of Constants: A dictionary storing the Symbol objects represent-
ing each constant used in the term rewriting system. The constants are
accessible by the string representing its name (.Constants[“a”],
.Constants[“b”], .Constants[“c”], ...)

The signature of the term rewriting system is represented by the union
of the collections Constants and Functions.

The object also has methods to inform about the main term rewriting
system (Collapsing, Conservative, Destructive, ...).

The methods Instantiate, NewRule and NewSymbol are used
to create new objects of type Term, Rule or Symbol in the current
TermRewritingSystem object.

Example 8: Term Rewriting System Representation.

This example illustrates the source code which is needed to build a term
rewriting system and the representation in memory of the created structure.

Consider the following term rewriting system with only one rule:

f(a, x)→ f(g(a), b) (91)

// Create the TRS
TermRewritingSystem trs = new TermRewritingSystem();

// Create the Symbols
Symbol s_a = new Symbol(TermType.Constant, "a");
Symbol s_b = new Symbol(TermType.Constant, "b");
Symbol s_f = new Symbol(TermType.Function, "f", FunctionNotation.Prefix, 2);
Symbol s_g = new Symbol(TermType.Function, "g", FunctionNotation.Prefix, 1);
Symbol s_x = new Symbol(TermType.Variable, "x");

// Add Symbols to the TRS
trs.Constants.Add(s_a);
trs.Constants.Add(s_b);
trs.Functions.Add(s_f);
trs.Functions.Add(s_g);
trs.Variables.Add(s_x);

// Create the left term
Term t_f1 = new Term(s_f);
s_f.Instances.Add(t_f1); // f(?, ?)

Term t_a1 = new Term(s_a);
s_a.Instances.Add(t_a1);
t_f1.Arguments.Add(t_a1);
t_a1.Parent = t_f1; // f(a, ?)

Term t_x1 = new Term(s_x);
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s_x.Instances.Add(t_x1);
t_f1.Arguments.Add(t_x1);
t_x1.Parent = t_f1; // f(a, x)

// Create the right term
Term t_f2 = new Term(s_f);
s_f.Instances.Add(t_f2); // f(?, ?)

Term t_g1 = new Term(s_g);
s_g.Instances.Add(t_g1);
t_f2.Arguments.Add(t_g1);
t_g1.Parent = t_f2; // f(g(?), ?)

Term t_a2 = new Term(s_a);
s_a.Instances.Add(t_a2);
t_g1.Arguments.Add(t_a2);
t_a2.Parent = t_g1; // f(g(a), ?)

Term t_b1 = new Term(s_b);
s_b.Instances.Add(t_b1);
t_f2.Arguments.Add(t_b1);
t_b1.Parent = t_f2; // f(g(a), b)

// Create the rule
Rule r1 = new Rule(); // ? -> ?
r1.Left = t_f1; // f(a, x) -> ?
r1.Left = t_f2; // f(a, x) -> f(g(a), b)

// Add the rule to the TRS
trs.Rules.Add(r1);

This code includes all the steps which are necessary to create the term
rewriting system, but in the framework there are methods that automatize
most of the work. The following code is a more compact but equivalent
version of the previous one.

// Create the TRS
TermRewritingSystem trs = new TermRewritingSystem();

// Create the symbols
trs.NewSymbol(TermType.Constant, "a")
trs.NewSymbol(TermType.Constant, "b")
trs.NewSymbol(TermType.Function, "f", 2)
trs.NewSymbol(TermType.Function, "g")
trs.NewSymbol(TermType.Variable, "x")

// Create the left Term
Term t_f1 = trs.Instantiate("f"); // f(?, ?)
trs.Instantiate("a", t_f1); // f(a, ?)
trs.Instantiate("x", t_f1); // f(a, x)

// Create the right Term
Term t_f2 = trs.Instantiate("f"); // f( ? , ?)
Term t_g1 = trs.Instantiate("g", t_f2); // f(g(?), ?)
trs.Instantiate("a", t_g1); // f(g(a), ?)
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trs.Instantiate("b", t_f2); // f(g(a), b)

// Create the Rule
trs.NewRule(t_f1, t_f2); // f(a, x) -> f(g(a), b)

The long version of the code has been included to clarify how the objects
and links between them are created, but the short version must be used
because it builds the correct structure automatically. In fact, the Symbol,
Term and Rule constructors are private to the package, and can be called
only through the correspondent TermRewritingSystem object method
(NewSymbol, Instantiate and NewRule respectively).

There is an even more compact version for creating terms, using the
Parse method. The way this method can be used to build the terms is:

// Create the left Term
Term t_f1 = trs.Parse("f(a,x)"); // f(a, x)

// Create the right Term
Term t_f2 = trs.Parse("f(g(a),b)"); // f(g(a), b)

"a"

"x"

"f"

"g" "b"t_a2

t_g1 t_b1

t_f2t_f1

t_x1t_a1

r1

trs

Figure 14: Term Rewriting System in memory representation
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Figure 14 represents the objects structure created with the previous
code. Blue balloons are Terms and the red ones are the Symbols. The
white balloon is the TermRewritingSystem object and the green one is
the Rule object. In order to make the graph more clear, the link between
the Symbols and the TermRewritingSystem object is not represented.

3.2 Critical Pair Module

This module stores the information concerning with a Critical Pair.

1

2

1

0..* 0..*

2

CriticalPair

IsTrivial: Bool
IsOverLay: Bool
IsTrivialOverLay: Bool
IsConvergent: YesNo

CheckConvergence(int MaxIterations): Bool

Position

Position: Int[]

Append(i: Int)
Current(): Int
MoveNext(): Int
Reset()

Substitution

AddBinding(Symbol: v, Term: t)
Apply(Term: t): Term

Rule

Symbol Term

Figure 15: Critical Pair Module Class Diagram

3.2.1 Substitution Class

The Substitution class is a list of bindings, i.e., pairs Variable-Term.
Each pair is internally named binding, the method AddBinding is used to
add new bindings to the substitution, as it takes a Symbol object and a Term
object as arguments. The method checks its type (must be Variable); If
it fails, an exception is raised.
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Substitution

Bindings: SortedList<Symbol, Term>

Clone(): Substitution
Apply(Term: t): Term
AddBinding(Symbol: v, Term: t)
ToString(): String

Figure 16: Substitution Class

The method Apply takes a Term as argument and returns a new Term
as the result of applying the substitution to the term. The original Term is
not modi�ed.

3.2.2 Position Class

Position is an auxiliary class that indicates a position of a symbol into
a term. Internally it is an array of integers, and implements the interfaces
Enumerable<int> and IEnumerator<int>, so it makes easier for the
rest of algorithms to explore a term.

A Position object has no a reference to any object of the tree struc-
ture of a Term; it only stores a position which is not associated to any Term,
e.g. �1.2.2.1.3�.

Position

Pos: List<Int>
Current: Int

Clone(): Position
Current(): Int
MoveNext(): Bool
Reset()
Append(i: Int)
ToString(): String

Figure 17: Position Class
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3.2.3 CriticalPair Class

This class is the main one in the module, as it is used to store the
elements that de�ne a critical pair, i.e.:

• an ordered pair of Rules,

• a Position, on the left-hand side of the �rst Rule,

• a Substitution, that uni�es the subterm of the left-hand side of the
�rst Rule at the speci�ed Position with the left side of the second
Rule. Here, we asume that both rules share no variables.

• an ordered pair of Terms,

CriticalPair

FirstRule: Rule
FirstTerm: Term
IsTrivial: Bool
IsOverLay: Bool
IsTrivialOverLay: Bool
IsConvergent: YesNo
Pos: Postition
SecondRule: Rule
SecondTerm: Term
Sigma: Substitution

CheckConvergence(int MaxIterations): Bool
Clone(): CriticalPair
ToString(): String

Figure 18: CriticalPair Class

The class has a main method: CheckConvergence. It tries to check
whether the two Terms that form the critical pair converge to the same
term. As we don't know if the term rewriting system is terminating, the
method tries `all' the possible of rewritings of each term. To avoid an in�nite
loop, MaxIterations bouns the number of iterations before stopping the
search for convergence. If the method does not �nd an answer and reaches
the maximum iterations, the method will return false; otherwise it will
return true.
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The data type of IsConvergent is an enumeration whose possible
values are [Yes, No, DontKnow]. It will take the value DontKnow when the
method CheckConvergence is unable to determine whether the critical
pair converges or not.

3.3 Execution Module

The execution module is used to trace the rewriting steps over a term
by a term rewriting system. An execution covers all possible rewritings over
a term. The tree structure is used to represent all possible substitutions we
can make. Each node represents one step of the rewriting process, and each
di�erent rewrite possibility generates a new branch on the tree.

0..*
0..*

1

11 1 1

ExecutionNode

Explode(): ExecutionNode[]
GetTrace(): ExecutionNode[]

ExecutionTree

NextStep(): ExecutionNode[]

Position Rule Substitution Term

TermRewritingSystem

Figure 19: Execution Module Diagram

3.3.1 Execution Tree Class

ExecutionTree is the entry point for building a trace for the rewrites
over a term. It contains references to two objects:
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• Root: The ExecutionNode root of the tree. It stores the starting
Term which is used for the substitution.

• TRS: The term rewriting system which is used in the rewrite process.

ExecutionTree has three collections of ExecutionNode:

• Nodes: All the execution nodes generated during the execution pro-
cess.

• CanonicalNodes: The nodes with a Term in normal form, that is,
no rule from the TermRewritingSystem, can be applied.

• NewNodes: Nodes that were created in a previous iteration of the
execution process and are waiting to be processed.

ExecutionTree

CanonicalNodes: List<ExecutionNode>
Nodes: List<ExecutionNode>
NewNodes: List<ExecutionNode>
Root: ExecutionNode
TRS: TermRewritingSystem

NextStep(): List<ExecutionNode>
Find(t: Term): ExecutionNode

Figure 20: ExecutionTree Class

The way this class works is:

1. When an object is created, the root node is stored on
CanonicalNodes or NewNodes depending if the root Term is
in normal form or not.

2. Now we begin an iterative process: each step is launched by calling the
NextStep method.

3. When the NextStep method is called, it takes an ExecutionNode
out from the NewNodes list and calls the Explode method on it.

4. Every ExecutionNode which is returned by the Explode method
is stored in the Nodes list.
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5. Any ExecutionNode which is returned by the Explode method
with a Term in normal form is stored in the CanonicalNodes list.

6. The rest of ExecutionNode which are not added on a previ-
ous iteration to the Nodes list are stored in the NewNodes list.
The ExecutionNode not added to NewNodes list are �agged as
Deforested

7. The end of the iterative process is reached when the NextStepmethod
returns a Null value. This means that there is no node on the
NewNodes list.

If the term rewriting system is not terminating, we can fall in an eternal
loop, and never get out from the iterative process. If the terms generated
in the rewriting process are �nite, even though the term rewriting system is
not terminating, the iterative process will �nish.

3.3.2 ExecutionNode Class

A ExecutionNode object stores a single step in the rewrite process.
The properties of the objecs are:

• Term: Is the current term.

• Deforest: Is a boolean that indicates the current Term has
been generated before on another ExecutionNode from the same
ExecutionTree. If it is true, it is not necessary to continue the
rewrite process from this point because we will generate the same
branches.

• Childs and Parent: Links to parent and child ExecutionNode in
the tree structure. The Child list will be empty until the Explode
method is called.

• Pos, Rule, Sigma: Those are the Rule, Position and
Substitution that used over the Term from the parent
ExecutionNode generates the current Term.
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ExecutionNode

Deforested: Bool
Childs: List<ExecutionNode>
IsCanonical: YesNo
Parent: ExecutionNode
Pos: Position
Rule: Rule
Sigma: Substitution
Term: Term

Explode(): List<ExecutionNode>
GetTrace(): List<ExecutionNode>

Figure 21: ExecutionNode Class

The method Explode calculates all child ExecutionNodes result-
ing from the application of all possible rules to the current Term. Method
GetTrace returns an ordered list of all the ExecutionNodes from the
root to the current node.

Example 9: Execution Module.

This example traces how the execution module works. Given the term
rewriting system from the Example1 5:

f(a, x)→ h(x, x, a) (92)

g(x)→ f(a, x) (93)

f(y, y)→ y (94)

h(x, y, a)→ g(x) (95)

f(g(x), a)→ g(g(x)) (96)

b→ a (97)

f(a, x)→ a (98)

Let's trace how the ExecutionTree is built for Term:

f(g(x), a) (99)

We assume that the trs object is created according to the term rewrit-
ing system de�nition

1You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-5

http://TRS.JarCode.Net/?t=-5
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Term t = trs.Parse("f(g(x),a)");

\\ Initialize the ExecutionTree Object
ExecutionTree eTree = new ExecutionTree(t);

After the initialization, the structure of the tree will be:

eTree

f(g(x), a)

Figure 22: ExecutionTree Init

Yellow nodes represent the ones stored in the NewNodes list. Now we
can start to iterate over the ExecutionTree:

List<ExecutionNode> newNodes = null;
do{

newNodes = eTree.NextStep();
}while(newNodes != null);

This code will iterate until the NewNodes list is empty. We should add a
counter to the loop to avoid in�nite loops, and stop if a prede�ned number of
iterations is reached. For the current example, though, the counter is not nec-
essary. Now we can see, through the next �gures, how the ExecutionTree
grows.

eTree

f(g(x), a)

f(f(a, x), a) g(g(x))

Figure 23: ExecutionTree Step 1

The node that is currently being Explode is represented in gray.
Branches generated by this node represent di�erent options on applying the
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rules from the term rewriting system. Those new nodes are added to the
NewNodes list, waiting to be Explode and thus generating new branches.

eTree

f(g(x), a)

f(f(a, x), a)

f(h(x, x, a), a) f(a, a)

g(g(x))

Figure 24: ExecutionTree Step 2

eTree

f(g(x), a)

f(f(a, x), a)

f(h(x, x, a), a) f(a, a)

g(g(x))

f(a, g(x)) g(f(a, x))

Figure 25: ExecutionTree Step 3

eTree

f(g(x), a)

f(f(a, x), a)

f(h(x, x, a), a)

f(g(x), a)

f(a, a)

g(g(x))

f(a, g(x)) g(f(a, x))

Figure 26: ExecutionTree Step 4
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When the tree detects a node that previously appeared during the ex-
ecution, this new node is deforested, and it is not added to the NewNodes
list. This kind of nodes are represented in red.

eTree

f(g(x), a)

f(f(a, x), a)

f(h(x, x, a), a)

f(g(x), a)

f(a, a)

h(a, a, a) a a

g(g(x))

f(a, g(x)) g(f(a, x))

Figure 27: ExecutionTree Step 5

When a new node contains a Term in normal form (represented in
green), it enters in the CanonicalNodes list, not in NewNodes. Only the
�rst occurrence of a canonical term is stored in the CanonicalNodes list,
the rest are considered deforested nodes.

eTree

f(g(x), a)

f(f(a, x), a)

f(h(x, x, a), a)

f(g(x), a)

f(a, a)

h(a, a, a) a a

g(g(x))

f(a, g(x))

h(g(x), g(x), a) f(a, f(a, x)) a

g(f(a, x))

Figure 28: ExecutionTree Step 6
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eTree

f(g(x), a)

f(f(a, x), a)

f(h(x, x, a), a)

f(g(x), a)

f(a, a)

h(a, a, a) a a

g(g(x)

f(a, g(x))

h(g(x), g(x), a) f(a, f(a, x)) a

g(f(a, x))

g(h(x, x, a)) f(a, f(a, x)) g(a)

Figure 29: ExecutionTree Step 7

eTree

f(g(x), a)

f(f(a, x), a)

f(h(x, x, a), a)

f(g(x), a)

f(a, a)

h(a, a, a)

g(a)

a a

g(g(x)

f(a, g(x))

h(g(x), g(x), a) f(a, f(a, x)) a

g(f(a, x))

g(h(x, x, a)) f(a, f(a, x)) g(a)

Figure 30: ExecutionTree Step 8

We can continue the loop until no more new nodes remain to be pro-
cessed. Finally we will get all branches deforested. Thus we only have to
�nd a normal form, the one obtained in Figure 27 (a).

If we call the method GetTrace from the ExecutionNode in the
CanonicalNodes list, we will get this information:
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Rule: null
Pos: null
Sigma: null
Term: f(g(x), a)

Rule: g(x)→ f(a, x)
Pos: 1
Sigma: ε
Term: f(f(a, x), a)

Rule: f(a, x)→ a
Pos: 1
Sigma: ε
Term: f(a, a)

Rule: f(y, y)→ y
Pos: Λ
Sigma: {y → a}
Term: a

Figure 31: GetTrace data structure returned



CHAPTER 4

IMPLEMENTATION

Some of the most important algorithms of the framework are the uni�-
cation and matching algorithm. For this reason, we are going to explain in
detail how these algorithms have been implemented.

4.1 Uni�cation

This method is based on Paterson-Wegman linear uni�cation algorithm
[7]. Since terms are represented in memory as trees, the algorithm explores
both terms to be uni�ed in parallel. This exploration is done depth-�rst
(starting from the root and exploring as deep as possible along each branch
before backtracking).

The algorithm starts with an empty substitution σ = ε. For each step
of the exploration, there are three possible cases:

1. The current symbol on both terms are equal. Then, continue with the
uni�cation.

2. The current symbol on both terms are di�erent and none of them is a
variable. Then, the uni�cation fails.

47
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3. The current symbol on both terms are di�erent and at least one of
them is a variable. Then, add a new binding to the substitution with
the variable and the sub-term. Now:

(a) If the variable is also used on σ and the new binding is di�erent
from the one on σ, then the uni�cation fails.

(b) If the variable is used on the right side of the new binding, then
the uni�cation fails.

(c) If the variable is not used on σ, we apply the new binding to
the right side of all bindings on σ. Then we continue with the
uni�cation.

Note that when both symbols are variables, we can create the rule in
one direction or another.

The original Paterson-Wegman algorithm has some errors that were
discovered and �xed by D.D. Champeaux [7]. We have taken them into
account in the algorithm that we implement here.

1. Each node has a list with the number of occurrences of each variable
on it. The uni�cation is possible only if the variable of the substitution
if not used on it.

2. Each time a new binding is added to the substitution, it is applied to
all existing bindings in the substitution.

With those changes the algorithm is still linear (with respect to the sum
of nodes and edges in the tree graph of the terms).

Example 10: Uni�cation algorithm example traces.

Let f(a, x) and f(a, g(x)) be two terms that we want to unify.

The algorithm starts with σ = ε and pointers to the respective roots of
the term (marked in red on the �gures).
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f

a g

x

f

a x

Figure 32: Uni�cation example 1, step 1

As both nodes have the same symbol, we continue with the exploration
of the tree:

f

a g

x

f

a x

Figure 33: Uni�cation example 1, step 2

Again, the nodes have the same symbol, and because we are in a leaf of
the tree, we must do backtracking to explore the other branch.

f

a g

x

f

a x

Figure 34: Uni�cation example 1, step 3

In this case, the nodes are di�erent, one has the subterm x and the
second g(x). Since one of the terms is a variable, we must create a new
binding which is added to the substitution: x 7→ g(x). However, since the
variable x is used in g(x), the uni�cation fails. And this means that both
terms does not unify.
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Let's see another example:

Let f(x, y) and f(g(y), a) be two terms that we want to unify.

The algorithm starts with σ = ε and pointers to the roots of each term.

f

x y

f

g

y

a

Figure 35: Uni�cation example 2, step 1

We continue with the exploration.

f

x y

f

g

y

a

Figure 36: Uni�cation example 2, step 2

As in the previous example, the nodes are di�erent, one has the subterm
x and the second g(y), since one of the terms is a variable, we must create a
new binding: x 7→ g(y). Now variable x is not used in g(y) and the uni�cation
can continue. We add the new binding to the substitution: σ = ε ∪ {x 7→
g(y)}

f

x y

f

g

y

a

Figure 37: Uni�cation example 2, step 3
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Again we have di�erent nodes: one with sub-term y and the other one
with sub-term a, since one of the terms is a variable, we must create a new
binding: y 7→ a. Before adding the new binding to the substitution, we apply
the new binding to the existing one in the substitution. The substitution
becomes: σ = {x 7→ g(a), y 7→ a}

We have �nished the tree exploration: both terms unify with σ = {x 7→
g(a), y 7→ a}

4.2 Matching

The matching algorithm can be considered as a particular case of the
uni�cation algorithm because the way they work is the same, with the dif-
ference that the uni�cation is done in both directions and matching is only
one direction. As in the uni�cation, the algorithm explores both terms in
parallel using a depth-�rst exploration.

The algorithm starts with an empty substitution σ = ε. On each explo-
ration step there are three possible cases:

• The current symbol on both terms are equal: continue with the match-
ing.

• The current symbol on both terms are di�erent: the �rst term is not a
variable: the matching fails.

• The current symbol on both terms are di�erent and the �rst term is a
variable: we are going to add a new binding to the substitution with
the variable part from the �rst term and the term part from the second
one. Now:

� If the variable is also used in σ and the new binding is di�erent
from the one in σ, the matching fails.

� If the variable is not used in σ, we continue with the matching.

Note that in this case the substitution is always made in the same
direction, so the variable must be allocated on the �rst term.

Example 11: Matching algorithm example traces.
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We are going to illustrate the matching algorithm with the same terms
from Example 10

Let f(a, x) and f(a, g(x)) be two terms that we want to match.

The algorithm starts with σ = ε and pointers to the roots of each term.

f

a g

x

f

a x

Figure 38: Matching example 1, step 1

As both nodes have the same symbol, we continue with the tree explo-
ration:

f

a g

x

f

a x

Figure 39: Matching example 1, step 2

Again, the nodes have the same symbol. Since we are in a leaf of the
tree, we must do backtracking to explore the other branch.

f

a g

x

f

a x

Figure 40: Matching example 1, step 3
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In this case, the nodes are di�erent, one has the subterm x and the
second g(x). Since one of the terms is a variable, we must create a new
binding: x 7→ g(x). In the matching algorithm we don't have the restriction
that the variable of the binding can't be used in the term part so we add the
new binding to the substitution.

Since we end the exploration, the term f(a, x) matches with the term
f(a, g(x)) with the substitution σ = {x 7→ g(x)}.

Let's see the second example:

Let f(x, y) and f(g(y), a) be two terms that we want to match.

The algorithm starts with σ = ε and pointers to the roots of each term.

f

x y

f

g

y

a

Figure 41: Matching example 2, step 1

We continue with the exploration.

f

x y

f

g

y

a

Figure 42: Matching example 2, step 2

The nodes are di�erent, one has the subterm x and the other g(y). Since
the �rst is a variable, we must create a new binding: x 7→ g(y). So we add
it to the substitution: σ = {x 7→ g(y)}
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f

x y

f

g

y

a

Figure 43: Matching example 2, step 3

Again we have di�erent nodes, one with y and the other with a. We
create the binding y 7→ a, and add it to the substitution: σ = {x 7→ g(y), y 7→
a}

We have �nished the tree exploration: the term f(x, y) matches with
the term f(g(y), a) with the substitution σ = {x 7→ g(y), y 7→ a}.

4.3 Con�uence decision

Figure 44 shows the �ow chart for studying con�uence of a term rewrit-
ing system on the basis of the analysis of its critical pairs.
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pairs?
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Figure 44: Con�uence algorithm �ow chart

If the term rewriting system is not orthogonal (or almost/weakly or-
thogonal), because it is not left-linear or some of its critical pairs is not
trivial, we must check the convergence of the critical pairs. This point is
critical, because, right now, the framework does not provide any method to
determine if the term rewriting system is terminating or not.

The method which is used to check for convergence of critical pairs is
quite simple: the execution module is used to try all possible rewrites over
each term in the critical pair, and then checking for an eventual equality of
the results waiting at some point. The problem is that, if the term rewiring
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system is not terminating, then the module could be running forever without
reaching this point. Since the exploration of the reduction space of a term
can be limited by using an additional counter which is a parameter of the
process, if the process reaches this limit without any convergence, the critical
pair is �agged as �convergence unknown�.

There are tree particular cases where we can obtain useful information
when such �con�uence unknown� state is obtained:

• If exploring any of the terms in the critical pair we get two (or more)
di�erent normal forms, then we can conclude that the term rewriting
system is not con�uent, regardless of the result for the convergence of
the critical pair and the local con�uence property.

• If, while looking for convergence of a critical pair, any of the terms
has exhausted the exploration of its reduction space before reaching
the speci�ed limit of rewrite steps without obtaining a normal form,
then the term rewriting system is nonterminating. This is because the
execution tree has all its leaves deforested, and there are loops to other
terms in the execution tree, so there are in�nite loops.

• If, while looking for a convergence point for a critical pair, a loop has
been detected, i.e., any term contains a subterm that previously occurs
in the rewrite sequence, we can conclude that the term rewriting system
is nonterminating (see the de�nition of looping TRS in page 13).

In the following, we illustrate these remarks with some corresponding
examples:

Example 12: Non con�uence.

Consider the following rewriting system1:

b→ a (100)

b→ c (101)

c→ b (102)

c→ d (103)

One of its critical pairs is:

〈c, a〉 (104)

1You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-8

http://TRS.JarCode.Net/?t=-8
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The critical pair is convergent because:

c→ b→ a (105)

But this is the execution tree created while looking for this convergence:

c

b

ac

d

Figure 45: Non con�uence example

The tree has two di�erent normal forms (the green ones), so the term
rewriting system is not con�uent.

Example 13: Non termination, �rst case.

Consider the following rewriting system2:

+ (0, x)→ x (106)

+ (−(x), x)→ 0 (107)

+ (+(x, y), z)→ +(x,+(y, z)) (108)

+ (x, y)→ +(y, x) (109)

− (0)→ 0 (110)

− (−(x))→ x (111)

− (+(x, y))→ +(−(x),−(y)) (112)

One of its critical pairs is:

< −(+(y, x)),+(−(x),−(y)) > (113)

If we explore all possible rewrites over the �rst term −(+(y, x)) we will
get this tree:

2You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-6

http://TRS.JarCode.Net/?t=-6
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−(+(y, x))

−(+(x, y))

−(+(y, x)) +(−(x),−(y))

+(−(y),−(x))

+(−(y),−(x))

+(−(x),−(y))

Figure 46: Non termination example

The deforested nodes (the ones that have been created before on the
tree) are marked with red background. The tree can't be further explored,
but no normal form has been found, because every rewrite sequence will
make an eternal loop with terms of the tree, so we can conclude that this
term rewriting system is nonterminating.

Example 14: Non termination, second case.

Consider the rewriting system from Example 12.

In Figure 45 we can see that the second occurrence of the node c is
deforested, and the �rst occurrence of it is in the path to the root node, so
here is an in�nite loop in a rewriting sequence: c → b → c → b → . . .. We
can conclude that term rewriting system is nonterminating.

Note that the rewrite process can be represented as a tree due to the
deforestation. Without deforestation, the representation is a directed graph
and the term rewriting system is nonterminating if there is a cycle in the
graph.

The cycles the framework can detect are of the kind of Example 12,
where there is a rewrite rule that gives back a term to a previous term in
the same branch of the tree (see Figure 47). There are other cycles that
can't be detected because, since the tree is deforested, the cycle involves
di�erent branches in the tree, e.g. in Figure 46, the loop +(−(x),−(y)) →
+(−(y),−(x))→ +(−(x),−(y)) is not detected as a loop by the framework.
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c

b

ac

d

Figure 47: Non con�uence example

If we suppress deforestation, the framework will be eventually able to
detect all loops, as shown in Figure 48, because the deforestation cuts the
rewrite sequence before it reaches the same term twice in the same branch.

−(+(y, x))

−(+(x, y))

−(+(y, x)) +(−(x),−(y))

+(−(y),−(x))

+(−(x),−(y))

+(−(y),−(x))

+(−(x),−(y))

+(−(y),−(x))

Figure 48: Tree without deforestation

The �rst case when the framework concludes the nontermination of the
term rewriting system is useful when the tree has all its leaves deforested
without detecting any loop involving a single branch in the tree reduction.
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TRS.TOOL

To illustrate the use of the framework in a real application. A web tool
has been developed to test all functionalities. It can be used in:

http://TRS.JarCode.Net

The interface is very simple, there is a textarea where we can type
the target term rewriting system. We can also upload a �le from the local
computer with the term rewriting system de�nition. You can specify the
limit of rewrites while searching for convergence of critical pairs. This limit
is for each critical pair.

Figure 49: Web tool interface

60

http://TRS.JarCode.Net
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TRS.Tool has been included in the list of rewriting tools maintained
by Nao Hirokawa at the Japan Advanced Institute of Science Technologies
(JAIST)1.

Figure 50: Tools on Rewriting

5.1 TPDB Format

Our choice of input format for Term Rewriting Systems is a very popular
one: the TPDB format, which is used since 2003 in the Termination Problem
Data Base (TPDB). For more information about the original format you can
visit the website of the Termination Problem Data Base2. Here is a brief
description:

spec ::= (decl) spec | ε
decl ::= VAR idlist | FUNCTIONS funclist |

CONSTANTS idlist| RULES listofrules |
TERMS listofterms | COMMENTS listofcoments

idlist ::= id idlist | ε
funclist ::= funcdef functlist | ε

1http://www.jaist.ac.jp/~hirokawa/tool/
2https://www.lri.fr/~marche/tpdb/format.html

http://www.jaist.ac.jp/~hirokawa/tool/
https://www.lri.fr/~marche/tpdb/format.html
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funcdef ::= _id_ | _id | id(int)
listofrules ::= rule listofrules | ε
rule ::= term -> term
term ::= id | id() | id(termlist) | (term)id(term) |

(term)id
termlist ::= term, termlist | term
listofterms ::= id = term listofterms | ε
listofcoments ::= string listofcoments | ε

Notes about the grammar:

• id are non-empty sequences of characters except space, '(', ')', '”',
'=' and ','; and excluding the special sequence '->' and keywords VAR,
FUNCTIONS, CONSTANTS, RULES, TERMS and COMMENTS.

• string are sequences of any characters between double quotes.

• int are non-empty sequences of digits.

• A symbol occurring in a RULES section which has not been used before
is assumed to denote a function symbol, and must be used afterwards
always with the same arity.

Theses are the changes introduced in the original format:

• Removed THEORY and STRATEGY sections. There is no need to remove
them from the input data, because any unknown section is ignored.

• Added FUNCTIONS and CONSTANTS sections. They are optional, and
the parser can deduce them from the RULES sections, but has been
considered important to include them because can reduce the number
of mistakes produced typing the rules.

• Added TERMS section. It is used to pass to the tool the terms that
have to be use in the execution module.

• Added in�x and post�x notation for functions, e.g. (op1)+(op2)
and (op)++ respectively.

An example of use of this format is shown in the next section.
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5.2 Use Example

To test the functionality of the web tool we are going to show a simple
execution of the tool. The term rewriting system for the test is3:

f(a, x)→ h(x, x, a) (114)

g(x)→ f(a, x) (115)

f(y, x)→ y (116)

h(x, y, a)→ g(x) (117)

f(g(x), a)→ g(g(x)) (118)

Also, for testing the execution module, we are going to use the term:

t = f(g(x), a) (119)

First step is write the term rewriting system data into the TPDB For-
mat, and input it on the textarea.

Figure 51: TRS input

Once the term rewriting system has been introduced you can push the
button �Go!� and the web tool does all the operations and presents the
results. Those have been classi�ed in 6 groups, each one in a di�erent tab:
Input Data, Terms, Matching and uni�cation, Rules, Critical pairs and Term
Execution.

Figure 52: Result tabs

3You can test it with TRS.Tool: http://TRS.JarCode.Net/?t=-7

http://TRS.JarCode.Net/?t=-7
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5.2.1 Input Data

Shows the same information introduced by the user. The main purpose
is to check that all data have been correctly parsed.

Figure 53: Input data tab

The information that is shown here is organized into four tables:

• TRS.ToString(): uses the ToStringmethod of the TermRewritingSystem
Object created to print out the term rewriting system in TPDB format,
see Table 1.
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Table 1: TRS.ToString()

• Variables and Signature: Shows the set of variables and the signature
(function symbols and arity functions), see Table 2
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Table 2: Variables and signature

• Terms: Lists all terms with labels to be used in the rest of the tabs.
The terms from the rules are numbered from 0 to n, and marked with
"L" or "R", so the term T0L is the left-hand side of the �rst rule, the
term T3R is the right-hand side of the fourth rule, and so on..., see Table
3

Table 3: Variables and signature

5.2.2 Terms

It draws the tree structure for each term and its basic properties.
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Figure 54: Terms tab

As an example, this is the information for terms t and T3L

Table 4: Term t analysis
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Table 5: Term T3L analysis

Each symbol in the tree is represented as a cell in the table, with the
position it has inside the term. At the bottom of the tree there is the set of
variables and the properties the terms satisfy: linear, ground, etc . . .

5.2.3 Matching and uni�cation

Test the matching and uni�cation among all terms.

Figure 55: Matching and uni�cation

It contains two tables, one for matching and another for uni�cation:
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Figure 56: Matching table detail

Figure 57: Uni�cation table detail

For each pair of terms such that the matching or uni�cation is possible,
the table contains the substitution σ that makes it possible. If a pair of terms
do not unify or match, they are not included in the corresponding table.

5.2.4 Rules

Analyses of the properties of the rules.

Figure 58: Rules tab

There is a table for each rule that indicates its properties. Here are the
tables for R1 and R2:
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Table 6: Rule R1 analysis

Table 7: Rule R2 analysis

5.2.5 Critical Pairs

This option obtains and analyses the critical pairs.
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Figure 59: Critical pair tab

There are four tables on this tab:

• Critical pair calculation: There is a cell for each critical pair.

Table 8: Critical pair calculation

Here is the outcome for the �rst and second critical pairs:
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Figure 60: First critical pair calculation

Figure 61: Second critical pair calculation

• Critical pair convergence: For nontrivial critical pairs the tool tries to
test their convergence:
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Table 9: Critical pair convergence

If the critical pair converges, the rewrite sequence is detailed for each
part of the critical pair. Here is the detail for checking convergence of
the second and fourth critical pairs:

Figure 62: First critical pair convergence
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Figure 63: Second critical pair convergence

• Critical pairs : It lists all critical pairs and their main properties (trivial,
convergent, etc. . . ):

Table 10: Critical pairs

• TRS Properties : Finally we get the properties of the term rewriting
system. I the nontermination have been concluded, the in�nite loop is
printed out:
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Table 11: TRS properties

5.2.6 Term Execution

If a term has been speci�ed, the rewrite rules are applied over it. To
avoid an in�nite loop and breaking down the server with non terminating
term rewriting systems and in�nite computations, a limit of rewrites is spec-
i�ed by the user when the process is launched. If the process �nds a normal
form, the detailed trace is shown.

Figure 64: Term execution tab
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For each term speci�ed in the TERMS section of the TPDB �le, a table
is created. The �rst row of the table shows the root node of the execution
tree, which is the term itself:

Figure 65: Term execution root node

If you click on any node of the tree execution, it is expanded and shows
the terms that can be reached in one step by applying the rules of the term
rewriting system:

Figure 66: Term execution root node expansion

The nodes that result from this expansion are shown in gray color back-
ground.

If we put the cursor over any node of the execution tree, a tool tip is
shown with the rule, the position and the matching substitution that are
used in the reduction step.

Figure 67: Term execution node tool tip

When we reach a node that previously occurred in the tree, it is �agged
as deforested, so you can't continue with this branch. Deforested nodes are
represented in red color background.
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Figure 68: Term execution with deforested node

When we reach a node such that no rules apply (the term is in normal
form), it is represented in green color background.

Figure 69: Term execution canonical node

Since the tree explores all possible rewrites, the full tree can be huge:

Figure 70: Full term execution tree

If we have expanded too much the tree, we can click again over any
node to collapse the branches we want to hide

Figure 71: Term execution tree
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Finally, for each normal form the detailed rewrite sequence is shown:

Figure 72: Normalizing form rewrite sequence

Only the �rst occurrence of each di�erent normal form is shown. In the
example, the normal form a can be reached in di�erent ways, but only one
of them is shown. If the term rewriting system is not con�uent, then there is
the possibility to get di�erent normal forms, and a rewrite sequence for each
of them will be shown.

Example 15: Con�uence Analysis.

Consider again the term rewriting system in Example 1:

add(0, x)→ x (120)

add(s(x), y)→ s(add(x, y)) (121)

prod(0, x)→ 0 (122)

prod(s(x), y)→ add(y, prod(x, y)) (123)

fact(0)→ s(0) (124)

fact(s(x))→ prod(s(x), fact(x)) (125)

You can test it with TRS.Tool at:

http://TRS.JarCode.Net/?t=-1

http://TRS.JarCode.Net/?t=-1
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Figure 73: Example 1

If we test the term rewriting system with TRS.Tool, we can check that
it has no critical pairs and it is actually con�uent, due to its orthogonality.

Table 12: Example 1 properties

Now, if we add the new rule (9):

http://TRS.JarCode.Net/?t=-2

http://TRS.JarCode.Net/?t=-2
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Figure 74: Example 1 �optimized� version

The TRS.Tool �nds a non convergent critical pair, so the term rewriting
system is not con�uent.

Table 13: Example 1 �optimized� version critical pairs
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Table 14: Example 1 �optimized� version properties

Example 16: Termination Analysis.

Consider again the term rewriting system in Example 2:

add(0, x)→ x (126)

add(s(x), y)→ s(add(x, y)) (127)

prod(0, x)→ 0 (128)

prod(s(x), y)→ add(y, prod(x, y)) (129)

You can test it with TRS.Tool at:

http://TRS.JarCode.Net/?t=-3

http://TRS.JarCode.Net/?t=-3
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Figure 75: Example 2

If we test the term rewriting system with TRS.Tool, we can check that
it has no critical pairs and it is actually con�uent, due to its orthogonality.

Table 15: Example 2 properties

Now, if we add the new rule (14):

http://TRS.JarCode.Net/?t=-4

http://TRS.JarCode.Net/?t=-4
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Figure 76: Example 2 �optimized� version

The TRS.Tool �nds a non convergent critical pair, so the term rewriting
system is not con�uent.

Table 16: Example 2 �optimized� version critical pairs

Furthermore, TRS.Tool detects the new system is nonterminating.

Table 17: Example 2 �optimized� version properties
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TESTING THE FRAMEWORK

In order to test the correct functionality of the framework, we have
decided to use the set of term rewriting systems from the Con�uence Com-
petition 1. For this test we have set 500 as the limit of rewrites.

The test set contains 216 term rewriting system tagged with their prop-
erties. After trying them with TRS.Tool, we obtain the following results for
con�uence and local con�uence:

CoCo Tag TRS.Tool Success ratio

Con�uent 171 5 2.9 %
Non Con�uent 27 14 51.9 %
Success 198 19 9.6 %

Unknown 18 199
Total 216 216

Table 18: Con�uence property test

These results are not so impressive because, currently, TRS.Tool has
only one way to check con�uence of a system: the check for orthogonality
properties (and in the set of problems there are only 5 orthogonal systems).

1http://termcomp-devel.uibk.ac.at/hzankl/cops/

84

http://termcomp-devel.uibk.ac.at/hzankl/cops/
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CoCo Tag TRS.Tool Success ratio

Locally Con�uent 163 201 123.3 %
Non Locally Con�uent 12 12 100.0 %
Success 175 213 121.7 %

Unknown 9 3
Total 216 216

Table 19: Locally Con�uence property test

The target of the Con�uence Competition is proving con�uence rather
than local con�uence. In contrast, TRS.Tool determines the local con�uence
of some systems that have this information missed on the set.

TRS.Tool determines the local con�uence of 38 systems that are not
tagged as locally con�uent:

• 31 (1, 19, 20, 22. . . ): Tagged as con�uent, but not as locally con�uent.
Probably, since con�uence implies local con�uence, the tagging for local
con�uence was just missed as directly entailed from positive con�uence
tag.

• 2 (126, 216): Have no tags about con�uence or local con�uence, but in
the comments it is said that they are con�uent.

• 3 (21, 212, 214): Tagged as noncon�uent and not as locally con�uent.

• 2 (62, 175): No tag about con�uence nor local con�uence.

CoCo Tag TRS.Tool Success ratio

Terminating 35 0 0.0 %
Non Terminating 181 129 71.3 %
Success 216 129 59.7 %

Unknown 0 87
Total 216 216

Table 20: Terminating property test

TRS.Tool implements a method to detect nonterminating systems (see
section 4.3 and Examples 13 and 14), and it was able to discover 71.3% of
them.
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A detailed report of the test can be viewed on the website:

http://TRS.JarCode.Net/Test.html

Here you can see the individual result for each test, and the result for
each of those properties: con�uence, noncon�uence, local con�uence, nonlo-
cal con�uence, termination and nontermination.

Figure 77: Test detailed report

If you click on the name of one �le tested, you can test it again with
TRS.Tool.

Figure 78: 5.trs test loaded

The column �Seconds� indicates the amount of time the analysis of the
term rewriting system takes. As the precision of the Stopwatch object

http://TRS.JarCode.Net/Test.html
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from .Net which is used to measure the time is 1 millisecond, and some
tests take less than that, we have done each test 10 times and calculate the
average time. The last column �Rewrites� indicates how many rewrites were
necessary to determine the (non)convergence of all critical pairs.

We have removed system number 15 from the test, because it is a com-
plex term rewriting system with 15 critical pairs, and some of them reach the
limit of 500 rewrites without any convergence. The time for this one took
almost 2 hours and the TRS.Tool couldn't determine any property. It will
be necessary to create a timer to cut the execution of the process and give a
timeout exception.

Figure 79: 15.trs results

At the end of the table there is a row with the total values. The average
time for the 215 systems was 239 milliseconds. This value could be lower,
because of the educational objective of the tool, it analyses all the critical
pairs. But this is not necessary: if we �nd a notconvergent critical pair, then
it is not necessary to check the rest and we can get an answer early.

Figure 80: Test total values

Here is a dispersion graph of the time which is necessary to get the result
in milliseconds. Note that only 5 examples required more than 1 second.
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Figure 81: Test dispersion graph



CHAPTER 7

CONCLUSIONS

The main goal of this thesis is the implementation of a framework that
enables the user to work with term rewriting systems, providing these func-
tionalities:

1. Determine the basic structure and syntactic properties of a given term
rewriting system.

2. Compute the critical pairs of the term rewriting system and determine
its orthogonality, local con�uence and con�uence.

3. Compute resolution sequences for term rewriting.

Another important target of the thesis is the development of a web tool
which if suitable to be used in teaching the main rewriting concepts.

Our implementation �ts the goals, but there are lot of additional devel-
opments that can be included and on some points can be optimized.

One of the �rst targets that should be addressed in the future is the op-
timization of the execution module to make it more smart. Currently, almost
all branches of the execution tree are explored and the deforestation method
is quite poor. It should be improved to detect loops of non terminating term
rewriting systems. As a second step in the optimization of the execution
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module we should de�ne heuristics to determine the best rewriting rule to
be applied in order to get a given term or a normal form.

Another line of future work is the veri�cation of more properties
for the term rewriting systems: reducibility, termination, correctness,
etc. . . Termination is especially attractive due to its relevance and use in
con�uence tests.

Finally I think the methods implemented to decide con�uence can be
applied to a very restricted subclass of term rewriting system (weakly or-
thogonal and terminating). Extended methods that apply to more general
TRSs could be implemented in the future

The current version of the tool can be used as a starting point for a more
powerful tool if the development continues. Also, TRS.Tool gives much more
intermediate information about the process of the analysis of the critical pairs
than other existing tools. This is very useful for the students to assimilate
the basic concepts of this topics and getting involved in the �eld. Actually,
this was the main motivation to start this project an implement TRS.Tool.
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