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Abstract—Flexible channel allocation may be applied to multi-
channel cognitive radio networks (CRNs) through either channel
assembling (CA) or channel fragmentation (CF). While CA allows
one secondary user (SU) occupy multiple channels when primary
users (PUs) are absent, CF provides finer granularity for channel
occupancy by allocating a portion of one channel to an SU
flow. In this paper, we investigate the impact of CF together
with CA for SU flows by proposing a channel access strategy
which activates both CF and CA and correspondingly evaluating
its performance. In addition, we also consider a novel scenario
where CA is enabled for PU flows. The performance evaluation
is conducted based on continuous time Markov chain (CTMC)
modeling and simulations. Through mathematical analyses and
simulation results, we demonstrate that higher system capacity
can be achieved indeed by jointly employing both CA and CF,
in comparison with the CA-only strategies. However, this benefit
is obtained only under certain conditions which are pointed out
in this paper. Furthermore, the theoretical capacity upper bound
for SU flows with both CF and CA enabled is derived when PU
activities are relatively static compared with SU flows.

Index Terms—Multi-channel cognitive radio networks; Chan-
nel assembling; Channel fragmentation; Continuous time
Markov chain modeling; Performance evaluation.

I. INTRODUCTION

In cognitive radio networks (CRNs) [1], secondary users
(SUs) can access the spectrum which has already been allo-
cated to primary users (PUs) when PUs are inactive. To further
enhance spectrum utilization, channel assembling (CA) and
channel fragmentation (CF) techniques can be employed. CA
means that multiple channels can be assembled by SUs for
a single SU flow, instead of using barely one channel per
SU flow all the time. This technique has been proposed in
many dynamic spectrum access strategies and CRN medium
access control (MAC) protocols [2]-[14]. In contrast, a single
channel can be shared by multiple SU flows if CF is supported.
With CF, an SU flow may be accommodated by a portion of

Lei Jiao, Indika A. M. Balapuwaduge, and Frank Y. Li are with the
Dept. of Information and Communication Technology, University of Agder
(UiA), N-4898 Grimstad, Norway (E-mail: {leijiao; indika.balapuwaduge;
frank.li } @uia.no).

Vicent Pla is with the Dept. of Communications, Universitat Politeécnica de
Valencia (UPV), 46022 Valencia, Spain (E-mail: vpla@upv.es).

The cooperation among the authors was supported by the EU Seventh
Framework Programme FP7-PEOPLE-IRSES under grant agreement number
247083, project acronym S2EuNet.

The work of L. Jiao was partially supported by the Research Council of
Norway through the ECO-boat MOL project under grant number 210426, and
by the EU Seventh Framework Programme STREP - FP7-ICT-2013-11 under
grant agreement number 619560, project acronym SEMIAH. The work of
V. Pla was supported in part by the Ministry of Economy and Competitiveness
of Spain under Grant TIN2010-21378-C02-02.

a channel if the quality of service (QoS) requirement is met
[16]-[18], and it can also assemble more than one channel
with a non-integer number of channels together with CA [19].

It has been demonstrated in our previous work [13]-
[15] that better system performance can be achieved by CA
when spectrum adaptation is adopted with proper parameter
configuration. In brief, spectrum adaptation embodies two
functionalities, i.e., 1) an ongoing SU flow is able to jump
to another idle channel if PU appears on the current channel;
and 2) the number of assembled channels for an ongoing SU
flow can be adapted according to the variation of the channel
availability. The capacity' upper bound in the quasistationary
regime (QSR) for any CA strategy is deduced in [20] and it is
demonstrated that this upper bound is achievable by dynamic
strategies with appropriately configured parameters.

Recently, CF combined with CA and spectrum adaptation
has drawn attention in the research community [19], [20].
However, a common feature of these presented strategies is
that each ongoing SU flow occupies at least one channel, and
CF is introduced in order to achieve a non-integer number of
assembled channels for an SU flow. In contrast, the case that
an SU flow can be served by a portion of one channel is not
studied. At the same time, we observed that the effect of CF on
real-time SU flows is not investigated in [19], [20]. Therefore,
a full scope on the impact of CF on network performance is
still hidden in the literature.

The main objective of this study is to make an overall
evaluation on the impact of CF to SU performance when both
CA and spectrum adaptation are already enabled, given that an
SU flow can be accommodated by a portion of one channel.
In addition, as more and more emerging wireless and cellular
communication systems, like 802.11ac [9] and LTE-A [12],
adopt CA, this technique can also be implemented by PUs.
Therefore, the impact on SUs when PUs can assemble multiple
channels is also of essential interest to study. Considering
different impact that CF and CA may have on various types
of flows, two SU traffic types, i.e., elastic traffic and real-
time traffic, are investigated. For an elastic flow, like file
downloading, the service time will be reduced if more channels
are assembled for the same flow due to higher data rate,
and vice versa. On the contrary, for a real-time flow, like a
voice conversation, the service duration will not be affected
by the number of assembled channels as long as the basic
QoS requirement is satisfied for such flows. Both elastic and

ICapacity in [20] is denoted as the number of flows that can be served by
the system per time unit, which is different from Shannon capacity. We utilize
the same definition for capacity in this work unless otherwise stated.
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real-time traffic types are studied in this work.

To investigate system performance for elastic traffic, we first
enhance the full adaptation and full sharing (FAFS) strategy
proposed in [20]. More specifically, we extend the minimum
number and the maximum number of channels that can be
utilized by an ongoing SU flow in FAFS into a larger number
domain. Then we propose and analyze two different CTMC
models for the system under various conditions. The first
model is a precise model that corresponds to the case where
there is no constraint on the time scales of PU and SU
activities. The second model applies to the QSR, i.e., the
one in which the PU events occur at a much longer time-
scale than the SU events do. The performance of SUs in the
QSR is also of essential interest because a comparatively slow
PU activity is an important prerequisite for envisaged CRN
deployment in real-life [5], [21]. Furthermore, as an extension
of the conclusions drawn in [20], we derive a closed-form
theoretical capacity upper bound a CRN can achieve in the
QSR by employing both CF and CA. To further examine the
impact of CF on real-time traffic, similar mathematical models
are developed and analyses are performed.

In brief, the main contributions of this paper are outlined
as follows:

o A representative spectrum access strategy with non-
integer number of assembled channels is developed. This
strategy does not only accommodate SUs with multiple
channels through CA and spectrum adaptation, but also
supports SUs which use only a portion of one channel for
their traffic flows. Its mathematical analysis is significant
as it provides theoretical insight on the performance
gain that can be obtained by CF together with CA and
spectrum adaptation.

o Based on the analysis of the mathematical model, we
reveal an important condition under which CF can im-
prove the capacity for elastic traffic of a CRN using a
strategy that enables both CA and spectrum adaptation.
Furthermore, the closed-form capacity upper bound in the
QSR for any strategy when CF and CA are adopted is
derived for elastic traffic.

o For real-time traffic, it is demonstrated mathematically
that higher capacity can also be achieved if CF is utilized.
The corresponding theoretical capacity upper bound in
the QSR is also derived.

o The impact of applying CA to PUs on the performance
of SUs is also considered and analyzed. It is a more
generalized scenario than the previously studied cases in
which PU flows would always occupy one channel.

The remainder of this paper is organized as follow. In
Sec. 11, the related work is summarized. The network scenario
and the access strategy are presented in Sec. III. In Sec. IV
the impact of CF together with CA for elastic traffic is
investigated, followed by Sec. V in which the impact of CF for
real-time traffic is examined. Numerical results are presented
and discussed in Sec. VI before we conclude the paper in
Sec. VIL

II. RELATED WORK

In what follows, we first summarize the existing work
on mathematical modeling of channel access strategies when
either CF or CA is supported, and then survey the studies
where both CF and CA are enabled.

A. CF Strategies and Their Mathematical Models

The performance of CRNs with CF has been studied under
various scenarios [16]-[18] through CTMCs, where an SU
flow can be accommodated by a portion of a channel. Papers
[16] and [17] focus mainly on the cases when there are
infinite number of users. In those studies, both spectrum
handover’ and non-handover cases are investigated. When
spectrum handover is not supported, multiple ongoing SU
flows may be preempted by a single PU arrival. Therefore, the
system performance is worse than when spectrum handover
is enabled. Besides spectrum handover and non-handover
cases, channel reservation which makes a tradeoff between
forced termination probability and blocking probability is also
investigated in [16]. Paper [18] illustrates the performance of
CRNs with a finite number of users. The system model in the
QSR is also studied in that work.

B. CA Strategies and Their Mathematical Models

The CA technique has been widely proposed in MAC
protocol design for CRNs [2]-[5] and many other commu-
nication systems [6]-[12]. The protocol-level studies reveal
the feasibility of CA in practice and illustrate the detailed
scheduling and signaling process for such a technique. To
evaluate the performance of these protocols, simulations and
experiments are carried out according to the above literature.
Furthermore, Markov chain based mathematical analysis is
adopted, e.g., in [2], [3]. In [28], the application of CA to
SU packets is studied in-depth for CRNs. The analysis in [28]
is performed through discrete time Markov chains.

To investigate the performance of CRNs when CA is applied
to SU traffic flows, many channel access schemes have been
proposed and their mathematical models are developed [13]—
[15], [23]-[27]. Due to its flexibility, elastic traffic is the main
focus for many CA strategies [13], [23]-[27]. Heterogeneous
traffic types with both elastic and real-time traffic have also
been considered in [14], [15], [22]. In our earlier work [14],
we consider heterogeneous traffic in a loss system whereas in
[15] we introduce queues and scheduling schemes. Different
priority-based access mechanisms are proposed for various
types of flows in [14]. It is also demonstrated in [14] that
spectrum adaptation is an important prerequisite where CA
can result in performance improvement compared with the
strategies without CA.

C. Strategies with both CF as well as CA and Their Mathe-
matical Models

Two similar strategies with both CA and CF enabled are
proposed independently in [19] and [20] with different scopes.

2Spectrum handover means that an ongoing SU flow can hop to another
idle channel to maintain the flow if a PU appears on the current channel.



Both strategies require that all ongoing SU flows equally
share the available channels, implying that CF is necessary
for such strategies in order to achieve a non-integer number of
assembled channels. In [20], the capacity upper bound of any
strategy employing CA techniques is derived in the QSR. In
order to reduce the dimension of the Markov chain models, CF
is enabled therein as a supplementary technique. However, we
did not explore in [20] the benefit of enabling CF in addition to
CA. The study in [19] instead focuses on analyzing the strategy
itself, and its mathematical analysis as well as simulations are
performed based on an implicit assumption that each SU flow
requires at least one channel. In fact, as shown later in this
work, we can find a CA-only strategy that is equivalent to
the strategies modeled in [19] [20] in the condition that at
least one channel is needed for each flow. The property which
allows accommodating an SU flow by a portion of a channel
results in a fundamental difference in the system performance.
This point is not revealed earlier, by neither [19] nor [20].

In short, although CF and CA are proposed and analyzed
for CRNs, it is still necessary 1) to identify under which
circumstances CF can bring further benefit to a system in
addition to CA, and 2) to explore how much benefit CF can
bring to the system concerning the parameters of interests.
In the rest of this paper, we intend to provide the answers
to the above two questions by proposing and analyzing a
new strategy. Since spectrum adaptation is important for
improving system performance [14], spectrum adaptation is
enabled together with CF and CA by default.

III. SYSTEM CONFIGURATIONS AND ACCESS STRATEGIES
A. Network Scenario and System Configurations

Consider a CRN with multiple channels. Assume that there
are two types of radios, PUs and SUs, operating in the same
frequency band. PUs have preemptive privilege for spectrum
access and can acquire the channels being used by SUs at any
time. There is no cooperation between PUs and SUs.

Without loss of generality, we define the minimum spectrum
requirement for a single PU flow as one channel (a unit
channel for the system). The total spectrum band consists of
M € Z7% channels for PUs, where Z* denotes the set of
positive integer numbers. Denote the number of channels that
a PU flow assembles as G and assume that the maximum
number of channels a PU flow can utilize is H. According to
the above configuration, it is obvious that 1 < G < H < M
holds, where G, H € R™, and R™ denotes the set of positive
real numbers. If H = 1 holds, only one channel is utilized for
each PU flow. On the other hand, one PU flow may occupy
multiple channels given H > 1.

SUs have the freedom to transmit a flow using a portion
of one channel by utilizing CF, or in multiple channels by
adopting CA. The assembled multiple channels can be either
neighboring to or separated from each other in the spectrum
domain. Denote by W and V € RT as the minimum number
and the maximum number of channels that a single SU flow
can utilize respectively, and R € R is the number of channels
that an SU flow assembles. Obviously, 0 < W < R<V < M
holds. Note that W and V in this study are considered as

positive real numbers, which is different from [20] where W
and V are positive integer numbers.

Assume that SUs can detect PU activities with high enough
spectrum sensing accuracy and the effect of sensing failure
at the flow level is ignorable. In our analysis, it is assumed
that there is a protocol running among the SUs to support
CA, CF, and spectrum adaptation. We further assume that
the SU flows are independent of each other. Once accepted,
the flow level service will not be terminated due to channel
variations with the help of advanced physical and MAC
layer techniques, like link adaptation and adaptive modulation,
hybrid automatic repeat request with soft combining, etc.
Given the above assumptions, we regard the capacity obtained
from the theoretical analyses as ideal compared with the results
based on more realistic conditions.

B. PU Channel Access Strategy

It is assumed that PUs can adaptively adjust the num-
ber of channels that a flow assembles according to channel
availability. More specifically, PUs operate in the following
manner. The ongoing PU flows will 1) always utilize as many
channels as they are allowed to; 2) always equally share’
the available channels; and 3) always share their occupied
channels with a new PU arrival. In more details, if one or
more channels become idle due to a departure of a PU flow,
the remaining ongoing PU flows will equally share the newly
available channels, up to H channels that are assembled for
each flow. Upon the arrival of a new PU flow, it will be allowed
to commence if and only if the number of channels per PU
flow is not lower than one after spectrum sharing. Note that
if H =1 holds, CA is not supported.

C. SU Channel Access Strategy

Consider an extended full adaptation and full sharing strat-
egy for SUs, denoted as EFAFS (W < R < V). In this
strategy, ongoing SU flows have the same properties 1) — 3)
as discussed in the previous subsection for PUs. Moreover,
whenever channels become idle due to a PU or SU flow
completion or a forced SU flow termination, these channels
will be equally shared by ongoing SU flows, up to V' channels
per flow. Upon an SU flow arrival, it will be commenced if
the number of channels per SU flow is not lower than W
after sharing with ongoing SU flows. However, due to their
inferiority in the network, the ongoing SU flows will reduce
the number of occupied channels and possibly continue their
flows only when at least W channels per each ongoing SU
flow are kept upon a PU arrival. In the extreme case, one or
multiple ongoing SU flows may be forced to terminate if and
only if the average number of assembled channels is lower
than W for ongoing SU flows after a PU appearance.

There exist several techniques which allow equally sharing
of a channel among flows. In the frequency domain, orthogonal
frequency division multiple access (OFDMA) [29] can be

3Note that an ongoing PU flow must be able to assemble a non-integer
number of channels. Therefore, CF is also allowed. For PU flows, G > 1
always holds since we have defined the minimum spectrum requirement for
a single PU flow as one channel.



TABLE 1
TRANSITIONS FROM A GENERIC STATE & = (i, ]) FOR EFAFS. IN THIS TABLE, PU AND SU REPRESENT A PU FLOW AND AN SU FLOW RESPECTIVELY.

termination happens | max(0.M_GHDA) |

Activity Destination state Transition rate Conditions

PU arrives when no SU exists (1+1,0) Ap i< Mand j =0

PU arrives when at least one SU exists. No SU | (i + 1, 7) Ap M—(i+1)H > jW,j>0,and i < M
forced termination happens

PU arrives when at least one SU exists. SU forced (i + 1, Ap M—-(i+1)H < jW,i< M,and 5 >0

PU departure (1 —1, 7) min(M, tH)pup i >0
SU arrival (i, 5+ 1) As M —iH > (j +1)W
SU departure (i,7—1) min(M — Hi,jV)us | 7 >0

employed by facilitating ongoing SU flows to share a channel,
as illustrated in Fig. 1. Alternatively, multiple SU flows may
also share a channel in the time domain, or in both time and
frequency domains in a hybrid manner. However, in real-life,
the granularity of channel sharing is constrained by hardware
limitation. In other words, it might be impossible to achieve an
absolutely equal channel share among all ongoing SU flows. In
this work, for the clarity of our theoretical analysis, we assume
that the difference of the amount of bandwidth allocated to
various flows is negligible.

In OFDMA, different sub-channels may have different char-
acteristics, resulting in distinct service rates. However, to eval-
uate the impact of different parameters for each sub-channel,
the states of each sub-channel must be tracked, leading to
a probably non-manageable size of state space in the Markov
model when the number of sub-channels is substantially large.
Furthermore, to avoid adjacent channel interference between
neighboring users/flows, guard-bands need to be utilized. The
requirements of guard-bands may be different due to various
physical layer techniques employed for CA [30]. As elaborated
in [8], [10], optimization on channel utilization can also be
carried out when guard-bands are considered for CA. The
variety of sub-channels and guard-bands may result in het-
erogeneity in channel parameters before or after CF and CA.
Additionally, the transmission power may also vary based on
different system configurations. To make our analysis tractable
and comparable with previous studies, we assume that all
channels are homogeneous with identical transmission power,
and the impact of guard-band is ignored when CF and CA
are employed. In other words, the average data rate for a flow
is assumed to be linearly proportional to the number of its
occupied channels in our model.

7 ’ t
—~ Guard-band -

CH6  Frequency

Fig. 1.  Tllustration of SUs that occupy non-integer number of channels
without overlap with PUs by employing OFDMA.

Note that this strategy is similar to the one proposed in [19],
[20], i.e., FAFS. The main differences are, however, that: 1)
in EFAFS, W, V € Rt whereas in FAFS, W, V € Z*;
and 2) in EFAFS, the scenario in which CA applies to PUs is
investigated whereas this scenario was not considered in FAFS.
In the following two sections, we present the mathematical
analysis of the proposed strategy for elastic traffic and real-
time traffic respectively.

IV. IMPACT OF CF AND CA ON ELASTIC SU FLOWS

Unless otherwise stated, PU and SU flows in this section
refer to elastic flows. Following the common practice for
Makov chain modeling, we assume that the arrivals of both
SU and PU flows are Poisson processes with rates Ag and
Ap respectively. Likewise, the service times are exponentially
distributed with service rates pus and pp in one channel
respectively. With homogeneous channels, the service rate of
an SU flow with R channels is Rug, and similarly Gup for
a PU flow with G channels.

There are four steps in our analysis. The precise analytical
model for EFAFS performance is derived in the first subsec-
tion. In the second subsection, the equivalence of EFAFS and a
strategy without CF, i.e., dynamic fully adjustable (DFA) [13],
is demonstrated under certain conditions. The purpose of
introducing DFA and comparing it with EFAFS is to reveal the
fact that CF cannot always improve system performance if the
system parameters are not properly adjusted and configured.
In the third subsection, we analyze the conditions that CF
can enhance the system performance and derive further the
theoretical capacity upper bound in the QSR. In the last
subsection, we provide deeper insight into our mathematical
analysis considering its limitations in real-life networks.

A. The Precise Model for EFAFS with Elastic Traffic

Let ¢ be the number of ongoing PU flows and j be the
number of ongoing SU flows. The state in the Markov chain
of EFAFS is expressed as & = (i, j). The transitions from state
(i,4) to other possible states are shown in Table I. We denote
by b(x) the total number of occupied channels at state x, given
as b(x) = iH + min(M — iH, V). Given concrete values of
M, H, W and V, the feasible states of the CTMC model can
be obtained, as S= {(4,)|iH + Vj < M}U{x |b(x)=M}.

Based on the state transitions presented in Table I, tran-
sition rate matrix Q can be established, with each element
representing the transition rate from one state to another. To
calculate the steady state probability, 7(x), the global balance
equations and the normalization equation can be established,
as wQ = 0, and ) _ m(x) = 1, where 7 is the steady state
probability vector. When the steady state probability, 7 (x), is
obtained, the other system parameters can be calculated.

The capacity of the secondary network, p., is defined as the
average number of SU flow completions per time unit [16].
It can be calculated by summing up the products of state
probabilities and their corresponding SU service rates, as



[(IVI;V'LH)J

S Y min(M —iH, Vi)usw(i,5). (1)

iM—iH>0  j=0

Pe =

The blocking probability, Pp., which refers to the prob-
ability that an SU flow arrival is blocked and lost due to
insufficient resources, is given by

)y

x€ES,
M—iH<(j4+1)W

Pye = (). @

The forced termination probability, Py., which represents
the fraction of the forced terminations over those commenced
SU flows, is given by
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S

M—(i+1)H<Wj
where Ry, is the forced termination rate and Ay = (1 —
Pyc)As. From the definition of A%, we observe that the blocked
SU flows are not taken into account for calculating Py.. Note
that the mathematical model developed in [19], [20] becomes
a special case of the above model as W,V € ZT,and H = 1
hold in [19], [20].

B. Equivalence between EFAFS and DFA

In this part, we illustrate the equivalence between EFAFS
(W < R <V)and DFA (W' < R’ < V') under certain
conditions. These two strategies follow similar principles but
are quite distinct, as EFAFS (W < R < V) requires both CF
and CA, but DFA (W’ < R’ < V’) requires CA only. Notation
DFA (W' < R’ < V) refers to the dynamic fully adjustable
strategy, where W', V'’ and R’ have the same meanings as
W,V and R in the EFAFS, but belong to the set of positive
integers, i.e., Z*. More detailed description on DFA and its
mathematical modeling can be found in [13].

The purpose of illustrating the equivalence is to figure
out the circumstances where CF cannot get further benefit if
CA and spectrum adaptation have already been enabled in
the system. The comprehension on this point will lead us
to the conditions under which the system performance can
be further improved by employing CF additionally. Note that
when DFA was developed in [13], CA was not considered
for PUs. Therefore, we consider H = 1 in this subsection by
default unless otherwise states.

Proposition 1: Given W = W' and V = V’, EFAFS
(W < R < V) is equivalent to DFA (W’ < R’ < V')
with respect to capacity, blocking probability, and forced
termination probability.

Proof: Refer to Appendix A.

Note that in the proof of Proposition 1, there is no constraint
on the time scale of PU and SU activities. Therefore, the
equivalence of these two strategies holds in general for any
time scale rather than just in the QSR.

When W and V are integer numbers, EFAFS is actually the
same as the strategies in [19]* and [20]. Proposition 1 tells us
that even though CF is enabled in [19], [20], i.e.,, R € Rt,
the network cannot achieve benefit from CF compared with
a CA-only strategy. Whether W, V' € R™ can yield further
benefit or not will be examined in the following subsection.

Note that such an equivalence still holds for H > 1 if the
PU access strategies are identical for EFAFS and DFA and
H € Z7* holds. The proof of equivalence is comparatively
similar to the one for Proposition 1 with a revised model
representing CA of PUs. However, if H is a non-integer
number, the equivalence does not hold because the DFA that
can only utilize integer number of channels cannot utilize
channel resources as much as EFAFS does.

C. The Advantages of CF and its Limit

In this subsection, we will elucidate the circumstance that
CF together with CA can lead to better system performance
than CA-only does, and then reveal the maximum theoretical
capacity when CA and CF are enabled in the QSR.

1) When CF can improve system performance: The key
point for possible system performance improvement by CF is
to utilize the values of W and V' that cannot be achieved
without CF. Both W and V may have impact on system
performance if they are selected from a larger number set. For
W, after the extension from Z* to R, a larger number of SU
flows can be potentially supported by the system. For example,
given W < 1, meaning that an SU flow can be supported by
a portion of a channel, capacity improvement can be observed
(to be illustrated later in the numerical results) as more SU
flows can be accommodated. For V, after extending it from
Z% to RT, the maximum service rate for an SU flow is not
constrained to integer numbers, resulting in higher channel
utilization. For example, consider a system that has M = 4
channels in total and can support up to 3.5 channels for a
single SU flow. With the same value of W in EFAFS, it is
straightforward that the system capacity will become higher if
V = 3.5 instead of restricting V' to an integer, i.e., V = 3,
since more channels are utilized by a single SU flow. In what
follows, we will elaborate a mathematical interpretation for
the reason of the increased capacity in the QSR, given that
W, Ve R*.

2) Capacity analysis in the QSR with CA and CF: In the
QSR, the distribution of SU flows reaches equilibrium between
two consecutive PU events. In other words, PU flows are
relatively static compared with SU flows. Therefore, when i
PU flows exist and M — ¢H > 0 holds, there are M — iH
channels that are in a sense dedicated to SU flows. In the
QSR, the number of ongoing SU flows with M —:¢H dedicated
channels can be modeled by a birth and death process (BDP),

as shown in Fig. 2, where Q = M —iH, I = {QJ

W and

41t is worth mentioning that in [19], the service rate of SU flows is a sum of
two rates, which represents the minimum of two exponential random variables.
In fact, the equivalence still holds if DFA has the same exponential distribution
as in [19]. Its proof has the same principle as the proof of Proposition 1, only
with an increased notational complexity in the SU service rate.



C = % . In this BDP, the service rate of the rth state is
rVus when r < C and Qus when r > C.

A, A A s A ——As—
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Fig. 2. The BDP for SU flows given M — ¢H dedicated channels.

According to the proof in [20], the capacity for such a
network can be improved by either increasing the service
rate or enlarging the chain length of the BDP for SU flows.
Obviously, if W < 1, the value of I will increase compared
with the case of W = 1. In other words, the chain length
is increased with W < 1 for any given ¢. By utilizing
Proposition 2 in [20], we can conclude that higher capacity
is achieved with W < 1 when both CF and CA are enabled”.
Similarly, re-visit the second example mentioned in the second
paragraph of this subsection. By utilizing Proposition I in [20],
it is obvious that the system capacity will be higher when
V = 3.5 compared with the case when V = 3 since the
service rates increase in the former case®. With CA-only,
W and V cannot be a fractional value. Consequently, we
understand mathematically the reasons why CF can result in
higher capacity than the system enabling only CA, since the
chain length can be extended and the service rate can be
increased.

Knowing that CF together with CA can result in higher
capacity in the QSR, the next question is how much capacity
a system can achieve at most with both CF and CA.

3) Capacity upper bound in the QSR with CA and CF: For
any strategy with CA, the capacity upper bound in the QSR
equals to the capacity of FAFS given W =1 and V = M in
the same regime [20]. To study the capacity upper bound with
EFAFS, we need to check how much the service rate as well
as the chain length can be further extended.

As mentioned earlier, the system service rate increases when
V' becomes larger. However, the service rate cannot be further
improved through CF because V' = M is already required for
achieving the capacity upper bound with a CA-only strategy
and V cannot be greater than M. On the other hand, the chain
length can be extended with a reduced value of W by utilizing
CF when W < 1. Ideally, if an SU flow can be accommodated
by an infinitely small portion of a channel, i.e., W — 0, the
capacity in the QSR will achieve its maximum possible value.
In reality, however, W — 0 is unrealistic since each flow
has its minimal QoS requirement and W cannot be arbitrarily
small considering hardware limitation. More discussions on
the granularity of W will be resumed later.

Proposition 2: With W, V € RT and CA and CF enabled,
the maximum theoretical achievable capacity for elastic SU
flows in the QSR is given by

>

M —iH>0

Pael = m(¢) min((M —iH)us, As), (C))

SProposition 2 in [20] approves that the capacity of a BDP will increase if
the chain length becomes longer with correspondingly non-decreasing service
rates.

SProposition 1 in [20] reveals the fact that the capacity of a BDP will
increase if the service rate increases for any state.

where
F i M i ol
Ap ) 1 ( Ap ) M
m(0)= -+ , (©)
Ap )\ w(0) :
(i) = (pr)_ i VI<i<F, ©)
® F
(95) 3=, vF<i<M,
and I' = L%J

Proof: Refer to Appendix B.

From (4), we observe that for any given M —i¢H > 0 chan-
nels, the maximum capacity equals to min((M —iH s, Ag).
The reason is as follows. With an infinitely long chain as well
as the same service rate and arrival rate for each state, meaning
that the network is saturated, the accomplished flows per time
unit equal to the service rate if the arrival rate is greater than
the total service rate. Otherwise, the number of flows that can
be finished by the system per time unit equals to the offered
load.

D. Further Discussions on the Derived Upper Bound

If the secondary network is saturated for any occupancy
level of PUs (i.e., A\g > Mug), the maximum capacity in (4)
becomes

Paet = (M — E[Npu])pis, @)

where Npy is a random variable representing the number
of channels that PUs occupy in the system and E[Npy]| is
its expected value. This result tells us that all the unused
capacity of the primary network could be fully utilized, if
there were no lower limit about the data rate that SUs’ elastic
flows require. This must be regarded as a theoretical limit that
cannot be fulfilled in practice. By letting W go to zero and
without applying admission control to elastic traffic (i.e., an
unlimited number of elastic flows can be initiated), a minimum
service rate per flow cannot be guaranteed as a consequence.
Although elastic traffic has a certain level of tolerance on
low bandwidth, flow abandonment due to an extremely low
service rate may occur because of service timeout or human
impatience. Therefore, a sharp drop of capacity may happen if
W decreases below a certain threshold. Flow drop has negative
impact on efficiency because certain amount of capacity is
wasted by non-completed flows. The necessity of applying
admission control for elastic traffic to prevent non-efficient
utilization of resources has been explained in [31].
Considering system stability in reality, a minimum value
of W should be enforced unless Ag < min{M —iH : i >
0, M — iH > O}ug is guaranteed. Note that min{M — iH :
i > 0,M —iH > 0}ug is the lowest rate that the SUs in
the system will receive. Although Ag < (M — E[Npy])us
might result in a stable system as a whole, the arrival rate
of elastic flows may be greater than its completion rate when
the number of active PU flows surpasses E[Npy]. Especially
in the QSR, such a local instability situation, i.e., the period
that the arrival rate is greater than the service rate, may last
for an exceedingly long time [32], since we are assuming
that the PU activities change at a much lower rate than for
SUs. Therefore, admission control may still be necessary even
though the system can be considered as stable in the long run.



V. IMPACT OF CF AND CA ON REAL-TIME SU FLOWS

In this section, we analyze the impact of CF on real-time
flows. Unless otherwise stated, SU flows in this section refer
to real-time flows. Since the service duration of a real-time SU
flow will not be affected by the number of assembled channels,
applying CA for real-time flows cannot improve SU capacity.
Correspondingly, the remaining alternative to enhance capacity
is to accommodate a larger number of flows in the system, by
utilizing a portion of a channel through CF.

A. Precise and QSR Models for Real-time Traffic

Consider a strategy where each real-time SU flow occupies
W € R* channels. The value of 1 decides the number of SU
flows that the system can accommodate for any given number
of i PU flows, as |(M — iH)/W |. Denote the service rate of
the SU real-time flows by p/s and the arrival rate by A, while
the arrival and service rates for PUs are the same as the ones
discussed in the previous section.

The precise model of a CRNs with real-time SU flows has
the same transitions as those illustrated in Table I except that
we need to substitute Ag and min(M — Hi,jV)ps by Ny
and jp's respectively. Note that the service rate of a state is
related to the number of ongoing SU flows in that state rather
than the number of channels that those flows assemble. The
capacity for real-time flows, p,., is therefore given by

[(M—iH)/W |
> jusm(i, 5), ®)

M —1H>0

pr =
7=0

while the blocking probability and the forced termination
probability have the same expression as in (2) and (3).

Let us further consider the capacity of real-time traffic in
the QSR. In this regime, for any given M — iH > 0, the
behavior of SU flows can be modeled by a BDP with arrival
rate \'g and service rate m'y for a state with m flows, and the
chain length is given by | (M — ¢H)/W | 4 1. Similar to the
analysis in [20], the capacity expression for real-time traffic
in the QSR can be expressed by

pr= Y w1 - mUNS
= 2, 0 [1_<Z§:(§:z)”> ]A’s. ©)

Despite practical constraints on W as discussed earlier, it is
of theoretical interest to study the case when W approaches
to zero. As W becomes smaller, the bandwidth occupied by
each SU flow reduces. With the same bandwidth provided
by a channel, the number of SU flows that a channel could
accommodate becomes larger as W decreases. If the real-time
flow can be accommodated by an infinitely small fraction
of a channel, a channel can actually support the offered
traffic. Mathematically, as W dimi{ﬁshes, I becomes a larger
JI.:O %(%)I _-7) in (9) approaches zero as
I increases. Therefore, the capacity approaches A for any
given M — ¢H > 0 channels.

number, and (Z

Note that for real-time traffic, reducing the value of W while
keeping other parameters constant leads to lighter traffic load
offered to the system, as the required data rate by each SU
flows is reduced. In the next subsection, we study the case
where W decreases but the total offered load is kept constant.

B. The Advantage of CF and Its Limits

In order to study the effect of diminishing W, we let W
approach zero while keeping the offered load constant. Let
c denote the average data rate that can be obtained from one
channel for real-time traffic. Then, R, = N¢W e/ represents
the total offered load measured in bits per time unit. Thus, if
the arrival rate is varied with W as )\’S = X\o/W, where )¢ is a
given constant, the offered load in bits per time unit becomes
a constant, i.e., R, = Aoc/py, for any value of W.

As mentioned above, considering real-time traffic that re-
quires an arbitrarily small amount of resources is not phys-
ically sound. Our purpose in this subsection, however, is to
study from a theoretical point of view the capacity for SUs
when the bandwidth of one PU channel is very large compared
with the bandwidth required by an SU flow, while CF is
enabled.

In this case, the BDP that models real-time SUs in the QSR
becomes an Erlang-B system. The capacity in bits per second
when there are M — iH > 0 channels (i.e., there are i PU
flows) for SU flows can be expressed as

o (-0 ([57) )

where B(x, a) represents the Erlang loss function for z trunks

with traffic intensity a.
It is known that when z — oo [33],

(10)

B(z,a2) " = 2 ﬁi o), an
Baa+ 5v)™ = ao(B)Va + ax(8) + 2+ o(o). (12

Having these results in mind and taking the limit W — 0
in (10), it yields

if Ao < (M — iH)uls,

o [R,
R.(i) = {(M_iH)c if Ao > (M —iH)us, (1

or equivalently, R.(7) = min(R,, (M —iH)c).

Now, we use the distribution of the number of PUs in the
system, 7 (%), to obtain the unconditioned value of the capacity
for SUs as

Re= Y w(Re(i)= Y w(i)min(Ro, (M —iH)c).

i :M—iH>0 M —iH>0
(14)

In particular, if A\g > My, R, = (M—E[NPUDC, which has
an analogous interpretation to that given for (7).

C. Further Discussions

We have investigated the impact of CF and CA in ideal con-
figurations. In the following, we discuss practical limitations
that may affect the accuracy of our analytical models.



In reality, the bit rate achieved by a flow may not be linearly
proportional to the number of channels that it occupies when
guard-bands are considered. This aspect has different effects
on real-time and elastic traffic in our analytical model. For
real-time traffic, the service rate is determined by the number
of flows rather than the bit rate of each flow, as long as the the
basic QoS requirement is met. Therefore, if the number of real-
time flows is proportional to the number of channels, the non-
linearity will not influence our analytical model. However, for
elastic traffic, the flow service rate may be influenced by the
heterogeneity of channels due to guard-bands. For example,
in LTE, 10% of the spectrum is required as guard-band for a
channel with bandwidth between 3 MHz and 20 MHz, and
23% for a channel with bandwidth 1.4 MHz [34]. In this
example, the bit rate of multiple assembled channels is not
proportional to the number of channels even if the same power
and noise level apply to all channels. As a result, our model
can be regarded as an ideal analysis without considering guard-
bands.

Moreover, packet drop due to sensing failure or channel
fading may affect flow transmissions. Different types of flows
have various tolerance on packet drop. For example, a real-
time voice conversation may tolerate up to 3% of packet
loss [35]. Furthermore, retransmission schemes at the MAC
layer may also help reducing packet drop. Therefore, at the
flow level, packet loss may not necessarily cause a termination
of a traffic flow. Indeed, a real-time traffic flow will not
terminate due to packet loss although its QoS will degrade.
For elastic traffic, however, the service time will be longer if
packet retransmission happens, resulting a smaller ;5. On the
other hand, if the percentage of packet loss is large enough
to cause a flow termination, the termination probability will
increase, and consequently, the capacity will decrease.

In reality, due to hardware constraints for instance the
bandwidth of the bandpass filter, the span of the spectrum
that an SU can assemble is limited. Therefore, the value of V'
cannot be arbitrarily large. For example, if two idle channels
are too far away in the frequency domain, they may not be
assembled for a single SU flow, resulting in decreased capacity
for SUs. In real-life system where CA is adopted, e.g., LTE-A,
up to 100 MHz can be utilized by a single user [12].

Another practical consideration is that the arrival rates
and service rates can be time-variant. Correspondingly, one
may decide when and how many channels would be assem-
bled/fragmented for SU traffic to adapt to such dynamics on
the fly. For this purpose, a measurement-based estimation on
arrival/service rates can be performed so that the measured
values can be fed into our analytical models in a timely
fashion. Based on the output of our model, the system can
adjust the number of channels to be assembled/fragmented
accordingly.

Furthermore, it is worth mentioning that CF and CA are
not the only approaches that can improve system performance.
Other techniques, e.g., adding queues to SU flows, can also
enhance the capacity. Anyhow, studying the impact of other
techniques on capacity is beyond the scope of this paper.
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VI. NUMERICAL RESULTS AND DISCUSSIONS

To illustrate the impact of CF and CA on system per-
formance, the numerical results based on our mathematical
analyses and simulations are presented in this section for
elastic traffic and real-time traffic consecutively. To validate
the developed model, we also present simulation results with
various traffic distributions based on real-life observations
from [36], [37].

Discrete-event simulations are carried out following the
structure proposed in [38] through Matlab. Each round of the
simulation is performed for 20000 time units. We also simulate
the system with the duration of 50% time units longer and
the results are similar. Therefore, the duration of simulation
is regarded as long enough. For an ongoing elastic flow with
R channels assembled, its service rate in the simulation is
R times higher than a flow with only one channel. On the
contrary, for a real-time flow, its service rate is a constant, no
matter how many channels it utilizes. During the simulation
period, the events of both PUs and SUs are checked, processed,
and tracked. At the end of simulation, the statistics of the
system can be calculated. For example, the capacity is obtained
based on the total number of successful SU services averaged
by the total simulated time units.

In order to verify the mathematical models, the simulation
results together with the analytical results are plotted in Figs.
3-5, 8-11, 14 and 15. From these curves, we can observe that
the simulation results precisely coincide with the analytical
results. Therefore, the correctness and the preciseness of the
mathematical analysis are validated. For the ease of illustration
clarity, only the numerical results from mathematic analyses
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are depicted in Figs. 6, 7, 12, and 13.

A. Performance Evaluation for Elastic Traffic

For elastic traffic, we investigate p., Pr. and P, as a
function of \p with various values of W and V. The rest of
parameters are configured as Ag = 1.5, ug = 0.82, up = 0.5,
and M = 6. The rates of SU flows offer moderate traffic load.
The value of pp is selected as 0.5 because it is at the same
order of the service rate of SU, meaning that the dynamics of
PU and SU flows are comparatively similar. The corresponding
results are shown in Figs. 3-5. Other cases when the dynamics
of PUs vary are illustrated in Figs. 7 and 8 later. The curve
with W =V =1 represents the strategy without CF and CA.
The curve of W =1, V = M, and H = 1 also represents the
results from the strategy proposed in [19], [20] where both CF
and CA are utilized, but at least one channel is required for
each flow. For W =1, V = M, and H = 1, we have checked
DFA [13] with the same configuration and find that these two
curves fit exactly with one another. Therefore, Proposition 1
is validated.

As A\p increases, indicating that more PU flows arrive per
time unit, the capacity of SUs decreases while the blocking and
the forced termination probabilities become higher. In Fig. 3,
higher capacity is observed if V increases with the help of CA,
given the same value of . The capacity becomes even higher
with a smaller W value with the help of CF in addition to CA.
By selecting a portion of a channel for a flow, the capacity
gain is obvious compared with [19], [20] where at least one
channel is required. This is mainly because more SU flows
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can be accommodated since the blocking probability becomes
lower as W decreases, which can be observed from Fig. 5.
The forced termination probability plotted in Fig. 4 grows
higher for the case with W = 0.2 than the case with W =1
when Ap is relatively large. This is because more than one SU
flow can be potentially preempted by a PU appearance in the
former case. Therefore, when the arrival rate of PU becomes
higher, the forced termination probability of the strategy with
CF and CA increases faster compared with the strategy that
allows CA only. However, if the arrival of PU is relatively
low, the overall system performance is further improved if CF
is adopted together with CA.

Comparing the group of curves with H = 1 and H = 2, the
SU performance with H = 2 is worse than their counterparts
in H = 1. It means that with the option of enabling CA for
PUs, the system resource is utilized more efficiently by PUs,
resulting in an overall performance degradation of SUs.

To illustrate the impact of the service rate together with
the arrival rate of PUs, it is depicted in Fig. 6 the capacity
as a function of both A\p and pup with contour lines. As can
be observed, when pp increases, indicating a shorter service
time for PU flows on average, the SU capacity becomes higher.
Note that the curve for V.= M, W = 0.2, H = 1 in Fig. 3 is
integrated in the surface in Fig. 6 (given up = 0.5).

In Fig. 7, we plot the capacity as a function of f, where
As = 1.5, ug = 082, A\p = f, up = 0.5f, and M = 6.
Parameter f is a scaler introduced to describe the dynamics of
the system. The larger the value of f is, the farther the system
is away from the QSR. Again, in the QSR, it is validated that
the capacity of DFA is exactly the same as the one achieved



o
®
T

o
>
T

Capacity (Flows per time unit)

=3
~
T

0.2
0

I I I I
0.5 1 15 2 25

Fig. 9.

0.5

>o0< o

=3
~
T

e
w
T

e
)
T

Forced termination probability

o

Fig. 10. Forced termination probability as a function of Ap for real-time
traffic.

in EFAFS with the same configuration, i.e., V =M, W =1,
and H = 1. Furthermore, in the QSR, it is obvious in Fig. 7
that with a smaller value of W, higher capacity is achieved
by EFAFS. Therefore, the mathematical analysis in Sec. IV is
validated.

Fig. 8 illustrates the capacity as a function of W, given
H=1,V =M=6, A\¢ =15, ug = 0.82, \p = f, and
wp = 0.5f. As W increases, the capacity has a decreasing
trend because the number of simultaneous ongoing SU flows
is reduced. Again, the capacity is higher as PUs become less
active, which can be observed by comparing the curve with
f =10.01 and f = 10. When W — 0, the theoretical value
of capacity given by (4) is 1.4572 in the QSR. Note that the
curves in this figure are not smooth because different values of
W involve various integer numbers of SU flows. For instance,
there is an obvious drop when W increases from 1 to 1.2.
The reason is that the maximum number of SU flows that the
system can accommodate is reduced by one for all states given
a specific number of PU flows, resulting in a higher blocking
probability, and consequently, a descent in the capacity.

B. Performance Evaluation for Real-time Traffic

For real-time flows, we investigate p,, Py, and P, as a
function of A\p with different W values, given XS = 1.5,
//s = 0.82, up = 0.5, and M = 6. The results are shown in
Figs. 9-11. As can be observed from these figures, the capacity
has a descending trend, and the forced termination and the
blocking probabilities increase when PUs arrive more fre-
quently. Similar to the elastic traffic case, the capacity becomes
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higher as W decreases. Note that the forced termination and
the blocking probabilities decrease when W becomes smaller.
In other words, the higher the number of SU flows in the
system, the better the overall system performance. The reason
for this result is that for real-time flows, we offer lighter traffic
load to the system by reducing W if we keep all the other
parameters constant. Fig. 12 depicts the capacity as a function
of both Ap and pp. The results are similar to those observed
in Fig. 6.

Similar to Fig. 7, we plot in Fig. 13 the capacity as a
function of f, with Ny = 1.5, pilg = 0.82, A\p = f, up = 0.5f,
and M = 6. A similar capacity trend as the one for elastic
traffic is observed for real-time traffic as a function of f.
Again, it is clear that with a smaller value of W, higher
capacity is achieved in the QSR due to the fact that a larger
number of SU flows are accommodated.

Figs. 14 and 15 illustrate the capacity as a function of W
for real-time traffic with a constant offered load. The system
is configured as H = 1, M = 6, A\, = 1.5, Xy = A\,/W,
we =0.82, \p = f, up = 0.5f, and ¢ = 2 Mbps. Therefore,
the constant offered load is R, = 3.6585 Mbps. Fig. 14
demonstrates the capacity in terms of SU flows per time unit,
i.e., p,, while Fig. 15 depicts the capacity in terms of Mbps.
The capacity in Mbps is calculated by p,We/ s, From both
figures, we can observe that the capacity is generally higher
when PU activities become static, i.e., as f decreases. As
can be observed from Fig. 14, the number of completed SU
flows in each time unit increases dramatically as W decreases,
indicating that more flows can be served by the system when
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W is smaller with the same intensity of injected traffic load.
A similar trend can also be observed from Fig. 15. It is
interesting that the case with W = 0.8 has a larger value of
pr, 1.€., the number of SU flow completions per time unit, but
lower capacity in Mbps compared with the case with W = 1.
This result can be interpreted as follows. Although W = 0.8
can result in a larger average number of flows, the data rate
in Mbps for each flow reduces correspondingly (because a
portion of a channel is used). Note that the capacity in Mbps
is a product of the number of flows and the data rate for
each flow. Therefore, if the increased number of flows cannot
compensate the loss of data rate in each flow as a product, a
sudden jump in capacity happens. Note that the capacity upper
bound in Mbps in the QSR is R. = 3.5542 Mbps according
to (14), and the curve with f = 0.01 is approaching this value
as W decreases.

C. Performance for Traffic Patterns with Various Distributions

The traffic patterns in reality may not follow Poisson
arrival process and exponential distribution. This observation
motivates us to further investigate the applicability and the
preciseness of our Markov chain analyses for other distribu-
tions. The results presented in this subsection is obtained from
computer simulation with distributions based on empirical
traffic observations [36], [37].

We consider three cases with various traffic patterns accord-
ing to [36], [37]. In the first two cases, the arrival processes
of PU and SU flows still follow the Poisson process, but the
service time is modeled as a log-normal random variable. In
case one, both the mean values and the variances of the log-
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normal distributions equal to those of the corresponding ex-
ponential distributions, labeled as Lognormal. In case two, the
variance values of the log-normal distributions are greater than
those of the exponential distributions while the mean values
are kept the same, labeled as Lognormal*. More specifically,
we adopt a squared coefficient of variation SCV=4.618 [37]
(SCV= variance/mean?). The reason for adopting larger vari-
ance values in Lognormal® is that high variability has been
observed in flow sizes in modern data networks [37]. In case
three, a random walk model for PU activities [36] is adopted
while the pattens for the SU flows are the same as in case
one, labeled as Randomwalk. The results from the original
distributions adopted in our mathematical models are also
depicted, labeled as Original.

Fig. 16 illustrates the capacity of EFAFS configured as
W = 0.2, M =V = 6 with elastic SU traffic as a function
of Ag. From this figure, we can observe that the results of
two log-normal types are quite close to the analytical one.
This result confirms the fact that the analytical results are not
sensitive to the type of distribution for service time as long
as Poisson arrival is held. Furthermore, the results under the
random walk model exhibit similar results to a large extent.
The simulation results with other parameter configurations, al-
though not plotted here explicitly, have also similar properties.
These observations demonstrate that the Markov chain analysis
can be adopted as a robust reference model for analyzing the
performance of CA and CF in CRNs.

In more details, Fig. 16 is obtained given that A\p = 0.5,
pwp = 0.15601, and pg = 0.5 in the original distributions
for PU and SU flows. The configuration of PUs gives three



PU-occupied channels on average, which is equal to the
average number of PU-occupied channels in the random
walk model [36]. Then the average time interval between
two PU events in the random walk model is computed as
1/(2upE) = 1.0683, where E = 3 is the average number of
PU-occupied channels.

VII. CONCLUSIONS

In this work, we investigate the impact of CF technique
thoroughly when CA and spectrum adaptation are already
enabled for SU flows. Furthermore, the performance of SUs
when CA is adopted by PUs is also studied. Based on the
mathematical analyses, we reveal that to improve system
performance for elastic flows through CF in addition to CA, it
is essential to admit a flow with the smallest-possible portion
of a channel, given that the QoS requirement is satisfied. For
real-time traffic, potential performance improvement can also
be expected by CF as CF can increase the total number of
SU flows. Furthermore, in the QSR, we derive the theoretical
capacity upper bound for both elastic and real-time traffic
types in closed-forms when CF and CA techniques are utilized.
The results from our analytical model apply also to various
kinds of traffic distributions.

APPENDIX A
PROOF OF PROPOSITION 1

Statement: The procedure of this proof is similar to what
is used for proving Proposition 1 in [14]. However, the proof
herein is different from the one used in [14] with respect to
two aspects: 1) the following proof has no constraint on the
time scale of PU activities while the proof in [14] applies
only to the QSR; and 2) the following proof establishes the
equivalence between DFA and EFAFS when W = W' and
V =V’ only. On the other hand, the proof in [14] establishes
the equivalence among various strategies in the QSR as long as
the two features mentioned in the paragraph after Proposition 1
in [14] are met. Explicitly, these two features are: 1) ongoing
SU flows will always occupy as many idle channels as they
are able to; and 2) if there are fewer than W idle channels
upon an SU arrival, the ongoing SU flows will donate their
occupied channels to the newcomer, as long as each SU flow
has at least W channels after donation.

Proof: The state of DFA is expressed by =’ =
(¢, jwry ..., jv’), wWhere i is the number of PU flows, and jj,
is the number of SU flows that assemble k = W', W’ + 1,
..., V' channels [13]. In order to illustrate the equivalence,
we transfer the CTMC of DFA to a CTMC which is exactly
the same as the one based on the EFAFS strategy.

To illustrate the equivalence of those two processes, we
establish a one-to-one correspondence from a multiple di-
mension space, (4, jw,--.,jy), to a three dimension space,
(i,7,1), for DFA. Consider all states with ¢ PU flows and r
SU flows in DFA, where r = ZZ:W, Jx. Let [ represent the
index of a particular state among all the states with ¢ PU
flows and r SU flows. Let L(i,7) be the number of states
that have r SU flows given ¢ PU flows. Therefore, we have
1 e€{1,...,L(i,r)}. Thus, using state (i,7,1) to represent a

specific state (i,jw,...,jv’), we can establish one-to-one
mapping from (%, jw,...,jv) to (i,r,1) in DFA.

Let 7/ (4, r, 1) be the steady probability of the [th state which
has ¢ PU flows and r SU flows, and &(i,7,[) be an indicator
of the existence of the state (i,r,0). If state (¢, jw,...,Jv’)
which is represented by state (¢, 7, [) in the new notation exists,
&(i,r, 1) = 1. Otherwise, £(i,7,1) = 0. Similarly, we introduce
another indicator for the event of forced termination, ¢(i,7),
where ¢(i,7) = 1 if ¢ + rW’ = M holds, and ¢(i,7) = 0
otherwise.

For a general state ', i.e., the [th state with » SU flows and
1 PU flows, the balance equation can be expressed as shown
in (15). The notations used in (15) are explained as follows.
m1 to ms represent the state indices of the destination states
upon different events transferred from state (¢,7,1). In more
details, m; denotes the index of the destination state within
the state set with ¢ PU flows and » + 1 SU flows, and state
(4,7,1) is transferred to (4,741, m) upon an SU flow arrival.
mo denotes the index of the destination state within the state
set with ¢ PU flows and » — 1 SU flows upon an SU flow
departure. Similarly, ms denotes the index of the destination
state within the state set with ¢ — 1 PU flows and r SU flows
upon a PU flow departure. When a PU flow arrives, an ongoing
SU flow will either reduce the number of assembled channels
and continue its flow as long as the lower bound is met or
become terminated. Which event will happen depends on the
current state of the system. Correspondingly, in (15), there are
two potential destinations for a general state (4,7, ) upon a PU
arrival, i.e., (¢ + 1,7,my4) or (i + 1,7 — 1,ms5), representing
a destination state with or without forced termination. Note
that according to DFA, these two events will not happen
simultaneously.

Similarly, at the bottom half of (15), ny, no, and nj
represent the state indexes of source states from which (7, r,1)
is transferred due to an SU flow arrival, an SU flow departure,
and a PU flow departure respectively. n4 and ny represent the
source state indexes when a PU flow arrives with and without
forced termination respectively.

If we sum up all these equations of states with » SU flows
which have the same ¢, the left-hand side of (15) can be
expressed as a common factor of outgoing rates by the sum of
the probabilities of the states with » SU flows given ¢ PU flows.
Similarly, on the right-hand side, the transitions representing
SU arrivals, SU departures, PU arrivals, and PU departures
share the common factor Ag, 7V’ s, Ap, and i p respectively.
For example, considering the states when 0 < ¢ < M and
0<r< |22 we have (16).

Similar expressions apply to the states with other values of ¢
and 7 in the system, and the only difference is that some of the
state transitions may not be feasible due to the non-existence
of source or destination states.

Note that if we consider the sum of the state probabilities
for all the states with the same number of PU and SU flows as
a whole, the balance equation expressions in DFA are exactly
the same as the balance equations according to the transitions
described in Table I, given that W = W’ and V = V.
Furthermore, the calculation of p., Py, and Py, does not need
any modification if we consider the sum of the probabilities of



[As&(i,r 4+ 1,m1) + min{rV/, M —i}tusé(i,r — 1,ma) + iupé(i — 1,7, ms)+
Ap(E(i+ 1,7 = 1,ma)p(i,r) + EG + 1,r,ms) (1 — (i, 7))’ (0,7, DE(E, 7, 1)
= As' (i, — 1,n1)€(G, r — 1,m1) + min{(r + )V', M — i}psn'(i,7 + 1,n2)E@, 7 + 1,n2)

+ (i 4+ Dppr' (i +1,7,n3)E(i + 1,7, n3)

+Apm (i — 1,7+ 1,n4)E(G — 1,7+ 1,n4)0( — 1,r + 1) + Ap' (i — 1,7,m5)E( — 1,7, n5), (15)
L(i,r) L(i,r—1) L(i—1,r)
[As + Ap 4+ min{rV', M — i}us +ipp) Z ' (i,7,1) = As Z ' (i,r — 1,n1) + Ap Z 7'(i —1,7,n3)
=1 ni=1 ng=1
L(i,r+1) L(i+1,r)
+min{(r+ )V, M —i}ps > 7@+ 1Lne)+ @G+ Dup > 7'(i+1,7,n4). (16)

ng=1

ng=1

states as a whole in DFA. Therefore, we conclude that these
two strategies are equivalent. [ |

APPENDIX B
PROOF OF PROPOSITION 2

Proof: Consider a CRN with ¢ PU flows where M —iH >
0 holds.
When V' = M, the BDP that models SUs in the QSR is
that of an M /M /1/(1+ 1) system. For any given ¢ PU flows,
the capacity for SUs can be expressed as

p'=(1—-m)(M—iH)ps. a7
As . . .
Let r;, = ——————. It is straightforward to obtain that
(M —iH)ps £
1—nr; :
% if T 1,
. (18)
m if Ty = 1.
M —iH
Since I = Tl , W — 0 is equivalent to I — oo0.
By taking the limit in (18), it leads to
1—r, ifr; <1,
limmp =4 0 L7 (19)
I—o0 0 if i > 1.
Finally, substituting (19) into (17) yields
A if r; <1,
lim pf =0 pris (20)
I—o0 (M —iH)ug if r; > 1,

or equivalently, p’ = min(\g, (M — iH)ug). Considering the
state probabilities of PU flows, (4) holds. [ |
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