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Abstract

This paper discusses how to use the warping information obtained after batch synchronization for process
monitoring and fault classification. The warping information can be used for i) building unsupervised
control charts or ii) fault classification when a rich faulty batches database is available. Data from realistic
simulations of a fermentation process of the Saccharomyces cerevisiae cultivation are used to illustrate the
proposal.
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1. Introduction

The application of latent structures-based bilinear models for batch process understanding, troubleshoot-
ing and monitoring has been widely studied and discussed in the literature [1, 2]. Also, over the last decade,
there has been an increasing interest from industry to apply this methodology to their processes for a
successful enhancement of the final product quality, both in off-line and on-line applications.

In batch processes, measurements belonging to J process variables are collected at K different sampling
points over I batches. These data can be used to design monitoring systems using projection to latent
structures-based methods, like Principal Component Analysis (PCA) and Partial Least Squares (PLS).
Commonly, batches have different durations since time is not a crucial factor for the completion of a batch.
Instead other criteria, such as the achievement of a considered amount of product or a temperature in a
process phase or stage are used for completion. Due to the variability in the chemical composition of the
raw material, variation in environmental conditions and/or cleanness of equipment, among others, these
criteria are reached at different times across batches. In order to ensure the correspondence of all the
process variables at any point throughout one batch to those at the same state in other batches (i.e. the
synchronization of the key process events), the synchronization prior to bilinear modeling is required.

The approaches for synchronizing batch data can be roughly classified into three categories: i) methods
based on compressing/expanding the raw trajectories using linear interpolation either in the batch time
dimension [3, 4] or in an indicator variable dimension (the so-called Indicator Variable-based synchronization,
IV) [5]; ii) methods based on features extraction [6, 7, 8, 9]; and iii) methods based on stretching, compressing
and translating pieces of trajectories, such as Dynamic Time Warping (DTW) [10] and Relaxed Greedy Time
Warping (RGTW) [11].

Once batch data are synchronized by using one of the synchronization methods mentioned previously,
a 3-way data matrix X (I x J x K) is available for the subsequent multivariate analysis. Before batch
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modeling, some issues must be addressed due to the nature of batch data, i.e. nonlinear and time-varying
dynamics, and complex variable correlations structure varying throughout the batch run. After batch data
have been synchronized and modeled, a monitoring scheme is built. Typically, two Shewhart control charts
based on the Hotelling-7? and Squared Prediction Error (SPE) statistics are designed. Their control limits
(thresholds) are estimated from normal operating conditions (NOC) process data and later adjusted using
cross-validation techniques for an imposed significance level (ISL) [12, 13]. Once the scheme is designed, new
measurements from a new batch data can be projected onto the data model, yielding to the aforementioned
multivariate statistics, to check for the correct performance of the process.

The set of warping time profiles obtained from the batch synchronization are seldom used in the moni-
toring scheme. These warping functions provide valuable information about the process pace of each of the
batches in the study (the so-called warping information). In particular, these profiles give information on the
performance of the different stages or phases of the process throughout the batch run. This may be related
to the appearance of faults during the process and may have a direct effect in product quality. Hence, a
study of the set of warping profiles obtained from the off-line and on-line synchronization is highly desired.
Some authors have emphasized the importance of not discarding the information derived from the synchro-
nization [10] and others have used this warping information as an extra variable in the multivariate analysis
[11, 14]. Nevertheless, there is no sound study on the use of the warping information for: i) unsupervised
(i.e. requiring no a priori knowledge about the type of faults) process monitoring, and ii) supervised (i.e.
incorporating prior knowledge from a data base of historical faults) fault classification. This is the main
goal of this paper.

Section 2 explains how to obtain the warping information from the RGTW-based synchronization and
introduces a novel NOC warping information-based control chart as a complementary tool for unsupervised
end-of-batch and real-time process monitoring. Section 3 is devoted to illustrate how to use the warping
information for end-of-batch supervised fault classification using different methods. Section 4 illustrates the
application of the different approaches using data from a biofermentation simulator of the Saccharomyces
cerevisiae cultivation. Finally, some conclusions are drawn in Section 5.

2. NOC warping information-based control chart for process monitoring

The RGTW algorithm [11] is used in this paper for batch synchronization due to its versatility both for
end-of-batch and real-time applications. This algorithm synchronizes trajectories of a test batch By, eq, (K pew X
J) against a reference batch B,.;(K,ey x J), by finding a minimum cost function (or warping path)
£r ., = {w(),w(k),...,w(Ky,,,)} Here each w(k) is an ordered pair [i(k), (k)] indicating that the i-th
and j-th sampling point belonging to B,y and By, respectively, are synchronized. The synchronization
is assessed with a weighted local cost function d(i, j), represented as a Kyc¢ X Kpey local distance matrix,
which assigns a matching cost for synchronizing each possible pair sampling points from the reference and
test batches. Several constraints are used to restrict the search of the warping path, namely a band fit to the
batch variability that constrains the search space of such path, and local constraints (or predecessors) which
define the warping function as monotonic and continuous. Additionally, a cumulative weighted distance
matrix D(fpew) is assessed by estimating the cumulative matching costs of each of the allowed paths f;,c..
The optimal warping path f},.,, (also called warping profile, or warping information) is assessed by obtaining
the path that minimizes the cumulative distance. This synchronization procedure is carried out within a
moving window ¢ with a defined width, which is optimized by cross-validation [11].

The warping profiles obtained from the RGTW-based synchronization are composed of a set of different
transitions at each sampling point, i.e. vertical, horizontal and diagonal steps. Based on the number of the
different transitions the warping path contains, conclusions regarding the good performance of the different
process stages can be drawn. Let us assume that the test and reference batch are located on the z-axis and y-
axis, respectively. In this scenario, an excessive number of vertical or horizontal transitions (data expansion
or compression, respectively) in the warping profiles belonging to the calibration batches in relation to the
reference batch, means that the process has needed less or more time, respectively, to release the product.
Hence, the use of this information in batch process monitoring may be valuable.
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Figure 1: Warping profiles fi and f2 belonging to two different trajectories obtained from the RGTW-based synchronization
(a) and expressed as a function of the reference time (b).

RGTW-based synchronization provides not only the synchronized multivariate measurements, but also
the optimal warping functions f; derived for each of I batches. For each of the test batches synchronized
against the reference batch, a warping function with length equal to K, is obtained. The length of the
warping information among batches is different. In order to use this information for building the NOC
warping information-based control chart (WICC) and for designing the fault classifiers, all the warping
profiles need to have the same length. Hence, the warping profiles must be expressed as function of the
reference batch to have equal length. This transformation is performed as follows (see Figure 1). The
test batch sampling point that matches with each one of the reference batch sampling points is estimated.
In the case that a set of consecutive horizontal transitions are present, i.e. n test batch sampling points
are matched with the k,.¢-th reference batch time point, the last time point of this set is taken as the
matched point. Note that the interpretation of this consecutive test batch sampling points matching a
certain reference batch sampling point is different in the inner RGTW algorithm. In that case, an average of
the values belonging to the multivariate batch trajectories is calculated and matched with a defined reference
batch sampling point. Hence, warping profiles transformation is not suitable for interpreting synchronization
outcomes since it may cause misleadings. In the example in Figure 1, 2nd-4th sampling points of the test
batch are matched with the 2nd sampling point of the reference batch (see warping profile f; in Figure
1(a), line depicted with asterisks), hence, the 4th sampling point of the test batch is matched with the 2nd
sampling point of the reference batch (see warping profile f; in Figure 1(b), line depicted with asterisks).
This procedure is repeated for each one of the K,.; reference batch sampling points over all Iyoc test
batches. At the end of the execution, a set of warping profiles with equal length is available (see Figure
1(b)). Once this transformation has been performed, the matrix Fnoc (Inoc X Kyes) containing the Inoc
warping profiles expressed as a function of the reference batch is obtained. Data containing this matrix
define the consistent and normal processing pace through the batch time. For the sake of interpretability,
the monotonic increasing behavior of the warping profiles is removed by subtracting the average values of
each one of the reference batch points (columns of matrix F yo¢). From this centered Fyoc matrix in this
paper we propose to build the NOC-WICC. This is a complementary tool to Hotelling-T? and SPE control
charts for end-of-batch process monitoring. The corresponding control limits at 99% confidence level can be
assessed by estimating the percentile 0.5 and 99.5 at each reference batch time (columns of matrix Fyoc).

In real-time applications, NOC-WICC can be also used for unsupervised process monitoring. In this
context, a new point from the warping information is available when a set of time points from an ongoing
batch are matched with the next k. -th time point from the reference batch. Hence, the real-time monitoring
of the warping profile would have a certain delay from the original batch time. This is necessary in order
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to ensure that the ongoing warping profile has the same length as those corresponding to NOC and can be
monitored with NOC-WICC.

3. Fault classification procedures

Let us assume that a set of warping profiles derived from the RGTW-based synchronization of batch
trajectories belonging to historical faulty batches with different types of faults [ (1=1, 2, ... , L) are collected
in the matrices Fy, Fs,..., Fy. This warping information can also be used for fault classification. Once
the monitoring system has detected an out-of-control signal, supervised methods can be used to classify the
type of fault that occurred in end-of-batch applications.

In this paper, three different supervised procedures are compared. In the first procedure, warping
information is used to build supervised faulty warping information-based control charts (faulty WICC). In the
other two procedures, warping information is used to fit classification models using standard chemometrics
tools, such as Partial Least Squares-Discriminant Analysis (PLS-DA)[15] [15] or Soft Independent Modelling
of Class Analogy (SIMCA) [16]. For the design of these classifiers, each one of matrices F; (I; X K, r) is split
up into two different data sets, a training and test data set containing warping profiles of Itrqining and Iiest
faulty-1 batches, respectively. Using the training data set a model/classifier is developed and optimized after
outliers have been removed. The test data set is used to estimate a different classification index for each
classifier: membership probability to fault [ in faulty WICC, predictions in PLS-DA and Squared Prediction
Error (SPE) in SIMCA.

In order to assess the quality of classification using a defined threshold, measures derived from the confu-
sion table are used [17]. To establish the best classification threshold, the Matthews Correlation Coefficient
(MCC) [18] is estimated. That threshold whose MCC value is the closest to 1 will be selected as the classifi-
cation threshold. For the sake of comparison among classifiers, the Receiver Operator Characteristic (ROC)
curve will be used. In order to assess the accuracy of the classifiers, the area under the ROC curve (the
so-called AUROC) are calculated as an index measuring the goodness of the classifier.

3.1. Supervised faulty warping information-based control charts

The idea is to build a control chart from the warping information contained in each one of the matrices F;
corresponding to the training data set. Firstly, each warping profile is centered to the NOC average warping
profile. Afterwards, the control limits at 99% confidence level are assessed by estimating the percentile 0.5
and 99.5 at each reference batch time (columns of the matrices F;). The test data set of each one of the [
types of faults is then plotted onto the faulty-{ WICC and the percentage of points falling within the control
limits is calculated. This is an index of the membership probability to fault I. This procedure is repeated
for each one of matrices ¥y, Fs, ..., Fp, i.e., for each one of known faults. Finally, the faulty WICC-based
classifier is built as explained above. A new complete faulty batch can be classified into fault class [, if its
percentage of points falling within the control limits of the fault-l WICC is larger than the corresponding
classification threshold.

3.2. Classifiers based on Partial Least Squares Discriminant Analysis (PLS-DA)

The following approach is based on the fit of a PLS-DA model from the matrix F, which was obtained
after arranging the matrices F1, Fs,..., F corresponding to the training data set, one below the other.
The response Y matrix is defined by dummy variables denoting the type of faulty batches (i.e. classes). In
this type of analysis, the elements of the column vector y, are one for batches belonging to class ¢ (fault-1,
fault-2, ..., fault-l, ..., fault-L) or zero otherwise. Both matrices F and Y are autoscaled. Once the PLS-DA
model is fitted, the warping profiles of each type of fault belonging to the test data set are preprocessed and
projected onto the PLSDA model, yielding the fault class predictions. After checking that their Euclidean
distances to the latent model (SPE) are lower than the 99% confidence level (control limits estimated using
the approximation method by Jackson and Mudholkar [19]), the best classification threshold is calculated
by following the procedure explained in Section 3. When a new complete warping profile f,,.,, corresponding
to a faulty batch is available, it can be classified. For this purpose, f,c, is centered and scaled using the
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mean and variance estimated from the training data matrix F, and its prediction vector ¥, is predicted.
If the prediction ¥, is above the classification threshold of fault-I classifier, this new faulty batch can be
classified as fault-I.

3.3. Classifiers based on the SIMCA approach

Soft Independent Modeling of Class Analogy (SIMCA), is a well-known classification method. This ap-
proach consists of the fit of a PCA model from each autoscaled matrix F; containing the warping information
of the faulty-l batch (I =1, ..., L), corresponding to the training data set. Once the PCA models have been
fitted, the warping profiles of faulty batches belonging to the test data set are preprocessed and projected
onto the latent space, obtaining the squared Euclidean distances to the latent model (SPE). In case these
values do not exceed the control limits at 99% confidence level (control limits estimated from theoretical
results [19]), they are used to estimate the best classification threshold by following the procedure explained
in Section 3. When a new complete warping profile f,,.,, corresponding to a faulty batch is available, this
can be classified. For this purpose, ;. is centered and scaled using the mean and variance estimated from
the training data matrix F, and then its SPE value is estimated. If this value is above the classification
threshold of fault-I classifier, this new faulty batch can be classified as fault-I.

4. Results and discussion

Process data based on the biological model of the aerobic growth of S. cerevisiae on glucose limited
medium [20] was generated using Simulink for Matlab release 2007b® (©The MathWorks, Inc). In order to
simulate the physical uncertainty caused by the biological variability, slightly modified values of constants
of the first principles model were introduced into the parametric space that defines the Simulink scheme for
simulation. Also, Gaussian noise of low magnitude in the initial conditions (10%) and measurements (5%)
to simulate the typical errors produced by sensors were added. Furthermore, the simulation achieved here
took into account the biological variability of yeasts. In fermentation processes, characterized by a duration
of several days, some microorganisms may have different generation times, having a significant influence on
biomass growth and quality features, yielding batches with different duration.

A set of 85 unsynchronized batches was simulated under normal conditions following the assumptions
commented previously. Two additional sets of 44 faulty batches each with two different kinds of abnormalities
due to abnormal operating conditions were simulated.

Namely, interference processes have been simulated, i.e. factors that directly influence the maximum
reaction rate (Vmax, k1L in the model) of the lumped biochemical reaction considered in the model. This
Vmax represents in which way the substrate is processed by the yeast S. cerevisiae in glucose limited media.
Although biochemically based (highly efficient strains will be able to consume glucose more quickly, showing
higher intrinsic Vmax values), this parameter may also be influenced by processes such a diffusion. For
example, if the bioreactor is not correctly stirred or the viscosity of the mixture is too high and hinders
nutrient diffusion, substrates may not be accessible for the microorganism, resulting in low consumption
rates. When these operating conditions are overcome, a better material transport is expected, and hence,
a higher maximum reaction rate (Vmax). To simulate these scenarios, the values of the kinetic constants
k1l (associated to the reaction describing the glucose uptake system and the glycolytic pathway) and k6
(associated to the reaction describing the formation of ethanol from acetaldehyde) were modified in the
stoichiometric equations. In particular, these values were increased in comparison to the nominal values
indicated in [20]. Modifying the constants, the consumption of glucose is higher than in normal operating
conditions, causing an excess of glucose in the microorganism (the so-called metabolic overflow). In this sce-
nario, the rate of glycolysis exceeds a critical value resulting in by-product formation (ethanol, acetaldehyde,
acetate) from pyruvate and ethanol (activation of the fermentation pathway). Consequently, the amount of
carbon dioxide is also higher in media than in normal operating conditions. This has a direct effect on the
duration of the second stage of the fermentation (from the 50th sampling point -i.e. after 20h the batch
started approximately- onwards), which takes longer than usual to reduce the amount of these products.

Ten variables were measured every sampling time over all batches: concentrations (glucose, pyruvate,
acetaldehyde, acetate, ethanol and biomass), active cell material, acetaldehyde dehydrogenase (proportional
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to the measured activity), specific oxygen uptake rate and specific carbon dioxide evolution rate. The
simulated data were split up in a calibration and a test data set. 60 NOC batches and 20 batches from
each of the simulated abnormalities were randomly selected to form the training data set, and the remaining
batches were used to arrange the corresponding test data sets (25 NOC, 24 faulty-1 and 24 faulty-2 batches).
Before the multivariate modeling is carried out, the synchronization of NOC batches must be performed. In
order to establish the proper parameters of the RGTW algorithm, the cross-validation procedure proposed
in [11] was run.
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Figure 2: Hotelling-T2, SPE and NOC warping information-based control charts monitoring a NOC (a), faulty-1 (b) and faulty-
2 test batch (c). Cross-validated control limits for a 99% confidence level (solid red line) in the Hotelling-72? and SPE control
charts are shown. Also, the upper and lower control limits of the NOC warping information-based control chart established at
the percentile 0.5 and 99.5 are denoted by solid red line.

Firstly, the basic parameters of the off-line DTW algorithm were assessed. The batch whose duration
was the closest to the median length of historical NOC batches was selected as the reference batch. In
this case, batch #30 was chosen with a duration of 193 sampling points. The weights were assessed as the
geometric average of the weights estimated by the iterative procedure of Kassidas et al. [10] and Ramaker et
al. [21] approaches. Secondly, the proper window width ¢ was estimated. For this purpose, the performance
of the RGTW algorithm varying the window width between 1 and 5 units were studied. The RGTW-based
synchronization using a window width equal to 3 units was finally selected and the bands were calculated
based on the warping information derived from the latter synchronization.
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Once the set of 60 calibration NOC batches were synchronized, the slices containing information of all
process variables at the sampling time &k were arranged side by side in a two-way data matrix X (60 batches x
(10 variables x 193 sampling points)). After batch data were autoscaled, i.e. the mean trajectory was
subtracted and all process variables at every sampling time were scaled to unit variance, a PCA model was
fitted. The selection of the optimum number of principal components (PCs) was carried out based on the
PRESS (PREdicted Residual Sum of Squares) function derived from the cross-validation procedure and the
results obtained from the study of the performance of the PCA model using the Overall Type I (OTI) and
Type 1T (OTII)* risks [12].

For performance evaluation of the PCA model, the first ten PCs were taken into consideration in the
study. For each of the PCs, a monitoring system was built by designing two multivariate Shewhart control
charts based on Hotelling-72 and SPE statistics. Their control limits were estimated from NOC process data
and later readjusted using cross-validation techniques for an imposed significance level (ISL). The NOC and
faulty test sets composed by 25 and 48 batches (24 batches for each of the two abnormalities), respectively,
were projected onto the model and the OTI and OTII values for both statistics were calculated. Once the
complete procedure was repeated for each of the PCs considered, the values of both indices as a function of
the number of PCs were studied jointly with the PRESS. In this example, two principal components were
finally extracted since the corresponding model had better performance in relation to the aforementioned
parameters.

4.1. NOC warping information-based control charts

The warping information obtained from the RGTW-based synchronization of the batch trajectories
corresponding to the set of 60 calibration NOC batches were used to build the NOC warping information-
based control chart introduced in Section 2, where an upper and lower control limit established at percentile
0.5 and 99.5, respectively.

Three different batches, one NOC, one faulty-1 and one faulty-2 batches were randomly chosen from the
test data set to be synchronized and monitored, yielding the warping information, Hotelling-72? and SPE
statistics throughout the batch run (see Figure 2). In the case of the NOC test batch, no clear out-of-control
signal is detected in any of the three control charts (see Figure 2(a)). Regarding the end-of-batch monitoring
results of the two different faults, the monitoring system has correctly detected the abnormalities through
the SPE control charts (see Figures 2(b) and 2(c)). It is worth noticing that the statistics-based control
charts detect the fault earlier than the warping information-based control charts, in particular in the case
of the faulty-1 batch. Nevertheless the use of the latter control chart provides a good insight about the
process performance and also a valuable complementary tool for fault classification. This will be explained
in Section 4.2. The remaining test batches also showed the same behavior as the three selected batches in
Figure 2 (results not shown).

4.2. Supervised warping information-based control charts

Using the 20 batches for each abnormality belonging to the training data set, the faulty WICCs were
built by following the procedure explained in Section 3.1. Differences among the different classes can be
found by looking at the control limits of the faulty WICCs shown in Figure 3. From the control limits of
the faulty-1 WICC (Figure 3(a)) and NOC WICC (Figure 2, bottom), one can check that these batches
required more time than the NOC batches to achieve the stage limited from the 45th to the 50th reference
time point. In particular, a large amount of vertical transitions are shown at this time interval, hence,
the batch trajectories were compressed by the RGTW algorithm to synchronize the process events. From
the 50th to the 120th sampling point, a larger number of horizontal than vertical transitions are shown.
Consequently, faulty-1 batches needed less time to reach the end of such process stage with respect to NOC
batches. Regarding the faulty-2 batches, the control limits of the faulty-2 WICC (see Figure 3(b)) show that
from the 40th to 45th reference sampling point, the RGTW algorithm compressed the batch trajectories,

IThe OTII values are calculated by following OT'II = 100 - I"ka %, where nnf is the number of non-detected faults, I, is

the number of faulty batches and k is the length of the faulty peariod.
7



50 b
£ E
o o
o o
j=2] (o))
£ =
a a
S £
@ [
12 (2]
= K
L L2
© ©
o o
@ k7]
() (o]
— [

_1ol 1

_20 1

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

Reference batch sampling point Reference batch sampling point
(a) (b)
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yielding to vertical transitions. Again, the first process stage lasted longer than NOC batches. Unlike the
faulty-1 batches, the faulty-2 batches showed a similar behavior as NOC batches from the 50th reference
time point onwards.

4 1 I A A A A
fFEHLCHH AR A A
,,,,,,,,, A’”””!”"”A”” Aﬂ A
~ 09F A u A , o 09F A
L A A 4 L A A
3 A = A
@ 08 A A alsr 3 osf y
w PANEES N w A 4
o 0.7 AL B A A o 07f o 1
L A L
= N A A =
= 06F A A A = 06F u] ] A R
8 A A 9 B - - - - —————— - ——
S ost A 4 S ost c am 4
o A A A u o - n
a A s = o u ]
o 04f N o 04 [ - 1
= = o Ho o o -
» 03F R » 03 U 8] 5g g g ® R
u] LI 1
[} [ o o (]
o o . .
[ 0.2 Ei [ 0.2 B
[} [} =
= o4t g = o1k 4
0 . . . . . . . . 0 . . . . . . . .
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Samples Samples
(a) (b)

Figure 4: Classification of warping profiles for the Fault-1 (a) and Fault-2 classes using faulty WICC. Faulty-1 (empty squares)
and faulty-2 batches (empty triangles) corresponding to the training data set are shown. Filled squares and triangles denote
the faulty-1 and faulty-2 batches from the test data set, respectively. The dashed lines are the thresholds that yielded the
highest MCC on the corresponding faulty classifier. Recall that only the batches corresponding to the training data set (those
represented with empty symbols) were used to assess the classification thresholds.

To illustrate the performance of the control charts proposed for end-of-batch fault classification, only
the two faulty batches selected in Section 4.1 (one faulty-1 and one faulty-2 batch) were plotted in the
faulty-1 and faulty-2 WICCs, respectively (see Figure 3). The membership probability (M P) of the two
selected faulty test batches to fault-1 and fault-2 classes was calculated. In the case of the faulty-1 test
batch, the corresponding warping information (medium line-width) falls fully inside the control limits of
the faulty-1 WICC (193 out of 193 points), yielding a M P,—; = 100% (see Figure 3(a)). For the faulty-2
test batch the M P—; = 86.53% (167 out of 193 points). Concerning the faulty-2 WICC (see Figure 3(b)),
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164 out of 193 points of the faulty-2 batch were inside the control limits (M P,—o = 84.97%) while 100 out
of 193 points belonging to the fault-1 batch falls within the control limits of the mentioned control chart
(MP,—2 = 51.81%) (see Figure 3(b)).
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Figure 5: PLS-DA two-LV model predictions for the Fault-1 (a) and Fault-2 (b) class. Faulty-1 (empty squares) and faulty-2
batches (empty triangles) corresponding to the train data set are shown. Filled squares and triangles denote the faulty-1 and
faulty-2 batches from the validation data set, respectively. The red dashed lines are the classification thresholds whose MCC
value associated is the highest on the corresponding faulty data set.

Following the above procedure, the warping profiles corresponding to the 24 test batches of each type of
fault were used to estimate the membership probability to the known fault. Once these probabilities were
obtained (see Figure 4), a threshold per faulty WICC was calculated by following the procedure explained
in Section 3.1 (classification thresholds for Fault-1 and Fault-2 classes are 0.93 and 0.56, respectively). Note
that these thresholds notably differ from each other, mainly due to the different patterns found in the
warping profiles of faulty-1 and faulty-2 batches. As can be appreciated in Figure 4(a), most of the points
corresponding to the warping profile of the selected faulty-2 batch fall inside the limits in the faulty-1 WICC,
except in the time intervals [8,14], [45,50], [86,98] and [110,117]. The rest of the faulty-2 batches also showed
the same pattern in the faulty-1 WICC (results not shown). Hence, the membership probabilities to Fault-1
class estimated for both faulty-1 and faulty-2 batches are expected to be high, being for the formers slightly
higher than for the latter. It causes that the classification threshold has a high value, close to 1. In contrast,
a larger amount of points corresponding to the warping profile of the selected faulty-1 batch fall outside
the control limits in the faulty-2 WICC, in particular, in the time intervals [45,50] and [60,143] (see Figure
4(b)(b)). Again, this behavior is also observed in the rest of the faulty-1 batches (results not shown). Hence,
the membership probabilities to Fault-2 for faulty-1 and faulty-2 batches differ considerably, yielding to a
lower threshold for classifier of Fault-2 class than for classifier of Fault-1 class.

Accuracy for faulty-1 and faulty-2 classes is measured by the area under the ROC curve (AUROC),
leading to a value of 0.9911 and 0.9951, respectively, which indicates a good performance of the faulty
WICC-based classifier. This is also illustrated in Figure 4(a) (membership probability to Fault-1 class)
and Figure 4(b) (membership probability to Fault-2 class), where almost all the test warping profiles were
correctly classified. Note that the membership probabilities belonging to the training data set are plotted
for visualization purpose as well.

4.8. PLS-DA-based classifier

Using the 20 batches for each abnormality belonging to the training data set, a PLS-DA model was
fitted. The resulting PLS-DA cross-validated model yielded two latent variables, with R?X, R?Y and Q?
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values of 74.9%, 94.4% and 92.8%, respectively. The faulty batches from the test data set (24 batches for
each of the faults) were projected onto the PLS-DA model as external validation. All SPE values were
inside the corresponding 99% confidence limits. The predictions for class fault-1 and class fault-2 models are
shown in Figure 5. A threshold per each class was estimated by following the approach explained in Section
3.1 (classification thresholds for Fault-1 and Fault-2 classes are 0.49 and 0.50, respectively). At this point
it is worth noticing that these thresholds are almost equal. This is because in both cases, the prediction
distribution generated for Fault-1 and Fault-2 classes do not overlap each other, meaning that the classes
are well separated. This interpretation can be observed in Figure 5, where all the test faulty batches were
correctly classified, both in Faulty-1 and Faulty-2 classes.

In order to check for model consistency, a random permutation test was performed to study the model
consistency. The permutation test aims at comparing both goodness of fit and goodness of prediction of
the original model with the values estimated after class randomization [22]. The R%Y and Q? values found
(result not shown) using real class labels were clearly outside the distributions of those statistics found when
employing random class labels, which indicates a clear distinction between the permutated-classification
and the original classification. From these results, we can conclude that the PLS models are statistically
significant (P < 0.001).
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Figure 6: Cooman’s plot for the faulty-1 and faulty-2 batches model. Faulty-1 (empty squares) and faulty-2 (empty triangles)
batches corresponding to the training data set are plotted. Filled squares and triangles denote the faulty-1 and faulty-2 batches
from the test data set, respectively. The red dashed lines are the classification thresholds selected as those with the highest
MCC.

In this case, the AUROC value corresponding to the ROC curves for faulty-1 and faulty-2 classes is
0.9946, showing similar performance than the faulty WICC-based classifier.

4.4. SIMCA-based classifier

A cross-validated PCA model was fitted from each of the aforementioned faulty-1 and faulty-2 training
data set. The first PCA model yielded 3 PCs, with R? and Q2 values of 84.8% and 72.2%, respectively. The
second one was defined by 4 PCs, a goodness of fit equal to 84.8% and a goodness of prediction equal to
67.6%.

The faulty batches from the test data set (24 batches for each of the faults) were projected onto the PCA
models to classify them into their correct model. A Cooman’s plot has been done (Figure 6), representing
the distances of the different training and test sets to the Fault-1 and Fault-2 models. Once these distances
were obtained, a threshold per PCA model was calculated by following the procedure explained in Section
3 (classification thresholds for Fault-1 and Fault-2 PCA models are 316.45 and 1763.3, respectively). Note
that as happened in PLSDA-based classifier, both models are able to clearly distinguish faulty-1 and faulty-2
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batches, both those corresponding to the training and the test data sets, since their corresponding distances
to the model of different fault classes are large.

Again, accuracy was measured estimating the area under the ROC curve designed for each one of classes.
The AUROC value of the ROC curves associated to faulty-1 and faulty-2 class is 0.9946, denoting a good
performance for classification.

5. Conclusions

In this paper, the use of the warping information obtained from the RGTW-based batch synchronization
both for process monitoring and for supervised fault classification is addressed.

A unsupervised control chart based on the warping profiles from NOC batches (NOC-WICC) is proposed
as a complementary tool to the Hotelling-72? and SPE control charts for end-of-batch and real-time batch
process monitoring. In the case of process faults are fingerprinted in the warping profiles, this chart can be
useful to detect their occurrence in the process. Nevertheless, the NOC-WICC may not notably improve
the performance of the traditional multivariate Shewhart control charts. This improvement is subject to
different factors, such as the nature of the process or the influence of the fault in the process phases, among
others. For subtle changes (ramps, small step changes, etc.) detection, memory control charts, such as
EWMA or CUSUM, should be used.

When a rich faulty database is available, warping information can be used to build the so-called supervised
warping information-based control charts (faulty WICC) or to fit classification models using supervised
chemometric tools. Although in this paper simple and widely used tools such as PLSDA and SIMCA have
been used, other classification techniques, such as Support Vector Machines [23], Linear and Quadratic
Discriminant Analysis (LDA & QDA) [24], and KNN [25], could be taken into consideration, among others.
In this paper, the three approaches studied showed good classification performance in terms of the area
under the ROC) curve (the so-called AUROC). The use of the faulty-WICC-based classifiers depends much
on the type of fault -i.e. if faults have characteristic fingerprints in their corresponding warping profiles at
specific time periods that are different from the rest. The more different the warping profiles from faulty
batches, the better the accuracy of the classifier. In contrast, PLSDA and SIMCA-based classifiers are more
accurate in fault classification when no clear differences among warping profiles are found.

In this study, using the warping profiles derived from the aRGTW-based synchronization has been enough
to design the classifiers with good prediction performance. In cases that the warping information belonging
to different faulty batches does not show clear different patterns, the use of the raw batch trajectories jointly
with the warping profiles for fault classification is suggested.
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