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Goulven Guillard23, Garadeb Halladjian8, Gregory Hallewell8, Hans van Haren31, Joris Hartman15,

Aart J. Heijboer15, Yann Hello25, Juan Jose Hernández-Rey7, Bjoern Herold12, Jurgen Hößl12, Ching-
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Abstract

The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are
able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea
pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the
deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of
deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with
light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties
of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in
the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as ‘‘open-sea
convection’’. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep
ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms.
Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic
biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline
under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental
sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
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Introduction

The deep-sea ecosystem is unique because of its permanent

darkness, coldness, high pressure and scarcity of carbon and

energy to sustain life. Most of its biological activity relies on the

arrival of carbon in the form of organic matter from surface

waters. Ninety percent of the numerous pelagic organisms that

inhabit the deep ocean are capable of emitting light [1] through

the chemical process of bioluminescence, which appears to be the

most common form of communication in this remote realm

[1,2,3]. Deep-sea bioluminescence is also viewed as an expression

of abundance and adaptation of organisms to their environment

[4]. Marine bioluminescent organisms include a variety of distinct

taxa [4]. When stimulated mechanically or electrically, eukaryotic

bioluminescent organisms emit erratic luminous flashes, and also

spontaneous flashes to attract prey and mates for recognition of

congeners or for defence purposes [1,3,4]. In contrast, luminescent

bacteria are unaffected by mechanical stimulation and can glow

continuously for many days under specific growth conditions [5,6].

Bioluminescent bacteria occur in marine waters as free-living

forms, symbionts in luminous organs of fishes and crustaceans and

attached to marine snow aggregates sinking through the water

column [5,7]. During micro-algae blooms, strong bioluminescence

produced by colonies of bacteria could even lead to spectacular

marine phenomena such as ‘‘milky seas’’ in surface waters [6].

Bioluminescence sources have been observed and quantified

over the last three decades using a variety of observational

platforms and instruments such as manned submersibles [1] and

autonomous underwater vehicles [8], in situ high sensitivity

cameras [9,10], underwater photometers [7,11,12], and remote

satellite imagery [6]. In most cases, deep–sea bioluminescence is

triggered and observed after external mechanical stimulation

using, for instance, pumped flows through turbulence-generating

grids [13] or downward moving grids that collide with the
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organisms [10]. While these procedures provide crucial informa-

tion on the nature and distribution of deep-sea bioluminescent

organisms in the water column [3 and references therein], they are

not suited to investigate the temporal variability of naturally

occurring light production (i.e. non artificially triggered) at specific

sites over long periods of time, which requires sustained high

frequency in situ measurements.

An unanticipated application of underwater neutrino telescopes

is to provide direct measurements of bioluminescence in the deep-

sea [14,15,16]. A neutrino telescope aims at detecting the faint

Cherenkov light emission radiated by elementary charged particles

called muons that are produced by neutrino interactions.

Darkness, transparency and water shielding against cosmic ray

muons make the deep-sea an ideal setting for a neutrino telescope.

Here we make use of both the high frequency bioluminescence

and hydrological time-series of the cabled ANTARES neutrino

telescope [17] located 40 km off the French coast (42u489N,

6u109E) at 2,475 in the NW Mediterranean Sea (Fig. 1a).

The NW Mediterranean Sea is one of the few regions in the

world’s ocean where both dense shelf water cascading and open-

sea convection take place [18,19,20,21] (Fig. 1a). This results in

the formation of deep water owing to the combination of

atmospheric forcing and regional circulation that lead the water

column to overturn [19,20,22]. Dense deep water formation

occurs during late winter and early spring due to cold, strong and

persistent northern winds (Mistral and Tramontane) causing

surface cooling of the Modified Atlantic Water (MAW) both on

the shelf and over the deep basin. When the cooled shallow waters

on the shelf become denser than the ambient waters, they start

sinking, overflow the shelf edge, and cascade downslope until they

reach their density equilibrium depth, which may vary from

150 m to more than 2,000 m [20,23]. At the same time,

convection in the adjacent deep basin involves a progressive

deepening of the upper ocean mixed layer, which first reaches the

warmer and saltier underlying Levantine Intermediate Water

(LIW) and eventually extends all the way down to the basin floor,

should the atmospheric forcing be intense enough [19]. Both

processes and the subsequent renewal of the Western Mediterra-

nean Deep Water (WMDW) show a high interannual variability

because of their sensitivity to atmospheric conditions [18,24]. The

newly-formed deep water (nWMDW) resulting from both dense

shelf water cascading and open-sea convection has been observed

to spread over the deep basin floor within months [22,24,25,26].

Studies about the response of deep ecosystems to such processes

are scarce and focus on the impact of dense shelf water cascading

on benthic and epi-benthic organisms [27,28]. Other recent works

highlight how deep water formation triggers the resuspension of

deep-sea sediments, including organic matter [21], and the

Figure 1. Map of the NW Mediterranean Sea showing the location of the ANTARES, LION and Lacaze-Duthiers Canyon (LDC) sites
(a) as well as the extension of open-sea convection area in the Gulf of Lion and beyond from 2008 to 2010 (b–d). The boundaries of
the convection area in winter 2008 (red in b), 2009 (blue in c) and 2010 (green in d) are derived from MODIS-Aqua satellite-based surface Chlorophyll-
a concentration images. The limits of the convection area for each of the three successive winters correspond to their maximum extents during
periods of deep water formation measured at the LION site (see Text S1 and Fig. S5). Black arrows indicate the direction of the two main continental
winds leading to the cooling and subsequent sinking of surface waters: Mistral (M) and Tramontane (T). The grey arrow indicates the path of the
cyclonic surface mesoscale Northern Current bordering the open-sea convection region.
doi:10.1371/journal.pone.0067523.g001
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development and spreading of a thick bottom layer loaded with

resuspended particulate matter across the NW Mediterranean

Basin as a result of dense shelf water cascading [29].

Here we present compelling evidence of the quick response of

the deep-sea pelagic ecosystem to seasonal atmospheric forcing

leading to dense water formation and sinking, expressed by

particularly intense bioluminescence events captured by neutrino

telescope photomultiplier tubes. Observations on bioluminescence

are supported by a two and a half years long unique and consistent

record of hydrological and hydrodynamical variables obtained at

the ANTARES deep-sea neutrino telescope itself but also at two

independent mooring arrays equally located in the deep NW

Mediterranean Sea.

Results and Discussion

Bioluminescence blooms at the ANTARES site
We report time-series measurements of light intensity expressed

in median counting rates on photomultiplier tubes as well as

temperature, salinity and current speed from December 2007 to

June 2010 (Fig. 2a), collected between 2,190 and 2,375 depth in

the ANTARES IL07 mooring line (see Methods and Fig. S1).

While the light intensity background rate is predominantly

between 40 and 100 kHz, which mainly includes the 40K rate

(see Methods and Fig. S2), two remarkable bioluminescence

events reaching up to 9,000 were recorded between March and

July in 2009 and 2010 (Fig. 2). Because of their high intensity and

duration we call these events ‘‘bioluminescence blooms’’, defined

here as periods with PMT median rates higher than 600 kHz, i.e.

higher than the 96th percentile of the entire PMTs record.

Our records show that bioluminescence primarily increases with

current speed, which is due to mechanical stimulation either by

impacts of small-sized organisms and particles on the PMTs

[16,30] or by the reaction of organisms to enhanced turbulent

motion in the wakes of the PMTs [14,15,16]. However, current

speed alone fails to explain the complete record of bioluminescent

activity since, for moderate current speeds, differences in the

median rates of up to one order of magnitude are observed in 2009

(Fig. 2b) and 2010 (Fig. 2c). For instance, on March 8, March 11

and April 8–12, 2010, bioluminescence peaks at 800 to 1300 while

current speeds are rather low, from 10 to 15 cm s21 (Fig. 2c) a

speed range usually associated to median rates of around 100.

These bioluminescence bursts clearly correspond to significant

increases in both potential temperature (Dh= 0.03–0.05uC) and

salinity (DS = 0.005–0.015). As the deep water mass at the

ANTARES site is the WMDW, characterized in 2008 by a

narrow range of temperature and salinity (h= 12.89–12.92uC,

S = 38.474–38.479), the increases above the normal range of

variation observed in 2009 and 2010 are indicative of the intrusion

of a distinct water mass (Fig. 2, see Text S1 and Fig. S3). It is

noteworthy that neither deep-water thermohaline modification

nor bioluminescence blooms were recorded in 2008 (Fig. 2a).

To illustrate the link between the intrusion of newly formed

deep water and high bioluminescence, we use a salinity threshold

of 38.479 as marker of such intrusions at the ANTARES site. This

value has been defined using a statistical decision tree (Fig. S4) and

also corresponds to the 96th percentile of the entire salinity record.

Bioluminescence data, divided into two groups above and below

this salinity threshold, are presented as box-and-whisker plots

versus current speed classes (Fig. 3). Close examination of Figure 3

shows that bioluminescent activity is enhanced by both increasing

current speed and the renewal of the deep water. Indeed, on the

one hand, the bioluminescence rates increase with current speed

for each of the two bioluminescence data groups (grey and red

box-and-whisker plots) and on the other hand, bioluminescence

rates are always higher for new deep water (red boxes, S.38.479)

than for pre-existing deep water (grey boxes, S,38.479). The

Kruskal-Wallis test performed on the box-and-whisker plots attests

that the red and grey boxes are significantly different (p,0.001) for

current speeds up to 18 and 24 cm s21 in 2009 and 2010,

respectively (Fig. 3b–3c), which means that bioluminescence rates

are dependent on water mass properties too. This is illustrated, for

instance, by the 2010 record (Fig. 3c), which shows that the

median bioluminescence rate for the 0–3 cm s21 current range is

about 60 kHz for the existing deep water (grey box-plots), while it

reaches 400 kHz within the new deep water (red box-plots).

Bioluminescent bacteria, which are not affected by mechanical

stimulation [5,14] and are able to glow continuously under specific

conditions [5,6], are excellent candidates as main contributors to

these bioluminescence blooms.

Deep-water convection in the NW Mediterranean Sea
To determine the origin of the newly formed deep water

observed at the ANTARES site in 2009 and 2010, we investigated

whether dense shelf water cascading and/or open-sea convection

occurred in winter months.

Instrumented mooring lines located at the center of the deep

convection region (LION site at 42u029N, 04u419E; Fig. 1a) and in

Lacaze-Duthiers Canyon (LDC site at 42u269N, 03u339E; Fig. 1a)

provided temperature, salinity and current speed time-series from

different water depths (Fig. 4) synchronous to the ANTARES

record. While no deep ($1,000 m) dense shelf water cascading

took place during the study period (Fig. 4a), bottom-reaching

open-sea convection was observed in the basin down to 2,300 m

depth during wintertime in 2009 and 2010, which led to the

homogenization of the water column (Fig. 4b). Increases in deep-

water temperature (Fig. 4b) and salinity (Fig. 4c) are due to the

mixture of sinking cold surface water with warmer and saltier

LIW. In winter 2008, open-sea convection only affected the upper

1,000 m of the water column and did not alter the deep water

mass. Current measurements showed the strong barotropic

character of horizontal velocities (Fig. 4d) and high vertical

velocities (Fig. 4e) during intense mixing periods. Once the surface

forcing abates, convection ceases and intense sub-mesoscale eddies

carry discrete volumes of the newly formed deep water away from

the convection area [26]. The delay between the appearance of

the thermohaline anomalies at the LION site in late winter and

their arrival at the ANTARES site in spring is compatible with the

spreading of the newly-formed deep water in the Gulf of Lion and

subsequent mixing with pre-existing deep water [22,24,25,26].

Further mixing could take place at the ANTARES site due to

enhancement of vertical motion by the interaction of instabilities

in the surface cyclonic Northern Current with the topography of

the continental slope [31]. The area of open-sea convection, as

obtained from satellite imagery (see Fig. S5), was much smaller

during winter 2008 than in 2009 and 2010 when it covered most

of the deep Gulf of Lion (Figs. 1b–d). Furthermore, it was larger

and closer to the ANTARES site in 2010 than in 2009 (Fig. 1c–d),

which may explain why the signature of new deep-water recorded

at the ANTARES site is stronger in 2010 than in 2009 (Fig. 2).

Link between bioluminescence blooms and deep-water
convection

All evidence points to deep-water formation by open-sea

convection in the Gulf of Lion as the cause of the renewal of

deep water at the ANTARES site that triggered the biolumines-

cence blooms observed in 2009 and 2010.

Dense Water Formation and Deep-Sea Bioluminescence

PLOS ONE | www.plosone.org 4 July 2013 | Volume 8 | Issue 7 | e67523



During and in the aftermath of the convection period large

amounts of organic matter, both in particulate (POC) and

dissolved (DOC) form, are exported from the productive upper

ocean layer down to the deep [21,32,33]. The resuspension of soft

sediments covering the deep seafloor by bottom currents during

the reported period could also inject organic matter into the deep-

Figure 2. Time series measured at the ANTARES IL07 mooring line. (a) Median PMT counting rates (log scale), salinity, potential temperature
and current speed from December 2007 to June 2010. Shading indicates periods (b) from January to June 2009 and (c) from January to June 2010, in
which bioluminescence blooms were recorded. The lack of data from June 24 to September 6, 2008 is due to a cable technical failure.
doi:10.1371/journal.pone.0067523.g002
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Figure 3. Links between bioluminescence, current speed and the modification of the properties of the Western Mediterranean
Deep Water (WMDW). Box-and-whisker plot of median PMT counting rates (log scale) versus current speed classes for salinities higher (red) or
lower (grey) than 38.479 for data recorded in (a) 2008, (b) 2009 and (c) between January and June 2010. The salinity threshold of 38.479 is used as a
marker of the intrusion of newly formed deep water at the ANTARES site. While bioluminescence increases with current speed, it is also enhanced by
the modification of WMDW (red box-plots). The top and bottom of each box-plot represent 75% (upper quartile) and 25% (lower quartile) of all
values, respectively. The horizontal line is the median. The ends of the whiskers represent the 10th and 90th percentiles. Outliers are not represented.
The statistical comparison between the two box-plots (red and grey) in each current class is given by the Kruskal-Wallis test: the observed difference
between the two samples is significant beyond the 0.05 (*), the 0.01 (**) and the 0.001 (***) levels. The absence of an asterisk in some current classes
indicates that the difference between the two box-plots is not significant. The number of measurements for salinity lower or higher than 38.479 is
given in black or in red, respectively. Note the different scales of figures a, b and c.
doi:10.1371/journal.pone.0067523.g003
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Figure 4. Time series of oceanographic parameters measured at the Lacaze-Duthiers Canyon (LDC) and the open-sea convection
region in the Gulf of Lion (LION) from January 2008 to June 2010. (a) Potential temperature at 500 and 1,000 m depth at the LDC mooring
site and (b) from various water depths at the LION site, jointly with (c) salinity at 2,300 m depth, (d) horizontal current speed and (e) vertical current
speed from various water depths at the LION site. The four levels of temperature measurements at LION presented here are a sub-set of
measurement depths (see Fig. S1). Essentially stable temperatures in the deepest layers in 2008 show that open-sea convection reached only 700 m
and did not modify the deep water in the study area. In contrast, strong convection events, reaching 2,300 m depth, occurred during February-March

Dense Water Formation and Deep-Sea Bioluminescence
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water mass [21,32]. Changes in DOC concentration at the

ANTARES site are shown by discrete measurements carried out at

2,000 m depth during oceanographic cruises from December 2009

to July 2010 (Fig. S6). DOC concentration significantly increased

from 4261 mM in December 2009, prior to the convection period,

to 6361 mM in March and May 2010 when the new deep water

mass occupied the ANTARES site, concurrently with higher

oxygen contents in bottom waters between March and mid-June

2010. Subsequently, DOC concentration decreased to 45 in mid-

June and mid-July 2010 (Fig. S6). Such an injection of organic

matter into the deep water mass has the potential to fuel the deep-

sea biological activity, thus stimulating bioluminescence activity.

The increase in DOC concentration matches with observations

reported by Santinelli et al. [33] for different regions of the

Mediterranean Sea where deep convection occurs. These authors

showed a high mineralization rate of DOC in recently ventilated

deep waters, which is mainly attributed to bacteria. Biolumines-

cent bacteria were isolated at the ANTARES site during a

previous period of high bioluminescent activity in 2005 [34].

Amongst them, we identified a piezophilic strain, Photobacterium

phosphoreum ANT-2200 [34,35], P. phosphoreum being the dominant

bioluminescent species in the Mediterranean Sea [36]. These

luminous bacteria likely represent the main organisms responsible

for the higher level of bioluminescence detected at the ANTARES

site. Such contribution is especially noticed when the current speed

is low within the convection season (Fig. 3b–3c). Finally, the flow

associated with deep convection events might likely carries

significant amounts of bioluminescent organisms too, which can

also contribute to the bioluminescence blooms observed in 2009

and 2010 due to their collision with PMTs and/or their

stimulation by turbulent motion in the wakes of PMTs when

current speed is high.

Conclusions

We present evidence for seasonal episodes of dense water

formation driven by atmospheric forcing being a major vector in

fuelling the deep-sea pelagic ecosystem and inducing biolumines-

cence blooms after a fast transfer of the ocean surface signal. Since

dense water formation occurs in other ocean regions worldwide

[19], we anticipate that an enhancement of the deep pelagic

ecosystem activity similar to that observed in the NW Mediter-

ranean Sea occurs there too, challenging our understanding of the

carbon dynamics in the ocean.

Dense water formation is likely to be altered by the on-going

global warming. Recent models [37,38] based on the A2 IPCC

scenario indicate a strong reduction in the convection intensity in

the Mediterranean Sea for the end of the 21st century, which will

induce a massive reduction in organic matter supply and

ventilation of the deep basin. Hence changes in the deep

Mediterranean ecosystem more intense than those already

observed in both the Eastern [39,40] and the Western Mediter-

ranean [27] basins are forecasted for the near future, a situation

that could also occur but remain unnoticed in other sensitive areas

of the world ocean. Our results illustrate the potentially far-

reaching multidisciplinary scientific and societal benefits of the

installation of cabled deep-sea observatories in critical ocean areas.

Methods

The ANTARES neutrino telescope comprises a three-dimen-

sional array of 885 Hamamatsu R7081-20 photomultiplier tubes

(PMTs) distributed on 12 mooring lines [17,41]. These PMTs are

sensitive to the wavelength range of 400–700 nm, which matches

the main bioluminescence emission spectrum (440–540 nm) as

reported in Widder [4]. An extra mooring line (named IL07)

equipped with RDI 300 kHz acoustic Doppler current profilers, a

conductivity-temperature-depth (SBE 37 SMP CTD) probe and

PMTs was added to monitor environmental variables (Fig. S1). All

moorings are connected to a shore-station via an electro-optical

cable that provides real-time data transmission [42]. A dedicated

program of bioluminescence monitoring was implemented to

measure the total number of single photons detected every 13 ms

for each PMT. To consistently compare PMT counting rates

(bioluminescence) with oceanographic data (temperature, salinity,

current speeds) considering the acquisition interval of the later

(15 minutes), we calculated the median rates as a mathematical

estimator of PMT counting rates. The median was selected instead

of the arithmetic mean because of its higher robustness and least

disturbance by extreme values. Median rates were expressed in

thousands of photons per second or kHz (see Text S1 and

Fig. S2a). The main light contributions recorded by PMTs result

from dark noise, from Cherenkov radiation induced by the beta

decay of 40K in seawater and from bioluminescence. The dark

noise is about 361 kHz and remains constant with time [41]. The

Cherenkov radiation induced by the beta decay of 40K in seawater

produces a background of about 3763 kHz [43], found to be

constant within the statistical errors over a period of a few years

[44,45]. Therefore, all light increases over this constant back-

ground (4063 kHz) can only be due to bioluminescence. The

records of light intensity at IL07 are representative of those

collected by the whole array of ANTARES PMTs (see Text S1

and Fig. S2b).

Potential temperature, salinity, horizontal and vertical current

speeds (Fig. S1) at the LION mooring line were measured with

SBE 37 SMP CTD probes and Nortek Aquadopp Doppler

current-meters regularly spaced between the subsurface (150 m,)

and the seabed (2350 m). Potential temperatures and vertical

velocities were corrected for the current-induced tilting and

deepening of the line. Hourly potential temperatures at the LDC

mooring line were measured with the temperature sensor of

Nortek Aquadopp Doppler current meters at 500 and 1,000 m

depth.

Proper calibrations of the CTD probes were performed using

the pre- and post-deployment calibrations made by the manufac-

turer. The intercomparison of instruments complied with quality-

control procedures.

Supporting Information

Figure S1 Configuration of the mooring lines from
which the data presented in this study were obtained.
They include the cabled IL07 ANTARES as well as the

autonomous LION and Lacaze-Duthiers Canyon (LDC) mooring

lines. Location is shown in Fig. 1.

(JPG)

2009 and 2010 with an abrupt cooling of the upper water column and an increase in temperature and salinity in the deep layers. A concurrent
increase in current speed was also noticed in winter 2009 and 2010. The 5-month long data gap in 2009 is due to a damaging of the mooring line
during the April 2009 recovery, which induced a postponement of its redeployment to September 2009.
doi:10.1371/journal.pone.0067523.g004
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Figure S2 (a) Raw counting rates from one photomul-
tiplier (PMT) on the IL07 line (ANTARES site). Counts are

expressed in thousands of photons per second (kHz). The median

rate is computed for each 15-minute data sample (red horizontal

line). The dataset shown in the figure was recorded on March

28th, 2010 with a median rate of 68 kHz and a current speed of

13 cm s21. (b) Median rates from the IL07 PMT (red) and
mean of all median rates of the 885 ANTARES PMTs
(blue) from January to April 2009.
(JPG)

Figure S3 Potential temperature versus salinity dia-
gram of near-bottom CTD time-series at the ANTARES
site from the IL07 line (red dots) and CTD profiles
(lines) collected close to the ANTARES site. (a) May 2007

to January 2009; (b) January to December 2009; and (c)

December 2009 to January 2011. The data shown are from

depths in excess of 1,000 m. Dotted lines correspond to potential

density anomaly isolines in kg m23.

(JPG)

Figure S4 Regression tree for predicting the intensity of
bioluminescence using oceanographic variables (salini-
ty, temperature, current speed) and time dependence
from December 2007 to July 2010. Regression trees are

statistical models that sub-divide or partition a set of explanatory

variables X (salinity, temperature, current speed) to predict a

targeted response variable Y (bioluminescence rate). The tree is

drawn using a binary recursive algorithm. It divides Y data into

two non-empty groups either X ,a or X. a. The split which

maximizes the deviance (or distance) is chosen, the data set split

and the process is repeated. This is done until the terminal nodes

are too small or too few to be split, the last groups decision here

are set up by the user in order to get less than 5 sub-groups. Each

of the terminal nodes are the mean of the predicted value Y. Using

this method, 3 nodes and 4 classes have been defined from the 3

variables predicting the average bioluminescence intensity. This

classification improves the maximal deviance interclass and

minimal deviance intraclass using sampled time-series. Class 1

(mean 121.1 kHz), 2 (mean 435.0 kHz) and 3 (mean 552.4 kHz)

described low empirical bioluminescence intensity mainly due to

low sea current speed (below 19.04 cm s21). However class 3 and 4

are firstly described by high current speed intensity (.19.04 cm

s21) but as a second environmental condition, the temperature

threshold of 12.922uC divide these two classes between high (mean

1393.0 kHz) and highest (mean 5108.0 kHz) bioluminescence

intensity.

(JPG)

Figure S5 Illustrative ocean colour satellite images used
to outline the limits of winter open-sea convection areas
in the Gulf of Lion. (a) Images plotted with a classical, full

range, linear palette. (b) Images plotted with a simplified four level

palette. The images shown correspond to days 1, 2, 7 and 18

February 2010, which are also transferred into Fig. 1b–d. White

pixels are indicative of lack of data due to cloud coverage.

(JPG)

Figure S6 Dissolved organic carbon and oxygen con-
centrations at the ANTARES site in 2010. Dissolved

Organic Carbon (DOC) was measured by high temperature

combustion on a Shimadzu TOC 5000 analyzer [46]. A four

point-calibration curve was performed daily with standards

prepared by diluting a stock solution of potassium hydrogen

phthalate in Milli-Q water. Procedural blanks run with acidified

and sparged Milli-Q water ranged from 1 to 2 mM C and were

subtracted from the values presented here. Deep seawater

reference samples (provided by D. Hansell; Univ. Miami) were

run daily (43.5 mM C, n = 4) to check the accuracy of the DOC

analysis. Oxygen concentration time-series was obtained using an

oxygen optode AnderaaH fitted on the IL07.

(TIF)

Text S1 Supplemental text information.

(DOCX)
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