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ABSTRACT 

Marker-assisted selection has been introduced into the breeding programs of livestock 

populations during the last few years. Particularly, the cattle industry was the first to 

incorporate the Genomic Selection (GS) into its breeding programs. GS has been proved 

to be a very useful tool for increasing the efficiency of the breeding programs of dairy 

cattle but until now it has not given the expected results in beef cattle. The structure of 

the beef cattle industry consists of many small populations. The absence of a large 

reference population and the low predictive ability of one population over another 

prevent the obtainment of accurate predictions. Combining information of animals from 

different populations in order to construct a large, reference population has been 

proposed in order to increase the accuracy of the predictions for all populations.  

In this study, 4 purebred populations were simulated. Two of these populations diverged 

under selection, each for a different trait, and the other two under random mating. From 

these purebred populations 6 admixed populations were created combining them in 

pairs and 1 admixed population that included data from all purebreds. The predictive 

ability of all purebred and admixed populations was evaluated under two scenarios of 

marker density, two scenarios of number of genes that control the traits and 3 scenarios 

of number of generations of divergence.   

The results of this study show that training in purebred populations gives good 

accuracies when validating in the same population, although slightly lower, and 

declining with the generations, when the population is under selection for the trait of 

interest. Training in admixed populations gives higher accuracies for the breeds that 

participate in the training set than for the ones that do not, but these accuracies are 

significantly lower than those obtained from training in purebred population. Finally, 

when the training set is made of all 4 breeds, the accuracies are slightly better for all 

breeds than those obtained with the 2-breed admixed population. 

When the marker density is higher the accuracies are better for all purebred and 

admixed populations but the admixed populations are more favored than the purebreds. 

The number of genes that control the traits seems to affect the predictions of the 

populations under selection but not the others. 
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RESUMEN 

En los últimos años, la selección asistida por marcadores se ha introducido en los 

programas de mejora genética animal. En particular, el sector de vacuno de leche ha 

sido el primero en introducir la selección genómica (GS) en sus esquemas de mejora. En 

ellos, se ha probado que la selección genómica es una herramienta de gran interés.  Por 

el contrario, su potencial utilización en vacuno de carne todavía no es evidente, debido a 

la presencia de varias poblaciones, la ausencia de una población de referencia grande y 

la baja capacidad predictiva de una población en otra. Como alternativa, se ha propuesto 

la creación de una metapoblación a partir de la información disponible en varias 

poblaciones, que permita incrementar la precisión en todas ellas. 

En este trabajo, se han simulado 4 poblaciones puras partiendo de un único tronco 

evolutivo. Dos de estas poblaciones se separaron mediante selección, cada una para un 

carácter diferente, y las otras dos exclusivamente mediante deriva genética. A partir de 

estas 4 poblaciones, se generaron 6 poblaciones compuestas o metapoblaciones de dos 

poblaciones combinándolas por parejas y una metapoblación compuesta por las 4 

subpoblaciones. La capacidad predictiva de todas las poblaciones puras y compuestas se 

evaluó bajo dos escenarios de densidad de marcadores y de número de genes y 3 

escenarios de número de generaciones de divergencia. 

Los resultados del trabajo mostraron que cuando se utilizó la información de las 

poblaciones puras se obtuvieron buenos resultados en la propias poblaciones, aunque 

decrecieron lentamente a medida que se incrementaron las generaciones de selección 

sobre el carácter de interés. Las predicciones obtenidas en las metapoblaciones fueron 

más altas sobre las poblaciones que participan en su formación, y mucho menores para 

las demás poblaciones. Finalmente, las predicciones a partir de la metapoblación 

compuesta de las cuatro poblaciones fueron ligeramente mejores que a partir de las 

compuestas de dos poblaciones.  

Cuando la densidad de marcadores se incrementó, los resultados fueron mejores tanto 

para las poblaciones puras como para las compuestas, pero el incremento fue superior 

para las metapoblaciones. Por otra parte, el número de genes implicados en las 

poblaciones afectó solamente los resultados de las poblaciones seleccionadas.  
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INTRODUCTION 

Anessential task in the development of breeding programs in livestock populations is 

the definition of objectives and criteria of selection. The objectives of selection are 

composed by traits that define the general goal for the breeding program, with the aim 

to obtain better individuals for production. The criteria of selection are the measurable 

traits that permit to identifythe best individualsin order to be used as reproductive 

individuals to generate the following generation. The simplest criteria of selection are 

defined by the information provided by only one trait and the methods of selection 

differ one from the other according to the sources of information used. 

Mass selection 

The first and most simple method was individual or mass selection (Falconer and 

Mackay, 1996). This method uses as criterion of selection exclusively the phenotypic 

performance of the candidates to selection. Thus, the best individuals are chosen as 

reproductive individuals assuming that a better phenotype reveals a better breeding 

value. The efficiency of this method depends largely on the heritability of the trait 

considered. Heritability is defined as the ratio of the additive variance and the 

phenotypic variance of a trait. It explains the proportion of the total phenotypic 

variability caused by the additive action of genes. Heritability´s most important aspect 

comes from its predictive function, since it represents the degree of reliability of the 

phenotypic value as an indicator of the breeding value. Individual selection is quite 

efficient when the heritability is high but gives poor results when it is low.  

To overcome the obstacle of the low accuracy of the predicted breeding values caused 

by the low heritability of some traits, the mean performance of repeated records of the 

candidates can be used, when available, as criterion of selection. The justification for 

the use of this method is the assumption that all the phenotypic records of an individual 

are controlled by the same genetic and permanent environmental effects and that the 

variation observed is only produced by temporary environmental effects or residuals. 

The last ones are averaged when the mean performance of various records is used. Thus, 

when the residual variation is large (or heritability is low) the increase of accuracy with 

the number of recordsis very important. However, when the residual variance is low (or 

heritability is large), it provides barely any additional information. The main 



6 
 

disadvantage of this method is that it extends the generation interval that results in the 

reduction of the annual genetic gain.  

The annual genetic gain is a measurement of the expected progress of a breeding 

program (Falconer and Mackay, 1996) and it is defined as: 

ܩ∆ =
௔ߪߩ݅
ܮ  

where ∆ܩ is the expected genetic gain, ݅ is the intensity of selection, ߩ is the accuracy of 

the prediction, ߪ௔ is the additive standard deviation and ܮ is the generation interval. 

Intensity of selection (i) is a standardized measure of the difference between the average 

performance of the selected individuals with respect to the whole population. The sense 

of the standardization is to have a dimensionless parameter that can be compared 

between breeding programs. Accuracy of prediction (ߩ) is the correlation coefficient 

between the predicted breeding value and the true breeding value. The additive standard 

deviation (ߪ௔) is the square root of the additive variance of the trait considered. 

Generation interval (L) is defined as the average age of both parents when progeny are 

born. 

Index of selection 

Later on, new statistical developments allowed the use of other sources of phenotypic 

information. Data from the relatives of the candidates were incorporated to the breeding 

programs with the purpose of increasing the accuracy of the predicted breeding values. 

The increase in the accuracy is a result of the fact that related individuals share genes 

and in many cases also the same environment (ex. piglets from the same litter or piglets 

from different litters that share a common sire). This resemblance between the related 

individuals can contribute with additional information over the genetic merit of the 

candidates. The types of relatives more frequently used are full-sibs or half-sibs, parents 

and progeny because the closer the genetic relatedness between the individuals, more 

genes they share and more new information is contributed to the prediction of the 

breeding value. For selection purposes, an index is built using all phenotypic 

information available from the candidate and its relatives (Lynch and Walsh,1998), 

weighted according to their degree of genetic relatedness. When the true variance 

components are used, this index is the best lineal prediction of an individual breeding 

value and its properties include the maximization of the correlation between the true 
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breeding value and the index (Lynch and Walsh, 1998). An important limitation to the 

use of the selection index is the need for the data to be adjusted for systematic effects 

before its application. These systematic effects are generally unknown and their 

estimation can result to be a difficult task, especially when no prior data exist. Further, 

it requires the inverse of the covariance matrix of the phenotypic observations that may 

be impossible to calculate for large data sets. 

Nonetheless, the availability of data of the relatives made it possible to apply methods 

of selection for traits that are not expressed by the candidates to selection. Some 

examples of these cases are the prediction of the breeding value of males for milk 

production, the evaluation of individuals for meat quality traits and the selection for 

longevity. In all cases, the weighted average performance of the relatives is the criterion 

of selection. 

Multiple traits 

In animal production, the economic gain may depend on various productive and 

reproductive traits. Thus, the objective and the criteria of selection can be composed by 

several traits and the total genetic merit of an individual is not only the additive value 

for one trait but the sum of the additive values of several traits adjusted by economic 

weights. The economic weight of a trait represents the increase in the economic gain 

due to the genetic improvement of a single unit of the trait when the mean of the rest of 

the traits does not change (Weller, 1994). 

The selection index methodology allows the use of information of several traits to 

estimate the total genetic merit of the candidates, from its own information and from its 

relatives. In fact, the index is calculated as the sum of phenotypic records of various 

traits weighted by regression coefficients for each individual. The goal is to obtain those 

regression coefficients that allow the index to be the minimum quadratic estimator of 

the total genetic merit. The accuracy of the index is affected by the economic weights, 

the phenotypic and genetic parameters that are not known and have to be estimated 

previously.  

Other alternatives for multiple trait selection are tandem selection (Falconer and 

MacKay, 1996), where one generation is devoted for selection for one trait and the 

following one for another trait, and selection by independent levels, where minimum 

limits of performance are established for every trait and the candidates have to overpass 
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them in order to be selected. The advantage of both methods is that they are easier to 

apply since not all animals’ records are required. The efficiency of the individual index 

is always better because it uses all the information available, while the efficiency of the 

other two methods depends on the genetic characteristics of the traits under selection. 

Best Linear Unbiased Predictor (BLUP) 

As an extension of the selection index theory, Henderson (1949) developed the 

methodology named Best Lineal Unbiased Prediction (BLUP). This methodology 

permits the estimation of systematic effects and the prediction of breeding values 

simultaneously. With known variances components, the properties of BLUP include the 

maximization of the correlation between the true and predicted breeding value. Under 

BLUP, the predictors are lineal functions of observations and the estimations are 

unbiased (ܧ(ੑ|â) = â). Later on, the same author also presented the mixed-model 

equations that give the estimations of systematic effects and the predictions of the 

breeding values without the need to calculate the inverse of the observation matrix 

(Henderson, 1950). The mixed-model equations are: 

൤ିࡾ`ࢄଵࢄ ࢆଵିࡾ`ࢄ
ࢄଵିࡾ´ࢆ ࢆଵିࡾ`ࢆ + ଵିࡳ

൨ ൤࢈෡
ෝࢇ
൨ = ൤ିࡾ`ࢄଵ࢟

ଵ࢟ିࡾ`ࢆ
൨ 

Where  

y is a vector of n observations,  

  ,෡ is a vector of estimates of p levels of systematic effects࢈

 ,ෝ is a vector of predictions of q breeding valuesࢇ

X is a design matrix n x p which relates records to systematic effects, and X` is it´s 

transposed matrix, 

Z is a design matrix n x q which relates records to breeding values, and Z` is it´s 

transposed matrix, 

R-1 is the inverse of the residual variance-covariance matrix, 

G-1 is the inverse of the additive genetic variance-covariance matrix. 
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Since R-1 is an identity matrix because residual effects are independent one from the 

other, it can be factorized from both sides of the equation to give the equivalent mixed-

model equations: 

ቂࢄ`ࢄ ࢆ`ࢄ
ࢄ´ࢆ ࢆ`ࢆ + ቃߙଵି࡭ ൤

෡࢈
ෝࢇ
൨ = ൤ࢄ`࢟

 ൨࢟`ࢆ

With ߙ = ௘ଶߪ ⁄ఈଶߪ  and ି࡭ଵ being the inverse of numerator relationship matrix which 

indicates the additive genetic relationship among individuals. 

Computing the numerator relationship matrix (A) and inverting it can be very difficult 

for the large data sets that are normally used for the genetic evaluations. Fortunately, 

Henderson (1976) proposed a recursive method to calculate the A matrix and its inverse 

just from the pedigree, when inbreeding is ignored. To take account of the effect of 

inbreeding, Henderson’s (1976) approach needs the diagonal elements of the 

relationship matrix to calculate the ି࡭ଵ matrix. Later on, Quaas (1976) generalized the 

procedure and allowed the fast computation of inbreeding coefficients or the 

construction of the ି࡭ଵ matrix, without setting up the relationship matrix first. 

The use of the mixed-model equations, for the prediction of breeding values and the 

estimation of systematic effects, has been extended to several models, such as: 

Sire Model 

The sire model was applied in the dairy cattle industry for the evaluation of the sires for 

milk production. In the Sire model, only the genetic effects of the sires are included in 

the model and the progeny records are used for the evaluation. However, the genetic 

merit of the dams is not accounted for as it is assumed that all mates are of similar 

genetic merit. The advantage of this model is that the number of equations is reduced 

compared to the animal model. 

Animal Model 

This model includes as random effects the additive values of all individuals in the 

population, regardless the number of systematic effects that have to be considered, and 

the residuals. It is the model more widely applied for several traits and animal species. It 

assumes that the additive variance and the residual variance are independent.  

Repeatability Model 
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This model is applied when multiple records from an individual are available. It 

includes as random effects the additive effects and the permanent effects. It assumes 

that the genetic correlation and the environmental correlation between the pairs of 

records for each individual equals to 1. It predicts not only breeding values but also 

permanent environmental effects. 

Reduced animal model 

The reduced animal model (Quaas and Pollak, 1980) was developed to reduce the 

computational burden of the full animal model. This procedure allows setting up 

equations only for the parents and the breeding values of the progeny are obtained by 

back-solving from the parental breeding values. 

Animal model with groups 

The animal model with groups of unknown parents (Westell and Van Vleck, 1988) 

avoids assuming the same average breeding value for all the founders. Thus, they must 

be grouped according to the year of birth and genetic origin, and a genetic mean of 

breeding values is estimated for each group. 

Model with common environment effects 

The resemblance between relatives is produced by sharing genes and also by sharing 

common environment. This model includes as random effects and predicts the common 

environmental effects apart from the breeding values. It is used mostly in species with 

large families such as pigs and chickens. 

Multivariate Animal Model 

The multivariate Animal Model (Henderson and Quass, 1976) expands the mixed model 

methodology to several traits. As a consequence, the additive and residual (co-) variance 

matrices between traits are involved in the mixed model equations. 

Animal Model with Maternal Effects 

Some traits are affected by the individual´s genes but also by environmental effects that 

are controlled by the genes of the mother. In the animal model with maternal effects 

(Quaas and Pollak, 1981), the random effects included in the model are the additive 

value of the individual (direct effect), the additive value of the mother to produce the 
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suitable environment (maternal genetic effect) and permanent environmental effects that 

have an influence on the mother (maternal permanent effect). It is assumed that there is 

a genetic covariance between direct and maternal effects and there is no correlation 

between the other effects.  

Non Additive Animal Model 

The non-additive Animal Model (Henderson, 1985) expands the mixed model equations 

to include other genetic components such as dominance or epistatic interactions. The 

procedure developed by Hoeschele and Van Raden (1991) also permits to invert the 

dominance relationship matrix of large data sets for pedigree files when there is no 

inbreeding in the population  

Marker Assisted Selection 

Since the 90´s, molecular information is available due to the advances of techniques of 

molecular biology. This new source of information gives the opportunity to enhance the 

response to selection by incorporating it to traditional breeding programs, especially for 

traits that present difficulties in their improvement by traditional selection. Such traits 

are those with extremely low heritability (ex. Reproductive traits) and traits whose 

phenotypes are difficult to obtain (ex. Disease resistance or meat quality).  

Following Dekkers (2004), the genetic markers used for selection can be classified into 

3 different types, direct markers (or genes), linked markers in population-wide linkage 

disequilibrium with QTLs (LD markers), and linked markers in population-wide linkage 

equilibrium with the QTLs (LE markers). Note that a QTL is denoted as a segregating 

gene affecting the trait of interest. A favorable aspect of direct markers is that are easier 

to incorporate to an existing breeding program and their potential for increasing the 

response to selection is greater than the other types of markers. Nevertheless, the 

difficulty of detecting these genes makes more appealing the use of LD or LE markers. 

(Dekkers, 2004)  

Genomic Selection 

Meuwissen et al. (2001) proposed the use of a dense marker map for the prediction of 

total breeding values and, since then, the procedure is denoted as Genomic Selection. 

The development of commercial genotyping chips made available thousands of single 
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nucleotide polymorphisms (SNP) markers. It is expected that some of the SNP markers 

are located near the quantitative trait loci (QTLs) of traits of interest and due to linkage 

disequilibrium (LD) between them, they should be inherited jointly. In this way, all of 

QTLs affecting a trait may be in LD with one or more markers. As a consequence, if 

there are enough markers to cover the whole length of the genome, the additive effects 

of the QTL can be captured by the markers without the necessity of locating them. 

Genomic selection procedures consist in estimating the effects associated to the markers 

in a reference population where genotypes and phenotypes are available for all 

individuals. These estimates are then used to predict the genetic merit of young 

individuals with no records available except their genotype. Figure 1 illustrates this 

genomic selection strategy: 

Figure 1.Example of genetic selection. 

Reference population          

                      SNP 1 (A/T)            SNP 2 (C/G)            SNP 3 (T/G) 

Animal 1           AA (2)                    CG (1)                        GG (0) 

Animal 2           AT (1)                    GG (0)                        TT (2) 

Animal 3           TT (0)                     CC (2)                        TG (1) 

.....                     ....                           ....                              .... 

Animal n           AT (1)                     CG (1)                       TG (1) 

Genomic evaluation using phenotypic records 

 

 

SNP 1 (A)                      SNP 2 (C)                         SNP 3 (T) 

ଵߚ = ଶߚ                           0.5 = ଷߚ                           1.5−  = 2 

Candidates to selection 

                              SNP 1                     SNP 2                    SNP 3          GBV* 
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Candidate 1     (AA)  2*0.5     +     (GG)  0*(-1.5)     +     (TG)  1*2    = +3  

Candidate 2     (TT)  0*0.5      +     (CC)  2*(-1.5)      +     (GG)  0*2   = -3 

Candidate 3     (AT)  1*0.5      +    (CG)  1*(-1.5)      +     (TT)  2*2    = +4.5 

*Genomic Breeding Value 

From the example above, n individuals with phenotypic records are genotyped for 3 

SNP markers. The genotypes are codified as 0 and 2 for the two types of homozygous 

and as 1 for the heterozygous markers. After the genomic evaluation, the estimated 

effects associated to each marker are obtained. Then, the genotypes of 3 candidates, 

which are codified in the same way, are multiplied by the estimates of each marker and 

summed in order to obtain the genomic breeding values. The candidate 3 would be 

selected for reproduction as the best candidate to selection.  

In this example, the marker-effects to be estimated are only 3 and the phenotypic data 

available for this purpose are much more. Therefore, their estimation presents no 

difficulty. In reality, thousands of SNP markers are available and their effects need to be 

estimated from a limited number of phenotypic records. This leads to a situation known 

as “the large p small n problem”. Traditional methods based on marker regression are 

unable to deal with this problem unless they introduce some shrinkage on the estimation 

of the effects. Several methods have been developed to address this problem and to 

perform genomic selection in practice: 

Least squares 

This method treats the marker effects as fixed. To deal with the large number of 

parameters to estimate from few data, a pre-selection of SNPs has to be applied before 

the analyses. The SNPs with a larger effect are included in the estimation assuming that 

the rest of the markers do not have any effect. In the original article of Meuwissen et al. 

(2001), this method gave accuracies of the predicted breeding values of 0.318. The low 

performance is probably due to the few degrees of freedom available for the estimation 

of every marker-effect, even after the pre-selection was applied.  

Genomic BLUP 
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G-BLUP is a method similar to the traditional BLUP described by Henderson (1975) 

that uses a genomic relationship matrix instead of the pedigree relationship matrix. The 

genomic relationship matrix is built from molecular information in a way that, 

individuals that share identical by state genotypes for a larger number of markers are 

more similar and therefore, have larger values in the corresponding cell of the matrix. 

Misztal et al. (2009) proposed a modification of this method using the pedigree 

relationship matrix combined with the genomic relationship matrix with weighting 

parameters between them. The Genomic BLUP methodology does not suffer the large p 

small n problem since the amount of unknown effects is usually the same as in 

traditional BLUP (González-Recio et al., 2008). 

Bayes A 

Originally proposed by Meuwissen et al. (2001), this method assumes a normal 

distribution on the marker effects with zero mean and variance ߪ௜ଶ associated to each 

marker. A scaled inversed Chi-squared distribution is assumed for this variance with 

4.012 degrees of freedom and scale parameter 0.002. These values were used because 

they fitted the simulation study of the authors and gave accuracies of 0.8. Since then, 

they have been applied in many cases without a clear justification.  

Bayes B 

This method assumes a normal distribution on the marker-effects and variance ߪ௜ଶ 

associated to each marker just as Bayes A. Bayes B differs from Bayes A when to the 

assumptions made for the distribution of the variance. A mixture of distributions on the 

variance is assumed, where the variance is zero with probability ˊ and distributed as in 

Bayes A with probability 1-ˊ. Although the election of ˊ is arbitrary with no 

justification, Bayes B provides highly accurate predictions. Meuwissen et al. (2001) 

obtained accuracies of 0.85 with Bayes B, the highest among the ones obtained using 

Bayes A, BLUP or least-squares.  

�%�D�\�H�V���&�Œ���	���'�Œ 

To address some drawbacks of Bayes A and Bayes B, such as the prior probability of ˊ 

and the hyper-parameters of the prior distribution of the variance, Habier et al. (2011) 

described the Bayes Cˊ and Bayes Dˊ methods. Bayes Cˊ method assumes a common 

variance to all markers with probability 1-ˊ and variance zero with probability ˊ. 
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Additionally, the proportion ˊ of markers is treated as unknown and is estimated from 

the data. Bayes Dˊ imposes a prior on the scale parameter of the inverse chi-square 

distribution, which is the prior distribution of the variance of marker-effects. Both 

methods proved similar to the original methods regarding the accuracies.  

Bayesian LASSO 

De los Campos et al. (2009) and Usai et al. (2009) proposed the Bayesian LASSO 

method (Park and Casella, 2008) for genomic selection, where a double exponential 

prior distribution is assumed for the marker-effects with parameter ɚ. This method 

performs a larger shrinkage on the marker-effects than other methods in a way that a 

large number of markers are estimated with a very small effect, and only a few markers 

are allowed to have larger effects. The degree of shrinkage is determined by the 

parameter ɚ, which has to be estimated previously to the analyses. Park and Casella, 

(2008) proposed the use of Empirical Bayes by Marginal Maximum Likelihood using 

an appropriate hyperprior for the estimation of ɚ. Legarra et al. (2010) proposed a 

modification of this method (BL2Var) which considers two different variances for the 

distribution of marker-effects and the residuals. Moreover, there is no need to pre-

estimate the parameter ɚ as it is estimated from the data simultaneously with the marker 

effects. Up until now Bayesian LASSO has been widely applied for genomic 

evaluations as it provides accurate predictions for low density genotyping (Usai et al., 

2009) and for traits that are regulated by many genes with a small effect (Cleveland et 

al., 2010). 

Elastic Net and SNP pre-selection 

Croiseau et al. (2011) proposed the implementation of the elastic net algorithm for 

genomic selection. This is a combination of Genomic BLUP and Bayesian LASSO 

weighted by a parameter Ŭ which takes values from 0 to 1. When Ŭ=0, a BLUP model is 

defined whereas Ŭ=1 a LASSO model is chosen. Additionally, a pre-selection of 

markers can be applied prior to the analyses. The purpose of this method is to provide a 

more flexible tool to deal with the large p small n problem. 

Non-parametric methods 

The need to improve the accuracies of the predictions of breeding values, led to the 

introduction to the field of genetics of new methodologies from the machine learning 
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scope. These algorithms are more attractive for application to multiple and more 

complex situations found in biological systems as they are able to accommodate 

additive, dominant effects or even epistatic effects. It is believed that these methods can 

approach the genetic architecture of a trait more than the linear models. Some methods 

that have been proposed are: Reproducing Kernel Hilbert Spaces Regression (RKHS) 

(Gianola et al., 2006) which resulted in accuracies similar or even higher than the ones 

obtained by the Bayesian methods (Gonzalez-Recio et al., 2009), Random Forest (RF), 

that gives the possibility of capturing interactions between genes and between genes and 

environment (Sun, 2010) and Neural Networks (NN), which prove to be useful for 

predicting complex traits as it can capture non-linear relations (Gianola et al., 2011). 

Genomic selection for multiple populations 

Until now, Genomic selection has been implemented mainly in the dairy cattle industry 

with encouraging results. The existence of a large enough reference population, due to 

the world-wide supremacy of the Holstein-Friesian breed, permits us to achieve highly 

accurate predictions (Hayes et al., 2009). The beef cattle industry though, does not 

follow the structure of dairy cattle industry and the construction of a large enough 

reference population presents serious difficulties, due to the existence of many and 

small populations. Therefore, the evaluation within-breed gives poor results due to the 

small size of the training sets. Moreover, the estimations obtained from one breed 

cannot be applied to other breeds as they give very low accuracies (Harris et al., 2008).  

To avoid this inconvenience, De Roos et al. (2009) proposed pooling animals from 

different breeds to obtain a large training set. In his study, two populations that diverged 

randomly for several generations were simulated. His results showed that adding 

individuals from the second population to the training set (composed only by the first 

population), had some effect on the reliability of the genomic breeding values in the 

first population and it was most beneficial when the heritability of the trait was low. 

Furthermore, when the two populations had diverged for only few generations and the 

marker density was high, the information from the second populations was most 

valuable. 

In another study, Hayes et al. (2009) used 3 reference populations, composed by pure 

Holstein sires, pure Jersey and a population combined between them. They found that 

training in the admixed population gave similar accuracies for the Holstein as when 
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training in the pure Holstein population but higher for Jersey. These results show that in 

situations of small population size, including animals from a different breed may be 

interesting to increase the accuracy of the predictions. 

Further, Kizilkaya et al., (2010) used a multiple population composed by 8 breeds to 

predict the breeding values for one of the breeds. When the trait of interest had a 

heritability of 0.5 and the trait was controlled by 50 QTLs, they found accuracies of 

0.38. However, when it was controlled by 500 QTLs, they only got an accuracy of 0.22. 

Their results implies that the predictive ability eroded as the number of QTL increases, 

and thus, that the genetic architecture of the trait plays an important role on the 

efficiency of genomic selection for multiple populations. 

Finally, Toosi et al. (2010) developed a simulation study that created 4 populations that 

diverged randomly for 53 generations to set up several types of training sets (admixed 

and crossbreed). Those training set were used to predict one of the 4 populations. The 

accuracies obtained were 0.79 when training in purebred, 0.71 when training in admixed 

that included the validation population and 0.43 when it was not included. These 

accuracies increased with marker density for all training sets, though with more 

intensity for the admixed populations. The results of this study proved that marker 

density also determines the accuracy of genomic selection in multiple populations.  

As a general conclusion of these studies, it is known that the predictive ability of the 

admixed training populations depends on the genetic architecture of the trait and the 

marker density. It is important to note that the previous simulation studies make the 

populations diverge exclusively by genetic drift. However, the causes of genetic 

differentiation of livestock populations include also natural and artificial selection 

jointly with the genetic drift. Therefore, this study pretends to evaluate the 

consequences of the number of generations and the cause of reproductive isolation of 

the populations on the efficiency of genomic selection for multiple populations. In 

addition, the marker density of genotyping and the number of genes that control the 

traits will be considered as variables to generate the scenarios of simulation.  
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OBJECTIVE 

The objective of this study is to evaluate the accuracy of the predicted breeding values 

of purebred populations based on estimates of marker effects in purebred and admixed 

populations. Moreover, this study pretends to evaluate the influence of the following 

situations on the accuracy of the predictions and in the persistence of linkage 

disequilibrium: 

1) Causes of reproductive isolation of the populations 

2) Number of generations of divergence. 

3) Number of genes involved in the genetic determinism of the trait.  

4) Marker density of the genotyping. 

As a side result, this study also will provide software to simulate populations under 

different scenarios of genetic evolution. 
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MATERIAL AND METHODS 

This chapter is structured in three main sections. In first place, the development of the 

simulation study is described. Secondly, and given the output of the simulation, the 

Bayesian Lasso method for estimation of markers effects is presented. In third place, the 

procedures of validation of the genomic prediction and the calculation of the linkage 

disequilibriumin in single and multiple populations are shown. 

Simulation 

The simulation study was performed through the development of a Fortran 90 program, 

which is included in the APPENDIX. The software simulated a base population of 100 

unrelated individuals, with sex ratio 1:1. Each individual had 30,000 biallelic markers 

evenly distributed along the genome. In order to obtain two different scenarios of 

marker density, a genome of 4 chromosomes and a genome of 20 chromosomes of 1 

Morgan each were simulated. Two alleles were considered for each marker and they 

were coded as 1 and 2. To assign the type of allele to a marker, a random number 

between 0 and 1 was drawn from a uniform distribution for every allele. The type 1 

allele was assigned if the number was lower than 0.5 and the type 2 allele was assigned 

if the number was greater than 0.5. In this way, the frequencies of the markers in the 

base population were all near 0.50, as it is presented in Figure 2. 

To simulate the next generation, two random numbers, as before, were drawn from a 

uniform distribution. The first number was used to choose a male and the second one to 

choose a female. The first marker on every chromosome was used to determine which 

allele from the pair of chromosomes would be passed on to the next generation. A 

random number was drawn from a uniform distribution. If it was greater than 0.5 the 

second allele was passed on and if it was lower the first allele was passed on. 
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Figure 2. Histogram of marker allelic frequencies in the base population. 

 

To simulate the recombination of the chromosomes, the number of recombination per 

chromosome was drawn from a Poisson distribution with parameter ɚ=1 (1 

recombination per chromosome). If there was no recombination, the whole chromosome 

was passed on as it was. Further, the points of recombination were simulated by the 

extraction of as many random numbers from a uniform distribution as the number of 

recombinations. The markers after the point chosen were changed from the first allele to 

the second allele and vice versa. After the father’s chromosome had been recombined 

and passed on to the son, the mutation was simulated by sampling the number of 

mutations from a Poisson distribution with parameter ɚ=1 and ɚ=5 for the 20 and 4 

chromosomes scenario, respectively. A total of 1 and 5 mutations per chromosome were 

simulated in order to have the same mutation rate per locus under all scenarios of 

marker density. After some tuning, the mutation rate was set at 6.6 x 10-4 per locus with 

the objective of maintaining the variance after many generations of evolution. Then the 

points of mutation where chosen by sampling them from a uniform distribution and the 

allele of the marker selected was changed from type 1 to type 2 or from type 2 to type 1. 

This procedure was repeated for the chromosomes that the individual received from the 
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mother. The new generation was then used to create the next one in the same way. The 

population evolved for 1000 generations, each time using one generation to produce the 

next. There was no generation overlap and the size of the population was kept at 100 

individuals. The allelic frequencies after 1000 generations of evolution are presented in 

Figure 3. 

Figure 3, Histogram of marker allelic frequencies after 1000 generations 

 

At the end of the 1000-generation-evolution, two groups of 100 or 300 markers were 

selected to simulate the causative mutations of two different traits. To select them, we 

sampled them from a uniform distribution and they were attributed an effect sampled 

from a normal distribution with mean 0 and standard deviation 1 in order to have 

positive and negative effects, many markers with a small effect and a few of them with 

a large effect. Then, we calculated the frequencies of the causative mutations by 
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counting the number of type 2 allele in the population and dividing it by the total 

number of alleles. The additive variance that was created for each trait was calculated as 

(ߙ)ݎܽݒ = ෍2݌௜(1 − ௜ଶߙ(௜݌
௠

ଵ

 

where ݌௜is the ith marker frequency, m is the total number of causative mutations and �.i 
is the substitution effect of the marker i. The heritability for the trait 1 was set 0.2 and 

for trait 2 was 0.4. The residual variance for each trait was calculated from the equation  

ℎ2 =
(ߙ)ݎܽݒ

(ߙ)ݎܽݒ +  (ݎ)ݎܽݒ

At this point 4 subpopulations (A, B, C and D) of 100 individuals were separated from 

the base population. The subpopulation sA and B were put under a process of 

phenotypic selection for the traits 1 and 2, respectively. At the same time, 

subpopulations C and D did not experience any selection and evolved under genetic 

drift generated by random mating. This strategy allowed simulating 3 different 

scenarios of time of divergence for the 4 populations that evolved separately for 5, 50 

and 200 generations.  

To simulate the evolution of the population A, phenotypic values were assigned to all its 

individuals for the trait 1 as:  

1௞ݕ = ߤ + ∑ ݃௜௞௠
ଵ ܽ௜ +  , ௞ݎ

where  1ݕ௞  is the phenotypic value of individual k for the trait 1, �� is the trait mean 

which was 100, m is the total number of causative mutations, ݃௜௞  is the genotype of the 

individual k at the ithlocus, coded as -1, 0 and 1, ܽ௜ is the substitution effect of the ith 

locus and ݎ௞ is the residual of individual k sampled from a normal distribution with 

mean=0 and standard deviation the square root of the residual variance calculated 

earlier. Then, the phenotypic mean and standard deviation were calculated:  

݉݁ܽ݊௣ = ∑ ௞ଵݕ
݇ൗ ௣݀ݏ                ,  = ට∑ (௬ೖି௠௘௔௡೛)మೖ

భ
௞ିଵ

 , 

where k is the number of individuals and ݕ௞  is the phenotypic value of the individual k. 

To create the next generation, two individuals with phenotype greater than (݉݁ܽ݊௣ −
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 ௣) , were selected by sampling them with equal probability. This fact implies an݀ݏ

intensity of selection of 0.30, approximately. The intensity of selection simulated was 

low in order to prevent the fixation of the alleles and the shrinkage of the additive 

variance after many generations of selection. The procedure of allele transmission from 

one generation to the next was the same as described for the base population. After the 

various generations of evolution, one more generation was simulated, where the size of 

the population was increased to 2,000 individuals, creating the breed A. Phenotypic 

values for the second trait were simulated at this point, the same way as for the first trait 

but with a trait mean ɛ=1,000. Finally, breeding values were simulated for every 

individual, for both traits as:  

ݒܾݐ = ∑ ݃௜ܽ௜௠
1  , 

where ݃௜ is the genotype of the ith locus coded as -1, 0- and 1 and ܽ௜ is the substitution 

effect of the causative mutation. 

Population B was simulated in the same way as population A except for being selected 

for the trait 2. Populations C and D were left under random mating. The simulation 

process for them was the same as the one used for the evolution of the base population. 

One more generation was added to them as well, to create the breeds B, C and D of 

2,000 individuals each. Genotypic records, phenotypic records and breeding values for 

both traits were obtained at this point from all breeds.  
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Figure 4, Plots of frequencies of the causative mutations of trait 1 between population A and B after evolving for a) 5 generations, b) 50 

generations and c) 200 generations. 

a)       b)      c) 
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Furthermore, 7 admixed populations of 2,000 individuals were created using the 4 pure 

breeds. 6 of them were all possible combinations of two pure breeds (A+B, A+C, A+D, 

B+C, B+D and C+D) with 50% of each breed, while the last one was a combination of 

all pure breeds (A+B+C+D) with 25% of each breed. A first sampling from a uniform 

distribution gave us the individual, and a second sampling gave us the breed from which 

it would come from. The genotype and the phenotypes for both traits of the individual 

selected were copied to the admixed population.  

The purebred and the admixed populations would be used as training sets for estimating 

marker effects while the 4 pure breeds would be used as validation sets to calculate the 

accuracy of the predictions. Figure 5 shows the procedure of obtaining the final 

populations and Table 1 shows the parameters used in the simulation study. 

 

Figure 5.Schematic representation of the simulated population history. 

 

 

 

 

• Generation -1000                                   Random mating 
(Ne=100)

• Generation 0                                            Line separation
(Ne=100)

Line A            Line B              Line C         Line D
phenotypic selection   phenotypic selection       random              random

trait 1, h²=0.2               trait 2, h²=0.4                mating       mating   

• Generation               Breed A        Breed B          Breed C       Breed D
5/50/200

• Generation                     A                    B                     C                   D
5/50/200 +1                

(Ne=2000) (A+B) (A+C) (A+D) (B+C) (B+D) (C+D) (A+B+C+D)               
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Table 1. The parameters used in the simulation 

Genome size 20 M, 4 M 

Number chromosomes 20, 4 

Number of total markers 30000 

Number of causative mutations 100, 300 

Marker density per cM 15, 75 

Mutation rate per locus 6.6 x 10-4 

Distribution of causative marker effects  Normal (0,1) 

Generations of divergence  5, 50, 200 

Population size  

  Generation -1000 to 0 N = 100 

  Generation 0 to 5/50/200 N = 100 

  Generation +1 N = 2000 

Heritability  0.2, 0.4 

 

Estimation of marker effects 

For each case of simulation, estimation of markers effects was performed with the 4 

pure and the 7 admixed populations. The method of choice was the Bayesian Lasso 

(Park and Casella, 2008) with the approach developed by Legarra et al. (2010). Further, 

the software GS3 (Legarra et. al., 2012) was used. Among the plethora of procedures to 

estimate marker effects within the scope of genomic prediction, this procedure was 

chosen because it presents good prediction results when compared with other methods 

(Usai et al., 2009; Cleveland et al., 2010), and it is available in the commercial software 

GS3.  

In this study, the model of analysis was: 

࢟ = ૚µ + ௜ܽ௜ࢍ∑ +  ,ࢋ

where y is the vector of phenotypic values of individuals in the training data, �� is a 

single unknown population mean, 1 is a vector of ones, gi is a column vector containing 

the genotypes (coded as 0, 1, or 2) of each individual at locus i, Ŭi is the random 

unknown allele substitution effect of marker i, and e is a random vector of unknown 

residuals with e|ůĮe ~ MVN(0, IůĮe). MVN stands for multi-variable normal distribution.  
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Legarra’s et. al. (2010) modification of the Tibshirani’s (1996) original Lasso considers 

two different variances, one for the conditional distribution of marker effects, and 

another for the residuals. This is more similar to the classical models used in 

quantitative genetics. The distribution of the marker effects is a conditional Laplace 

distribution and it can be written as:  

ఈ²ߪ,ߣ|ࢍ ∼ ∏ ఒ
ଶఙഀ௜ exp ିɚ|Ŭ౟|

ůŬ
 ,           e|ů²e ~ MVN(0, Iů²e), 

which is equivalent to the original form of Tibshirani’s Lasso 

∽ ߣ|ࢍ  ∏ ఒ
ଶ௜

exp(−λ|α୧|) ,           e|�•²e ~ MVN(0, I�•²e), 

because only the ratio ߣ ఈൗߪ  is used and it cannot be estimated separately. Also, ɚ 

determines the variance of the marker effects using  

(ߙ)ݎܸܽ = 2
ଶൗߣ  . 

With this modification it’s not needed for the �� to be estimated previously as it’s 

estimated simultaneously with the markers effects.  

In this study the prior distribution for the residual variance and the genetic variance was 

assumed to be uniform. The prior for �� was assumed uniform as well, bound between 0 

and 1,000,000.  

For estimation purposes, the markers selected as causative mutations for the two traits, 

were excluded from the marker panel, and only the neutral markers were used for the 

estimation. A Markov chain Monte-Carlo (MCMC) of length 100,000 cycles with a 

burn-in period of 20,000 cycles was conducted. 

Validation of genomic prediction and calculation of linkage disequilibrium 

Once estimates of marker effects were obtained from the training sets, the estimated 

breeding values of individual k (GEBVk) in the validation data set (A, B, C and D 

purebred populations) were computed as  

ܤܧܩ ௞ܸ = ∑ ݃௜௞௠
௜ୀଵ â௜  , 

where gik is the genotype (-1, 0, and 1) of individual k at locus i, âi is the estimated 

effect of marker i, and m is the total number of markers. Accuracy was calculated as the 
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raw correlation between the estimated and the simulated breeding values of individuals 

in the 4 validation sets. This accuracy was used to compare the performance of the 

different scenarios and training sets simulated. All scenarios were replicated 10 times, 

and the results were averaged across replicates.  

To evaluate the extent and the magnitude of linkage disequilibrium in the training 

populations and its impact on the accuracy of genomic predictions, linkage 

disequilibrium between the neutral markers and the causative mutations was calculated. 

A small Fortran 90 program was developed to calculate the observed gametic 

frequencies ଵ݂ଵ, ଶ݂ଶ, ଵ݂ଶ and ଶ݂ଵ of marker-causative mutation pairs and then the linkage 

disequilibrium was calculated as described by Falconer, using 

ܦ = ( ଵ݂ଵ ∗ ଶ݂ଶ) − ( ଵ݂ଶ ∗ ଶ݂ଵ). 

Further, to evaluate the persistence of LD phase across validation and training 

populations, the marker-causative mutation pairs with D>0.1 and D<-0.1 in the 

validating populations were chosen and their D in all training population was compared. 

The comparison was calculated as the percentage of the pairs in strong LD in the 

validation populations that appeared also in strong LD in the training populations. 

Additionally to the D, the correlation coefficient between pairs of loci was calculated. 

The correlation coefficient is a measure of LD, an alternative to D, expressed as: 

ݎ =
ܦ

ඥ1)݌ − −1)ݍ(݌ (ݍ
 

and its advantage is that it is adjusted to the loci having different allele frequencies. Its 

permits to distinguish better the higher values of LD and serves as a comparable 

measure of LD between populations with different allele frequencies.  
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RESULTS AND DISCUSSION 

In this chapter, the results of this study are presented and discussed. The objectives were 

to compare the predictive ability of several purebred and admixed populations under 

different scenarios of marker density, number of causative mutations affecting the traits, 

number of generations of divergence and type of reproductive isolation of the 

populations. Initially, the scenario with 15 markers per cM and 300 causative mutations 

for each trait is examined. In first place, the predictive ability of the purebred 

populations is evaluated. Secondly, the accuracies obtained from admixed populations 

composed of 2 purebred are compared and finally, the performance of the admixed 

population composed of all 4 purebred is presented. After that, these results are 

compared in terms of the accuracies of predicted breeding values with the ones from the 

two other scenarios. In one case, when there are 75 markers per cM,  and, in the other, 

when only 100 causative mutations per trait are simulated. 

For the first case, a population of 100 individuals with 30,000 biallelic markers each, 

evenly distributed along 20 chromosomes of 1M was simulated. From these markers, 

two groups of 300 markers were randomly chosen in order to simulate the causative 

mutations of two traits with heritabilities of 0.2 and 0.4. The population mated 

randomly for 1,000 generations. At generation 0, 4 new populations of 100 individuals 

were created from the base population. The first was put under selection for the trait 1, 

and the second for the trait 2, whereas the last two populations were left to evolve under 

random mating. After 5, 50 and 200 generations of evolution, the final purebred 

populations (A, B, C and D) were created by increasing their size to 2,000 individuals 

each. Moreover, several admixed populations were created combining phenotypic and 

genotypic records from the 4 purebred populations. There were created 6 admixed 

populations combining 2 purebred with 50% from each, and one admixed combining all 

4 purebreds with 25% from each. The phenotypic and genotypic records of all purebred 

and admixed population were used for the genomic evaluation while the 4 purebred 

served as validation sets, as it can be seen in Figure 5 in the previous chapter. 

Purebred populations 

Table 2 shows the accuracies of the predicted breeding values for the 4 validation sets 

(A, B, C and D) for both traits, obtained from training in the same 4 populations. The 

upper half of the table shows the evaluations for the first trait, while the lower half for 
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the second trait. The validation sets are located in the first column and the training sets 

are found in the line above the results. The table is separated in 3 parts which show the 

results obtained for the same populations, under 3 scenarios of number of generations of 

divergence (5, 50 and 200 generations). The diagonal elements of every sub-table show 

the accuracies obtained when training and predicting in the same population, while the 

elements outside the diagonal show the predictive ability of the populations over the 

others. 

The accuracies achieved overall, ranged between -0.023 (Trait 1, prediction in 

population B and validation in population A with 200 generations of divergence) and 

0.822 (Trait 2, prediction and validation in population C) with the accuracies for the 

second trait being generally higher than the ones for the first trait. This difference in the 

accuracies between the two traits results from their different heritabilities. As expected, 

traits with higher heritability give better predictions (Falconer and Mackey, 1996).  

When training and predicting in the same population, the accuracies obtained were 

around 0.7 for trait 1 and 0.8 for trait 2 and were maintained at the same level in all 3 

scenarios of generations of evolution. Exceptions to this were populations A and B. 

Population A showed a decline to its predictive ability for trait 1 of 4.7% and 15.1% 

after 50 and 200 generations of evolution respectively. Likewise, the accuracy of the 

predictions for the trait 2 made using population B declined 2.2% and 10.4% for 50 and 

200 generations. The loss of the accuracy observed is produced due to the fact that these 

populations were put under selection for the traits of interest (population A selected for 

trait 1 and population B selected for trait 2). The process of selection tends to change 

the allele frequencies of the causative mutations and force them near fixation or loss, as 

it is shown in Figure 6, for one specific replicate. As a result, there is a loss of genetic 

variance, as it is illustrated in Figure 7, which is essential for estimating marker effects 

and predicting breeding values (Falconer and MacKay, 1996).  In addition, a slight 

decrease is also observed for populations A and B for the trait that is not used for 

selection, because of the lower effective size caused by the selection process. 
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Figure 6. The histogram of the gene frequencies  of trait 1 in a) in the base population 

and b) after 200 generations of selection. 
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Figure 7. Graphical representation of the loss of genetic variance in 200 generations of 

selection. 

 

The results show that the predictive ability of one population over the others is low to 

be used for selection purposes, as it is even lower than the one obtained by mass 

selection (0.44 for trait 1 and 0.63 for trait 2, respectively). When the populations are 

separated for 5 generations the accuracies ranged around 0.3 and 0.4 for train 1 and trait 

2 respectively, which declined rapidly with the number of generations of separation, 

being 0.1 and 0.14 after 50 generations and very close to 0 after 200 generations. This 

occurs because the forces of selection and genetic drift that act, make that the alleles of 

the genes are fixed or lost in a different way in every population, and therefore the 

linkage disequilibrium extent is very different in every population, as it is presented in 

Figure 4 in the Material and Methods section. 

Besides the accuracies, the linkage disequilibrium (LD) between the causative 

mutations of both traits together and all the markers was calculated using  

ܦ = ( ଵ݂ଵ ∗ ଶ݂ଶ) − ( ଵ݂ଶ ∗ ଶ݂ଵ) 

as described by Falconer and Mackay (1996). The accuracy of the predictions depends 

largely on the extent of the LD between the markers and the genes. When more markers 

are in LD with a gene and when the LD is strong, then the accuracy improves. Likewise, 

when two populations share the same markers, genes and LD patterns then more 

accurate predictions are expected.  



33 
 

Firstly, LD was calculated separately in all populations. Afterwards, the causative 

mutations-marker pairs that presented a LD with a D higher than 0.1, in the 4 validation 

sets (A, B, C and D), were selected. These pairs were then looked up in all populations 

to see how many of them presented also a D higher than 0.1 as in the validation sets and 

the percentage of common pairs in high LD was calculated.  

Table 3 presents the percentage of common pairs in high LD between the validation sets 

and the training sets under the 3 scenarios of number of generations of divergence. 

Beneath the percentage of common pairs, the correlation between the LD in the 

validation set and the LD in the training set of the selected gene-marker pairs is also 

shown. Like in table 1, the validation sets are located in the first column and the training 

sets in the line above the results. The elements of the diagonal are all 100% (and 1 for 

the correlation) because the same population is used as training and validation set.  

The gene-marker pairs in high LD that the training sets share with the validation sets 

reach up to 49%-56% when the populations are separated for 5 generations and drops to 

11%-15% after 50 generations and to 2%-4% when they are separated for 200 

generations. Likewise, the correlation of the LD between populations is higher than 0.9 

in the case of 5 generations of divergence. But drops to half after 50 generations and 

reaches a value close to 0 after 200 generations. In all cases, the populations that were 

put under selection (A and B) present the lowest values of percentage and correlation. 

This occurs because the force of selection acts additionally to the force of genetic drift 

and creates patterns of LD specific of the population (Falconer and MacKay, 1996). 

These results of the LD extent are consistent with the results of the predictive ability of 

each population. As it can be noticed, when the populations are separated for 5 

generations they share around 50% of gene-marker pairs in high LD and the accuracies 

obtained are around 0.3 (for trait 1), half of the accuracy obtained from evaluating and 

predicting in the same population. Moreover, the predictive ability of one population 

over the other declines with the generations of divergence with the same rate as the 

percentage of gene-marker pairs in high LD that they share. 
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Table 2. Accuracy (standard error) of the predicted breeding values of the 4 purebred populations obtained from training in the same populations. 

  5 Generations  50 Generations  200 Generations 

Tr
ai

t 1
 (h

2 =0
.2

) 

    Tr* 

Val* 
A B C D  A B C D  A B C D 

A 0.702 
(0.008) 

0.304 
(0.015) 

0.313 
(0.019) 

0.261 
(0.024)  0.669 

(0.007) 
0.076 

(0.016) 
0.107 

(0.031) 
0.076 

(0.022)  0.596 
(0.015) 

-0.023 
(0.019) 

0.005 
(0.026) 

0.034 
(0.021) 

B 0.270 
(0.022) 

0.718 
(0.011) 

0.298 
(0.023) 

0.286 
(0.023)  0.047 

(0.026) 
0.716 

(0.011) 
0.119 

(0.024) 
0.117 

(0.022)  0.032 
(0.019) 

0.706 
(0.008) 

-0.017 
(0.026) 

-0.009 
(0.021) 

C 0.305 
(0.13) 

0.276 
(0.026) 

0.713 
(0.009) 

0.299 
(0.017)  0.087 

(0.026) 
0.105 

(0.021) 
0.689 

(0.010) 
0.103 

(0.021)  0.025 
(0.025) 

0.016 
(0.016) 

0.703 
(0.014) 

0.010 
(0.023) 

D 0.298 
(0.026) 

0.356 
(0.018) 

0.283 
(0.017) 

0.705 
(0.012)  0.074 

(0.030) 
0.093 

(0.024) 
0.091 

(0.019) 
0.709 

(0.010)  0.030 
(0.018) 

-0.002 
(0.023) 

0.009 
(0.019) 

0.691 
(0.017) 

Tr
ai

t 2
 (h

2 =0
.4

) 

  Tr 

Val 
A B C D  A B C D  A B C D 

A 0.808 
(0.009) 

0.403 
(0.026) 

0.413 
(0.027) 

0.379 
(0.022)  0.812 

(0.007) 
0.072 

(0.023) 
0.145 

(0.028) 
0.138 

(0.027)  0.789 
(0.009) 

-0.004 
(0.025) 

0.044 
(0.020) 

0.073 
(0.026) 

B 0.355 
(0.014) 

0.786 
(0.005) 

0.361 
(0.018) 

0.388 
(0.013)  0.084 

(0.011) 
0.769 

(0.011) 
0.095 

(0.017) 
0.089 

(0.018)  -0.005 
(0.032) 

0.704 
(0.017) 

0.012 
(0.019) 

-0.001 
(0.018) 

C 0.406 
(0.013) 

0.428 
(0.019) 

0.822 
(0.006) 

0.429 
(0.018)  0.126 

(0.032) 
0.074 

(0.018) 
0.816 

(0.008) 
0.128 

(0.030)  -0.013 
(0.027) 

-0.009 
(0.018) 

0.813 
(0.007) 

-0.018 
(0.018) 

D 0.368 
(0.016) 

0.384 
(0.033) 

0.405 
(0.020) 

0.809 
(0.007)  0.129 

(0.021) 
0.075 

(0.025) 
0.137 

(0.017) 
0.795 

(0.008)  0.020 
(0.021) 

-0.004 
(0.022) 

0.031 
(0.017) 

0.806 
(0.006) 

*Tr = Training sets, *Val = Validation sets 
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Table 3. Percentage (standard error) of gene-marker pairs in high LD in the validation sets found in the training sets, and correlation (standard 

error) between the LD of these pairs in the validation sets and the other purebred populations.     

 5 Generations  50 Generations  200 Generations 

     Tr* 

Val* 
A B C D  A B C D  A B C D 

A 100% 
 

49% 
(0.849) 

49.8% 
(0.923) 

49% 
(1.071)  100% 

 
11.5% 
(0.242) 

11.9% 
(0.589) 

12.3% 
(0.371)  100% 

 
2.2% 

(0.234) 
3.4% 

(0.175) 
3.3% 

(0.207) 

 1 
 

0.917 
(0.002) 

0.926 
(0.002) 

0.923 
(0.002)  1 0.348 

(0.016) 
0.375 

(0.010) 
0.381 

(0.010)  1 0 
(0.007) 

0.020 
(0.013) 

0.025 
(0.006) 

B 48.8% 
(1.015) 

100% 
 

50.7% 
(1.032) 

49.7% 
(1.070)  11.3% 

(0.473) 
100% 

 
12.4% 
(0.726) 

13.1% 
(0.533)  2.6% 

(0.221) 
100% 

 
3.7% 

(0.312) 
3.5% 

(0.241) 

 0.917 
(0.003) 1 0.923 

(0.003) 
0.925 

(0.001)  0.353 
(0.011) 1 0.376 

(0.012) 
0.386 

(0.012)  -0.005 
(0.007) 1 0.031 

(0.012) 
0.031 

(0.007) 

C 53.6% 
(0.746) 

54.8% 
(0.567) 

100% 
 

55.1% 
(0.621)  13.4% 

(0.346) 
14.2% 
(0.317) 

100% 
 

14.7% 
(0.676)  3% 

(0.192) 
2.8% 

(0.329) 
100% 

 
3.9% 

(0.362) 

 0.932 
(0.002) 

0.932 
(0.002) 1 0.940 

(0.001)  0.390 
(0.008) 

0.399 
(0.009) 1 0.416 

(0.007)  0.011 
(0.010) 

0.020 
(0.006) 1 0.036 

(0.008) 

D 53.5% 
(0.806) 

54.5% 
(0.700) 

55.9% 
(0.854) 

100% 
  13.6% 

(0.279) 
14.9% 
(0.612) 

14.3% 
(0.699) 

100% 
  3% 

(0.136) 
2.7% 

(0.199) 
4% 

(0.294) 
100% 

 

 0.931 
(0.002) 

0.931 
(0.001) 

0.942 
(0.002) 1  0.400 

(0.010) 
0.404 

(0.010) 
0.423 

(0.009) 1  0.029 
(0.008) 

0.026 
(0.004) 

0.037 
(0.007) 1 

*Tr = Training sets, *Val = Validation sets 
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Admixed Populations x2 

The use of admixed populations for genomic evaluation was first proposed by de Roos 

et al. (2009) with the purpose of overcoming the obstacles that genomic selection is 

facing when to its implementation in the beef cattle industry. These obstacles are the 

large number of populations and their reduced population size, due to which the within-

breed evaluation is expected to give very low accuracies. Moreover, the estimations 

made in one population do not produce accurate predictions for a different population 

(Harris et al., 2008). The use of phenotypic and genotypic data from different 

populations permits the construction of a reference population large enough as to 

increase the accuracy of the predictions that can be applied in all the populations 

involved. Moreover, the larger variability of this population may contribute further in 

the increase of the accuracy (Falconer and MacKay, 1996). 

In this study, the admixed populations were simulated combining data of individuals 

from the 4 purebred populations. For this purpose, 1,000 individuals were chosen 

randomly from each one of the 4 purebred populations. Afterwards, these data were 

combined in pairs of two creating 6 admixed populations (A+B, A+C, A+D, B+C, B+D 

and C+D) of 2,000 individuals each with 50% from each purebred. These admixed 

datasets were used to predict the breeding values of the 4 purebred populations. 

Table 4, structured as before, shows the accuracies of the predicted breeding values of 

the validation sets obtained from training in 4 admixed populations (A+B, A+C, B+D 

and C+D). The results from the A+D and B+C populations are not shown as they are 

similar to the A+C and B+D, respectively. 

The highest accuracies for each trait were obtained for the populations that were 

included in the admixed training sets and when the populations were separated just for 5 

generations. These values ranged around 0.35 and 0.5 for traits 1 and 2, respectively. As 

the number of generations increased, the accuracy of the predictions for the populations 

under selection declined. After 50 and 200 generations, Population A lost 11% (0.313 

and 0.300) and 28% of accuracy (0.257 and 0.253) for trait 1 and population B lost 8% 

(0.433 and 0.441) and 27% (0.357 and 0.353) of accuracy for trait 2. Meanwhile, in the 

cases where selection had not acted the accuracies were maintained almost at the same 

levels.  
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The predictive ability of the admixed populations over the ones that did not participate 

in them was extremely low even when the populations are separated just for 5 

generations. The values obtained were between 0.11 and 0.17 for the first trait and 

between 0.17 and 0.24 for the second trait and declined rapidly to 0 after 50 generations 

of divergence. 

Regarding the linkage disequilibrium (Table 5), the admixed populations presented 65 

to 70% of the gene-marker pairs in high LD found in the validations sets that were 

included in the mixture. The correlation of the LD of these pairs between the validation 

sets and the admixed populations was 0.98. This percentage declined to around 31% 

when the populations were separated for 50 generations, and to around 25% in the case 

of 200 generations. Nevertheless, the correlations between the LD of the pairs of 

markers did not decline in the same rate. They were maintained above 0.9 in the case of 

50 generations and dropped at 0.85 after 200 generations. Although the percentage of 

common gene-marker pairs in high LD was reduced with the generations of divergence, 

the accuracies remained at the same levels showing a greater resemblance to the 

evolution of the correlations between the LD of the same pairs in the different 

populations throughout the generations.  

When comparing the LD between the admixed and the purebred populations that were 

not included in the mixture, it can be noticed that the admixed populations present 49% 

to 56% of the pairs found in the purebred populations when they are separated for 5 

generations and this percentage is reduced to 11-15% and 7-11% after 50 and 200 

generations respectively. Similarly, the correlation between the LD that these pairs 

present in every population, starts from 0.94 and declines rapidly to 0.5 and finally to 0 

with the generations. Though the admixed populations share the 50% of the pairs in 

high LD with the purebred populations that are not included in the mixture, and the 

correlation between the LD of these pairs is extremely high, the accuracies obtained are 

very low.  
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Table 4. Accuracy (standard error) of the predicted breeding values for the 4 purebred populations obtained from training in 4 admixed 

populations (A+B, A+C, B+D and C+D). 

  5 Generations  50 Generations  200 Generations 

Tr
ai

t 1
 (h

2 =0
.2

) 

Tr* 

Val* 
A+B A+C B+D C+D  A+B A+C B+D C+D  A+B A+C B+D C+D 

A 0.360 
(0.007) 

0.335 
(0.009) 

0.107 
(0.018) 

0.128 
(0.020)  0.313 

(0.011) 
0.300 

(0.015) 
0.015 

(0.023) 
0.074 

(0.018)  0.257 
(0.012) 

0.253 
(0.006) 

-0.010 
(0.018) 

0.025 
(0.013) 

B 0.370 
(0.011) 

0.113 
(0.016) 

0.352 
(0.008) 

0.131 
(0.025)  0.331 

(0.010) 
0.008 

(0.031) 
0.350 

(0.009) 
0.072 

(0.015)  0.332 
(0.010) 

0.001 
(0.024) 

0.335 
(0.016) 

-0.016 
(0.021) 

C 0.125 
(0.023) 

0.353 
(0.009) 

0.110 
(0.020) 

0.348 
(0.012)  -0.014 

(0.019) 
0.323 

(0.010) 
0.010 

(0.022) 
0.344 

(0.011)  0.015 
(0.025) 

0.344 
(0.011) 

0.032 
(0.017) 

0.352 
(0.013) 

D 0.157 
(0.028) 

0.140 
(0.021) 

0.353 
(0.009) 

0.348 
(0.009)  0.039 

(0.018) 
0 

(0.022) 
0.332 

(0.012) 
0.340 

(0.011)  0.017 
(0.023) 

0.003 
(0.020) 

0.349 
(0.011) 

0.324 
(0.019) 

Tr
ai

t 2
 (h

2 =0
.4

) 

Tr 

Val 
A+B A+C B+D C+D  A+B A+C B+D C+D  A+B A+C B+D C+D 

A 0.520 
(0.015) 

0.502 
(0.013) 

0.193 
(0.022) 

0.225 
(0.028)  0.504 

(0.010) 
0.499 

(0.016) 
0.068 

(0.022) 
0.076 

(0.020)  0.473 
(0.011) 

0.465 
(0.012) 

-0.002 
(0.027) 

-0.002 
(0.017) 

B 0.481 
(0.010) 

0.209 
(0.020) 

0.477 
(0.011) 

0.178 
(0.019)  0.443 

(0.017) 
0.047 

(0.019) 
0.441 

(0.014) 
0.051 

(0.020)  0.357 
(0.017) 

-0.007 
(0.017) 

0.353 
(0.019) 

0.034 
(0.016) 

C 0.228 
(0.015) 

0.518 
(0.014) 

0.245 
(0.017) 

0.526 
(0.014)  0.048 

(0.024) 
0.513 

(0.014) 
0.025 

(0.014) 
0.520 

(0.010)  -0.009 
(0.021) 

0.504 
(0.008) 

-0.022 
(0.020) 

0.514 
(0.008) 

D 0.167 
(0.019) 

0.189 
(0.020) 

0.521 
(0.007) 

0.517 
(0.011)  0.009 

(0.021) 
0.054 

(0.028) 
0.506 

(0.008) 
0.487 

(0.007)  -0.009 
(0.028) 

0.022 
(0.021) 

0.498 
(0.017) 

0.494 
(0.015) 

*Tr = Training sets, *Val = Validation sets 
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Table 5. Percentage (standard error) of gene-marker pairs in high LD in the validation sets found in the training sets and correlation (standard 

error) between the LD of these pairs in the validation sets and the admixed populations. 

 5 Generations  50 Generations  200 Generations 

    Tr* 

Val* 
A+B A+C B+D C+D  A+B A+C B+D C+D  A+B A+C B+D C+D 

A 65.6% 
(0.869) 

65.6% 
(0.627) 

49.8% 
(0.913) 

49.5% 
(1.039)  31.8% 

(0.553) 
30.4% 
(0.828) 

11.7% 
(0.476) 

11.2% 
(0.630)  27% 

(0.764) 
24.9% 
(0.405) 

8.2% 
(0.347) 

6.7% 
(0.257) 

 0.982 
(0.001) 

0.984 
(0.001) 

0.937 
(0.002) 

0.939 
(0.002)  0.905 

(0.003) 
0.915 

(0.002) 
0.436 

(0.009) 
0.447 

(0.011)  0.842 
(0.004) 

0.863 
(0.004) 

0.035 
(0.008) 

0.033 
(0.010) 

B 65.6% 
(0.905) 

50.6% 
(0.966) 

66.3% 
(0.731) 

50.7% 
(1.027)  31.6% 

(0.368) 
11.6% 
(0.690) 

31.3% 
(0.954) 

11.7% 
(0.648)  26.1% 

(0.561) 
8% 

(0.353) 
25.1% 
(0.796) 

6.4% 
(0.346) 

 0.982 
(0.001) 

0.936 
(0.002) 

0.984 
(0.001) 

0.938 
(0.002)  0.905 

(0.002) 
0.441 

(0.013) 
0.910 

(0.002) 
0.453 

(0.010)  0.838 
(0.004) 

0.027 
(0.009) 

0.857 
(0.003) 

0.038 
(0.011) 

C 55.6% 
(0.666) 

68.8% 
(0.714) 

55.8% 
(0.496) 

70% 
(0.536)  15.2% 

(0.540) 
31.7% 
(0.617) 

14.8% 
(0.502) 

32.3% 
(0.655)  10.7% 

(0.492) 
26.1% 
(0.390) 

9% 
(0.344) 

25.3% 
(0.672) 

 0.949 
(0.001) 

0.985 
(0.001) 

0.952 
(0.001) 

0.987 
(0.001)  0.485 

(0.010) 
0.911 

(0.002) 
0.492 

(0.007) 
0.919 

(0.002)  0.042 
(0.008) 

0.844 
(0.003) 

0.040 
(0.009) 

0.866 
(0.002) 

D 55.8% 
(0.781) 

55.4% 
(0.807) 

69.4% 
(0.484) 

70.2% 
(0.684)  15.8% 

(0.583) 
13.8% 
(0.564) 

33.4% 
(1.028) 

31.2% 
(0.804)  11% 

(0.437) 
8.6% 

(0.311) 
27.7% 
(0.538) 

24.3% 
(0.496) 

 0.949 
(0.001) 

0.952 
(0.001) 

0.984 
(0.001) 

0.987 
(0.001)  0.499 

(0.008) 
0.499 

(0.009) 
0.913 

(0.001) 
0.918 

(0.002)  0.058 
(0.007) 

0.046 
(0.006) 

0.850 
(0.002) 

0.861 
(0.003) 

*Tr = Training sets, *Val = Validation sets 
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Admixed Population x4 

Besides the admixed populations composed by two purebred, one additional admixed 

population was created. In this mixture, all 4 purebred populations contributed with data 

from 500 individuals each, chosen randomly. Table 6 shows the accuracies of the 

estimated breeding values when the A+B+C+D population was used for training.  

The highest values were obtained in the case of 5 generations of separation and ranged 

around 0.52 for all the validation sets for trait 1 and around 0.60 for trait 2. The values 

for trait 1 declined approximately 20% for all validation sets after 50 generations and an 

additional 25% after 200 generations. For the first trait, the highest reduction of 

accuracy (36%) was presented in population A, which was selected for this 

characteristic. The loss of accuracy for the second trait was about 30% after 50 

generations. The accuracy for the population B presented an additional reduction of 

20% after 200 generations due to the fact that this population was selected for this trait. 

Yet, the reduction of the accuracies for the rest of the populations was much smaller 

ranging from 1% (for populations C and D) to 10% (for population A). 

The admixed population shares similar percentages of gene-marker pairs in high LD 

with all the purebred populations (Table 7) because all purebred contributed with the 

same proportion in the mixture. In the case of 5 generations of divergence the admixed 

population has around 62% of the pairs in high LD found in all 4 purebred populations. 

However, it should be noted this figure is slight lower (56.8 and 57.6) for populations A 

and B. This percentage decreases rapidly to 20% and 9% after 50 and 200 generations 

respectively. As before, it should be noted that populations A and B presented smaller 

values (16 and 8%).  As in the admixed populations composed by two purebred, the 

correlation of the LD of these pairs in the admixed and the purebred populations does 

not decline at the same ratio as the percentages. It starts at 0.97 in the first case, 0.82 in 

the second and finally 0.69 after 200 generations.  
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Table 6. Accuracy (standard error) of the predicted breeding values for the 4 purebred 

populations obtained from training in the admixed population (A+B+C+D). 

  5 Generations  50 Generations  200 Generations 

Tr
ai

t 1
 (h

2 =0
.2

) 

  Tr* 

Val* 
A+B+C+D  A+B+C+D  A+B+C+D 

A 0.510 
(0.011)  0.386 

(0.018)  0.245 
(0.014) 

B 0.517 
(0.018)  0.444 

(0.031)  0.326 
(0.028) 

C 0.532 
(0.015)  0.416 

(0.021)  0.294 
(0.032) 

D 0.523 
(0.015)  0.421 

(0.033)  0.305 
(0.033) 

Tr
ai

t 2
 (h

2 =0
.4

) 

   Tr 

Val 
A+B+C+D  A+B+C+D  A+B+C+D 

A 0.598 
(0.028)  0.428 

(0.015)  0.383 
(0.013) 

B 0.535 
(0.033)  0.358 

(0.016)  0.286 
(0.019) 

C 0.612 
(0.033)  0.427 

(0.016)  0.408 
(0.017) 

D 0.587 
(0.034)  0.408 

(0.009)  0.405 
(0.013) 
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Table 7. Percentage (standard error) of the gene-marker pairs in high LD in the 

validation sets found in the training sets, and correlation (standard error) between the 

LD of these pairs in the validation sets and the admixed population. 

 5 Generations  50 Generations  200 Generations 

         Tr 

Val 
A+B+C+D 

 
A+B+C+D 

 
A+B+C+D 

A 56.8% 
(0.875)  16.3% 

(0.598)  7.9% 
(0.172) 

 0.971 
(0.001)  0.814 

(0.003)  0.690 
(0.005) 

B 57.6% 
(0.958)  16.8% 

(0.753)  7.8% 
(0.279) 

 0.970 
(0.001)  0.813 

(0.005)  0.688 
(0.010) 

C 62.7% 
(0.588)  20% 

(0.434)  9.1% 
(0.360) 

 0.977 
(0.001)  0.824 

(0.004)  0.662 
(0.009) 

D 62.9% 
(0.761)  20.2% 

(0.763)  9.6% 
(0.305) 

 0.978 
(0.001) 

 0.831 
(0.002) 

 0.672 
(0.007) 
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From the results presented above, it can be seen that the purebred populations 

performed better under all scenarios, as previously reported by Kizilkaya et al. (2010) 

and Toosi et al. (2010). Though, the admixed populations presented some results that 

were not so clearly expected. The population A+B+C+D gave similar accuracies to the 

ones obtained from the other admixed x2 populations for the purebred populations 

involved and, in some cases, even higher. Yet, the LD extent that this population 

presents does not match with the pattern of the results of accuracy.  

One example of this discrepancy is presented with more detail in Table 8. It shows the 

accuracies of the predicted breeding values for the first trait for population A obtained 

from training in this purebred population and two admixed populations, A+B and 

A+B+C+D, under the scenario of 50 generations of divergence. The percentage of gene-

marker pairs in high LD that each training set shares with the population A, together 

with the correlation between the LD values that these pairs present in the validation set 

and the training sets (between brackets) are shown beneath the correspondent 

accuracies. The population A+B maintains the 31.8% of the gene-marker pairs in high 

LD found in population A and yields an accuracy of 0.313. On the contrary, population 

A+B+C+D gave an accuracy of 0.386 while presenting just 16.3% of these pairs. Thus, 

the accuracies obtained from these two training sets are apparently not consistent with 

the results from the LD.    

Table 8.Accuracy of predicted breeding values and percentage (correlation) of gene-

marker pairs in high LD for population A when training in populations A, A+B and 

A+B+C+D. 

  A  A+B  A+B+C+D 

A 
Accuracy 0.669  0.313  0.386 

LD (corr.) 100% (1)  31.8% (0.905)  16.3% (0.814) 

 

To investigate the causality of this phenomenon, the populations from the example 

above were taken and examined thoroughly. Firstly, the estimates of the marker effects 

obtained from these populations were represented graphically (figure 8). The magnitude 

of the estimated markers effects from population A+B+C+D ranged between -0.10 and 

+0.10 units and they were more similar to the estimates from the population A, which 

ranged from -0.03 to 0.03. On the contrary, the estimations from population A+B were 
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extremely high, ranging between -2 and +2. Similar results were observed in other 

replicates for the admixed x2 populations. 

Afterwards, in order to examine the extent of LD in all these populations, the correlation 

coefficient (r) between pairs of loci was calculated. The average r of two consecutive 

loci, of loci that are located in the same chromosome, and of loci that are located in 

different chromosomes was calculated for all three populations and is presented in the 

Table 9. The average r of two consecutive loci in the population A is 0.253 and in 

population A+B is 0.247 because the change of the allelic frequencies caused by the 

mixture of the populations tends to break the LD between loci. When more populations 

are included in the mixture, the degradation of the LD is stronger as in the case of the 

A+B+C+D population in which the average r is 0.234. The average r declines with the 

distance between the loci and therefore in population A the average LD of loci within 

the same chromosome is 0.084 and between chromosomes is 0.045. In population A+B 

the average LD of loci within the same chromosome is 0.105, 25% more than in 

population A, and between chromosomes is 0.089, 97% more. The increase of the 

values of LD of distant loci found in the A+B population occurs because, in the 

populations A and B, selection and genetic drift forced the frequencies of the loci to 

extremes. When data from these populations were mixed, the causative mutations and 

the markers that were fixed oppositely in the two populations appeared with 

intermediate frequencies that created a high LD over large distances. The A+B+C+D 

population presents an average LD within-chromosome just 6% (0.089) higher than in 

population A and between-chromosomes 58% (0.071) higher. The changes of the allelic 

frequencies in this population also cause the creation of LD between distant loci, but 

with lower intensity because when mixing 4 populations, it is less probable to encounter 

loci with extreme opposite frequencies.  

At the moment of estimating the effects of the markers, those markers that are in LD 

with a causative mutation can capture a part of its effect depending on the value of the 

LD between them. In the case of the A+B population, the fact that many markers are in 

strong LD with many distant causative mutations, results in these markers capturing 

effects from those distant loci and therefore, their effects are clearly overestimated, as it 

can be seen in the figure 8. The breeding values produced with these estimates are less 

accurate than the ones that are produced by the estimates from the A+B+C+D 

population because in this population fewer markers present high LD with distant loci. 
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Figure 9 shows the example of the marker 11437 which is located on the 8th 

chromosome. This marker was estimated to have a very small effect in the populations 

A and A+B+C+D but one of the largest in the population A+B. When considering the 

LD that this marker presents with all the causative mutations, it can be seen that it is 

very high even with distant loci in the A+B population. Instead, the same marker in the 

other populations has lower values of LD and with loci in shorter distances.  

 

Table 9. The average LD (r) between markers and causative mutations when they are 

consecutive, located in the same (within) and different (between) chromosome, in the 

populations A, A+B and A+B+C+D.  

 A  A+B  A+B+C+D 

Average r of consecutive loci 0.253  0.247  0.234 

Average r within chromosome 0.084  0.105  0.089 

Average r between chromosomes 0.045  0.089  0.071 
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Figure 8. Graphical representation of the estimates of the marker effects for trait 1 from a) population A, b) population A+B, c) population 

A+B+C+D. 
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Figure 9. The LD between the marker 11437 and the causative mutations affecting the first trait represented over the distance between them in a) 

population A, b) population A+B and c) population A+B+C+D. 



48 
 

Marker density 

In addition, a second scenario was simulated with a higher density of markers. For this 

purpose, 30,000 biallelic markers were distributed evenly along only 4 chromosomes of 

1 Morgan each, resulting in a density of 75 markers per cM. The scenarios of the 

number of causative mutations that control the traits and the type and number of 

generations of divergence were the same as in the first case. The results of the accuracy 

of the predictions obtained from the purebred population A and the admixed 

populations A+B and A+B+C+D are presented in Table 10. For simplicity, the results 

from the other populations are not shown since they are equivalent to those presented.  

The accuracies of the purebred populations, when training and validating in the same 

population, increased around 11% and 7% over the previous case for the traits 1 and 2, 

respectively. This increase is consistent under all scenarios of number of generations of 

divergence. The predictive ability of the purebred populations over the others was 

improved significantly (0.51 and 0.55 for traits 1 and 2, respectively) compared to the 

case of lower marker density (0.3 and 0.37 for traits 1 and 2, respectively) under the 

scenario of 5 generations of divergence. Nevertheless, these accuracies declined rapidly 

to 0.15 (trait 1) and 0.20 (trait 2) and close to 0 with 50 and 200 generations of 

divergence, respectively.  

The higher marker density favored most the predictive ability of the admixed population 

A+B for the populations that were included in the mixture. The accuracies obtained 

were increased around 90% and 50% for traits 1 and 2, respectively. The accuracies 

obtained for the populations that are not included in the admixed population increased 

as well, being 0.49 for the first trait and 0.56 for the second, with 5 generations of 

divergence. These accuracies declined with the generations of divergence similarly to 

the ones obtained from the purebred when predicting another population.  

Finally, the accuracies obtained from the A+B+C+D population, comparing with the 

previous scenario, were increased only 25% for both traits when the populations 

diverged for only 5 generations but showed a remarkable increase when the populations 

had diverged for more generations. In the case of 50 generations the increase was of 

35% and 70% for traits 1 and 2, respectively and in the case of 200 generations up to 

90% and 75%.  
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The results from the linkage disequilibrium study (Table 11) showed that the 

persistence of the LD across the populations is almost identical in both cases of marker 

density, with only a slight increase in the case of the higher marker density (i.e. The 

admixed population A+B maintains 65.6% and 66.7% of the gene-marker pairs in high 

LD found in population A in the case of 300 and 100 QTLs, respectively.) 

As it can be noticed, the admixed population A+B performed better than the A+B+C+D 

population in this case, even though the LD patterns are the same as before. This 

happens due to the fact that the simulated genome consist of only 4 chromosomes and 

therefore, due to the effect of linkage, the frequencies of the loci in the populations A 

and B were not allowed to have extreme opposite frequencies by chance. 

Overall, the results of the comparison between both scenarios agree with the studies of 

Toosi et al. (2009) and de Roos et al. (2009), and show that the increased marker 

density gives higher accuracies when the populations have diverged for only a few 

generations, benefits more the predictions made in the admixed populations than the 

ones made in the purebreds and finally, favors the accuracies for traits with low 

heritability. 

Number of QTLs  

Further, another scenario with only 100 causative mutations or QTL affecting each trait 

was also simulated and its predictive ability for all populations was compared with the 

scenario of 300 genes affecting the traits. The marker density was the same as in the 

first case. The results (not shown) of the accuracies show that the smaller number of 

genes affected only the predictive ability of the populations under selection and the 

admixed populations that contained data from these selected populations. We were not 

able to found any difference in the accuracy between the 100 and 300 QTL scenarios 

when the populations are separated for 5 generations, but the accuracy of the selected 

populations declines faster with the generations of divergence in the 100 genes scenario. 

Population A showed a decline in the accuracy for the trait 1 of 25% after 200 

generations of selection whereas the same reduction in the case of 300 genes was only  

15%. Likewise, the accuracy of population B for the trait 2 declined 23% in the case of 

100 genes and only 10% in the case of 300 genes. The admixed populations that contain 

data from the purebred populations under selection showed as well a larger reduction in 

their accuracies with the generations of evolution in the case of 100 genes. This occurs 
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because the alleles of a small number of genes are fixed or lost easier during the process 

of selection and the loss of genetic variance is faster.  

However, the study of Kizilkaya et al. (2010) showed that the accuracies of the 

predicted values depend on the number of genes that control the trait of interest. The 

accuracies he obtained from training in an admixed population started at 0.388 when 

there were 50 QTLs and declined to 0.2 when the number of QTLs was 500.  It should 

be noted that this authors compare scenarios with 10 times more QTL whereas in this 

study the spectrum of scenarios was only a ratio of 3 in the number of genes. Thus, it is 

probable that the differences between them were too small to be detected with only 10 

replicates of simulation. 

The findings of this study suggest a promising alternative for the beef cattle industry. 

There are some important advantages in using an admixed population that consists of 

data from all available populations. Firstly, the size of the reference population can be 

easily increased just by adding a few individuals from each of the many existing 

populations. Secondly, the large number of populations of different genetic origin 

would lower further the intensity of the phenomenon of overestimation of the marker 

effects, and finally, it will not be necessary to have different procedures of prediction 

for every population since the estimated effects from the admixed population are 

applicable to all populations. This strategy, combined with the use of a high density 

marker map could result in accurate predictions suitable for the implementation of 

genomic selection in beef cattle. 
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Table 10. Accuracy (standard error) of the predicted breeding values of all validation sets obtained from training in the purebred population A 

and in the admixed populations A+B and A+B+C+D. 

  5 Generations 50 Generations 200 Generations 
Tr

ai
t 1

 (h
2 =0

.2
) 

Tr* 

Val* 
A A+B A+B+C+D  A A+B A+B+C+D  A A+B A+B+C+D 

A 0.782 
(0.007) 

0.671 
(0.011) 

0.645 
(0.015)  0.769 

(0.013) 
0.611 

(0.017) 
0.566 

(0.018)  0.714 
(0.012) 

0.510 
(0.036) 

0.467 
(0.025) 

B 0.517 
(0.017) 

0.688 
(0.009) 

0.674 
(0.015)  0.156 

(0.023) 
0.660 

(0.012) 
0.604 

(0.018)  0.024 
(0.030) 

0.619 
(0.018) 

0.542 
(0.024) 

C 0.517 
(0.019) 

0.489 
(0.021) 

0.645 
(0.023)  0.171 

(0.029) 
0.163 

(0.046) 
0.570 

(0.025)  -0.014 
(0.023) 

0.018 
(0.028) 

0.560 
(0.014) 

D 0.498 
(0.022) 

0.471 
(0.017) 

0.640 
(0.017)  0.140 

(0.031) 
0.137 

(0.025) 
0.541 

(0.018)  0.004 
(0.013) 

0.017 
(0.022) 

0.585 
(0.019) 

Tr
ai

t 2
 (h

2 =0
.4

) 

Tr 

Val 
A A+B A+B+C+D  A A+B A+B+C+D  A A+B A+B+C+D 

A 0.871 
(0.005) 

0.775 
(0.008) 

0.750 
(0.011)  0.871 

(0.006) 
0.766 

(0.008) 
0.724 

(0.009)  0.875 
(0.005) 

0.720 
(0.026) 

0.669 
(0.014) 

B 0.554 
(0.014) 

0.746 
(0.008) 

0.746 
(0.008)  0.142 

(0.021) 
0.695 

(0.018) 
0.628 

(0.016)  0.025 
(0.032) 

0.535 
(0.026) 

0.536 
(0.020) 

C 0.556 
(0.023) 

0.560 
(0.024) 

0.763 
(0.011)  0.266 

(0.019) 
0.226 

(0.031) 
0.704 

(0.014)  0.023 
(0.031) 

0.047 
(0.018) 

0.687 
(0.014) 

D 0.587 
(0.015) 

0.561 
(0.013) 

0.780 
(0.007)  0.251 

(0.027) 
0.210 

(0.032) 
0.686 

(0.015)  0.042 
(0.024) 

0.022 
(0.030) 

0.709 
(0.016) 
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Table 11. Percentage (standard error) of gene-marker pairs in high LD in the validation sets found in the training sets, and correlation (standard 

error) between the LD of these pairs in the validation sets and the purebred population A and the admixed populations A+B and A+B+C+D. 

 5 Generations  50 Generations  200 Generations 

Tr* 

Val* 
A A+B A+B+C+D  A A+B A+B+C+D  A A+B A+B+C+D 

A 100% 
 

66.7% 
(0.746) 

58.8% 
(1.317)  100% 

 
32.5% 
(0.469) 

17.3% 
(0.465)  100% 

 
27.2% 
(0.526) 

8.6% 
(0.248) 

 1 
 

0.983 
(0.001) 

0.973 
(0.001)  1 

 
0.904 

(0.002) 
0.821 

(0.003)  1 
 

0.834 
(0.003) 

0.668 
(0.006) 

B 49.9% 
(0.952) 

65.3% 
(0.902) 

57.8% 
(0.920)  11.9% 

(0.346) 
31.6% 
(0.510) 

17.5% 
(0.628)  2.8% 

(0.228) 
27% 

(0.514) 
8.6% 

(0.213) 

 0.917 
(0.004) 

0.982 
(0.001) 

0.972 
(0.001)  0.336 

(0.009) 
0.905 

(0.003) 
0.820 

(0.005)  0.020 
(0.007) 

0.841 
(0.004) 

0.694 
(0.008) 

C 55.8% 
(1.053) 

57.4% 
(1.039) 

64% 
(0.863)  13.9% 

(0.444) 
16.3% 
(0.620) 

20.7% 
(0.556)  3.2% 

(0.119) 
10.8% 
(0.483) 

9.5% 
(0.277) 

 0.935 
(0.003) 

0.952 
(0.002) 

0.977 
(0.001)  0.396 

(0.008) 
0.485 

(0.012) 
0.823 

(0.003)  0.024 
(0.003) 

0.054 
(0.007) 

0.659 
(0.007) 

D 56.1% 
(0.738) 

57.2% 
(0.845) 

64.1% 
(0.986)  14.4% 

(0.628) 
16% 

(0.456) 
20.3% 
(0.585)  3.1% 

(0.164) 
10.8% 
(0.597) 

9.9% 
(0.323) 

 0.936 
(0.003) 

0.953 
(0.003) 

0.978 
(0.001)  0.400 

(0.009) 
0.481 

(0.007) 
0.811 

(0.003)  0.015 
(0.005) 

0.049 
(0.006) 

0.667 
(0.006) 
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CONCLUSIONS 
 
The conclusions of this study are: 
 

1. Genomic prediction when training and validating in the same  
population gives high accuracies. However, these accuracies decline with  
the number of generations when the population is undergoing a process of  
selection for the trait of interest. 
 

2. The predictive ability of one population over another is low and  
declines further with the number of generations of divergence. 

 
3. The predicted ability of the admixed populations is better for the  

populations that are included in the mixture than for the ones that are  
not included. Nevertheless, these accuracies are remarkably lower than  
the ones obtained from the purebred populations. 

 
4. When all populations available are represented in the admixed  

training set the accuracies increase for all populations compared to the  
accuracies obtained from the admixed x2 populations. 

 
5. A high marker density genotyping benefits the accuracies of all  

populations but mostly the admixed populations and the predictions for  
traits with low heritability. 

 
6. The number of QTLs that control the traits affects mainly the  

predictive ability of the populations that are under selection for these  
traits. The smaller the number of QTLs the faster the reduction in the  
accuracy with the number of generations of selection. 

 
7. A genomic prediction procedure from an admixed population generated  

by several related genetic origins and with a high density map of  
markers may be useful for selection of all populations involved. 
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APPENDIX: SIMULATION PROGRAM 
program simulation 
implicit none 
integer *1  
mar(100,20,1500,2), marn(100,20,1500,2), marnA(100,20,1500,2), marnB(100,20,1500,2), marnC(100,20,1500,2), marnD(100,20,1500,2), grupoA(100,20,1500,2), grupoB(100,20,1500,2), 
grupoC(100,20,1500,2), grupoD(100,20,1500,2), finalA(2000,20,1500,2), finalB(2000,20,1500,2), finalC(2000,20,1500,2), finalD(2000,20,1500,2), finalAB(2000,20,1500,2), finalAC(2000,20,1500,2), 
finalAD(2000,20,1500,2), finalBC(2000,20,1500,2), finalBD(2000,20,1500,2), finalCD(2000,20,1500,2), finalABCD(2000,20,1500,2) 
integer 
 irec(50), irecord(50), iefec1(300,2), iefec2(300,2), ef(600), n(30000),  i, j, k, l, ijk, iale, ip, iv, im, ic, ik, ij, pois, neu, g, marca(30000), nanim, ncro, nmar, nale, nmac, nhem, ngen, nmut, nrec, xmin, imin, imut, 
nanim2, ngenes, ngen2, ait 
real *8  
x1, u, lam, yfenA(100), yfenB(100), var1(300), var2(300), media1, media2, p1base(300,300), p2base(300,300), p1(300,300), p2(300,300), Vr1, Vr2, Va1, Va2, des1, des2, varA1(300), varA2(300), varAf1(300), 
varAf2(300), var1B(300), var2B(300), var1Df(300), p1sel(300,300), p2sel(300,300), efec1(300), efec2(300), var1Bf(300), var2Bf(300), var1Cf(300), var2Cf(300), var2Df(300), var1ABf(300), var2ABf(300), 
var1ACf(300), var2ACf(300), var1ADf(300), var2ADf(300), var1BCf(300), var2BCf(300), var1BDf(300), var2BDf(300), var1CDf(300), var2CDf(300), var1ABCDf(300), var2ABCDf(300), p1A(300,300), 
p2A(300,300), p1B(300,300), p2B(300,300), p1C(300,300), p2C(300,300), p1D(300,300), p2D(300,300), p1AB(300,300), p2AB(300,300), p1AC(300,300), p2AC(300,300), p1AD(300,300), p2AD(300,300), 
p1BC(300,300), p2BC(300,300), p1BD(300,300), p2BD(300,300), p1CD(300,300), p2CD(300,300), p1ABCD(300,300), p2ABCD(300,300), pA, pB, pC, pD, pAB, pAC, pAD, pBC, pBD, pCD, pABCD, 
bv1A(2000), bv2A(2000), bv1B(2000), bv2B(2000), bv1C(2000), bv2C(2000), bv1D(2000), bv2D(2000), yfen1A(2000), yfen2A(2000), yfen1B(2000), yfen2B(2000), yfen1C(2000), yfen2C(2000), 
yfen1D(2000), yfen2D(2000), yfen1AB(2000), yfen2AB(2000), yfen1AC(2000), yfen2AC(2000), yfen1AD(2000), yfen2AD(2000), yfen1BC(2000), yfen2BC(2000), yfen1BD(2000), yfen2BD(2000), 
yfen1CD(2000), yfen2CD(2000), yfen1ABCD(2000), yfen2ABCD(2000) 
x1=110297. 
nanim=100 
ncro=20 
nmar=1500 
nale=2 
nmac=50 
nhem=50 
ngen=1000 
nanim2=2000 
ngenes=300 
ngen2=200 
 
! simulation of the base population 
do i=1,nanim 
    do j=1,ncro 
        do k=1,nmar 
            do l=1,nale 
 call unif(x1,u) 
 if (u.lt.0.5) then 
               mar(i,j,k,l)=1 
 else 
    mar(i,j,k,l)=2 
 end if  
 enddo 
        enddo 
    enddo 
enddo 
! simulation of  1000 generations of random mating 
do ijk=1,ngen 
    do i=1,nanim 
        call unif(x1,u) 
        ip=int(u*nmac)+1 
        call unif(x1,u) 
        im=int(u*nhem)+nmac+1 
!  father’s chromosome 
        do j=1,ncro 
        call unif(x1,u)  
        if (u.lt.0.5) then  
 iale=1 
        else 
 iale=2 
        endif 
        marn(i,j,1,1)=mar(ip,j,1,iale) 
        lam=1.   
        nrec=pois(lam,x1)         ! selection of the number of recombinations 
           do ik=1,nrec   
           call unif(x1,u)           ! selection of the location of the recombinations 
irec(ik)=int(u*(nmar-1))+1 
enddo 
           irecord=0  
   do ik=1,nrec 
   xmin=999999 
      do ij=1,nrec 
       if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
           imin=ij 
       endif 
enddo 
      irecord(ik)=xmin 
      irec(imin)=999999 
   enddo  
   irecord(nrec+1)=nmar 
   if (nrec.eq.0) then 
      do k=2,nmar 
      marn(i,j,k,1)=mar(ip,j,k,iale) 
      enddo 
   else 
      ic=2 
      do ik=1,nrec+1 
          do k=ic,irecord(ik) 
          marn(i,j,k,1)=mar(ip,j,k,iale) 
          enddo 
          ic=irecord(ik)+1 
          if (iale.eq.1) then 
  iale=2 
          else 
  iale=1 
          endif 
      enddo 
   endif 
!    mutation 
   lam=1. 
   nmut=pois(lam,x1)  ! selection of the number of mutations 
   do ik=1,nmut 
   call unif(x1,u) 
   imut=int(u*nmar)+1  ! selection of the location  of the mutation 
   if (marn(i,j,imut,1).eq.1) then 
          marn(i,j,imut,1)=2 
   else 
          marn(i,j,imut,1)=1 
   endif 
   enddo 
           enddo 
!   mother’s chromosome 
 do j=1,ncro 
     call unif(x1,u) 
     if (u.lt.0.5) then  
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        iale=1 
     else 
        iale=2 
     endif 
     marn(i,j,1,2)=mar(im,j,1,iale) 
     lam=1.    
     nrec=pois(lam,x1)               ! selection of the number of recombinations 
     do ik=1,nrec 
         call unif(x1,u)  ! selection of the location of the recombinations 
 irec(ik)=int(u*(nmar-1))+1 
 enddo 
     irecord=0   
     do ik=1,nrec 
     xmin=999999 
         do ij=1,nrec 
          if (irec(ij).lt.xmin) then 
  xmin=irec(ij) 
      imin=ij 
          endif 
 enddo 
         irecord(ik)=xmin 
         irec(imin)=999999 
    enddo  
    irecord(nrec+1)=nmar 
    if (nrec.eq.0) then 
       do k=2,nmar 
            marn(i,j,k,2)=mar(im,j,k,iale) 
       enddo 
    else 
        ic=2 
        do ik=1,nrec+1 
            do k=ic,irecord(ik) 
            marn(i,j,k,2)=mar(im,j,k,iale) 
            enddo 
            ic=irecord(ik)+1 
            if (iale.eq.1) then 
       iale=2 
            else 
       iale=1 
            endif 
        enddo 
               endif 
!    mutation 
    lam=1. 
    nmut=pois(lam,x1)  ! selection of the number of mutations 
    do ik=1,nmut 
      call unif(x1,u)    ! selection of the location of the mutations 
      imut=int(u*nmar)+1 
      if (marn(i,j,imut,2).eq.1) then 
          marn(i,j,imut,2)=2 
     else 
          marn(i,j,imut,2)=1 
 endif 
   enddo 
         enddo 
     enddo 
mar=marn 
print *, ijk 
enddo 
open(11,file='info.txt') 
 
!     Trait 1, h2=0.2, mean=100 
! simulation of the causative mutations and their effect for trait 1 
open(16,file='effects1.txt') 
do i=1,ngenes 
    call unif(x1,u)    ! selection of chromosome 
    iefec1(i,1)=int(u*ncro)+1 
    call unif(x1,u)    ! selection of marker 
    iefec1(i,2)=int(u*nmar)+1 
    call normal(x1,u)  ! assignment of the effect 
    efec1(i)=u*1 
    write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),efec1(i) 
end do 
close(16) 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-base.txt') 
do i=1,ngenes 
    p1base(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim  
       p1base(iefec1(i,1),iefec1(i,2))=p1base(iefec1(i,1),iefec1(i,2))+real(marn(k,iefec1(i,1),iefec1(i,2),1)+marn(k,iefec1(i,1),iefec1(i,2),2)-2) 
    end do 
    p1base(iefec1(i,1),iefec1(i,2))=p1base(iefec1(i,1),iefec1(i,2))/(2*real(nanim)) 
    write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1base(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
do i=1,ngenes 
     var1(i)=2*p1base(iefec1(i,1),iefec1(i,2))*(1-p1base(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
     Va1=Va1+var1(i) 
end do 
print *, 'Va1  base =',Va1 
write(11,*) 'Va1 base=',Va1 
! resisual variance of trait 1 
Vr1=(Va1/0.2)-Va1 
print *, 'Vr1 =',Vr1 
write(11,*) 'Vr1=',Vr1 
 
!     Trait 2, h2=0.4, mean=1000 
! simulation of the causative mutations and their effect for trait 2 
open(16,file='effects2.txt') 
do i=1,ngenes 
  call unif(x1,u)    !  selection of chromosome 
  iefec2(i,1)=int(u*ncro)+1 
  call unif(x1,u)  !  selection of marker 
  iefec2(i,2)=int(u*nmar)+1 
  call normal(x1,u)   !  assignment of the effect 
  efec2(i)=u*1 
  write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),efec2(i) 
end do 
close(16) 
! frequencies of the causative mutations of trait 2 
open(16,file='freq2-base.txt') 
do i=1,ngenes 
     p2base(iefec2(i,1),iefec2(i,2))=0 
     do k=1,nanim 
         p2base(iefec2(i,1),iefec2(i,2))=p2base(iefec2(i,1),iefec2(i,2))+real(marn(k,iefec2(i,1),iefec2(i,2),1)+marn(k,iefec2(i,1),iefec2(i,2),2)-2) 
     end do 
     p2base(iefec2(i,1),iefec2(i,2))=p2base(iefec2(i,1),iefec2(i,2))/(2*real(nanim)) 
     write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2base(iefec2(i,1),iefec2(i,2)) 
end do 
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close(16) 
! additive variance of trait 2 
Va2=0 
do i=1,ngenes 
    var2(i)=2*p2base(iefec2(i,1),iefec2(i,2))*(1-p2base(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
    Va2=Va2+var2(i) 
end do 
print *, 'Va2  base =',Va2 
write(11,*) 'Va2 base=',Va2 
! resisual variance of trait 2 
Vr2=(Va2/0.4)-Va2 
print *, 'Vr2 =',Vr2 
write(11,*) 'Vr2=',Vr2 
 
! write position of causative mutations and neutral markers 
do i=1,ngenes 
    ef(i)=(iefec1(i,1)-1)*nmar+iefec1(i,2) 
    ef(ngenes+i)=(iefec2(i,1)-1)*nmar+iefec2(i,2) 
end do  
open(16,file='genes.txt') 
do i=1,2*ngenes-1 
    do j=i+1,2*ngenes 
       if (ef(j).lt.ef(i)) then 
          k=ef(j) 
          ef(j)=ef(i) 
          ef(i)=k 
       end if 
    end do 
end do 
    ait=0 
    do i=1,2*ngenes 
        if (ef(i)==ef(i-1)) then 
          goto 40 
        else 
          ait=ait+1 
          write(16,*) ait,ef(i) 
        end if 
40 end do 
close(16) 
print *, 'No of genes=',ait 
write(11,*) 'No of genes=',ait 
open(16,file='neutral markers.txt') 
  neu=0 
  do i=1,ncro*nmar 
      do j=1,2*ngenes 
          if (i==ef(j)) then  
   goto 9 
          end if 
       end do 
       neu=neu+1 
       n(neu)=i 
       write(16,*) neu,n(neu) 
9 end do 
  print *, 'No of neutral markers=',neu 
close(16) 
write(11,*) 'No of neutral markers=',neu 
 
!  Population A under selection for trait 1 
marnA=marn 
! simulation of phenotypes (mean=100) 
do i=1,nanim 
    yfenA(i)=100 
    do j=1,ngenes 
    yfenA(i)=yfenA(i)+(marnA(i,iefec1(j,1),iefec1(j,2),1)+marnA(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
    call normal(x1,u) 
    yfenA(i)=yfenA(i)+u*sqrt(Vr1) 
end do   
! phenotypic mean 
media1=0 
do i=1,nanim 
media1=media1+yfenA(i) 
end do 
media1=media1/nanim 
! phenotypic standard deviation 
des1=0 
do i=1,nanim 
des1=des1+(yfenA(i)-media1)**2 
end do 
des1=des1/(nanim-1) 
des1=sqrt(des1) 
print *, 'mean & s.d. trait 1 =',media1,des1 
write(11,*) 'mean & s.d =',media1,des1 
open(20,file='pheno_ mean_A.txt') 
open(21,file='variance_1A.txt') 
open(22,file='variance_2A.txt') 
! selection for n generations 
do ijk=1,ngen2 
    do i=1,nanim 
    1 call unif(x1,u) 
   ip=int(u*nmac)+1 
      if (yfenA(ip).lt.media1-des1) then 
   goto 1 
      end if 
    2 call unif(x1,u) 
   im=int(u*nhem)+nmac+1 
      if (yfenA(im).lt.media1-des1) then 
   goto 2 
     end if 
! father’s chromosome  
     do j=1,ncro 
         call unif(x1,u) 
         if (u.lt.0.5) then  
            iale=1 
         else 
            iale=2 
         endif 
         grupoA(i,j,1,1)=marnA(ip,j,1,iale) 
         lam=1.  
         nrec=pois(lam,x1) 
        do ik=1,nrec  
 call unif(x1,u) 
 irec(ik)=int(u*(nmar-1))+1 
enddo 
         irecord=0  
             do ik=1,nrec 
  xmin=999999 
      do ij=1,nrec 
          if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
   imin=ij 
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          endif 
 enddo 
       irecord(ik)=xmin 
       irec(imin)=999999 
   enddo  
   irecord(nrec+1)=nmar 
              if (nrec.eq.0) then 
      do k=2,nmar 
           grupoA(i,j,k,1)=marnA(ip,j,k,iale) 
      enddo 
   else 
       ic=2 
       do ik=1,nrec+1 
           do k=ic,irecord(ik) 
  grupoA(i,j,k,1)=marnA(ip,j,k,iale) 
 enddo 
           ic=irecord(ik)+1 
           if (iale.eq.1) then 
   iale=2 
           else 
   iale=1 
           endif 
        enddo 
     endif 
 !    mutation 
     lam=1. 
     nmut=pois(lam,x1)   
     do ik=1,nmut 
         call unif(x1,u) 

        imut=int(u*nmar)+1  
         if (grupoA(i,j,imut,1).eq.1) then 
             grupoA(i,j,imut,1)=2 
         else 
  grupoA(i,j,imut,1)=1 
         endif 
     enddo 
 enddo 
!  mother’s chromosome 
 do j=1,ncro 
     call unif(x1,u) 
      if (u.lt.0.5) then  
          iale=1 
     else 
          iale=2 
     endif 
     grupoA(i,j,1,2)=marnA(im,j,1,iale) 
     lam=1.    
     nrec=pois(lam,x1) 
     do ik=1,nrec 
         call unif(x1,u)    
         irec(ik)=int(u*(nmar-1))+1 
     enddo 
     irecord=0   
     do ik=1,nrec 
     xmin=999999 
         do ij=1,nrec 
             if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
                 imin=ij 
             endif 
 enddo 
          irecord(ik)=xmin 
          irec(imin)=999999 
     enddo  
     irecord(nrec+1)=nmar 
     if (nrec.eq.0) then 
        do k=2,nmar 
            grupoA(i,j,k,2)=marnA(im,j,k,iale) 
        enddo 
     else 
         ic=2 
         do ik=1,nrec+1 
              do k=ic,irecord(ik) 
 grupoA(i,j,k,2)=marnA(im,j,k,iale) 
  enddo 
     ic=irecord(ik)+1 
     if (iale.eq.1) then 
         iale=2 
                else 
         iale=1 
                endif 
          enddo 
                endif 
!   mutation 
     lam=1. 
     nmut=pois(lam,x1)  
     do ik=1,nmut 
         call unif(x1,u)   
         imut=int(u*nmar)+1 
          if (grupoA(i,j,imut,2).eq.1) then 
      grupoA(i,j,imut,2)=2 
          else 
                 grupoA(i,j,imut,2)=1 
          endif 
      enddo 
      enddo 
  enddo 
! simulation of phenotypes  
  do i=1,nanim 
  yfenA(i)=100 
      do j=1,ngenes 
          yfenA(i)=yfenA(i)+(grupoA(i,iefec1(j,1),iefec1(j,2),1)+grupoA(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
       end do 
       call normal(x1,u) 
        yfenA(i)=yfenA(i)+u*sqrt(Vr1) 
  end do   
!  mean   
media1=0 
do i=1,nanim 
     media1=media1+yfenA(i) 
end do 
media1=media1/nanim 
write(20,*) ijk,media1 
! standard deviation   
des1=0 
do i=1,nanim 
des1=des1+(yfenA(i)-media1)**2 
end do 
des1=des1/(nanim-1) 
des1=sqrt(des1) 
  print *, ijk,media1,des1 
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! frequencies of the causative mutations of trait 1  
  do i=1,ngenes 
  p1(iefec1(i,1),iefec1(i,2))=0 
      do k=1,nanim 
         p1(iefec1(i,1),iefec1(i,2))=p1(iefec1(i,1),iefec1(i,2))+real(grupoA(k,iefec1(i,1),iefec1(i,2),1)+grupoA(k,iefec1(i,1),iefec1(i,2),2)-2) 
       end do 
       p1(iefec1(i,1),iefec1(i,2))=p1(iefec1(i,1),iefec1(i,2))/(2*real(nanim)) 
  end do 
! additive variance trait 1 
  Va1=0 
  varA1(i)=0 
  do i=1,ngenes 
      varA1(i)=2*p1(iefec1(i,1),iefec1(i,2))*(1-p1(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
      Va1=Va1+varA1(i) 
  end do 
  !print *, 'additive variance trait 1 popul A=',ijk,Va1 
  write(21,*) ijk,Va1,Vr1 
! frequencies for causative mutations trait 2 
  do i=1,ngenes 
       p2(iefec2(i,1),iefec2(i,2))=0 
      do k=1,nanim 
       p2(iefec2(i,1),iefec2(i,2))=p2(iefec2(i,1),iefec2(i,2))+real(grupoA(k,iefec2(i,1),iefec2(i,2),1)+grupoA(k,iefec2(i,1),iefec2(i,2),2)-2) 
       end do 
       p2(iefec2(i,1),iefec2(i,2))=p2(iefec2(i,1),iefec2(i,2))/(2*real(nanim)) 
  end do 
! additive variance trait 2  
Va2=0 
varA2(i)=0 
do i=1,ngenes 
      varA2(i)=2*p2(iefec2(i,1),iefec2(i,2))*(1-p2(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
      Va2=Va2+varA2(i) 
end do 
write(22,*) ijk,Va2,Vr2 
marnA=grupoA 
end do 
close(20) 
close(21) 
close(22) 
 
! Final population A 
do i=1,nanim2 
 3 call unif(x1,u) 
     ip=int(u*nmac)+1 
     if (yfenA(ip).lt.media1-des1) then 
         goto 3 
     end if 
 4 call unif(x1,u) 
     im=int(u*nhem)+nmac+1 
     if (yfenA(im).lt.media1-des1) then 
        goto 4 
     end if 
! father’s chromosome 
   do j=1,ncro 
      call unif(x1,u) 
      if (u.lt.0.5) then  
         iale=1 
      else 
         iale=2 
      endif 
      finalA(i,j,1,1)=grupoA(ip,j,1,iale) 
      lam=1.   
      nrec=pois(lam,x1) 
      do ik=1,nrec   
call unif(x1,u) 
        irec(ik)=int(u*(nmar-1))+1 
      enddo 
      irecord=0   !desde aqui ordeno 
do ik=1,nrec 
      xmin=999999 
         do ij=1,nrec 
          if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
        imin=ij 
         endif 
enddo 
        irecord(ik)=xmin 
        irec(imin)=999999 
     enddo  
     irecord(nrec+1)=nmar 
     if (nrec.eq.0) then 
       do k=2,nmar 
           finalA(i,j,k,1)=grupoA(ip,j,k,iale) 
       enddo 
     else 
       ic=2 
       do ik=1,nrec+1 
           do k=ic,irecord(ik) 
 finalA(i,j,k,1)=grupoA(ip,j,k,iale) 
enddo 
           ic=irecord(ik)+1 
           if (iale.eq.1) then 
        iale=2 
           else 
        iale=1 
           endif 
        enddo 
   endif 
! mutation 
   lam=1. 
   nmut=pois(lam,x1)   
   do ik=1,nmut 
        call unif(x1,u) 
        imut=int(u*nmar)+1  
        if (finalA(i,j,imut,1).eq.1) then 
   finalA(i,j,imut,1)=2 
        else 
   finalA(i,j,imut,1)=1 
        endif 
     enddo 
 enddo 
!   mother’s chromosome 
   do j=1,ncro 
     call unif(x1,u) 
     if (u.lt.0.5) then  
        iale=1 
     else 
        iale=2 
     endif 
     finalA(i,j,1,2)=grupoA(im,j,1,iale) 
     lam=1.    
     nrec=pois(lam,x1) 
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     do ik=1,nrec 
       call unif(x1,u)    
       irec(ik)=int(u*(nmar-1))+1 
     enddo 
     irecord=0   
       do ik=1,nrec 
       xmin=999999 
         do ij=1,nrec 
           if (irec(ij).lt.xmin) then 
xmin=irec(ij) 
         imin=ij 
           endif 
enddo 
         irecord(ik)=xmin 
         irec(imin)=999999 
       enddo  
       irecord(nrec+1)=nmar 
       if (nrec.eq.0) then 
         do k=2,nmar 
             finalA(i,j,k,2)=grupoA(im,j,k,iale) 
          enddo 
       else 
          ic=2 
         do ik=1,nrec+1 
             do k=ic,irecord(ik) 
 finalA(i,j,k,2)=grupoA(im,j,k,iale) 
 enddo 
  ic=irecord(ik)+1 
  if (iale.eq.1) then 
      iale=2 
  else 
      iale=1 
  endif 
         enddo 
     endif 
! mutation 
         lam=1. 
         nmut=pois(lam,x1)  
         do ik=1,nmut 
          call unif(x1,u)   
  imut=int(u*nmar)+1 
             if (finalA(i,j,imut,2).eq.1) then 
      finalA(i,j,imut,2)=2 
  else 
                 finalA(i,j,imut,2)=1 
  endif 
          enddo 
   enddo 
enddo 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-A.txt') 
do i=1,ngenes 
 p1A(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
       p1A(iefec1(i,1),iefec1(i,2))=p1A(iefec1(i,1),iefec1(i,2))+real(finalA(k,iefec1(i,1),iefec1(i,2),1)+finalA(k,iefec1(i,1),iefec1(i,2),2)-2) 
    end do 
    p1A(iefec1(i,1),iefec1(i,2))=p1A(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1A(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
varAf1=0 
do i=1,ngenes 
     varAf1(i)=2*p1A(iefec1(i,1),iefec1(i,2))*(1-p1A(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
     Va1=Va1+varAf1(i) 
end do 
print *, 'Variance trait 1 population A=',Va1 
write(11,*) 'Variance trait 1 population A=',Va1 
! frequencies of the causative mutation of trait 2 
open(16,file='freq2-A.txt') 
do i=1,ngenes 
    p2A(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
         p2A(iefec2(i,1),iefec2(i,2))=p2A(iefec2(i,1),iefec2(i,2))+real(finalA(k,iefec2(i,1),iefec2(i,2),1)+finalA(k,iefec2(i,1),iefec2(i,2),2)-2) 
     end do 
     p2A(iefec2(i,1),iefec2(i,2))=p2A(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2A(iefec2(i,1),iefec2(i,2)) 
 end do 
close(16) 
! additive variance trait 2 
Va2=0 
varAf2=0 
do i=1,ngenes 
     varAf2(i)=2*p2A(iefec2(i,1),iefec2(i,2))*(1-p2A(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
      Va2=Va2+varAf2(i) 
end do 
print *, 'Variance trait 2 population A=',Va2 
write(11,*) 'Variance trait 2 pooulation A=',Va2 
! simulation of phenotypes 
open(13,file='f1A.txt') 
open(14,file='f2A.txt') 
do i=1,nanim2 
yfen1A(i)=100 
    do j=1,ngenes 
        yfen1A(i)=yfen1A(i)+(finalA(i,iefec1(j,1),iefec1(j,2),1)+finalA(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
     end do 
     call normal(x1,u) 
     yfen1A(i)=yfen1A(i)+u*sqrt(Vr1) 
     write(13,*) yfen1A(i),i,1 
end do   
close(13) 
do i=1,nanim2 
yfen2A(i)=1000 
    do j=1,ngenes 
        yfen2A(i)=yfen2A(i)+(finalA(i,iefec2(j,1),iefec2(j,2),1)+finalA(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    call normal(x1,u) 
    yfen2A(i)=yfen2A(i)+u*sqrt(Vr2) 
    write(14,*) yfen2A(i),i,1 
end do 
close(14) 
! write genotypes 
open(13,file='gA.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(13,*) i,((j-1)*nmar+k),finalA(i,j,k,1),finalA(i,j,k,2) 
        end do 
    end do 
end do 
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close(13) 
! marker and gene frequencies 
open(13,file='pA.txt') 
do i=1,ncro 
    do j=1,nmar 
    pA=0 
       do k=1,nanim2 
          pA=pA+real(finalA(k,i,j,1)+finalA(k,i,j,2)-2) 
       end do 
       write(13,*) (i-1)*nmar+j,pA/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nA.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 25 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 25 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalA(i,j,k,1)+finalA(i,j,k,2)-3) 
25     end do 
     end do 
end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nA.txt') 
open(13,file='genotA.txt') 
do i=1,nanim2 
marca(j)=0 
    do j=1,neu 
    read(20,*) ip,im,iv 
    marca(j)=iv+1 
    end do 
    write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
! true breeding values for traits 1 & 2 
open(14,file='tbv1A.txt') 
open(15,file='tbv2A.txt') 
do i=1,nanim2 
bv1A(i)=0 
    do j=1,ngenes 
        bv1A(i)=bv1A(i)+(finalA(i,iefec1(j,1),iefec1(j,2),1)+finalA(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
   write(14,*) i,bv1A(i) 
end do 
close(14) 
do i=1,nanim2 
bv2A(i)=0 
    do j=1,ngenes 
         bv2A(i)=bv2A(i)+(finalA(i,iefec2(j,1),iefec2(j,2),1)+finalA(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    write(15,*) i,bv2A(i) 
end do 
close(15) 
 
! Population B under selection for trait 2 
marnB=marn 
! simulation of phenotypes (media=1000) 
do i=1,nanim 
yfenB(i)=1000 
    do j=1,ngenes 
        yfenB(i)=yfenB(i)+(marnB(i,iefec2(j,1),iefec2(j,2),1)+marnB(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    call normal(x1,u) 
    yfenB(i)=yfenB(i)+u*sqrt(Vr2) 
end do   
! phenotypic mean 
media2=0 
do i=1,nanim 
media2=media2+yfenB(i) 
end do 
media2=media2/nanim 
! phenotypic standard deviation 
des2=0 
do i=1,nanim 
des2=des2+(yfenB(i)-media2)**2 
end do 
des2=des2/(nanim-1) 
des2=sqrt(des2) 
print *, 'mean & s.d.  trait 2 base =',media2,des2 
write(11,*) 'mean & s.d. trait 2 base=',media2,des2 
open(20,file='pheno_mean_B.txt') 
open(21,file='variance_1B.txt') 
open(22,file='variance_2B.txt') 
! selection for n generations 
do ijk=1,ngen2 
    do i=1,nanim 
    5 call unif(x1,u) 
   ip=int(u*nmac)+1 
        if (yfenB(ip).lt.media2-des2) then 
   goto 5 
        end if 
    6 call unif(x1,u) 
   im=int(u*nhem)+nmac+1 
        if (yfenB(im).lt.media2-des2) then 
   goto 6 
 end if 
! father’s chromosome 
        do j=1,ncro 
        call unif(x1,u) 
        if (u.lt.0.5) then  
            iale=1 
        else 
            iale=2 
        endif 
        grupoB(i,j,1,1)=marnB(ip,j,1,iale) 
        lam=1.   
        nrec=pois(lam,x1) 
        do ik=1,nrec  
 call unif(x1,u) 
 irec(ik)=int(u*(nmar-1))+1 
enddo 
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         irecord=0  
         do ik=1,nrec 
         xmin=999999 
   do ij=1,nrec 
   if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
     imin=ij 
   endif 
 enddo 
   irecord(ik)=xmin 
   irec(imin)=999999 
         enddo  
          irecord(nrec+1)=nmar 
          if (nrec.eq.0) then 
             do k=2,nmar 
    grupoB(i,j,k,1)=marnB(ip,j,k,iale) 
  enddo 
          else 
               ic=2 
    do ik=1,nrec+1 
        do k=ic,irecord(ik) 
           grupoB(i,j,k,1)=marnB(ip,j,k,iale) 
        enddo 
         ic=irecord(ik)+1 
         if (iale.eq.1) then 
            iale=2 
        else 
            iale=1 
        endif 
    enddo 
          endif 
 !    mutation 
          lam=1. 
 nmut=pois(lam,x1)   
 do ik=1,nmut 
  call unif(x1,u) 
  imut=int(u*nmar)+1  
  if (grupoB(i,j,imut,1).eq.1) then 
      grupoB(i,j,imut,1)=2 
  else 
      grupoB(i,j,imut,1)=1 
  endif 
 enddo 
      enddo 
!   mother’s chromosome 
      do j=1,ncro 
       call unif(x1,u) 
       if (u.lt.0.5) then  
          iale=1 
       else 
          iale=2 
       endif 
       grupoB(i,j,1,2)=marnB(im,j,1,iale) 
       lam=1.    
       nrec=pois(lam,x1) 
       do ik=1,nrec 
       call unif(x1,u)    
irec(ik)=int(u*(nmar-1))+1 
enddo 
        irecord=0   
       do ik=1,nrec 
        xmin=999999 
            do ij=1,nrec 
     if (irec(ij).lt.xmin) then 
 xmin=irec(ij)   
         imin=ij 
     endif 
 enddo 
 irecord(ik)=xmin 
 irec(imin)=999999 
        enddo  
        irecord(nrec+1)=nmar 
        if (nrec.eq.0) then 
           do k=2,nmar 
           grupoB(i,j,k,2)=marnB(im,j,k,iale) 
           enddo 
        else 
            ic=2 
            do ik=1,nrec+1 
                do k=ic,irecord(ik) 
         grupoB(i,j,k,2)=marnB(im,j,k,iale) 
     enddo 
     ic=irecord(ik)+1 
     if (iale.eq.1) then 
        iale=2 
    else 
        iale=1 
    endif 
            enddo 
        endif 
! mutation 
         lam=1. 
         nmut=pois(lam,x1)  
         do ik=1,nmut 
         call unif(x1,u)   
         imut=int(u*nmar)+1 
         if (grupoB(i,j,imut,2).eq.1) then 
     grupoB(i,j,imut,2)=2 
        else 
     grupoB(i,j,imut,2)=1 
        endif 
        enddo 
    enddo 
enddo 
! simulation of phenotypes 
do i=1,nanim 
yfenB(i)=1000 
    do j=1,ngenes 
    yfenB(i)=yfenB(i)+(grupoB(i,iefec2(j,1),iefec2(j,2),1)+grupoB(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    call normal(x1,u) 
    yfenB(i)=yfenB(i)+u*sqrt(Vr2) 
  end do   
! phenotypic mean   
  media2=0 
  do i=1,nanim 
  media2=media2+yfenB(i) 
  end do 
media2=media2/nanim 
  write(20,*) ijk,media2 
! phenotypic standard deviation 



65 
 

  des2=0 
  do i=1,nanim 
des2=des2+(yfenB(i)-media2)**2 
end do 
  des2=des2/(nanim-1) 
des2=sqrt(des2) 
  print *, ijk,media2,des2 
! frequencies of the causative mutations of trait 1 
  do i=1,ngenes 
   p1sel(iefec1(i,1),iefec1(i,2))=0 
      do k=1,nanim 
       p1sel(iefec1(i,1),iefec1(i,2))=p1sel(iefec1(i,1),iefec1(i,2))+real(grupoB(k,iefec1(i,1),iefec1(i,2),1)+grupoB(k,iefec1(i,1),iefec1(i,2),2)-2) 
      end do 
      p1sel(iefec1(i,1),iefec1(i,2))=p1sel(iefec1(i,1),iefec1(i,2))/(2*real(nanim)) 
  end do 
! additive variance of trait 1  
  Va1=0 
  var1B(i)=0 
  do i=1,ngenes 
      var1B(i)=2*p1sel(iefec1(i,1),iefec1(i,2))*(1-p1sel(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
      Va1=Va1+var1B(i) 
  end do 
  write(21,*) ijk,Va1 
! frequencies of the causative mutations of trait 2 
  do i=1,ngenes 
   p2sel(iefec2(i,1),iefec2(i,2))=0 
      do k=1,nanim 
       p2sel(iefec2(i,1),iefec2(i,2))=p2sel(iefec2(i,1),iefec2(i,2))+real(grupoB(k,iefec2(i,1),iefec2(i,2),1)+grupoB(k,iefec2(i,1),iefec2(i,2),2)-2) 
      end do 
      p2sel(iefec2(i,1),iefec2(i,2))=p2sel(iefec2(i,1),iefec2(i,2))/(2*real(nanim)) 
  end do 
! additive variance of trait 2 
  Va2=0 
  var2B(i)=0 
  do i=1,ngenes 
      var2B(i)=2*p2sel(iefec2(i,1),iefec2(i,2))*(1-p2sel(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
      Va2=Va2+var2B(i) 
  end do 
  write(22,*) ijk,Va2 
  marnB=grupoB 
end do 
close(20) 
close(21) 
close(22) 
 
! Final population B 
do i=1,nanim2 
 7 call unif(x1,u) 
   ip=int(u*nmac)+1 
   if (yfenB(ip).lt.media2-des2) then 
   goto 7 
   end if 
 8 call unif(x1,u) 
   im=int(u*nhem)+nmac+1 
   if (yfenB(im).lt.media2-des2) then 
   goto 8 
   end if 
! father’s chromosome 
   do j=1,ncro 
     call unif(x1,u) 
     if (u.lt.0.5) then  
       iale=1 
     else 
       iale=2 
     endif 
     finalB(i,j,1,1)=grupoB(ip,j,1,iale) 
     lam=1.   
     nrec=pois(lam,x1) 
     do ik=1,nrec   
       call unif(x1,u) 
irec(ik)=int(u*(nmar-1))+1 
enddo 
     irecord=0  
     do ik=1,nrec 
     xmin=999999 
       do ij=1,nrec 
         if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
    imin=ij 
         endif 
enddo 
       irecord(ik)=xmin 
       irec(imin)=999999 
     enddo  
     irecord(nrec+1)=nmar 
     if (nrec.eq.0) then 
       do k=2,nmar 
       finalB(i,j,k,1)=grupoB(ip,j,k,iale) 
       enddo 
     else 
       ic=2 
       do ik=1,nrec+1 
          do k=ic,irecord(ik) 
   finalB(i,j,k,1)=grupoB(ip,j,k,iale) 
          enddo 
          ic=irecord(ik)+1 
          if (iale.eq.1) then 
    iale=2 
          else 
    iale=1 
          endif 
       enddo 
   endif 
 ! mutar este cromosoma 
    lam=1. 
    nmut=pois(lam,x1)   
do ik=1,nmut 
        call unif(x1,u) 
         imut=int(u*nmar)+1  
         if (finalB(i,j,imut,1).eq.1) then 
   finalB(i,j,imut,1)=2 
         else 
   finalB(i,j,imut,1)=1 
          endif 
      enddo 
   enddo 
!   mother’s chromosome 
   do j=1,ncro 
     call unif(x1,u) 
     if (u.lt.0.5) then  
        iale=1 
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     else 
        iale=2 
     endif 
     finalB(i,j,1,2)=grupoB(im,j,1,iale) 
     lam=1.    
     nrec=pois(lam,x1) 
     do ik=1,nrec 
       call unif(x1,u)    
irec(ik)=int(u*(nmar-1))+1 
enddo 
     irecord=0   
       do ik=1,nrec 
       xmin=999999 
         do ij=1,nrec 
           if (irec(ij).lt.xmin) then 
xmin=irec(ij) 
   imin=ij 
           endif 
enddo 
         irecord(ik)=xmin 
         irec(imin)=999999 
      enddo  
       irecord(nrec+1)=nmar 
       if (nrec.eq.0) then 
          do k=2,nmar 
            finalB(i,j,k,2)=grupoB(im,j,k,iale) 
          enddo 
       else 
 ic=2 
 do ik=1,nrec+1 
      do k=ic,irecord(ik) 
         finalB(i,j,k,2)=grupoB(im,j,k,iale) 
      enddo 
      ic=irecord(ik)+1 
      if (iale.eq.1) then 
          iale=2 
      else 
          iale=1 
      endif 
  enddo 
       endif 
! mutation 
       lam=1. 
       nmut=pois(lam,x1)  
       do ik=1,nmut 
          call unif(x1,u)  
 imut=int(u*nmar)+1 
          if (finalB(i,j,imut,2).eq.1) then 
    finalB(i,j,imut,2)=2 
          else 
               finalB(i,j,imut,2)=1 
          endif 
       enddo 
   enddo 
enddo 
! frequencies of the causative mutations of trait 2 
open(16,file='freq2-B.txt') 
do i=1,ngenes 
    p2B(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
        p2B(iefec2(i,1),iefec2(i,2))=p2B(iefec2(i,1),iefec2(i,2))+ real(finalB(k,iefec2(i,1),iefec2(i,2),1)+finalB(k,iefec2(i,1),iefec2(i,2),2)-2) 
    end do 
    p2B(iefec2(i,1),iefec2(i,2))=p2B(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2B(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance of trait 2 
Va2=0 
var2Bf(i)=0 
do i=1,ngenes 
  var2Bf(i)=2*p2B(iefec2(i,1),iefec2(i,2))*(1-p2B(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
  Va2=Va2+var2Bf(i) 
end do 
print *, 'Varaince trait 2 population B=',Va2 
write(11,*) 'Variance trait 2 population B=',Va2 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-B.txt') 
do i=1,ngenes 
p1B(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
     p1B(iefec1(i,1),iefec1(i,2))=p1B(iefec1(i,1),iefec1(i,2))+real(finalB(k,iefec1(i,1),iefec1(i,2),1)+finalB(k,iefec1(i,1),iefec1(i,2),2)-2) 
     end do 
     p1B(iefec1(i,1),iefec1(i,2))=p1B(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1B(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
var1Bf(i)=0 
do i=1,ngenes 
  var1Bf(i)=2*p1B(iefec1(i,1),iefec1(i,2))*(1-p1B(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
  Va1=Va1+var1Bf(i) 
end do 
print *, 'Varaince trait 1 population B=',Va1 
write(11,*) 'Variance trait 1 population B=',Va1 
! simulation of phenotypes   
open(13,file='f2B.txt') 
open(15,file='f1B.txt') 
do i=1,nanim2 
yfen2B(i)=1000 
    do j=1,ngenes 
    yfen2B(i)=yfen2B(i)+(finalB(i,iefec2(j,1),iefec2(j,2),1)+finalB(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    call normal(x1,u) 
    yfen2B(i)=yfen2B(i)+u*sqrt(Vr2) 
    write(13,*) yfen2B(i),i,1 
end do   
close(13) 
do i=1,nanim2 
yfen1B(i)=100 
    do j=1,ngenes 
    yfen1B(i)=yfen1B(i)+(finalB(i,iefec1(j,1),iefec1(j,2),1)+finalB(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
    call normal(x1,u) 
    yfen1B(i)=yfen1B(i)+u*sqrt(Vr1) 
    write(15,*) yfen1B(i),i,1 
end do   
close(15) 
! write genotypes 
open(13,file='gB.txt') 
do i=1,nanim2 
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  do j=1,ncro 
    do k=1,nmar 
 write(13,*) i,((j-1)*nmar+k),finalB(i,j,k,1),finalB(i,j,k,2) 
 end do 
  end do 
end do 
close(13) 
! marker and gene frequencies 
open(13,file='pB.txt') 
do i=1,ncro 
    do j=1,nmar 
    pB=0 
       do k=1,nanim2 
 pB=pB+real(finalB(k,i,j,1)+finalB(k,i,j,2)-2) 
       end do 
       write(13,*) (i-1)*nmar+j,pB/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nB.txt') 
do i=1,nanim2 
  do j=1,ncro 
    do k=1,nmar 
        do g=1,ngenes 
          if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 26 
          end if 
          if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 26 
          end if 
         end do 
         write(13,*) i,(j-1)*nmar+k,(finalB(i,j,k,1)+finalB(i,j,k,2)-3) 
26  end do 
  end do 
end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nB.txt') 
open(13,file='genotB.txt') 
do i=1,nanim2 
marca(j)=0 
    do j=1,neu 
     read(20,*) ip,im,iv 
     marca(j)=iv+1 
    end do 
    write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
! true breeding values for traits 1 & 2 
open(14,file='1-tbv2B.txt') 
open(15,file='1-tbv1B.txt') 
do i=1,nanim2 
bv2B(i)=0 
    do j=1,ngenes 
     bv2B(i)=bv2B(i)+(finalB(i,iefec2(j,1),iefec2(j,2),1)+finalB(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    write(14,*) i,bv2B(i) 
end do 
close(14) 
do i=1,nanim2 
bv1B(i)=0 
    do j=1,ngenes 
    bv1B(i)=bv1B(i)+(finalB(i,iefec1(j,1),iefec1(j,2),1)+finalB(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
    write(15,*) i,bv1B(i) 
end do 
close(15) 
 
! population C under random mating 
marnC=marn 
! random mating for n generations  
  do ijk=1,ngen2 
          do i=1,nanim 
   call unif(x1,u) 
   ip=int(u*nmac)+1 
   call unif(x1,u) 
   im=int(u*nhem)+nmac+1 
!   father’s chromosome  
   do j=1,ncro 
     call unif(x1,u) 
     if (u.lt.0.5) then  
         iale=1 
      else 
         iale=2 
     endif 
     grupoC(i,j,1,1)=marnC(ip,j,1,iale) 
     lam=1.  
     nrec=pois(lam,x1) 
     do ik=1,nrec  
    call unif(x1,u) 
  irec(ik)=int(u*(nmar-1))+1 
 enddo 
     irecord=0  
     do ik=1,nrec 
       xmin=999999 
          do ij=1,nrec 
      if (irec(ij).lt.xmin) then 
  xmin=irec(ij) 
          imin=ij 
      endif 
 enddo 
           irecord(ik)=xmin 
           irec(imin)=999999 
     enddo  
     irecord(nrec+1)=nmar 
     if (nrec.eq.0) then 
        do k=2,nmar 
        grupoC(i,j,k,1)=marnC(ip,j,k,iale) 
        enddo 
                else 
        ic=2 
        do ik=1,nrec+1 
           do k=ic,irecord(ik) 
    grupoC(i,j,k,1)=marnC(ip,j,k,iale) 
           enddo 
           ic=irecord(ik)+1 
           if (iale.eq.1) then 
               iale=2 
           else 
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               iale=1 
           endif 
           enddo 
     endif 
 !    mutation 
     lam=1. 
     nmut=pois(lam,x1)  
     do ik=1,nmut 
    call unif(x1,u) 
    imut=int(u*nmar)+1  
    if (grupoC(i,j,imut,1).eq.1) then 
        grupoC(i,j,imut,1)=2 
     else 
        grupoC(i,j,imut,1)=1 
    endif 
     enddo 
            enddo 
!   mother’s chromosome 
 do j=1,ncro 
    call unif(x1,u) 
     if (u.lt.0.5) then  
        iale=1 
     else 
        iale=2 
     endif 
     grupoC(i,j,1,2)=marnC(im,j,1,iale) 
     lam=1.    
     nrec=pois(lam,x1) 
     do ik=1,nrec 
       call unif(x1,u)    
 irec(ik)=int(u*(nmar-1))+1 
 enddo 
     irecord=0   
     do ik=1,nrec 
     xmin=999999 
        do ij=1,nrec 
         if (irec(ij).lt.xmin) then 
  xmin=irec(ij) 
        imin=ij 
         endif 
 enddo 
         irecord(ik)=xmin 
         irec(imin)=999999 
     enddo  
     irecord(nrec+1)=nmar 
     if (nrec.eq.0) then 
         do k=2,nmar 
         grupoC(i,j,k,2)=marnC(im,j,k,iale) 
         enddo 
     else 
         ic=2 
         do ik=1,nrec+1 
            do k=ic,irecord(ik) 
            grupoC(i,j,k,2)=marnC(im,j,k,iale) 
         enddo 
          ic=irecord(ik)+1 
          if (iale.eq.1) then 
         iale=2 
          else 
         iale=1 
          endif 
       enddo 
             endif 
! mutation 
   lam=1. 
   nmut=pois(lam,x1)  
   do ik=1,nmut 
     call unif(x1,u)   
      imut=int(u*nmar)+1 
      if (grupoC(i,j,imut,2).eq.1) then 
           grupoC(i,j,imut,2)=2 
     else 
           grupoC(i,j,imut,2)=1 
 endif 
   enddo 
        enddo 
    enddo 
    marnC=grupoC 
print*, ijk 
end do 
 
! Final population C 
do i=1,nanim2 
    call unif(x1,u) 
    ip=int(u*nmac)+1 
    call unif(x1,u) 
     im=int(u*nhem)+nmac+1 
!   father’s chromosoma  
     do j=1,ncro 
        call unif(x1,u) 
         if (u.lt.0.5) then  
     iale=1 
         else 
     iale=2 
         endif 
         finalC(i,j,1,1)=grupoC(ip,j,1,iale) 
         lam=1.   
         nrec=pois(lam,x1) 
         do ik=1,nrec   
         call unif(x1,u) 
irec(ik)=int(u*(nmar-1))+1 
enddo 
          irecord=0  
         do ik=1,nrec 
         xmin=999999 
 do ij=1,nrec 
   if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
     imin=ij 
   endif 
 enddo 
 irecord(ik)=xmin 
 irec(imin)=999999 
        enddo  
        irecord(nrec+1)=nmar 
        if (nrec.eq.0) then 
            do k=2,nmar 
             finalC(i,j,k,1)=grupoC(ip,j,k,iale) 
 enddo 
        else 
  ic=2 
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            do ik=1,nrec+1 
     do k=ic,irecord(ik) 
      finalC(i,j,k,1)=grupoC(ip,j,k,iale) 
     enddo 
      ic=irecord(ik)+1 
      if (iale.eq.1) then 
          iale=2 
      else 
          iale=1 
      endif 
 enddo 
        endif 
 !    mutation 
         lam=1. 
         nmut=pois(lam,x1)   
         do ik=1,nmut 
 call unif(x1,u) 
 imut=int(u*nmar)+1  
 if (finalC(i,j,imut,1).eq.1) then 
       finalC(i,j,imut,1)=2 
 else 
       finalC(i,j,imut,1)=1 
 endif 
         enddo 
     enddo 
!   mother’s chromosome 
     do j=1,ncro 
        call unif(x1,u) 
        if (u.lt.0.5) then  
    iale=1 
        else 
    iale=2 
        endif 
        finalC(i,j,1,2)=grupoC(im,j,1,iale) 
         lam=1.    
         nrec=pois(lam,x1) 
         do ik=1,nrec 
 call unif(x1,u)    
 irec(ik)=int(u*(nmar-1))+1 
enddo 
          irecord=0   
          do ik=1,nrec 
           xmin=999999 
              do ij=1,nrec 
   if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
        imin=ij 
   endif 
 enddo 
   irecord(ik)=xmin 
   irec(imin)=999999 
          enddo  
          irecord(nrec+1)=nmar 
          if (nrec.eq.0) then 
   do k=2,nmar 
   finalC(i,j,k,2)=grupoC(im,j,k,iale) 
   enddo 
          else 
   ic=2 
   do ik=1,nrec+1 
       do k=ic,irecord(ik) 
         finalC(i,j,k,2)=grupoC(im,j,k,iale) 
       enddo 
       ic=irecord(ik)+1 
       if (iale.eq.1) then 
           iale=2 
       else 
           iale=1 
       endif 
   enddo 
         endif 
! mutation 
         lam=1. 
         nmut=pois(lam,x1)  
         do ik=1,nmut 
          call unif(x1,u)   
          imut=int(u*nmar)+1 
          if (finalC(i,j,imut,2).eq.1) then 
      finalC(i,j,imut,2)=2 
          else 
                 finalC(i,j,imut,2)=1 
          endif 
          enddo 
    enddo 
enddo 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-C.txt') 
do i=1,ngenes 
    p1C(iefec1(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
       p1C(iefec1(i,1),iefec1(i,2))=p1C(iefec1(i,1),iefec1(i,2))+real(finalC(k,iefec1(i,1),iefec1(i,2),1)+finalC(k,iefec1(i,1),iefec1(i,2),2)-2) 
    end do 
    p1C(iefec1(i,1),iefec1(i,2))=p1C(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1C(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance trait 1 
Va1=0 
var1Cf(i)=0 
do i=1,ngenes 
  var1Cf(i)=2*p1C(iefec1(i,1),iefec1(i,2))*(1-p1C(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
  Va1=Va1+var1Cf(i) 
end do 
print *, 'Variance trait 1 population C=',Va1 
write(11,*) 'Variance trait 1 population C=',Va1 
! frequencies of the causative mutations for trait 2 
open(16,file='freq2-C.txt') 
do i=1,ngenes 
     p2C(iefec2(i,1),iefec2(i,2))=0 
     do k=1,nanim2 
     p2C(iefec2(i,1),iefec2(i,2))=p2C(iefec2(i,1),iefec2(i,2))+real(finalC(k,iefec2(i,1),iefec2(i,2),1)+finalC(k,iefec2(i,1),iefec2(i,2),2)-2) 
     end do 
     p2C(iefec2(i,1),iefec2(i,2))=p2C(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2C(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance trait 2 
Va2=0 
var2Cf(i)=0 
do i=1,ngenes 
  var2Cf(i)=2*p2C(iefec2(i,1),iefec2(i,2))*(1-p2C(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
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  Va2=Va2+var2Cf(i) 
end do 
print *, 'Variance trait 2 population C=',Va2 
write(11,*) 'Variance trait 2 population C=',Va2 
! simulation of phenotypes  
open(15,file='f1C.txt') 
open(16,file='f2C.txt') 
do i=1,nanim2 
yfen1C(i)=100 
    do j=1,ngenes 
    yfen1C(i)=yfen1C(i)+(finalC(i,iefec1(j,1),iefec1(j,2),1)+finalC(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
    call normal(x1,u) 
     yfen1C(i)=yfen1C(i)+u*sqrt(Vr1) 
    write(15,*) yfen1C(i),i,1 
end do 
close(15) 
do i=1,nanim2 
yfen2C(i)=1000 
    do j=1,ngenes 
    yfen2C(i)=yfen2C(i)+(finalC(i,iefec2(j,1),iefec2(j,2),1)+finalC(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    call normal(x1,u) 
    yfen2C(i)=yfen2C(i)+u*sqrt(Vr2) 
    write(16,*) yfen2C(i),i,1 
end do   
close(16) 
! write genotypes 
open(14,file='gC.txt') 
do i=1,nanim2 
    do j=1,ncro 
      do k=1,nmar 
      write(14,*) i,((j-1)*nmar+k),finalC(i,j,k,1),finalC(i,j,k,2) 
      end do 
   end do 
end do 
close(14) 
! marker and gene frequencies 
open(13,file='pC.txt') 
do i=1,ncro 
    do j=1,nmar 
    pC=0 
       do k=1,nanim2 
 pC=pC+real(finalC(k,i,j,1)+finalC(k,i,j,2)-2) 
       end do 
       write(13,*) (i-1)*nmar+j,pC/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nC.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 27 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 27 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalC(i,j,k,1)+finalC(i,j,k,2)-3) 
27    end do 
    end do 
end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nC.txt') 
open(13,file='genotC.txt') 
do i=1,nanim2 
marca(j)=0 
    do j=1,neu 
    read(20,*) ip,im,iv 
    marca(j)=iv+1 
    end do 
    write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
! true breeding values for traits 1 & 2 
open(14,file='tbv2C.txt') 
open(15,file='tbv1C.txt') 
do i=1,nanim2 
bv2C(i)=0 
    do j=1,ngenes 
     bv2C(i)=bv2C(i)+(finalC(i,iefec2(j,1),iefec2(j,2),1)+finalC(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
    end do 
    write(14,*) i,bv2C(i) 
end do 
close(14) 
do i=1,nanim2 
bv1C(i)=0 
    do j=1,ngenes 
     bv1C(i)=bv1C(i)+(finalC(i,iefec1(j,1),iefec1(j,2),1)+finalC(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
    write(15,*) i,bv1C(i) 
end do 
close(15) 
 
 ! Population D under random mating 
marnD=marn 
! random mating for n generations 
do ijk=1,ngen2 
     do i=1,nanim 
 call unif(x1,u) 
 ip=int(u*nmac)+1 
 call unif(x1,u) 
 im=int(u*nhem)+nmac+1 
!   father’s chromosome  
 do j=1,ncro 
 call unif(x1,u) 
 if (u.lt.0.5) then  
       iale=1 
 else 
       iale=2 
 endif 
 grupoD(i,j,1,1)=marnD(ip,j,1,iale) 
 lam=1.   
 nrec=pois(lam,x1) 
 do ik=1,nrec   
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 call unif(x1,u) 
 irec(ik)=int(u*(nmar-1))+1 
 enddo 
 irecord=0  
 do ik=1,nrec 
 xmin=999999 
      do ij=1,nrec 
       if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
            imin=ij 
       endif 
 enddo 
       irecord(ik)=xmin 
       irec(imin)=999999 
 enddo  
 irecord(nrec+1)=nmar 
 if (nrec.eq.0) then 
      do k=2,nmar 
        grupoD(i,j,k,1)=marnD(ip,j,k,iale) 
      enddo 
 else 
       ic=2 
       do ik=1,nrec+1 
           do k=ic,irecord(ik) 
    grupoD(i,j,k,1)=marnD(ip,j,k,iale) 
           enddo 
           ic=irecord(ik)+1 
           if (iale.eq.1) then 
        iale=2 
           else 
        iale=1 
           endif 
       enddo 
 endif 
 !    mutation 
 lam=1. 
 nmut=pois(lam,x1)   
 do ik=1,nmut 
     call unif(x1,u) 
     imut=int(u*nmar)+1  
      if (grupoD(i,j,imut,1).eq.1) then 
          grupoD(i,j,imut,1)=2 
      else 
          grupoD(i,j,imut,1)=1 
      endif 
  enddo 
         enddo 
!   mother’s chromosome 
 do j=1,ncro 
 call unif(x1,u) 
 if (u.lt.0.5) then  
      iale=1 
 else 
      iale=2 
 endif 
 grupoD(i,j,1,2)=marnD(im,j,1,iale) 
 lam=1.   
 nrec=pois(lam,x1) 
 do ik=1,nrec 
 call unif(x1,u)   
 irec(ik)=int(u*(nmar-1))+1 
 enddo 
 irecord=0   
 do ik=1,nrec 
 xmin=999999 
      do ij=1,nrec 
       if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
           imin=ij 
       endif 
 enddo 
       irecord(ik)=xmin 
       irec(imin)=999999 
 enddo  
 irecord(nrec+1)=nmar 
 if (nrec.eq.0) then 
    do k=2,nmar 
       grupoD(i,j,k,2)=marnD(im,j,k,iale) 
    enddo 
 else 
      ic=2 
     do ik=1,nrec+1 
         do k=ic,irecord(ik) 
            grupoD(i,j,k,2)=marnD(im,j,k,iale) 
         enddo 
         ic=irecord(ik)+1 
          if (iale.eq.1) then 
              iale=2 
         else 
              iale=1 
         endif 
     enddo 
           endif 
! mutation 
           lam=1. 
           nmut=pois(lam,x1)  
           do ik=1,nmut 
           call unif(x1,u)   
  imut=int(u*nmar)+1 
  if (grupoD(i,j,imut,2).eq.1) then 
       grupoD(i,j,imut,2)=2 
  else 
       grupoD(i,j,imut,2)=1 
 endif 
  enddo 
        enddo 
    enddo 
    marnD=grupoD 
print*, ijk 
end do 
 
! Final population D 
do i=1,nanim2 
    call unif(x1,u) 
    ip=int(u*nmac)+1 
    call unif(x1,u) 
    im=int(u*nhem)+nmac+1 
!   father’s chromosome 
    do j=1,ncro 
        call unif(x1,u) 
        if (u.lt.0.5) then  
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            iale=1 
        else 
            iale=2 
        endif 
        finalD(i,j,1,1)=grupoD(ip,j,1,iale) 
         lam=1.   
         nrec=pois(lam,x1) 
         do ik=1,nrec   
           call unif(x1,u) 
irec(ik)=int(u*(nmar-1))+1 
enddo 
         irecord=0  
         do ik=1,nrec 
          xmin=999999 
  do ij=1,nrec 
   if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
       imin=ij 
   endif 
enddo 
              irecord(ik)=xmin 
              irec(imin)=999999 
          enddo  
          irecord(nrec+1)=nmar 
          if (nrec.eq.0) then 
   do k=2,nmar 
   finalD(i,j,k,1)=grupoD(ip,j,k,iale) 
   enddo 
           else 
    ic=2 
   do ik=1,nrec+1 
       do k=ic,irecord(ik) 
         finalD(i,j,k,1)=grupoD(ip,j,k,iale) 
       enddo 
       ic=irecord(ik)+1 
       if (iale.eq.1) then 
            iale=2 
       else 
            iale=1 
       endif 
   enddo 
           endif 
 !    mutation 
           lam=1. 
           nmut=pois(lam,x1)   
           do ik=1,nmut 
  call unif(x1,u) 
  imut=int(u*nmar)+1  
  if (finalD(i,j,imut,1).eq.1) then 
       finalD(i,j,imut,1)=2 
  else 
       finalD(i,j,imut,1)=1 
  endif 
 enddo 
          enddo 
!  mother’s chromosome 
          do j=1,ncro 
          call unif(x1,u) 
          if (u.lt.0.5) then  
    iale=1 
          else 
    iale=2 
          endif 
          finalD(i,j,1,2)=grupoD(im,j,1,iale) 
           lam=1.    
           nrec=pois(lam,x1) 
   do ik=1,nrec 
     call unif(x1,u)    
 irec(ik)=int(u*(nmar-1))+1 
 enddo 
   irecord=0  
   do ik=1,nrec 
    xmin=999999 
       do ij=1,nrec 
       if (irec(ij).lt.xmin) then 
 xmin=irec(ij) 
           imin=ij 
       endif 
 enddo 
       irecord(ik)=xmin 
       irec(imin)=999999 
   enddo  
   irecord(nrec+1)=nmar 
   if (nrec.eq.0) then 
     do k=2,nmar 
       finalD(i,j,k,2)=grupoD(im,j,k,iale) 
     enddo 
   else 
      ic=2 
      do ik=1,nrec+1 
          do k=ic,irecord(ik) 
           finalD(i,j,k,2)=grupoD(im,j,k,iale) 
          enddo 
           ic=irecord(ik)+1 
           if (iale.eq.1) then 
                iale=2 
           else 
                iale=1 
           endif 
       enddo 
              endif 
! mutation 
   lam=1. 
   nmut=pois(lam,x1)  
   do ik=1,nmut 
    call unif(x1,u)   
    imut=int(u*nmar)+1 
               if (finalD(i,j,imut,2).eq.1) then 
          finalD(i,j,imut,2)=2 
   else 
                     finalD(i,j,imut,2)=1 
   endif 
  enddo 
       enddo 
enddo 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-D.txt') 
do i=1,ngenes 
p1D(iefec1(i,1),iefec1(i,2))=0 
     do k=1,nanim2 
      p1D(iefec1(i,1),iefec1(i,2))=p1D(iefec1(i,1),iefec1(i,2))+real(finalD(k,iefec1(i,1),iefec1(i,2),1)+finalD(k,iefec1(i,1),iefec1(i,2),2)-2) 
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     end do 
     p1D(iefec1(i,1),iefec1(i,2))=p1D(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1D(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance trait 1 
Va1=0 
var1Df(i)=0 
do i=1,ngenes 
     var1Df(i)=2*p1D(iefec1(i,1),iefec1(i,2))*(1-p1D(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
      Va1=Va1+var1Df(i) 
end do 
print *, 'Variance trait 1 population D=',Va1 
write(11,*) 'Variance trait 1 population D=',Va1 
! frecuencies of causative mutations for trait 2 
open(16,file='freq2-D.txt') 
do i=1,ngenes 
p2D(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
        p2D(iefec2(i,1),iefec2(i,2))=p2D(iefec2(i,1),iefec2(i,2))+real(finalD(k,iefec2(i,1),iefec2(i,2),1)+finalD(k,iefec2(i,1),iefec2(i,2),2)-2) 
     end do 
     p2D(iefec2(i,1),iefec2(i,2))=p2D(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2D(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance trait 2 
Va2=0 
var2Df(i)=0 
do i=1,ngenes 
    var2Df(i)=2*p2D(iefec2(i,1),iefec2(i,2))*(1-p2D(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
    Va2=Va2+var2Df(i) 
end do 
print *, 'Variance trait 2 population D=',Va2 
write(11,*) 'Variance trait 2 population D=',Va2 
! simulation of phenotypes 
open(15,file='f1D.txt') 
open(16,file='f2D.txt') 
do i=1,nanim2 
yfen1D(i)=100 
    do j=1,ngenes 
    yfen1D(i)=yfen1D(i)+(finalD(i,iefec1(j,1),iefec1(j,2),1)+finalD(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
    call normal(x1,u) 
    yfen1D(i)=yfen1D(i)+u*sqrt(Vr1) 
    write(15,*) yfen1D(i),i,1 
end do 
close(15) 
do i=1,nanim2 
yfen2D(i)=1000 
    do j=1,ngenes 
      yfen2D(i)=yfen2D(i)+(finalD(i,iefec2(j,1),iefec2(j,2),1)+finalD(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
      end do 
      call normal(x1,u) 
      yfen2D(i)=yfen2D(i)+u*sqrt(Vr2) 
      write(16,*) yfen2D(i),i,1 
end do   
close(16) 
! write genotypes 
open(14,file='gD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalD(i,j,k,1),finalD(i,j,k,2) 
        end do 
    end do 
end do 
close(14) 
! marker and gene frequencies 
open(13,file='pD.txt') 
do i=1,ncro 
    do j=1,nmar 
    pD=0 
       do k=1,nanim2 
 pD=pD+real(finalD(k,i,j,1)+finalD(k,i,j,2)-2) 
        end do 
        write(13,*) (i-1)*nmar+j,pD/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
      goto 28 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
      goto 28 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalD(i,j,k,1)+finalD(i,j,k,2)-3) 
28     end do 
     end do 
end do 
close(13) 
! write neutral marke genotypes in format 
open(20,file='nD.txt') 
open(13,file='genotD.txt') 
do i=1,nanim2 
marca(j)=0 
    do j=1,neu 
    read(20,*) ip,im,iv 
    marca(j)=iv+1 
    end do 
    write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
! true breeding values for traits1 & 2 
open(14,file='tbv2D.txt') 
open(15,file='tbv1D.txt') 
do i=1,nanim2 
bv2D(i)=0 
    do j=1,ngenes 
       bv2D(i)=bv2D(i)+(finalD(i,iefec2(j,1),iefec2(j,2),1)+finalD(i,iefec2(j,1),iefec2(j,2),2)-3)*efec2(j) 
     end do 
     write(14,*) i,bv2D(i) 
end do 
close(14) 
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do i=1,nanim2 
bv1D(i)=0 
    do j=1,ngenes 
       bv1D(i)=bv1D(i)+(finalD(i,iefec1(j,1),iefec1(j,2),1)+finalD(i,iefec1(j,1),iefec1(j,2),2)-3)*efec1(j) 
    end do 
     write(15,*) i,bv1D(i) 
end do 
close(15) 
 
! Population A+B  
open(12,file='f1AB.txt') 
open(13,file='f2AB.txt') 
do i=1,nanim2 
  call unif(x1,u) 
  ip=int(nanim2*u)+1 
  call unif(x1,u) 
  if (u.lt.0.5) then 
  yfen1AB(i)=yfen1A(ip) 
  yfen2AB(i)=yfen2A(ip) 
  do j=1,ncro 
      do k=1,nmar 
      finalAB(i,j,k,1)=finalA(ip,j,k,1) 
      finalAB(i,j,k,2)=finalA(ip,j,k,2) 
      end do 
  end do  
  else 
  yfen1AB(i)=yfen1B(ip) 
  yfen2AB(i)=yfen2B(ip) 
  do j=1,ncro 
      do k=1,nmar 
      finalAB(i,j,k,1)=finalB(ip,j,k,1) 
      finalAB(i,j,k,2)=finalB(ip,j,k,2) 
      end do 
  end do 
  end if 
  write(12,*) yfen1AB(i),i,1 
  write(13,*) yfen2AB(i),i,1 
end do 
close(12) 
close(13) 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-AB.txt') 
do i=1,ngenes 
p1AB(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
     p1AB(iefec1(i,1),iefec1(i,2))=p1AB(iefec1(i,1),iefec1(i,2))+real(finalAB(k,iefec1(i,1),iefec1(i,2),1)+finalAB(k,iefec1(i,1),iefec1(i,2),2)-2) 
    end do 
     p1AB(iefec1(i,1),iefec1(i,2))=p1AB(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1AB(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1  
Va1=0 
var1ABf(i)=0 
do i=1,ngenes 
      var1ABf(i)=2*p1AB(iefec1(i,1),iefec1(i,2))*(1-   p1AB(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
      Va1=Va1+var1ABf(i) 
end do 
print *, 'Variance trait 1 population A+B=',Va1 
write(11,*) 'Variance trait 1 population A+B=',Va1 
! frequencies of the causative mutations of trait 2 
open(16,file='freq2-AB.txt') 
do i=1,ngenes 
p2AB(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
    p2AB(iefec2(i,1),iefec2(i,2))=p2AB(iefec2(i,1),iefec2(i,2))+real(finalAB(k,iefec2(i,1),iefec2(i,2),1)+finalAB(k,iefec2(i,1),iefec2(i,2),2)-2) 
    end do 
    p2AB(iefec2(i,1),iefec2(i,2))=p2AB(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2AB(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance trait 2 
Va2=0 
do i=1,ngenes 
    var2ABf(i)=2*p2AB(iefec2(i,1),iefec2(i,2))*(1-p2AB(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
    Va2=Va2+var2ABf(i) 
end do 
print *, 'Variance trait 2 population A+B=',Va2 
write(11,*) 'Variance trait 2 population A+B=',Va2 
! write genotypes 
open(14,file='gAB.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalAB(i,j,k,1),finalAB(i,j,k,2) 
        end do 
    end do 
end do 
close(14) 
! marker and gene frequencies 
open(13,file='pAB.txt') 
do i=1,ncro 
    do j=1,nmar 
    pAB=0 
       do k=1,nanim2 
        pAB=pAB+real(finalAB(k,i,j,1)+finalAB(k,i,j,2)-2) 
       end do 
       write(13,*) (i-1)*nmar+j,pAB/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nAB.txt') 
do i=1,nanim2 
    do j=1,ncro 
       do k=1,nmar 
          do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 29 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 29 
 end if 
           end do 
           write(13,*) i,(j-1)*nmar+k,(finalAB(i,j,k,1)+finalAB(i,j,k,2)-3) 
29   end do 
    end do 
end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nAB.txt') 
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open(13,file='genotAB.txt') 
do i=1,nanim2 
  marca(j)=0 
  do j=1,neu 
  read(20,*) ip,im,iv 
  marca(j)=iv+1 
  end do 
  write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
 
! Population A+C 
open(12,file='f1AC.txt') 
open(13,file='f2AC.txt') 
do i=1,nanim2 
  call unif(x1,u) 
  ip=int(nanim2*u)+1 
  call unif(x1,u) 
  if (u.lt.0.5) then 
    yfen1AC(i)=yfen1A(ip) 
    yfen2AC(i)=yfen2A(ip) 
    do j=1,ncro 
       do k=1,nmar 
  finalAC(i,j,k,1)=finalA(ip,j,k,1) 
  finalAC(i,j,k,2)=finalA(ip,j,k,2) 
       end do 
    end do 
  else 
    yfen1AC(i)=yfen1C(ip) 
    yfen2AC(i)=yfen2C(ip) 
    do j=1,ncro 
       do k=1,nmar 
       finalAC(i,j,k,1)=finalC(ip,j,k,1) 
       finalAC(i,j,k,2)=finalC(ip,j,k,2) 
       end do 
    end do  
  end if 
  write(12,*) yfen1AC(i),i,1 
  write(13,*) yfen2AC(i),i,1 
end do 
close(12) 
close(13) 
! frequencies of the causative mutations for trait 1 
open(16,file='freq1-AC.txt') 
do i=1,ngenes 
p1AC(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
     p1AC(iefec1(i,1),iefec1(i,2))=p1AC(iefec1(i,1),iefec1(i,2))+real(finalAC(k,iefec1(i,1),iefec1(i,2),1)+finalAC(k,iefec1(i,1),iefec1(i,2),2)-2) 
    end do 
    p1AC(iefec1(i,1),iefec1(i,2))=p1AC(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1AC(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
var1ACf(i)=0 
do i=1,ngenes 
    var1ACf(i)=2*p1AC(iefec1(i,1),iefec1(i,2))*(1-p1AC(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
    Va1=Va1+var1ACf(i) 
end do 
print *, 'Variance trait 1 population A+C=',Va1 
write(11,*) 'Variance trait 1 population A+C=',Va1 
! frequencies of the causative mutations for trait 2 
open(16,file='freq2-AC.txt') 
do i=1,ngenes 
p2AC(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
     p2AC(iefec2(i,1),iefec2(i,2))=p2AC(iefec2(i,1),iefec2(i,2))+real(finalAC(k,iefec2(i,1),iefec2(i,2),1)+finalAC(k,iefec2(i,1),iefec2(i,2),2)-2) 
    end do 
    p2AC(iefec2(i,1),iefec2(i,2))=p2AC(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2AC(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance of trait 2 
Va2=0 
var2ACf(i)=0 
do i=1,ngenes 
     var2ACf(i)=2*p2AC(iefec2(i,1),iefec2(i,2))*(1-p2AC(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
     Va2=Va2+var2ACf(i) 
end do 
print *, 'Variance trait 2 population A+C=',Va2 
write(11,*) 'Variance trait 2 population A+C=',Va2 
! write genotypes 
open(14,file='gAC.txt') 
do i=1,nanim2 
    do j=1,ncro 
       do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalAC(i,j,k,1),finalAC(i,j,k,2) 
       end do 
    end do 
end do 
close(14) 
! marker and gene frequencies 
open(13,file='pAC.txt') 
do i=1,ncro 
    do j=1,nmar 
    pAC=0 
        do k=1,nanim2 
 pAC=pAC+real(finalAC(k,i,j,1)+finalAC(k,i,j,2)-2) 
        end do 
        write(13,*) (i-1)*nmar+j,pAC/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nAC.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 30 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 30 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalAC(i,j,k,1)+finalAC(i,j,k,2)-3) 
30    end do 
    end do 
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end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nAC.txt') 
open(13,file='genotAC.txt') 
do i=1,nanim2 
  marca(j)=0 
  do j=1,neu 
  read(20,*) ip,im,iv 
  marca(j)=iv+1 
  end do 
  write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
 
! Population A+D 
open(12,file='f1AD.txt') 
open(13,file='f2AD.txt') 
do i=1,nanim2 
  call unif(x1,u) 
  ip=int(nanim2*u)+1 
  call unif(x1,u) 
  if (u.lt.0.5) then 
     yfen1AD(i)=yfen1A(ip) 
     yfen2AD(i)=yfen2A(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalAD(i,j,k,1)=finalA(ip,j,k,1) 
   finalAD(i,j,k,2)=finalA(ip,j,k,2) 
         end do 
     end do  
  else 
     yfen1AD(i)=yfen1D(ip) 
     yfen2AD(i)=yfen2D(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalAD(i,j,k,1)=finalD(ip,j,k,1) 
   finalAD(i,j,k,2)=finalD(ip,j,k,2) 
          end do 
     end do  
  end if 
  write(12,*) yfen1AD(i),i,1 
  write(13,*) yfen2AD(i),i,1 
end do 
close(12) 
close(13) 
! frequencies of the causative mutations for trait 1 
open(16,file='freq1-AD.txt') 
do i=1,ngenes 
p1AD(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
       p1AD(iefec1(i,1),iefec1(i,2))=p1AD(iefec1(i,1),iefec1(i,2))+real(finalAD(k,iefec1(i,1),iefec1(i,2),1)+finalAD(k,iefec1(i,1),iefec1(i,2),2)-2) 
     end do 
     p1AD(iefec1(i,1),iefec1(i,2))=p1AD(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1AD(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
var1ADf(i)=0 
do i=1,ngenes 
    var1ADf(i)=2*p1AD(iefec1(i,1),iefec1(i,2))*(1-p1AD(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
    Va1=Va1+var1ADf(i) 
end do 
print *, 'Variance trait 1 population A+D=',Va1 
write(11,*) 'Variance trait 1 population A+D=',Va1 
! frequencies of the causative mutations for trair 2 
open(16,file='freq2-AD.txt') 
do i=1,ngenes 
p2AD(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
       p2AD(iefec2(i,1),iefec2(i,2))=p2AD(iefec2(i,1),iefec2(i,2))+real(finalAD(k,iefec2(i,1),iefec2(i,2),1)+finalAD(k,iefec2(i,1),iefec2(i,2),2)-2) 
     end do 
     p2AD(iefec2(i,1),iefec2(i,2))=p2AD(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2AD(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance of trait 2 
Va2=0 
var2ADf(i)=0 
do i=1,ngenes 
    var2ADf(i)=2*p2AD(iefec2(i,1),iefec2(i,2))*(1-p2AD(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
    Va2=Va2+var2ADf(i) 
end do 
print *, 'Variance trait 2 population A+D=',Va2 
write(11,*) 'Variance trait 2 population A+D=',Va2 
! write genotypes 
open(14,file='gAD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalAD(i,j,k,1),finalAD(i,j,k,2) 
        end do 
    end do 
end do 
close(14) 
! marker and gene frequencies 
open(13,file='pAD.txt') 
do i=1,ncro 
    do j=1,nmar 
     pAD=0 
        do k=1,nanim2 
 pAD=pAD+real(finalAD(k,i,j,1)+finalAD(k,i,j,2)-2) 
        end do 
        write(13,*) (i-1)*nmar+j,pAD/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nAD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
           do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 31 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 31 
 end if 
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            end do 
 write(13,*) i,(j-1)*nmar+k,(finalAD(i,j,k,1)+finalAD(i,j,k,2)-3) 
31     end do 
     end do 
end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nAD.txt') 
open(13,file='genotAD.txt') 
do i=1,nanim2 
  marca(j)=0 
  do j=1,neu 
  read(20,*) ip,im,iv 
  marca(j)=iv+1 
  end do 
  write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
 
! Population B+C 
open(12,file='f1BC.txt') 
open(13,file='f2BC.txt') 
do i=1,nanim2 
  call unif(x1,u) 
  ip=int(nanim2*u)+1 
  call unif(x1,u) 
  if (u.lt.0.5) then 
     yfen1BC(i)=yfen1B(ip) 
     yfen2BC(i)=yfen2B(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalBC(i,j,k,1)=finalB(ip,j,k,1) 
   finalBC(i,j,k,2)=finalB(ip,j,k,2) 
         end do 
     end do   
  else 
     yfen1BC(i)=yfen1C(ip) 
     yfen2BC(i)=yfen2C(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalBC(i,j,k,1)=finalC(ip,j,k,1) 
   finalBC(i,j,k,2)=finalC(ip,j,k,2) 
         end do 
     end do   
  end if 
  write(12,*) yfen1BC(i),i,1 
  write(13,*) yfen2BC(i),i,1 
end do 
close(12) 
close(13) 
! frequencies of the causative mutations for trait 1 
open(16,file='freq1-BC.txt') 
do i=1,ngenes 
p1BC(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
      p1BC(iefec1(i,1),iefec1(i,2))=p1BC(iefec1(i,1),iefec1(i,2))+real(finalBC(k,iefec1(i,1),iefec1(i,2),1)+finalBC(k,iefec1(i,1),iefec1(i,2),2)-2) 
    end do 
     p1BC(iefec1(i,1),iefec1(i,2))=p1BC(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1BC(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
var1BCf(i)=0 
do i=1,ngenes 
    var1BCf(i)=2*p1BC(iefec1(i,1),iefec1(i,2))*(1-p1BC(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
    Va1=Va1+var1BCf(i) 
end do 
print *, 'Variance trait 1 population B+C=',Va1 
write(11,*) 'Variance trait 1 population B+C=',Va1 
! frequencies of the causative mutations for trait 2 
open(16,file='freq2-BC.txt') 
do i=1,ngenes 
p2BC(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
       p2BC(iefec2(i,1),iefec2(i,2))=p2BC(iefec2(i,1),iefec2(i,2))+real(finalBC(k,iefec2(i,1),iefec2(i,2),1)+finalBC(k,iefec2(i,1),iefec2(i,2),2)-2) 
    end do 
     p2BC(iefec2(i,1),iefec2(i,2))=p2BC(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2BC(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance of trait 2 
Va2=0 
var2BCf(i)=0 
do i=1,ngenes 
      var2BCf(i)=2*p2BC(iefec2(i,1),iefec2(i,2))*(1-p2BC(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
      Va2=Va2+var2BCf(i) 
end do 
print *, 'Variance trait 2 population B+C=',Va2 
write(11,*) 'Variance trait 2 population B+C=',Va2 
! write genotype 
open(14,file='gBC.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalBC(i,j,k,1),finalBC(i,j,k,2) 
        end do 
    end do 
end do 
close(14) 
! marker and gene frequencies 
open(13,file='pBC.txt') 
do i=1,ncro 
    do j=1,nmar 
    pBC=0 
       do k=1,nanim2 
 pBC=pBC+real(finalBC(k,i,j,1)+finalBC(k,i,j,2)-2) 
       end do 
       write(13,*) (i-1)*nmar+j,pBC/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nBC.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 32 
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 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 32 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalBC(i,j,k,1)+finalBC(i,j,k,2)-3) 
32    end do 
    end do 
end do 
close(13) 
! write neutral markers genotypes in format 
open(20,file='nBC.txt') 
open(13,file='genotBC.txt') 
do i=1,nanim2 
  marca(j)=0 
  do j=1,neu 
  read(20,*) ip,im,iv 
  marca(j)=iv+1 
  end do 
  write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
 
! Population B+D 
open(12,file='f1BD.txt') 
open(13,file='f2BD.txt') 
do i=1,nanim2 
  call unif(x1,u) 
  ip=int(nanim2*u)+1 
  call unif(x1,u) 
  if (u.lt.0.5) then 
     yfen1BD(i)=yfen1B(ip) 
     yfen2BD(i)=yfen2B(ip) 
     do j=1,ncro 
        do k=1,nmar 
   finalBD(i,j,k,1)=finalB(ip,j,k,1) 
   finalBD(i,j,k,2)=finalB(ip,j,k,2) 
        end do 
     end do  
  else 
     yfen1BD(i)=yfen1D(ip) 
     yfen2BD(i)=yfen2D(ip) 
     do j=1,ncro 
         do k=1,nmar  
   finalBD(i,j,k,1)=finalD(ip,j,k,1) 
   finalBD(i,j,k,2)=finalD(ip,j,k,2) 
         end do 
     end do   
  end if 
  write(12,*) yfen1BD(i),i,1 
  write(13,*) yfen2BD(i),i,1 
end do 
close(12) 
close(13) 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-BD.txt') 
do i=1,ngenes 
p1BD(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
     p1BD(iefec1(i,1),iefec1(i,2))=p1BD(iefec1(i,1),iefec1(i,2))+real(finalBD(k,iefec1(i,1),iefec1(i,2),1)+finalBD(k,iefec1(i,1),iefec1(i,2),2)-2) 
     end do 
     p1BD(iefec1(i,1),iefec1(i,2))=p1BD(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1BD(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
var1BDf(i)=0 
do i=1,ngenes 
    var1BDf(i)=2*p1BD(iefec1(i,1),iefec1(i,2))*(1-p1BD(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
    Va1=Va1+var1BDf(i) 
end do 
print *, 'Variance trait 1 population B+D=',Va1 
write(11,*) 'Variance trait 1 population B+D=',Va1 
! frequencies of the causative mutations of trait 2 
open(16,file='freq2-BD.txt') 
do i=1,ngenes 
p2BD(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2 
        p2BD(iefec2(i,1),iefec2(i,2))=p2BD(iefec2(i,1),iefec2(i,2))+real(finalBD(k,iefec2(i,1),iefec2(i,2),1)+finalBD(k,iefec2(i,1),iefec2(i,2),2)-2) 
    end do 
    p2BD(iefec2(i,1),iefec2(i,2))=p2BD(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2BD(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance of trait 2 
Va2=0 
var2BDf(i)=0 
do i=1,ngenes 
    var2BDf(i)=2*p2BD(iefec2(i,1),iefec2(i,2))*(1-p2BD(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
    Va2=Va2+var2BDf(i) 
end do 
print *, 'Variance trait 2 population B+D=',Va2 
write(11,*) 'Variance trait 2 population B+D=',Va2 
! write genotypes 
open(14,file='gBD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalBD(i,j,k,1),finalBD(i,j,k,2) 
        end do 
    end do 
end do 
close(14) 
! marker and gene frequencies 
open(13,file='pBD.txt') 
do i=1,ncro 
    do j=1,nmar 
    pBD=0 
        do k=1,nanim2 
 pBD=pBD+real(finalBD(k,i,j,1)+finalBD(k,i,j,2)-2) 
        end do 
        write(13,*) (i-1)*nmar+j,pBD/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nBD.txt') 
do i=1,nanim2 
    do j=1,ncro 
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        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 33 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 33 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalBD(i,j,k,1)+finalBD(i,j,k,2)-3) 
33     end do 
     end do 
end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nBD.txt') 
open(13,file='genotBD.txt') 
do i=1,nanim2 
  marca(j)=0 
  do j=1,neu 
  read(20,*) ip,im,iv 
  marca(j)=iv+1 
  end do 
  write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
 
! Population C+D 
open(12,file='f1CD.txt') 
open(13,file='f2CD.txt') 
do i=1,nanim2 
  call unif(x1,u) 
  ip=int(nanim2*u)+1 
  call unif(x1,u) 
  if (u.lt.0.5) then 
     yfen1CD(i)=yfen1C(ip) 
     yfen2CD(i)=yfen2C(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalCD(i,j,k,1)=finalC(ip,j,k,1) 
   finalCD(i,j,k,2)=finalC(ip,j,k,2) 
         end do 
     end do  
  else 
     yfen1CD(i)=yfen1D(ip) 
     yfen2CD(i)=yfen2D(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalCD(i,j,k,1)=finalD(ip,j,k,1) 
   finalCD(i,j,k,2)=finalD(ip,j,k,2) 
         end do 
     end do 
  end if 
  write(12,*) yfen1CD(i),i,1 
  write(13,*) yfen2CD(i),i,1 
end do 
close(12) 
close(13) 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-CD.txt') 
do i=1,ngenes 
p1CD(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2 
     p1CD(iefec1(i,1),iefec1(i,2))=p1CD(iefec1(i,1),iefec1(i,2))+real(finalCD(k,iefec1(i,1),iefec1(i,2),1)+finalCD(k,iefec1(i,1),iefec1(i,2),2)-2) 
     end do 
     p1CD(iefec1(i,1),iefec1(i,2))=p1CD(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1CD(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
var1CDf(i)=0 
do i=1,ngenes 
     var1CDf(i)=2*p1CD(iefec1(i,1),iefec1(i,2))*(1-p1CD(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
     Va1=Va1+var1CDf(i) 
end do 
print *, 'Variance trait 1 population C+D=',Va1 
write(11,*) 'Variance trait 1 population C+D=',Va1 
! frequencies of the causative mutations of trait 2 
open(16,file='freq2-CD.txt') 
do i=1,ngenes 
p2CD(iefec2(i,1),iefec2(i,2))=0 
     do k=1,nanim2 
      p2CD(iefec2(i,1),iefec2(i,2))=p2CD(iefec2(i,1),iefec2(i,2))+real(finalCD(k,iefec2(i,1),iefec2(i,2),1)+finalCD(k,iefec2(i,1),iefec2(i,2),2)-2) 
     end do 
     p2CD(iefec2(i,1),iefec2(i,2))=p2CD(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
     write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2CD(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance of trait 2 
Va2=0 
var2CDf(i)=0 
do i=1,ngenes 
    var2CDf(i)=2*p2CD(iefec2(i,1),iefec2(i,2))*(1-p2CD(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
    Va2=Va2+var2CDf(i) 
end do 
print *, 'Variance trait 2 population C+D=',Va2 
write(11,*) 'Variance trait 2 population C+D=',Va2 
! write genotypes 
open(14,file='gCD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalCD(i,j,k,1),finalCD(i,j,k,2) 
        end do 
     end do 
end do 
close(14) 
! markers and genes frequencies 
open(13,file='pCD.txt') 
do i=1,ncro 
    do j=1,nmar 
    pCD=0 
        do k=1,nanim2 
 pCD=pCD+real(finalCD(k,i,j,1)+finalCD(k,i,j,2)-2) 
        end do 
        write(13,*) (i-1)*nmar+j,pCD/(2*real(nanim2)) 
    end do 
end do 
close(13) 
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! write neutral marker genotypes 
open(13,file='nCD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 34 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 34 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalCD(i,j,k,1)+finalCD(i,j,k,2)-3) 
34    end do 
    end do 
end do 
close(13) 
! write neautral marker genotypes in format 
open(20,file='nCD.txt') 
open(13,file='genotCD.txt') 
do i=1,nanim2 
  marca(j)=0 
  do j=1,neu 
  read(20,*) ip,im,iv 
  marca(j)=iv+1 
  end do 
  write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
 
! Population A+B+C+D 
open(12,file='f1ABCD.txt') 
open(13,file='f2ABCD.txt') 
do i=1,nanim2 
  call unif(x1,u) 
  ip=int(nanim2*u)+1 
  call unif(x1,u) 
  if (u.lt.0.25) then 
     yfen1ABCD(i)=yfen1A(ip) 
     yfen2ABCD(i)=yfen2A(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalABCD(i,j,k,1)=finalA(ip,j,k,1) 
   finalABCD(i,j,k,2)=finalA(ip,j,k,2) 
          end do 
     end do  
  end if 
  if (u.gt.0.25.and.u.lt.0.5) then 
     yfen1ABCD(i)=yfen1B(ip) 
     yfen2ABCD(i)=yfen2B(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalABCD(i,j,k,1)=finalB(ip,j,k,1) 
   finalABCD(i,j,k,2)=finalB(ip,j,k,2) 
         end do 
     end do   
  end if 
  if (u.gt.0.5.and.u.lt.0.75) then 
     yfen1ABCD(i)=yfen1C(ip) 
     yfen2ABCD(i)=yfen2C(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalABCD(i,j,k,1)=finalC(ip,j,k,1) 
   finalABCD(i,j,k,2)=finalC(ip,j,k,2) 
         end do 
     end do   
  end if 
  if (u.gt.0.75) then 
     yfen1ABCD(i)=yfen1D(ip) 
     yfen2ABCD(i)=yfen2D(ip) 
     do j=1,ncro 
         do k=1,nmar 
   finalABCD(i,j,k,1)=finalD(ip,j,k,1) 
   finalABCD(i,j,k,2)=finalD(ip,j,k,2) 
         end do 
     end do   
  end if 
  write(12,*) yfen1ABCD(i),i,1 
  write(13,*) yfen2ABCD(i),i,1 
end do 
close(12) 
close(13) 
! frequencies of the causative mutations of trait 1 
open(16,file='freq1-ABCD.txt') 
do i=1,ngenes 
p1ABCD(iefec1(i,1),iefec1(i,2))=0 
    do k=1,nanim2    p1ABCD(iefec1(i,1),iefec1(i,2))=p1ABCD(iefec1(i,1),iefec1(i,2))+real(finalABCD(k,iefec1(i,1),iefec1(i,2),1)+finalABCD(k,iefec1(i,1),iefec1(i,2),2)-2) 
    end do 
    p1ABCD(iefec1(i,1),iefec1(i,2))=p1ABCD(iefec1(i,1),iefec1(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec1(i,1)-1)*nmar+iefec1(i,2)),p1ABCD(iefec1(i,1),iefec1(i,2)) 
end do 
close(16) 
! additive variance of trait 1 
Va1=0 
var1ABCDf(i)=0 
do i=1,ngenes 
    var1ABCDf(i)=2*p1ABCD(iefec1(i,1),iefec1(i,2))*(1-p1ABCD(iefec1(i,1),iefec1(i,2)))*efec1(i)**2 
     Va1=Va1+var1ABCDf(i) 
end do 
print *, 'Variance trait 1 population A+B+C+D=',Va1 
write(11,*) 'Variance trait 1 population A+B+C+D=',Va1 
! frequencies of the causative mutations of trait 2 
open(16,file='freq2-ABCD.txt') 
do i=1,ngenes 
p2ABCD(iefec2(i,1),iefec2(i,2))=0 
    do k=1,nanim2    p2ABCD(iefec2(i,1),iefec2(i,2))=p2ABCD(iefec2(i,1),iefec2(i,2))+real(finalABCD(k,iefec2(i,1),iefec2(i,2),1)+finalABCD(k,iefec2(i,1),iefec2(i,2),2)-2) 
    end do 
    p2ABCD(iefec2(i,1),iefec2(i,2))=p2ABCD(iefec2(i,1),iefec2(i,2))/(2*real(nanim2)) 
    write(16,*) i,((iefec2(i,1)-1)*nmar+iefec2(i,2)),p2ABCD(iefec2(i,1),iefec2(i,2)) 
end do 
close(16) 
! additive variance 
Va2=0 
var2ABCDf(i)=0 
do i=1,ngenes 
    var2ABCDf(i)=2*p2ABCD(iefec2(i,1),iefec2(i,2))*(1-p2ABCD(iefec2(i,1),iefec2(i,2)))*efec2(i)**2 
    Va2=Va2+var2ABCDf(i) 
end do 
print *, 'Variance trait 2 population A+B+C+D=',Va2 
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write(11,*) 'Variance trait 2 population A+B+C+D=',Va2 
! write genotypes 
open(14,file='gABCD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 write(14,*) i,((j-1)*nmar+k),finalABCD(i,j,k,1),finalABCD(i,j,k,2) 
         end do 
     end do 
end do 
close(14) 
! markers and genes frequencies 
open(13,file='pABCD.txt') 
do i=1,ncro 
    do j=1,nmar 
    pABCD=0 
       do k=1,nanim2 
 pABCD=pABCD+real(finalABCD(k,i,j,1)+finalABCD(k,i,j,2)-2) 
       end do 
       write(13,*) (i-1)*nmar+j,pABCD/(2*real(nanim2)) 
    end do 
end do 
close(13) 
! write neutral marker genotypes 
open(13,file='nABCD.txt') 
do i=1,nanim2 
    do j=1,ncro 
        do k=1,nmar 
 do g=1,ngenes 
 if (j==iefec1(g,1).and.k==iefec1(g,2)) then 
    goto 35 
 end if 
 if (j==iefec2(g,1).and.k==iefec2(g,2)) then  
    goto 35 
 end if 
 end do 
 write(13,*) i,(j-1)*nmar+k,(finalABCD(i,j,k,1)+finalABCD(i,j,k,2)-3) 
35     end do 
    end do 
end do 
close(13) 
! write neutral marker genotypes in format 
open(20,file='nABCD.txt') 
open(13,file='genotABCD.txt') 
do i=1,nanim2 
  marca(j)=0 
  do j=1,neu 
  read(20,*) ip,im,iv 
marca(j)=iv+1 
  !print *, i,marca(j) 
end do 
  write(13,'(i4,1x,30000i1)') i,(marca(j),j=1,neu) 
end do 
close(13) 
close(20) 
close(11) 
end 
 
! ---------------------------------------------------------------------- 
      subroutine normal(x1,z) 
!      generacion de un numero normal z -> n(0,1) 
!      x1 es la semilla 
      implicit double precision(a-h,o-z) 
      real*8 x1,z,u1,u2 
      call unif(x1,u1) 
      call unif(x1,u2) 
      z=((-2.*log(u1))**0.5)*cos(2.*3.1416*u2) 
return 
end 
! ---------------------------------------------------------------------- 
      subroutine unif(x1,u) 
!      generacion de un numero uniforme u[0,1] 
!      x1 es la semilla 
      implicit double precision(a-h,o-z) 
divis=2.**63.-1. 
      trans=7**5 
      divid=trans*x1 
      lsol=int(divid/divis) 
x1=divid-lsol*divis 
      u=x1/divis 
!u=rand() 
return 
      end 
!----------------------------------------------------------------------- 
function pois(lam,x1) 
implicit none 
integer i,pois,n 
logical o 
real,parameter:: e=2.71828 
real *8 x1,sum,u,lam 
real *8 pro(0:100),prosum(0:100) 
pro=0 
prosum=0 
sum=0 
do n=0,100 
pro(n)=1 
    do i=1,n 
    pro(n)=pro(n)*i 
    end do 
    pro(n)=(e**(-lam)*lam**n)/pro(n) 
    sum=sum+pro(n) 
    prosum(n)=sum 
    ! print*, prosum(n) 
end do 
call unif (x1,u) 
 !print *,u 
o=.true. 
i=0 
do while (o) 
if (u>=prosum(i)) then 
   i=i+1 
else 
   pois=i 
   O=.false. 
endif 
end do 
return 
end 
 


