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ABSTRACT 

It is well known that cavitation phenomenon in diesel injector nozzles has a strong 

influence on the internal flow during the injection process and spray development. 

However, its influence on the flow during needle opening and closing remains still 

unclear due to the huge difficulties related to performing experiments at partial needle 

lifts. 

In this paper, an extended computational study has been performed in a multi-hole 

nozzle modeling ten different fixed needle lifts. The internal flow has been modeled 

with a continuum nozzle flow model that considers the cavitating flow as a 

homogeneous mixture of liquid and vapour. Due to high Reynolds numbers, turbulence 

effects have been taken into account by RANS methods using a RNG k-ε model. 

Firstly, the code has been validated against experimental data at full needle lift 

conditions in terms of mass flow, momentum flux and effective velocity, showing a 

fairly good agreement with experimental results. 

Once the code has been validated, it has been possible to study in depth the internal 

nozzle flow and its characteristics at the outlet at different partial needle lifts. 

Nevertheless, not only the main flow features have been explained, but also the 

cavitation appearance and the turbulence development, which present huge differences 

between the different needle lifts simulated. 
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LIST OF NOTATION 

 

NOMENCLATURE 

a  speed of sound 

A  area 

Aeff  outlet effective area 

Ao  outlet area 

Cμ  constant for turbulent viscosity calculation 

Cε1  constant for ε transport equation calculation 

Cε2  constant for ε transport equation calculation 

Ca  area coefficient 

Cd  discharge coefficient 

Cv  velocity coefficient 

Deff  effective diameter 

Di  diameter at the orifice inlet 

Do  diameter at the orifice outlet 

k  turbulent kinetic energy 

k-factor  orifice conicity factor 

L  orifice length 

mf  mass flow 

Mf   momentum flux 

p  pressure 

Pback  discharge back pressure 

Pinj  injection pressure 

Pk  production of turbulent kinetic energy 

psat  vaporisation pressure 
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r  rounding radius at the inlet orifice 

t  time 

u  velocity  

ū  velocity vector 

ueff  effective velocity 

uth  theoretical velocity 

 

GREEK SYMBOLS: 

  vapour mass fraction 

ε  turbulence dissipation rate 

ΔP  pressure drop, ΔP=Pinj -Pback 

µ  fluid viscosity 

µl  liquid viscosity 

µT  turbulent viscosity 

µv  vapour viscosity 

σε  constant for ε transport equation calculation 

σk  constant for k transport equation calculation 

ρ  fluid density 

ρl  liquid density 

ρlsat  liquid density at saturation 

ρl
o
  liquid density at a given temperature condition 

ρvsat   vapour density at saturation  

ρv  vapour density 

Ψ  fluid compressibility 

Ψl  liquid compressibility 
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Ψv  vapour compressibility 

 

1. INTRODUCTION 

Nowadays, the increasing concern for the environment protection has made the 

reduction of the pollutants and fuel consumption become one of the most important 

challenges in diesel engines field. Many of the improvements achieved to reduce the 

emissions of these engines are due thanks to the advances in fuel injection systems. In 

this sense, the design of the injection systems and the operating conditions are 

fundamental on the internal nozzle flow and spray development, and therefore in the air-

fuel mixing and combustion processes [1], [2], [3], [4], [5], [6], [7], [8]. 

In order to improve the atomization of the sprays and the mixing process, modern diesel 

engines work at high injection pressures. Nevertheless, the use of injection pressures up 

to 180 MPa favours the appearance of the cavitation phenomenon in diesel injector 

nozzles. This phenomenon takes place when the fuel at high velocity flows through a 

contraction like a nozzle and the pressure falls below the saturation pressure. Then, the 

liquid starts to cavitate, and as a consequence a local change of state from liquid to 

vapour occurs. 

Cavitation generates vapour bubbles within the flow, increasing the maximum velocity 

in the core of the discharge orifices. This velocity increases for two mainly reasons. On 

one hand, if there is vapour along the orifice wall, the liquid will have a slip boundary 

condition [3]. On the other hand, when the fluid is cavitating it cannot fill the entire 

channel, and so the effective channel diameter is reduced compared to the geometrical 

one [3], [9]. 
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Despite the fact that cavitation could be not desirable in pumps or valves since it could 

cause important damages, in diesel injectors cavitation leads to an increase in the spray 

cone angle, which is expected to improve the air-fuel mixing process [10], [11], [12]. 

As shown by several studies, cavitation is strongly influenced by the internal nozzle 

characteristics [10], [13]. In this sense, it seems clear that the injection process may 

affect cavitation development [14], [15], [16] since the geometry upstream the orifices 

changes during the opening and closing of the injector as a consequence of the variable 

needle lift position. 

Unfortunately, the extremely small geometry of the holes strongly difficults 

experimental studies of the internal nozzle flow. One alternative is the use of large scale 

models, although scale effects have been recognized to be very important [16]. For 

these reasons, the use of CFD tools has increased in the last years making it possible to 

obtain unlimited level of details about the behavior of the flow. 

Cavitation modeling could be performed considering two different approaches: two 

fluid flow models [18] or continuum flow models [19], [20], [21], [22]. The first ones 

treat the liquid and vapour phases separately, whereas the continuum nozzle flow 

models (or homogeneous equilibrium models) consider the liquid and vapour as a 

homogeneous mixture. In these models, an equation of state which relates pressure and 

density (normally called barotropic equation) allows the calculation of the growth of 

cavitation. 

As demonstrated by a lot of experimental works, turbulence plays a major role on the 

flow features [23], [24], [25]. Hence, CFD models must take into account the turbulence 

effects to accurately reproduce the behavior of the flow. The Direct Numerical 

Simulation (DNS) approach is the most accurate methodology for turbulent flow 

prediction, as it directly solves the governing equations on a very fine grid without 
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modeling. However, the computational cost needed to perform a DNS makes it 

unfeasible to use this approach for engineering applications. The Large Eddy 

Simulation technique (LES) is an alternative to simulate turbulent flows [26], [27], [28] 

which only resolves those eddies that are larger than the grid size and models the rest of 

them (subgrid scale). This technique can be considered as a bridge between DNS and 

the cheapest method, Reynolds Averaged Navier-Stokes (RANS). The RANS approach 

solves the Reynolds-averaged Navier-Stokes equations with models for turbulent 

quantities, decomposing the fluid properties into averaged and fluctuating components.  

In the current work, a multiphase compressible code together with a Reynolds Averaged 

Navier-Stokes approach has been used to study the effects of the needle movement on 

the cavitation development and the flow features in a real multi-hole diesel nozzle. 

Since experimental tests at different fixed partial lifts are not possibly accomplished in 

the second generation solenoid Bosch injector used, the code has been validated in 

terms of mass flow, momentum flux and effective velocity only at fully needle lift 

conditions (250 μm).  

The simulations have been performed at different needle lifts, keeping the injection 

pressure constant at 160 MPa and varying the backpressure from 3 to 50 MPa. They 

have allowed not only a complete analysis of the cavitation inception and development, 

but also an in-depth study of the mass flow choking induced by the cavitation 

phenomenon [29], [30],  [31], [32], [33], momentum flux evolution and turbulence 

development for each needle position. 

For these purposes, the present paper is organized in the following way. Firstly, a brief 

explanation of the equations used to model both cavitation and turbulence is made. 

Secondly, a definition of the nozzle geometry and the calculated simulations is done in 

section 3. The validation of the code at fully needle lift conditions and the main results 
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about the influence of the needle position obtained from the computational study have 

been included in sections 4 and 5, respectively. Finally, the most important conclusions 

from this study have been presented in section 6. 

 

2. DESCRIPTION OF THE CFD APPROACH 

2.1 Cavitation modeling 

As stated in the introduction, there are two main methods for modeling cavitation 

phenomena, being a homogeneous equilibrium model with a barotropic equation of 

state the most suitable method due to the high pressures and velocities that take place in 

diesel injector nozzles [21], [22], [33], [34]. 

The code used in the present work, implemented in OpenFOAM ® [35], assumes that 

liquid and vapour are always perfectly mixed in each cell, and takes into account the 

compressibility of the liquid and vapour phases. 

The barotropic equation of state used in this model relates pressure and density:  

Dt

Dp

Dt

D



                                                               (1) 

where is the compressibility of the mixture, defined as the inverse of the squared 

speed of sound:  

 
2

1

a
                                             (2) 

The barotropic equation of state (equation (1)) should be consistent with the liquid and 

vapour equations of state both at the limits when there is pure liquid or vapour, and also 

at intermediate states when there is a mixture of them.  

The amount of vapour in the fluid is calculated with the  parameter, which is defined in 

equation (3). As it can be seen, the  parameter is 0 if the flow is not cavitating (only 

liquid phase), whereas  =1 for fully cavitating flows (only vapour phase). 
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lsatvsat

lsat









                                       (3) 

where    satvvsat p                                                      (4) 

The density of the mixture is calculated taking into account the amount of vapour in the 

fluid () together with a correction term based on the pressure (mixture´s equilibrium 

equation of state): 

pppp satlvlsatlv ·]·))·1(·[()·1()()1( 0                                              

(5) 

with  satlsatll p ,

0                                                   (6) 

With regard to the compressibility of the mixture, it is modeled by a simple linear 

model:    

lv  )1(                                                 (7) 

with Ψl  and Ψv equal to the compressibility of the liquid and vapour, respectively.  

Despite the fact that there are models which describe the compressibility of the mixture 

in a more physical way (Wallis or Chung), a linear model was chosen based on the 

convergence of the results and their stability. 

As in the case of the compressibility, it is possible to obtain the viscosity of the mixture 

with a linear model in a similar way: 

lv   )1(                                               (8) 

The methodology followed by the solver starts solving the continuity equation for  

(equation (9)): 

0



)u(

t





                                      (9) 

The value of density obtained is used to determine preliminary values for γ and Ψ by 

means of equation (3) and equation (7), and also to solve the momentum equation 
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(equation (10)), which is used to get the matrices used to calculate the pressure-free 

velocity, u: 

)()
2

(
)(

up
uu

t

u 









                                                      (10) 

Then, an iterative PISO algorithm is used to solve for p and correct the velocity to 

achieve continuity. The equation solved for the PISO loop is the continuity equation 

transformed into a pressure equation by use of the equation of state (equation (5)):  

 00 













)u(

t
p

t
)p)((

t

)p(
satsatvll








                        (11) 

Once continuity has been reached, the properties , ρ and Ψ are updated by means of 

equations (3), (5) and (7), respectively. These equations are taken into account to solve 

the momentum equation again and so on, repeating the algorithm until convergence. 

A preliminary study in order to quantify the influence of the numerical schemes chosen 

for each term of the equations was done. Its objective was to analyze how the different 

numerical schemes affect the solution in terms of convergence, stability and accuracy of 

the simulation results. As an example, Figure 1 shows the huge differences found in the 

mass flow of a nozzle (different from the nozzle used in the present paper) changing 

only the numerical scheme of the gradient terms. As a conclusion of this study, a Gauss 

linear scheme was chosen. 

 

2.2 Turbulence modeling 

The introduction of the turbulence effects in the code (which was validated in [33], [34] 

but neglecting the turbulence effects) has been done by RANS methods through a RNG 

k-ε model. This method solves the Reynolds-averaged Navier Stokes equations with 

models for turbulent quantities, decomposing the fluid properties into averaged and 

fluctuating components. The RNG k-ε model is based on the Boussinesq hypothesis and 
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models the Reynolds stresses using an eddy or turbulent viscosity defined in equation 

(14). Then, it solves a transport equation for k (equation (15)) and ε (equation (16)): 
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where Cμ = 0.0845, Cε1 = 1.42, Cε2 = 1.68 and σk = σε = 0.72. 

 

3.  NUMERICAL SIMULATIONS DESCRIPTION 

3.1 Nozzle geometry and calculation set-up 

A six-hole microsac nozzle, mounted in a second generation solenoid Bosch injector, 

was used for the experimental and computational study. The internal geometry of the 

nozzle has been extracted using the methodology described by Macián et al.[36]. This 

methodology is based on the use of special silicone moulds of the nozzle. With the help 

of a scanning electron microscope, pictures of the moulds are taken and the nozzle 

geometry can be analyzed using a CAD software.  

Table 1 depicts the main values of the six orifices and the standard deviation for all the 

geometrical parameters obtained by means of this methodology. As it is known, the 

inlet curvature radius together with the k-factor (which evaluates the degree of conicity 

relating the inlet and outlet diameters as shown by equation (17)) are two of the most 

important parameters inducing nozzles to cavitate [3], [10], [13].  Indeed, attending to 

its k-factor value (k-factor = 0) the nozzle studied is cylindrical and so, prone to cavitate 

[10]. 
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m

mDmD
factork oi





10

][][ 
                                                                                             (17) 

Once the internal geometry of the nozzle is known, it is possible to model it for CFD 

calculations. Figure 2 shows the modeled geometry at full needle lift conditions (250 

µm), which will be used to make the comparison with the experimental data at 

stabilized flow conditions [37]. 

The geometries modeled, which represent only one of the six orifices of the nozzle to 

speed up the calculations (all the orifices are similar), correspond to the volume 

occupied by the fluid in the nozzle, including the needle and nozzle wall, the sac and the 

orifice.  

To study the influence of the needle position on the internal flow and cavitation 

appearance in depth, ten additional geometries have also been modeled with different 

needle lifts: 10, 20, 30, 40, 50, 75, 100, 150, 200 and 250 μm. These geometries have 

been discretized in hexahedral cells keeping a partly structured grid that follows the 

direction of the flow (improving the stability and convergence rate [13]) and a small 

unstructured zone just after the orifice inlet. A previous mesh sensitivity study at full 

needle lift made it possible to choose the most appropriate mesh fineness, showing that 

the cell size in the hole should vary from 9 µm in the orifice core (D/18.9) to a 

minimum value of 1.15 µm in the near-wall region. For the rest of the cells in the nozzle 

the cell size should be fixed to 22.5 µm. With this cell size, the final mesh has around 

84000 cells. The geometries that belonged to other partial lifts were meshed with the 

same cell size at the orifice and varying the cell size of the sac and the zone between the 

needle wall and nozzle wall, so that the ratio cell size/needle lift remained constant. 

The grid infrastructure of the Spanish National Grid Initiative (es-NGI) [38] was used to 

perform the computation of the simulations. This grid infrastructure is part of the 

European Grid Initiative [39] that provides a stable Grid infrastructure for e-Science at 
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European level. The es-NGI is composed of 15 sites with more than 12,000 CPUs and 

300 TB of storage space. The calculations for this problem used a total of 34,668 CPU 

hours. 

The grid application has used a multi-parametric approach launching a total of 210 

independent simulations. The grid application consist in two parts: on one side, there is 

an application that is able to perform the simulation; on the other side the orchestrating 

application has been developed, being in charge of submitting all the simulations, 

monitoring their status, and recovering the result files from the grid storage to the local 

storage. Due to the long time needed to perform the simulations, this application used 

check-pointing techniques to make it possible to recover the computation in the last 

saved state in case of failure. 

3.2 Boundary conditions and fluid properties 

A suitable boundary conditions set-up is fundamental to ensure the convergence and the 

accuracy of the simulations. These boundary conditions have been implemented 

adjusting a fixed pressure inlet and a non slip condition for the velocity at the orifice 

walls. As far as the pressure outlet is concerned, a mean pressure condition has been 

used. This boundary condition keeps the mean desired value, allowing zones with very 

low pressures due to the presence of vapour bubbles into the flow. This boundary avoids 

the imposition of a rigorous pressure outlet condition that could affect the nature of the 

vapour structures developed. 

The pressure conditions used in the experimental test have been simulated, but a wide 

range of points at cavitating and non cavitating conditions have also been analyzed. 

These values can be seen in Table 2.  

With regard to fluid properties introduced in the calculations, the density and viscosity 

values were taken from the diesel fuel used in the experimental test (Repsol CEC RF-
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06-99) at 23ºC. The liquid compressibility was calculated from speed of sound 

measurements in diesel fuel and the vapour properties have been obtained from a 

similar fuel from Kärrholm et al. in [21], [22].  

 

4. VALIDATION OF THE CODE AT FULLY NEEDLE LIFT CONDITIONS 

4.1 Mass flow  

For validation purposes, several injection rate tests were carried out with an Injection 

Rate Discharge Curve Indicator commercial System, whose measuring principle is the 

Bosch method rate meter [40]. This device allows displaying and recording all the 

information related to the chronological sequence of an individual fuel injection. 

The injection rate tests were performed with a very large energizing time for four 

different backpressures (3, 5, 7 and 9 MPa), keeping the injection pressure constant at 

160 MPa.  

The averaged values of the mass flow profiles during the time in which the needle is 

fully open are plotted in Figure 3 (represented with triangles) together with the 

numerical simulations results for the needle lift 250 μm (represented with rhombus). 

These values have been represented as a function of the squared root of pressure drop, 

being the pressure drop the difference between the injection pressure and the back 

pressure. The fact that the mass flow is constant for all the pressure conditions indicates 

that the nozzle is cavitating [3], [10], [13], [33]. The errors between the experimental 

and numerical results displayed above each couple of symbols are always between 2 

and 5% approximately, which means a high degree of agreement with experimental 

data. 
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4.2 Momentum flux and effective velocity 

The same pressure conditions used in the mass flow experiments were tested to measure 

the spray momentum flux. The momentum test rig is based on a pressurized chamber 

with a calibrated piezo-electric sensor which measures the force of the spray injected, 

which is equivalent to the spray momentum flux. The position and the impact area of 

this sensor are chosen to ensure that the spray impact area is clearly smaller than the 

area of the sensor. Under this assumption, and due to the conservation of momentum in 

axial direction, the force measured by the sensor will be the same as the momentum flux 

at the hole outlet or at any other axial location, since the pressure inside the chamber is 

kept constant and surrounds the entire spray, and fuel deflected is perpendicular to the 

axis direction [3].  

The results of the momentum flux tests represented with triangles against CFD results 

can be seen on the left of Figure 4. Unlike mass flow results, the momentum flux 

increases with the pressure drop difference, showing that cavitation phenomenon does 

not induce momentum flux collapse, as R. Payri et al. [3] state. As can be seen from 

Figure 4, the deviation between the experimental values and momentum flux results 

predicted by the code at full needle lift for all the validated pressure conditions is less 

than 2%, showing the great ability of the code to reproduce the behavior of the flow. 

Once mass flow and momentum flux results have been obtained, it is possible to 

calculate the effective velocity at the outlet section, by means of equation (19): 

f

f

eff
m

M
u




                                                                                                                 (19)   

The effective velocity values as a function of the squared root of pressure drop have 

been plotted on the right of Figure 4. Obviously, despite the fact that the mass flow is 

constant for all the pressure conditions, the effective velocity continues increasing with 

the pressure drop due to the behavior of the momentum flux. For all the points 
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simulated, the code underestimates the effective velocity with a maximum deviation of 

5%.  Taking into account the mass flow, momentum flux and effective velocity 

validation, the code allows to accurately reproduce the behavior of the internal flow in 

diesel injector nozzles at cavitating conditions, predicting the flow features with high 

level of confidence. 

 

5. INFLUENCE OF THE NEEDLE LIFT -COMPUTATIONAL STUDY- 

5.1 High needle lift vs. low needle lift 

In order to perform a complete study about the influence of the needle lift on the 

internal flow and cavitation phenomenon, 10 different lift levels and 21 different 

backpressures for each of them have been simulated at a fixed injection pressure (160 

MPa). 

In order to facilitate the interpretation of the huge amount of data obtained from the 

simulations, the presentation of the results has firstly been done comparing a typical 

case at high needle lift (250 µm) against another one at low needle lift (30 µm). Once 

the differences found between both cases are analyzed and explained, the analysis of the 

internal flow at other needle lifts will be addressed. 

5.1.1. Mass flow & cavitation appearance 

Figure 5 shows the evolution of the mass flow for all the simulated pressure conditions, 

together with the vapour field for both needle lifts (30 µm and 250 µm) at Pback = 47.5 

MPa and Pback = 7 MPa.  

As can be seen, for the case of 250 µm, the mass flow increases with the square root of 

pressure drop until it reaches critical cavitation conditions at Pback = 350 MPa ( P = 

11.18 MPa), characterized by the beginning of the mass flow collapse [3], [10], [31], 
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[32], [33], [37] . From this point, the mass flow is always choked, remaining constant in 

spite of the diminution of the backpressure up to 3 MPa ( P = 12.53 MPa).  

From the maximum backpressure (Pback = 50 MPa) to backpressures higher than that of 

the critical cavitation conditions, the nozzle does not cavitate and therefore there is not 

any vapour bubble in the hole. Nevertheless, just before critical cavitation conditions 

the nozzles starts cavitating at the inlet radius [29], [41] and vapor grows along the 

upper surface of the orifice from the inlet corner as the backpressure decreases (see the 

right upper vapour field shown in Figure 5). 

As far as the low needle lift is concerned and as it can be seen in the figure, the mass 

flow rate remains collapsed for all the pressure conditions simulated, being a 

consequence of the presence of cavitation in the area upstream the inlet hole section, 

where the needle closes against the nozzle wall blocking the exit of fuel. 

Therefore, the mass flow collapse at high needle lift positions occurs at the orifice inlet, 

whereas for low needle lifts the critical section is placed at the needle closing. 

However, attending to the vapour field showed on the right part of Figure 5 

(corresponding to Pback = 7 MPa) it is possible to observe more differences in the vapour 

phase distribution of the nozzle orifice between both lifts. For the needle lift of 250 µm, 

at cavitating conditions, the vapour flows and grows along the upper surface of the 

orifice unchanging its appearance once it reaches the hole exit, whereas for a low needle 

lift the vapour appears in the needle seat and also in the lower part of the orifice for the 

lowest backpressures (10, 9, 7, 5 and 3 MPa). Similar vapour phase distributions have 

been observed by Som et al.[42]. 

Whether the nozzle cavitates along the upper or the lower part of the orifice depends on 

the path followed by the fluid through the nozzle. As an example of these differences 
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Figure 6 depicts the streamlines followed by some fluid particles for 250 μm and 30 μm, 

together with the vapour phase field. 

As shown in Figure 6, the direction of the fluid in the nozzle is completely different 

depending on the needle position. For the highest lift, fuel flows taking up all the 

volume between the walls of the needle and the nozzle before entering the hole. Once 

the flow reaches the orifice, due to the strong change of direction and cross section, the 

boundary layer tends to separate from the upper wall of the orifice and a vena contracta 

is developed. Due to the acceleration of the fluid in the volume between the vena 

contracta and the upper wall of the hole, the pressure suffers a considerable drop, 

favouring the cavitation phenomenon. 

Nevertheless, for the low lift the fluid tends to flow closer to the needle wall, being 

accelerated in the needle closing due to the contraction, arriving to the sac and going 

into the orifice through the bottom part of the hole. As a consequence, the boundary 

layer tends to separate again, but in this case from the lower wall of the orifice. This fact 

accelerates the fluid between the established vena contracta and the orifice wall and 

forces a strong pressure decrease (and therefore the phase change from liquid to 

vapour).  

The evolution of the pressure in the nozzle for both needle lifts can be seen in Figure 7, 

which analyzes the path followed by the fluid before reaching the orifice. As can be 

seen, for the highest needle lift, the pressure keeps almost constant along the nozzle 

before entering the discharge orifice. Nevertheless, for a low needle lift, the pressure 

suffers a strong drop in the critical section, the needle closing (section 10 in the figure), 

where cavitation takes place. From this section, the fuel pressure rises until going into 

the orifice through its bottom part. 
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5.1.2 Momentum flux and effective velocity 

As it happened for the mass flow, the behaviour of the internal flow in terms of 

momentum flux presents huge differences according to the needle position (see Figure 

8). 

For a high needle lift (250 m), momentum flux increases with the pressure drop. 

However, unlike the mass flow results, momentum flux does not suffer any collapse 

with cavitation development, only decreasing its slope once the critical cavitation 

conditions are reached [3].    

As stated before, the behaviour for a low needle lift (30m) strongly differs from high 

needle lifts, since momentum flux keeps constant while vapour is only located in the 

area where the needle closes against the nozzle wall. Nevertheless, when backpressure 

decreases and vapour bubbles appear in the bottom part of the orifice (Pback = 10 MPa), 

momentum flux starts rising as a consequence of the viscosity reduction in the zone 

occupied by the vapour phase (vapour viscosity is almost six hundred times lower than 

liquid vapour). 

This viscosity reduction of the flow (which reduces also the friction losses in the 

channel) and the reduction of the effective diameter due to the presence of vapour 

bubbles also force the increase in velocity at the outlet section [3] seen in Figure 8. The 

same reason justifies the velocity rise seen at 250 m between P = 11.18 MPa and 

P = 12.53 MPa. 

Indeed, if the effective velocity is calculated by means of equation (19) and plotted as a 

function of pressure drop (right plot of Figure 8) it is quite easy to appreciate the 

velocity rise when there is vapour in the nozzle orifice. 
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5.1.3 Flow coefficients 

Flow coefficients behaviour can help to analyze the behaviour of the flow in terms of 

mass flow, effective velocity and effective section of injection. 

The first dimensionless parameter is the discharge coefficient Cd, which is defined as 

the mass flow obtained by CFD with regard to the maximum theoretical mass flow 

(equation (20)): 
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The discharge coefficient plotted in Figure 9 shows lower values of Cd for the low 

needle lift as a consequence of the losses located mainly near the needle closing 

(previously seen in Figure 7) and the differences in the way the flow goes into the 

orifice. Furthermore, attending to the high needle lift case (250 µm) the discharge 

coefficient seems to keep constant while there are no vapour bubbles, changing its 

behavior as soon as cavitation phenomenon appears [3]. This change can be noticeable 

not only at high lift from critical cavitations conditions, but also at low needle lifts 

where due to the presence of vapour (in the needle closing and/or the orifice) the 

discharge coefficient decreases as the back pressure decreases for all the pressure 

conditions. This Cd drop is justified by the mass flow collapse induced by cavitation 

phenomenon as seen in section 5.1.1.  

The second non-dimensional flow parameter is the velocity coefficient, Cv, which 

relates the effective velocity extracted from numerical simulations to the maximum 

theoretical Bernoulli velocity. It is calculated using equation (21).  
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As expected regarding the momentum flux results, the velocity coefficient remains 

constant until critical cavitation conditions. According to experimental results obtained 

by other authors [3], [10] once vapour appears in the orifice the effective velocity and 

velocity coefficient experiment an important rise due to reduction of friction losses (as a 

consequence of the viscosity decrease) and effective diameter. 

For a low needle lift, such as 30 µm, the velocity coefficient slightly decreases as the 

backpressure decreases despite the fact that there is always vapour upstream the orifice.  

However, for the lowest backpressures, when vapour is also located in the orifice, Cv 

follows the same behavior of 250 µm at cavitating conditions, so it can be stated that the 

only presence of vapour bubbles inside the nozzle orifice induces to a velocity 

coefficient rise.  

The third flow coefficient, Ca, is used to evaluate the reduction of the effective area with 

regard to the geometric one due to the presence of vapour bubbles into the flow 

reaching the orifice outlet (equation (22)).  
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This parameter can also be extracted by combining equation (20) and equation (21): 
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This dimensionless coefficient has also been represented in Figure 9. Observing the 

plot, the area coefficient follows the expected behavior, since it remains constant with 

values near to 1 while there is no vapour in the nozzle orifice. When the discharge 

pressure is small enough to force the appearance of vapour bubbles in the orifice, the 

area coefficient decreases as a consequence of the arrival of bubbles to the exit section 
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(and the consequent reduction of liquid phase effective area) [3] and/or the flow 

separation from the wall. 

 

5.2 Evolution of the internal flow characteristics with the needle lift 

Once the typical behaviour of the flow at high and low needle lift positions is 

understood, the analysis of the internal flow at other needle lifts is done in this section. 

The upper left plot of Figure 10 shows the evolution of the mass flow for all the 

pressure conditions and needle lifts simulated.  As can be seen, from a needle lift of 10 

μm to 75 μm, the mass flow increases from very small values (≈1.2 g/s) to typical 

values of full needle lift conditions for this injector nozzle (48-52 g/s). Indeed, for 

needle lifts higher than 75μm, the mass flow remains invariable for all the simulated 

backpressures, showing a similar behavior for the lifts of 75, 100, 150, 200 and 250 μm.  

For all the needle positions higher or equal than 75 μm, the flow behavior is similar to 

that one seen in the previous section at 250 μm; whereas for the cases between 10 and 

50 the behavior is similar to the one obtained for 30 μm, where mass flow collapse is 

due to the presence of vapour bubbles in the needle closing.  

As it happened with the mass flow results, the momentum flux remains insensitive once 

the needle arrives to 75 μm, varying from near zero values for the lowest needle 

position, and increasing its value when the needle goes up (see the right plot of Figure 

10).  

Obviously, as the effective velocity and non dimensional coefficients (depicted in 

Figure 10 and 11, respectively) are calculated from mass flow and momentum flux 

results, these parameters follow the same trends, with a continuous increase up to 75 μm 

and keeping constant for any higher needle lift.   
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Finally, another interesting aspect to remark is the differences in terms of the pressure 

conditions needed to force cavitation to appear in the orifice. As stated before, the 

pressure drop at needle closing increases as the needle descends. Hence, differences in 

the cavitation field are expected at different needle positions for the same pressure 

conditions. For that purpose, a continuous line has been drawn in the velocity plot 

included in Figure 10 indicating the point at which cavitation starts in the hole for 

needle lifts between 10 m and 50 m. As can be seen, cavitation appears later as the 

needle lift decreases, due to the fact that the pressure just before the inlet is lower as the 

needle descends and therefore a lowest backpressure is needed to achieve the critical 

cavitation conditions in the orifice inlet. 

 

5.3 Turbulent kinetic energy 

From the point of view of turbulence development inside the nozzle, the turbulent 

kinetic energy, defined as the mean kinetic energy per unit mass associated to eddies in 

turbulent flows, is one of the most interesting parameters to analyze the flow. Its 

analysis becomes a very useful tool, especially taking into account the huge differences 

in the geometry derived from the different needle positions. 

Turbulent kinetic energy contours in the middle plane of the whole nozzle have been 

plotted in Figure 12, for needle lifts of 20, 50 and 250 μm for Pinj = 160 MPa – Pback = 7 

MPa. As can be seen, the location of the most turbulent zone in the nozzle varies 

depending on the needle position.   

For high needle lifts, the upper part of the orifice is the most turbulent zone of the 

nozzle, whereas for low needle lifts the needle closing becomes the most critical zone in 

terms of turbulence intensity. These differences can be justified by taking into account 

the pressure drop seen in Figure 7, since for needle lifts ≤ 50 μm the flow experiments a 
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strong pressure fall in the needle closing, whereas for high needle lifts the flow suffers 

the highest pressure drop in the orifice inlet as a consequence of the direction change of 

the flow.  

As explained, turbulence development in the nozzle is clearly related to pressure drop. 

Thus, not only a location change of the turbulent zone is expected with the needle 

position. Due to the higher pressure drop in the needle closing, the turbulence intensity 

increases as the needle goes down (Figure 7). Indeed, comparing the k contours for 20 

and 50 μm, it is possible to observe an important increase of the maximum turbulence 

intensity represented in black colour. This result agrees with the behaviour observed 

experimentally by Arcoumanis et al. [43] in transparent nozzles for different needle 

lifts. 

 

6. CONCLUSIONS 

In the present paper a complete study about the influence of the needle position on the 

internal flow and cavitation phenomenon in diesel injector nozzles has been done 

modeling cavitation with a homogeneous equilibrium model. Its validation against 

experimental data at full needle lift conditions has demonstrated a great accuracy of the 

code in terms of mass flow, momentum flux and effective velocity at typical operating 

conditions of diesel engines. Once validated, an extended computational study of 210 

simulations (combining one injection pressure, twenty-one backpressures and ten 

different needle lifts) has been performed, drawing the following main conclusions: 

 For high needle lifts, the mass flow increases with the square root of 

pressure drop until critical cavitations conditions are reached, characterized 

by the beginning of the mass flow collapse. However, for low lifts, the mass 
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flow is always choked as a consequence of the presence of vapour in the 

needle closing. 

 At cavitating conditions, the vapour flows along the upper surface of the 

orifice at high needle lifts; whereas for low needle lifts the vapour bubbles 

appear in the needle closing without reaching the orifice, and also in the 

lower part of the orifice for the lowest backpressures. 

 Unlike the mass flow results at high needle lifts, momentum flux does not 

suffer any collapse with cavitation development. For low needle lifts 

momentum flux keeps constant while vapour is only located in the area 

where the needle closes against the nozzle wall. If vapour bubbles appear 

also in the bottom part of the orifice, a momentum rise takes place due to the 

reduction of viscosity in the near-wall region where vapour appears. 

 Due to the reduction of effective diameter and viscosity, the presence of 

vapour in the nozzle orifice forces an increase of velocity at the outlet 

section.  

 The mass flow, momentum flux and effective velocity remain insensitive 

once the needle reaches 75 μm.  

 The turbulence development depends on the needle lift and is strongly 

related to pressure evolution in the nozzle, being higher at low needle lifts.  
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Orifices Di [μm] Do [μm] k-factor [-] r [μm] r/Do [-] L/Do [-] 

6-hole 1701 1701 01.4 131 0.0740.01 5.710.04 

 

Table 1: Nozzle´s geometrical characteristics. 

 

 

 

 

 

Injection pressure 

(MPa) 
Backpressure (MPa) 

160  

3 - 5 - 7- 9 - 10 - 12.5 – 15 - 17.5 – 20 - 

22.5 – 25 - 27.5 - 30 - 32.5 - 35 - 37.5 - 

40 - 42.5 - 45 - 47.5 - 50 

 

Table 2: Pressure conditions simulated. 
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Figure 1. Mass flow as a function of time for different gradient schemes. 
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Figure 2. Nozzle simulated (at maximum needle lift). 
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Figure 3. Comparison of experimental and numerical results in terms of mass flow at 

full needle lift conditions.   

 

 

 

 

 

 

 

 

 

 



37 
 

 

Figure 4. Comparison of experimental and numerical results in terms of momentum flux 

and effective velocity at full needle lift conditions.   
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Figure 5. Mass flow and vapour phase averaged field for 30 and 250 µm. Pinj = 160 

MPa – Pback = 50 - 3 MPa. 
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Figure 6. Streamlines and vapour phase for the needle lifts of 250 and 30 μm. Pinj = 160 

MPa – Pback = 7 MPa. 

 

 



40 
 

 

Figure 7. Evolution of the pressure between the pressure inlet boundary condition and 

the sac for 30 and 250 μm. Pinj = 160 MPa – Pback = 7 MPa. 
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Figure 8. Momentum flux and effective velocity for 30 and 250 μm. Pinj = 160 MPa – 

Pback = 50 - 3 MPa. 
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Figure 9. Dimensionless flow coefficients for 30 μm and 250 μm. Pinj = 160 MPa – Pback 

= 50 - 3 MPa.  
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Figure 10. Mass flow, momentum flux and effective velocity for all the needle lifts 

simulated. 
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Figure 11. Dimensionless flow coefficients for all the needle lifts simulated. 
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Figure 12. Turbulent kinetic energy contours at needle lifts of 20, 50 and 250 μm for Pinj 

= 160 MPa – Pback = 7 MPa.  

 


