
Int. J.Complex Systems in Science

vol.1(2) (2011), pp. 124–128

Matrix growth models based on centrality measures:

a first analysis

Francisco Pedroche1,†, Regino Criado2, Esther Garćıa2 and
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Abstract. A general growth model of random networks based on centrality
measures is introduced. This formalism extends the well-known models of prefer-
ential attachment. We propose to set the preferential attachment using a linear
function of some centrality measures ranging from local to global scale. The aim
is to include spectral measures, such as PageRank and Bonacich, and geodesic
measures, such as betweenness and closeness. In this paper we present a first
analysis using degree and Personalized PageRank.
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1. Introduction

Most Network growth models are based on the preferential attachment model
[1]. We are interested in a matrix formulation of a general class of prefer-
ential attachment. In this paper we present a theoretical framework. We
include in-degree and Personalized PageRank [4], [5]. To our knowledge the
first models of preferential attachment based on PageRank were [2] and [3].
Both models are based on the usual personalization vector, i.e. v = 1/n. We
improve the fundamentals of models that use PageRank by including a general
personalization vector in our description.

2. Definitions

Let A(0) = (a
(0)
ij ) ∈ R

n×n be the adjacency matrix of a directed network:
aij = 1 when there is a link from node i to node j, and aij = 0 in other case.

Let q
(0)
i be the indegree of node i. At each time step, a new node is added to

the network. This node connects with 0 < m ≤ n different existing nodes. The
adjacency matrix A(k) ∈ R

(n+k)×(n+k), when k nodes have been added to the

network, is given by A(k) =

(

A(k−1) r(k−1)

s(k−1)T 0

)

where r(k−1) ∈ R
(n+k−1)×1,

and s(k−1) ∈ R
(n+k−1)×1, are probability distribution vectors.

We propose to set the preferential attachment by setting r(k−1) and s(k−1)

as linear functions of some centrality measures ranging from local to global

scale. We denote by q
(k)
i the indegree of node i corresponding to the graph

given by A(k). Let us denote p(r
(k)
i = 1) the probability that the variable r

(k)
i

takes the value 1.
Albert-Barabasi growth model is given by:r(k) = s(k), k = 0, 1, 2, . . .

with p(r
(k)
i = 1)AB =

q
(k)
i

∑n
j q

(k)
j

, ∀i ∈ N , k = 0, 1, 2, . . .. We denote p
(k)
AB =

[p(r
(k)
1 = 1)AB , . . . , p(r

(k)
n = 1)AB ]T .

Personalized PageRank model is based on computing the random vec-

tors r(k) and s(k) taking: p(r
(k)
i = 1)PR = PR(k)(i,v

(k)
out), and p(s

(k)
i = 1)PR =

PR(k)(i,v
(k)
in ), ∀i ∈ N , k = 0, 1, 2, . . .. where PR(k)(i,v(k)) is the i-th entry of

the personalized PageRank vector corresponding to the graph given by A(k),

and using the personalization vector v(k). We denote: p
(k)
PR,out = [p(r

(k)
1 =

1)PR, . . . , p(r
(k)
n = 1)PR]T , and p

(k)
PR,in = [p(s

(k)
1 = 1)PR, . . . , p(s

(k)
n = 1)PR]T .

3. Results

Let us consider the toy graph in Fig. 1. We compare three different growth
models: AB, PageRank with v(k) = vin = vout = 1/(n + k) (that we denote
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Figure 1: Toy graph

as PR) and PageRank with v(k) = vin = vout = (0, 0, . . . , 0, 1)T , that we
denote as PPR (note that in this case we assume that the entering node has
preference for the last node). In all the experiments we use 2000 steps, and
m = 3. From Fig. 2 (left) we see that AB and PR tend to have the same
probability distribution of preferential attachment. In this plot the difference
decays to 2%. As a consequence, when the network is sufficiently large we have
that both preferential models tend to the same growing pattern. Therefore
we expect that for sufficiently large networks both models give the same in-
degree distribution and PageRank distribution. This is in accordance with
experiments in [3], [6], [7]. In another experiment we obtain that the quantity
‖pAB − pPPR‖2 oscillates around a mean value of the 20% (Fig. 2, right).
Therefore, both models offer different networks. This is also shown in Fig. 3,
where the adjacency matrices are shown.

In Fig. 4 we show the log-log distribution p(k), i.e. the probability of
having in-degree k obtained with the three models. We see that all the models
follow a power-law function, which is very similar for the three models when
k ≤ 100.
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Figure 2: Evolution of ‖pAB − pPR‖2 (left) and ‖pAB − pPPR‖2. 2000 steps,
m = 3.
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Figure 3: Adjacency matrix A(2000) in an execution of AB model (left) and
PPR model (right), 2000 steps, m = 3.
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Figure 4: Log-log Distribution of p(k) for the three models studied. AB
(black), PR (blue) and PPR (red).

4. Conclusions

We have presented a model of network growth using a matrix formulation.
This formulation allows us to include some centrality measures to guide the
preferential attachment. We show three different models of growing in this
framework, including a model that uses Personalized PageRank. In this first
analysis we obtain the following conclusions from our experiments: 1) AB and
PR lead to the same preferential attachment, 2) PPR differs from AB, and
3) PPR produces a network in which the in-degree distribution p(k) follows a
power-law. Future lines include to introduce new centrality measures and to
stablish a general setup to quantify the differences between the models.
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