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We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction

of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar

morphology. Besides the height controlled quantum dots, we observe nanodisks formation.

Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling

between quantum dots and nanodisks and demonstrate the high optical properties of the individual

quantum dots, despite the processing steps needed for height control. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4821901]

Nanotechnologies are of great interest for classical

and quantum optoelectronics and photonic applications.1

Semiconductor quantum dots (QDs) are nowadays the main

building blocks for innovative and high performances optoe-

lectronic devices, such as lasers, light emitting diodes,

visual displays, and photovoltaic solar cells.1 Solid state

quantum light sources, such as single photon or entangled

photon pair emitters, can be also achieved by exploiting the

exciton and biexciton cascade in individual QDs.2 In all

these applications the control of the size and shape of the

nanostructures is of great importance for the tailoring of the

device optical properties. In particular it has been recently

pointed out that the near infrared and red emission is a cen-

tral issue for hybrid quantum network based on solid state

qu-bits and cold Rb atoms: such spectral region can be eas-

ily targeted by GaAs/AlGaAs QDs grown by droplet epitaxy

(DE).3–5

A further advantage of GaAs/AlGaAs QDs is the

absence of strain in the QD layers which avoids changes in

the QD morphology and composition after the capping pro-

cedure.6 The strain-free GaAs/AlGaAs nanostructures can be

tailored in many different shapes, from QDs to multiple

rings, by small variations of the growth parameters.7–10 This

is made possible owing to the DE growth method, which

allows for the fine control of the kinetics of the transforma-

tion from nanoscale metal droplets to III–V nanocrystals.5

However, typical DE-QD emission spectra show quite large,

inhomogeneously broadened, bands in the 60–100 meV

range, which are the outcome of the initial size dispersion of

the droplet, from which the QDs are formed, and of the com-

plex crystallization dynamics.11,12 Recently a morphological

control of the QD heights has been proposed by using a thin

AlGaAs capping layer and in situ annealing,13 with the flat-

tening of the top of the QDs, leading to the reduction of the

inhomogeneous emission bandwidth from a large ensemble

of high density QDs with superior uniformity; this property

has been exploited for building laser diodes.

Despite the fundamental and applicative relevance of

the technique for the formation of height-controlled QDs,

very little is known either on the optical quality of the in situ
annealed QDs or on the role of the GaAs removed by anneal-

ing. In this contribution we exploit time resolved and spa-

tially resolved micro photoluminescence to establish the

optical properties of the individual QDs after the height con-

trol process and to address the effects of GaAs diffusion

from the top of the QDs as a consequence of the cut of the

QD top. We will show that the optical quality of the QDs is

quite high and that the cut of the QD top results in the forma-

tion of families of nanodisks (NDs) with different heights.

The study of the recombination kinetics and spatial localiza-

tion of the QDs and NDs emission demonstrates that the

different nanostructures are not electronically coupled.

Samples were grown on semi-insulating GaAs(001)

substrates by molecular beam epitaxy and characterized in
situ by reflection high energy electron diffraction (RHEED)

and ex situ by atomic force microscopy (AFM). AFM meas-

urements were performed in tapping mode using ultra-sharp

tips with a 2 nm radius. The growth of high-quality morphol-

ogy controlled GaAs QDs by DE consists of several steps:

(i) deposition of metallic Ga droplets; (ii) crystallization of

the Ga droplets into GaAs QDs via of the As flux supply

and, (iii) deposition of a thin AlGaAs capping layer followed

by a high-temperature annealing. The effectiveness of each

of these processes is discussed later. After the growth of

500 nm GaAs buffer layer and 150 nm Al0.3Ga0.7As layer at

580 �C, the substrate temperature was lowered to 350 �C, the

As flux was closed, and the As pressure inside the chamber

decreased below 2� 10�9 Torr. c(4� 4) reconstruction, in

c(4� 4)a phase,14 was detected in the RHEED pattern. 1.1

monolayers (MLs) of Ga were then deposited to form Ga

droplets at 0.07 ML s�1. The formation of droplets on the

surface was checked by AFM. The Ga droplet density was

5� 108 cm�2. The Ga droplets were crystallized into GaAs

islands by means of an As4 flux of 5� 10�5 Torr at the

a)Present address: Instituto de Ciencia de los Materiales, Universidad de
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substrate temperature of 150 �C. After crystallization, the

average dot radius was 25 nm and the height 10 nm.

Subsequently, the QDs were annealed at 400 �C for 10 min

under an As4 flux of 6� 10�6 Torr without capping. This

step, while strongly improving the QD optical quality,15 only

slightly influences the dot shape, reducing the dot height and

increasing the dot anisotropy.16 The QDs were then covered

with 4 nm Al0.3Ga0.7As layer grown by migration enhanced

epitaxy.17 A second annealing step was performed at 620 �C
and 6� 10�6 Torr of As for 20 min to induce a selective

mass redistribution at the top of the QDs.13 Typical AFM

maps of the QDs partially covered with 4 nm of AlGaAs is

shown in Figure 1 before (Figure 1(a)) and after (Figure

1(b)) 10 min of annealing at 620 �C. The surface of the sam-

ple, after the 620 �C annealing step, is flat (0.7 nm RMS),

with no visible hills or holes marking the position of the par-

tially covered QDs before annealing. Finally, the QDs were

capped with a 100 nm Al0.3Ga0.7As grown at 580 �C and

10 nm GaAs. Post growth ex situ annealing at 800 �C for

4 min is used to improve the optical quality of the QDs.

Photoluminescence (PL) measurements were performed

by keeping the sample placed in a cold-finger cryostat to

control the temperature. Different excitation conditions

were used: continuous wave measurements were performed

by a frequency-doubled Nd-yttrium aluminium garnet

laser kexc¼ 532 nm, and time resolved experiments were

performed exciting the sample with the second harmonic

kexc¼ 400 nm of a mode-locked Ti:sapphire laser pumped by

a continuous wave Arþ laser providing 1.2-ps pulses at a

repetition rate of 82 MHz. In case of time resolved PL, the

signal was dispersed through a 30-cm flat-field monochroma-

tor and detected by a streak camera apparatus with a 3-ps

time resolution. In the microPL setup, the laser spot size on

the sample was of the order of 3 lm. In detection we used

a confocal setup for l-PL measurements (with a single

mode fiber in detection acting as a pinhole, main objective

100�, NA¼ 0.7) leading to a lateral resolution of about

1.0 lm. The collected PL was dispersed by a monochromator

and detected by a silicon charge coupled device camera.

Let us start with a schematic of the different possible

QD morphology during the in situ annealing, as shown in

Figures 1(c)–1(f). After the droplet formation and the QD

crystallization we end up with a large variety of QD heights,

related to the Ga size dispersion (around 30% in the present

sample). The capping with 4 nm thick layer of AlGaAs,

while entirely covering the surface, is expected to be thinner

on the convex QD top, due to capillarity effects.18 This

divides the dot volume in two parts: (1) the bottom part,

completely buried within the AlGaAs layer covering the sur-

face and (2) the top part, covered by a very thin AlGaAs

layer, protruding over the surface (Figs. 1(a) and 1(c)).

During the in situ annealing the protruding top of the QDs

tends to diffuse on the AlGaAs layers, leading either to a

thin quantum well (QW) on the top of the decapped QDs

(Fig. 1(d)) or to a series of nanostructures not connected to

the QDs (Fig. 1(e)) or, finally, to a ND on the top of the QDs

which may lead to an electronically coupled mushroom like

nanostructure (Fig. 1(f)). The expected composition of the

diffusion related structures is GaAlAs with an extremely low

Al content. The aim of this paper is twofold, on one side we

would like to assess the optical quality of the individual QDs

after the cut of their top, on the other side we intend to

understand which type of nanostructure is fabricated with the

height control process.

Figure 2(a) shows typical macroPL spectra for different

temperatures in the range 10 K–200 K. Referring to the spec-

trum at T¼ 10 K, we observe the QDs PL band at 1.72 eV

with a full width at half maximum of 30 meV. In fact the

PL-FWHM value is quite small if compared with DE QDs

growth without the height control process, where the FWHM

can be as large as 100 meV. Note also that the QD emission

at 1.72 eV means a confinement energy of 200 meV in the

GaAs QDs. Due to the quadratic dependence of the confine-

ment energy on the QD size, we can estimate a variance of

the QD size of the order of 7%, denoting the superior uni-

formity of the QD size distribution. The emission at 1.93 eV

is clearly associated with the excitonic recombination in the

AlGaAs layer. Finally the multistructured PL spectrum

between 1.8 and 1.9 eV is due to the additional nanostruc-

tures generated by the diffusion of the excess GaAs after the

cut of the QD height during the in situ annealing. The line-

shape of this PL spectrum is typical of nanostructures (either

QWs or NDs) with different number of GaAs MLs in height

as, for example, observed in QWs after growth interruption

at the interfaces. From effective mass model we attribute the

peak at 1.82 eV to 5MLs, the peak at 1.85 eV to 4 MLs, and

the peak at 1.88 eV to 3 MLs.

FIG. 1. (a) and (b) AFM images of QDs partially covered with 4 nm of

AlGaAs. (a) Surface before annealing, (b) surface after 10 min of annealing

at 620 �C. (c)–(f) Schematic of the QDs height control process. (c) Picture of

a QDs which is cover by the 4 nm height AlGaAs layer. (d)–(f) Different

possible pictures of the distribution of the GaAs excess: (d) formation of a

thin QW, (e) formation of disconnected nanodisks, (f) formation of a mush-

room like QDs.
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The spectra change when increasing the temperature;

besides, the gap shrinking Figure 2(a) shows that the PL

quenching of the different spectral component turns out to be

activated at lower temperatures—the higher is the emission

energy. The Arrenhius plots in Figure 2(b) refer to the QDs

(green diamonds) and to the two most intense additional

spectral contributions corresponding to 5 MLs (blue trian-

gles) and 4 MLs (red circles). The fits of the data with two

thermally activated nonradiative channels give a first activa-

tion energy of 30 meV common to all the spectral contribu-

tions, likely due to the quenching of the carrier capture

efficiency in the nanostructures. The second activation

energy is different in the three emissions, and it is in quite

good agreement with a carrier escape towards the AlGaAs

barrier states. These data point out the lack of thermalization

between the states of the different nanostructures.

Additional information comes out from the time

resolved PL analysis; typical decays curves are reported in

Figure 3 for the QDs, the additional nanostructures and the

AlGaAs layers. The most important feature is that the PL

rise time of the QDs and the additional nanostructures is

similar and in the range of 30 ps while the rise time of the

AlGaAs recombination is much faster and almost resolution

limited (below 10 ps). In addition the decay time of the

AlGaAs recombination is also of the order of 30 ps, denoting

that the carrier lifetime in the AlGaAs layer is due to the car-

rier capture by the QDs and additional nanostructures. The

decay time of the QD-PL is of the order of 350 ps while the

emission from the additional nanostructures is a bit faster

with a recombination time of the order of 300 ps. Clearly the

picture of a recombination cascade from the higher energy

states of the additional nanostructures towards the lower

energy states of the QDs is washed out by the observed

recombination kinetics. This result, in addition with the lack

of thermalization, clearly excludes the hypothesis of a QW

(Fig. 1(d)) created with the excess GaAs. We therefore

expect that the additional nanostructures are likely NDs with

FIG. 2. (a) MacroPL spectra at different temperatures. (b) Arrhenius plots

for the QDs (green diamonds), the 5 MLs (blue triangles), and the 4 MLs

(red circles).

FIG. 3. Decay spectra of the different emission lines. The values of the

decay times as obtained from exponential fits are also given.

FIG. 4. Comparison between the macroPL (top line) and two microPL (bot-

tom lines) spectra. In microPL we usually resolved few individuals QDs and

NDs.
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few monolayer of GaAs in height. In addition our data also

tend to exclude any electronic coupling between the QDs

and the NDs.

The measured lifetime and the high brightness of the

QD PL denote the lack of relevant non radiative channels

and therefore assess an overall good optical quality of the

sample. However in order to get detailed information on the

optical properties of the individual nanostructures we per-

formed a series of microPL measurements. The comparison

between the macroPL and two different microPL spectra is

reported in Figure 4. Within the spatial resolution of our

confocal microscope we can resolve the emission from few

individual nanostructures, both in the QDs and in the NDs

region and in both cases, sharp and intense emission lines

are resolved. The spectral width of the QD lines are, in a sta-

tistics of 15 different cases, below our resolution limit which

is of the order of 250 leV. This denotes that the process

involved in the height control of the quantum dots is

not detrimental for the quality of the DE QDs in terms of

impurities contamination and consequent large spectral

diffusion. It is worth remembering that one of the possible

disadvantages of the DE growth is that low temperature

growth tends to produce a quite large spectral diffusion in

the individual QD emission.

A typical spatial map of the microPL spectra is reported

in Figure 5 where the different spectral regions are marked

in the top of the map. Interestingly the emission from the

AlGaAs excitonic recombination is completely delocalized

over the whole spatial scanning. On the contrary both the

NDs and the QD emissions are spatially localized with a

spatial extension of the order of 1 lm which stems from our

experimental resolution. The most striking aspect of these

data is the fact that the QD and ND emission are spatially

separated. This means that the real picture for the morpho-

logical configuration of the sample after the height control

process is given by Fig. 1(e). The absence of overlap

between the QDs and NDs completely explain the lack of

thermalization and population transfer during the recombina-

tion kinetics.

In conclusion we have performed a complete characteri-

zation of the optical properties of QD samples grown with

height control techniques. We demonstrate that the diffusion

of the GaAs excess in large QDs during the in situ annealing

leads to the formation of NDs in the layer above the QDs.

These NDs are spatially separated by the QDs and are not

involved in the QD carrier capture or in the carrier thermal-

ization and recombination kinetics. Finally we have assessed

that the protocol for the QD height control is not detrimental

for the QD optical quality and therefore can be used to

improve the QD homogeneity not only in the design of

standard optoelectronic devices such as laser but also in

application to quantum photonics.
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