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Abstract 

This paper presents a new simplified verification method to predict the ultimate shear stress and the 

mode of failure of reinforced concrete membrane elements with orthogonal reinforcement under any 

combination of normal stresses. This method is based on a simplified model designed to take the 

condition of the concrete at failure into account. The methodology is non-iterative, simple and easy to use 

for practical purposes.  The accuracy of the verification method has been checked using test results from 

88 RC membrane elements subjected to a wide range of in-plane normal and shear stresses, concrete 

strengths, and reinforcement ratios for both x and y directions. Moreover, the proposed method is 

compared with MCFT using Membrane-2000 software and other simplified methods (SMCS by Rahal 

2010, the Marti-Kauffman method 1998 and the Mancini proposal 2001). The proposed method strikes a 

balance between a general view, accuracy and simplicity, using a wide range of tests that cover different 

modes of failure. 

Keywords: membrane element, reinforced concrete, compression, tension, shear, strength, failure 

Highlights: >A verification method to predict the ultimate shear stress of RC membrane elements is 

presented > the method predicts the mode of failure under any combination of normal stresses > the 

verification method does not require an iterative process and its application is straightforward > the 

method provides good agreement with 88 experimental tests that cover different modes of failure > the 

method provides greater accuracy in comparison with other simplified methods
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1. Introduction 

Designers frequently model reinforced concrete structures as assembled membrane elements subjected to 

in-plane normal and shear stresses. Over the last three decades, multiple efforts have been made to 

provide theories and models to predict the load-deformation behavior and the ultimate shear stress of 

these elements. The complexity of the mechanical behavior of RC membrane elements hinders the 

formulation of models combining the three main aspects needed for practical purposes: a general view, 

accuracy and simplicity. 

The following models have been considered major contributions to this aim: Vecchio and Collins (1986) 

[18], Hsu [8],[9],[10], Kaufmann and Marti (1998) [11], Vecchio (2000) [19] and (2001) [20], Carbone, 

Giordano and Mancini (2001) [4], Bentz, Vecchio and Collins (2006) [2], and Rahal (2008) [16] and 

(2010) [15]. The main features on which these models are based are summarized below. 

In the Modified Compression Field Theory (MCFT) proposed by Vecchio and Collins (1986) [18], 

equilibrium, compatibility and constitutive equations are formulated in terms of average stresses and 

strains, considering the effect of cracks distributed over a portion of the element. This is a rotating crack 

model that provides accurate results compared with experimental tests, but leads to a complex set of 

equations that can only be solved using an iterative process. An improvement of MCFT, called DSFM, 

was later proposed by Vecchio (2000) [19] and (2001) [20] to provide improved simulations or responses 

in situations where MCFT was found to produce inaccuracies, such as in the case of panels containing 

heavy reinforcement, panels reinforced mainly in one direction, or in shear-critical beams with little or no 

transverse reinforcement. In this model a better behavior of concrete is introduced, using a formulation 

which is a hybrid between a fully rotating crack formulation and a fixed crack model and which explicitly 

allows for crack shear slip in the description of element formulation.  The DSFM material model is also 

based on a relatively complex formulation that requires an iterative process. Hsu’s models [8]-[9]-[10] are 

also based on equilibrium, compatibility and constitutive laws with softened concrete, assuming rotating 

or fixed crack angles. Again, the set of equations has to be solved using an iterative process. All the 

models described in this paragraph are difficult to apply and are more geared towards implementation in 

2D FEM models, or section analysis with coupling between normal and shear stresses. 

The Cracked Membrane Model proposed by Kaufmann and Marti (1998) [11] combines the basic 

concepts of the tension chord model and MCFT. Equilibrium equations are formulated in terms of 

stresses at the cracks rather than average stresses between the cracks, even though the treatment of 
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tension-stiffening is different from that of MCFT. An iterative process is also needed to find the strains 

from the given stresses in the Cracked Membrane Model. Nevertheless, the simplifications established for 

limit analysis formulation lead to an approximate analytical solution that makes it easy to design and 

check RC membrane elements. The predicted ultimate shear stress values in this model are good when the 

failure mode is governed by reinforcement yielding and less accurate when reinforcement does not yield 

in any direction. 

The Carbone, Giordano and Mancini (2001) [4] model is based on the assumption that concrete 

compression strength is a function of the difference between two angles: the inclination of the diagonal 

stresses at ultimate limit state p and the angle of the principal compressive stresses in uncracked state e, 

just before cracking. The basic elements of this proposal have been adopted by Eurocode 2-2 [6]  for 

membrane elements.  This method provides a set of inequalities that makes it easy to identify a range of 

values of ultimate shear stress as a function of the inclination of stresses in concrete, assuming perfectly 

plastic behavior. It gives acceptable accuracy, but requires an iterative process to find the p angle which 

provides the maximum ultimate shear stress. 

A simplified version of the DSFM model, useful in predicting the shear strength of beams, was presented 

by Bentz, Vecchio and Collins (2006) [2]. This model has been included in several codes such as CSA 

A23.3-04 [5], AASHTO LFRD [1]. The application of this model to membrane elements is limited since 

it does not account for biaxial normal stresses and is meant to be used for the prediction of the shear 

strength of reinforced concrete beams. 

 Rahal (2000) [14] proposed an alternative simplified model based on MFCT to predict the strength and 

the mode of failure of membrane elements. In Rahal (2008) [16], the same author proposed another 

modified non-iterative model called SMCS, a straightforward procedure based on very simple equations 

for the strength values and failure modes. Moreover, Rahal 2010 [15] presents a validation of the SMCS 

model for the shear-transfer problem. However, Rahal's model only distinguishes between the modes of 

failure in which steel yields under tension in any direction. 

The aim of this paper is to present a new simplified model to take into account the failure behavior of 

membrane elements with orthogonal reinforcement. The model considers the softening effect of concrete 

compressive strength due to transverse tensile strains.  

Based on this new simplified model a verification method is proposed for predicting the ultimate shear 

stress and the mode of failure of RC membrane elements subjected to any given combination of normal 
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stresses. Regarding the mode of failure, the method aims to offer a straightforward prediction of the steel 

stresses in both reinforcements. It distinguishes whether the reinforcement yields or not, and also whether 

the steel is in tension or in compression. Thus, the method proposed is more general than other simplified 

methods, such as those of Kaufmann and Marti (1998) [11], Carbone, Giordano and Mancini (2001) [4], 

or Rahal (2008) [16], as it covers the whole range of combinations of normal stresses in compression and 

tension. 

2. Model formulation 

The formulation of a simplified model to consider the behavior of concrete at ultimate is presented in 

this section. This proposal will serve as the basis for developing the verification method presented in 

section 3. It is worth noting that the model is formulated in terms of average strains and stresses. 

2.1 Equilibrium equations 

Equilibrium equations of a concrete membrane element, reinforced orthogonally and aligned with the 

reference axis, may be established by assuming that reinforcement bars can only withstand axial stresses 

(Fig.1). Hence, the superposition principle for concrete and steel may be applied as follows: 
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From the Mohr stress circle (Fig.1), the angle of inclination of the principal stress (θσ) axis can be 

expressed by: 

 
cxy

ccx

ccy

cxy

cxy

cyc

cxc

cxy













 2

2

1

1

tg











  (2) 

2.2 Compatibility equations 

Assuming that the reinforcement has the same deformation as the surrounding concrete, the average strain 

values in x and y directions are equal for both materials. Hence: 
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From the Mohr stress circle (Fig.1), the angle of inclination of the principal strain axis (θε) can be 

expressed by: 
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2.3 Simplified assumptions 

Even though local steel strains in the crack are higher than average steel strains, the proposed model has 

only been formulated in terms of average strains and stresses. 

Moreover, the model is considered to be a rotating-angle approach that assumes coaxiality. Thus, the 

angle of inclination of the principal strain axis () is the same as the angle of inclination of the principal 

stress axis ().  

Second, average tensile concrete stress is assumed to be c1=0. Thus, Eq. (2) and (4) give: 
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Following these simplified assumptions, it is possible to express the principal strain (ε1) as a function of 

only one of the average steel strains (εsx or εsy), the principal strain (ε2), and the average concrete normal 

stresses (cx , cy) as follows: 
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It is important to note that the principal strain (ε1) does not depend on the shear stress applied to the 

membrane element (xy). 

Finally, the assumption of c1=0 leads to an equilibrium equation directly derived from Eq. (2), that must 

apply the average concrete stresses cx and cy for a given shear stress xy. Hence: 

2
xycycx     (7) 

2.4 Failure conditions for concrete 

With the state of stresses applied to concrete (cx, cy and cxy), two modes of failure can occur: (a) 

crushing of concrete struts with diagonal cracking or (b) crushing of concrete in a state of biaxial 

compressive stresses. Any other modes of failure that may occur in a reinforced concrete membrane 

element are out of the scope of the proposed simplified model, such as the so-called crack slip mechanism 

in elements with very low or no reinforcement, and the failure of the reinforcing bars in elements with 
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low reinforcement ratios and/or steel with low ductility. The failure conditions of the two modes of failure 

considered can be expressed as follows. 

(a) Crushing of concrete struts with diagonal cracking 

In this failure mode, the compressive concrete strength is reduced due to the existing tensile strain normal 

to the strut direction. Thus: 

ccycxc f  2   (8) 

where 1  is a softening factor that can be formulated as a function of the principal tensile strain 1. 

Vecchio and Collins (1986) [18] proposed the following coefficient to take the softening effect into 

account: 

  1
/34.08.0

1

01





c

   (9) 

where c0 is the strain at peak stress of the stress-strain curve for concrete. 

In this mode of failure, it is reasonable to consider that the principal compressive

 

strain

 

of concrete (2) at 

failure is equal to the strain at concrete peak stress (-c0). 

The simplified assumptions stated in section 2.3 can be included in the failure condition just by 

substituting Eq. (6) into (9), and then incorporating the resulting expression into (8). Thus, the failure 

condition may be formulated as a function of the two concrete normal stresses at failure (cxu ,cyu), and 

only one of the two average steel strains (sx or sy). Moreover, since the principal strains do not depend 

on the shear stress applied to the membrane element (xy), the derived failure condition does not depend 

on the shear stress applied. 

Fig. 2 shows curves (c1) and (c2) corresponding to this failure condition when the average strains in the 

reinforcement in x and y direction are expressed as sx =yx and sy =yy respectively, where yx = fyx / Es, 

yy = fyy / Es is the steel yield strain in both directions. These two curves (c1 and c2) do not depend on the 

value of the shear stress xy applied to the membrane element. Furthermore, curve (c1) has a minimum of 

cxu and curve (c2) has a minimum of cyu.  

Fig. 2 also shows curves (d1) and (d2) corresponding to the failure condition of concrete for sx = 0 and 

sy = 0, respectively. These curves have a similar shape to that of curves (c1) and (c2), and it can be seen 

that they are virtually homothetic in directions x and y, respectively. 
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Moreover, the equilibrium equation derived in (7) can be expressed at failure conditions (curve (a) in Fig. 

2) as follows: 

2
xycyucxu    (10) 

Thus, intersection points (A and F) between curves (a) and (c1) represent concrete stresses at failure when 

the strain sx is equal to yx. In the same way, intersection points (B and E) between curves (a) and (c2) 

represent concrete stresses at failure when the strain sy is equal to yy. It is important to highlight that 

every point of curve (a) represents concrete stresses at failure for different levels of strains in the 

reinforcement. For example, points of curve (a) between A and B represent the failure of concrete with 

strains in both directions of reinforcement higher than or equal to yx and yy, that is, both reinforcements 

yield in tension before concrete crushing. Points between A and C represent the failure of concrete with 0 

≤ sx < yx and sy > yy (only –y reinforcement yields in tension before concrete crushing), while points 

between B and D represent the failure of concrete with 0 ≤ sy < yy and sx > yy (only –x reinforcement 

yields in tension before concrete crushing). Fig.2 shows the strains of both reinforcements for every 

interval of curve (a). 

b) Crushing of concrete under biaxial compressive stresses  

If concrete is not cracked at failure, a simple way of considering the failure condition is to limit 

compressive principal stress cc f2 . From Eq. (2) this failure condition can be expressed as follows: 

2)()( xyccyuccxu ff     with  ccyucxu f     (11) 

Curve (b) in Fig. 2 represents the boundary line of this failure condition in the plane cx - cy. 

 As in the case of curve (a), points of curve (b) are associated with different strains of the reinforcement 

in both directions. The strains corresponding to a given point on this curve can be obtained from the 

ultimate concrete stresses cxu and cyu by assuming that concrete crushing is reached when c2=-fc and 

c2=-c0. Hence according to (4) and (5): 
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If the Poisson effect is neglected, it can be assumed that cx=Ec,sec·cx and cy=Ec,sec·cy, where: 
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Moreover, given the fact that cx=sx and cy=sy, the reinforcement steel strains along curve (b) can be 

obtained by: 
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2.5 Proposed simplified model for failure condition of concrete 

Each of the curves (c1) and (c2) in Fig.2 are simplified by two straight lines (c1) and (c2) (Fig. 3), which 

can be expressed as follows: 
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Curves (d1) and (d2) are also simplified by (d1) and (d2), homothetic to (c1) and (c2), with a factor of 

1.6. 
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These four simplified lines all depend on cx,bal and cy,bal , which can be formulated as a function of the 

concrete compressive strength  fc , the peak strain of concrete c0, and the steel yield stress fyx or fyy. The 

following simplified expressions are proposed: 
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cxcx f  6.10,  (17) 
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Finally, these simplified lines can be formulated as follows: 

(c1’) cyxcx f  ; (d1’) cyxcx f 6.1 ; (c2’) cxycy f  ; (d2’) cxycy f 6.1  

Simplified lines (c1), (c2), (d1), and (d2) split the plane cx-cy into several regions as shown in Fig. 3. 
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It is interesting to note that (c1) and (d1) intersect the cy axis at (–fc), while (c2) and (d2) intersect the 

cx axis at (–fc). 

It is assumed that the mode of failure in regions A to F (i.e. cx+cy > -fc) is due to concrete crushing with 

diagonal cracking while in region G (i.e. cx+cy < -fc) is due to concrete crushing with biaxial 

compression. Next, the methodology to evaluate steel stresses in each region and mode of failure is 

detailed given the ultimate concrete stresses cxu and cyu. 

For the case of biaxial compression (region G in Fig. 3), steel stresses can be obtained from (14) as 

follows: 
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  (19) 

where   ni= Esi·c0 / fc and  fyic= Es·c0 ≤ fyi , i = ‘x’ or ‘y’ 

 For the case of diagonal cracking (regions A to F in Fig.3), the method for obtaining the steel stresses in 

each region is different, and can be performed as set out below.  

1. If  cxucyx f    (regions A, B and D), the reinforcement in x direction is assumed to yield 

in tension. Hence: 

  

yx
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 (20a) 

2. If cyxcxucyx ff   6.1  (regions B, C and E), the reinforcement in x direction is in 

tension but does not yield. The stress of this reinforcement can be linearly interpolated between 

0 and fyx for values of cx between -1.6xyfc and -xyfc. Hence: 
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(20b)  

3. If cyxcxu f 6.1  (regions D, E and F), reinforcement in x direction has a compressive 

stress between zero and bc
diagsx, , which is the steel stress of the x-reinforcement just in the point 

of the diagonal that separates both modes of failure (i.e. cx,diag=-cy-fc), and evaluated on the 

biaxial compression side according to (19). The stress of this reinforcement can be linearly 
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interpolated between zero and bc
diagsx, for values of cx between -1.6xyfc and  cx,diag=-cyu-fc 

as follows: 

 yxcccyux
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Thus, steel stresses will be coincident for biaxial compression and diagonal cracking in the 

border line that separates both modes of failure. 

Likewise, steel stress sy can be formulated as: 
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when cyxcy f 6.1
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Thus, it is possible with the proposed model to evaluate in a simple manner the steel stresses for any 

combination of concrete normal stresses, and this makes possible to know the whole behavior of the 

membrane element at failure.
 

3. Verification method 

In this section a verification method is presented for the prediction of the ultimate shear stress u of a 

reinforced concrete membrane given any combination of normal stresses xd and yd. In this case, the 

reinforcement ratios x and y are known, as are the concrete and steel material properties. The proposed 

verification method is based on the proposed simplified model for failure condition of concrete 

introduced in section 2.4. This method does not need iterations and is straightforward in its application as 

described below. 

The first step involves checking whether any of the design normal stresses can cause the failure of the 

reinforced concrete membrane in compression or in tension. If this were the case, failure would be caused 

by normal stresses and the predicted ultimate shear stress would be zero. Hence, in order to continue the 

method the design normal stresses should satisfy the following expression: 
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  (22) 

On the one hand, if the membrane element fails due to crushing of concrete struts with diagonal cracking, 

the ultimate shear stress is given by Eq. (10) in accordance with the formulation model presented in 

section 2. Hence: 

cyucxu
dc
u    (23) 

On the other, if the element fails due to crushing of concrete in a biaxial compressive stress state, the 

ultimate shear stress is given by Eq. (11): 

)()( ccyuccxu
bc
u ff    (24) 

The ultimate concrete stresses cxu and cyu required to calculate dc
u or bc

u  (Eq. 23 and 24) can be 

obtained by substituting the corresponding values of steel stresses sx and sy into Eq. (1). These steel 

stresses can be calculated from (19), (20) and (21) depending on the region of plane cx-cy in accordance 

with the simplified model for failure of concrete described in section 2.4 (Fig. 3). 

Given the design normal stresses xd and yd , the process for establishing the region of the plane cx-cy 

that enables the evaluation of steel stresses sx and sy is not a straightforward one. In order to facilitate 

the choice of region, the region distribution is converted into the plane x-y from the original plane cx-

cy, by adding the effect of the steel stress to the ultimate concrete stresses (Fig. 4). 

It is important to mention some aspects of the conversion of the region distribution in the plane x-y. 

Firstly, lines (c1), (c2) change taking into account that the steel reinforcement yields in tension. In 

contrast, lines (d1), and (d2) do not change their position because the steel stresses are zero. Moreover, 

given the fact that the intersection of curves (c1) and (c2) with –y axis and –x axis is at (–fc), it is 

assumed that steel stress is fyyc for curve (c1’) and fyxc for curve (c2’). Thus, these intersection points 

change their location according to the steel stresses considered. Finally, all these new borders defining 

each region are extended to the outer rectangle that satisfies Eq. (22), making it possible to choose any 

combination of normal stresses. 
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In this method, the following simple and direct verification can be used to know if the ultimate shear 

stress will be governed by concrete crushing with diagonal cracking or by concrete crushing in biaxial 

compression: 

 1



 yycyc

yd

yxcxc

xd

ffff 



  Concrete crushing with diagonal cracking  (25) 

Moreover, the ultimate shear stress predicted through equations (23) and (24) has to be limited to 0.5fc. 

Otherwise, there would be no possible intersection between curves (a) and (b), and the prediction of the 

ultimate shear stress of the panel would be unrealistic. 

In this new interaction diagram it is possible to formulate equations (19) to (21) as functions of the design 

normal stresses applied by substituting equation (1) into equations (19) to (21). Thus, the following 

expressions can be derived for each reinforcement direction i (i=x, j=y or vice versa) reached: 

Concrete crushing in biaxial compression: 

yicid
ii

ibc
si f

n

n



 




1   
(26) 

Concrete crushing with diagonal cracking: 

when idyiicji ff  
  yi

dc
si f1

  (27a) 

when yiicjiidcji fff   6.1  yi
yiicji

idcjidc
si f

ff

f









6.0

6.1
2

 

(27b) 

when cjiid f 6.1  bc
diagsidc

sjkjjdccji

dc
siiidcjidc

si ff

f
,

3
3 6.1

6.1











 
(27c) 

and from Eq. (15)  : 

3,2,1 1
)6.11( 




 k
cj

dc
sjkjjdc

j f

f





  

(27d) 

The evaluation of dc
si3 and j requires a numerical analysis with iterations. This could be an option if an 

exact application of the verification method would be required. In order to facilitate the application of the 

verification method the following expressions for dc
si3 and j can be used instead of the original ones. 

These values are obtained on the basis of the plane x-y instead of the plane cx-cy, while ensuring they 

do not depend on the normal concrete stresses and/or the steel stresses. These new expressions are 
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approximations of the real values but let a direct evaluation of the steel stresses for any region. For the 

sake of simplicity only the final expressions derived are included in this paper. 

1
)6.11(







yjcjcj
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
   (28) 
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 (29) 

At this point, it is important to note that it is possible to obtain the steel stresses in any region without 

iterations by using a straightforward expression to evaluate them, according to the design normal stresses 

applied and the material properties of the membrane element. It is also important to highlight that in order 

to apply the verification method for cases governed by concrete crushing with diagonal cracking, design 

normal stresses σxd and σyd must first satisfy a specific region boundary condition following the 

interaction diagram presented in Fig. 4, which is also straightforward. 

It must be remembered that the following modes of failure are produced in regions A to F: (Region A) 

reinforcement yields in tension in both directions (Y-Y); (Region B) the reinforcement in direction –x 

does not yield and remains in tension, while in direction –y it does yield in tension (T-Y); (Region C), 

neither type of reinforcement yields and both stay in tension (T-T); (Region D) -x reinforcement does not 

yield and is in compression, and –y reinforcement yields in tension (C-Y); (Region E) -x reinforcement 

does not yield and is in compression, while the reinforcement in the –y direction does not yield either but 

remains in tension (C-T); and (Region F) reinforcement does not yield and remains in compression for 

both directions. 

Overall, the practical application of the proposed verification method is summarized in the flowchart 

shown in Fig. 5. 

4. Experimental verification 

The proposed verification method has been used to predict the ultimate shear stress and the mode of 

failure of 88 specimens tested by different researchers. Only specimens with an experimental mode of 

failure supported by the model proposed have been included for validation. Table 1 shows the designation 
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of the specimens tested and the number of tests included for validation for each research team. Further 

information regarding the experimental data and results used in this section can be found in Annex 1.  

It is worth noting that in the shear plane of pushoff tests there exists not only shear stress but also a 

normal compressive stress σx. According to Rahal (2010) [15] the calculation of σx in the shear plane is 

not simple and neglecting σx provides conservative results. As a result, normal stress σx has been 

considered zero in all the experimental validations by Hofbeck et al [7] (see Annex 1). 

The comparison between the experimental ultimate shear stress (u,exp) and that predicted by the proposed 

method (u,cal) is shown in Fig. 6 and also in Annex 1. In this figure, results are grouped by mode of 

failure: region A (Y-Y), region B (T-Y), and region C (T-T). It is important to note that the literature does 

not include any experimental tests corresponding to any of the other regions. As a result, no experimental 

validation of the proposed method has been possible. 

Moreover, Table 2 includes some statistical values to show the behavior predicted with the proposed 

method compared to the experimental results obtained. This table also includes comparisons of the 

proposed method with other simplified methods that will be discussed in section 6.  

Despite the simplicity of the method, reasonable accuracy with a mean value of 1.05 and a coefficient of 

variation of 14.6% can be observed for all the specimens considered. Regarding the mode of failure, the 

method predicts mean values greater than 1 for regions A and B, and less than 1 for region C. Another 

key aspect to be studied is the comparison between the modes of failure observed in the laboratory and 

those predicted by the method proposed. In Table 3 this comparison is shown and extended only to 

specimens in which the experimental mode of failure was reported. The accuracy obtained is high 

because the mode of failure has been predicted to a percentage of 87%. It is important to emphasize that 

for some of the panels where the mode of failure was not properly predicted the error in the determination 

of steel stresses was similar to the error obtained for other panels where the mode of failure was well 

predicted. These results confirm that for the range of panels compared the accuracy of the proposed 

method is quite high despite its simplicity. 

Finally, steel stresses calculated with the proposed method have been compared with stresses obtained 

experimentally. It has only been possible to compare those specimens in which strains measurements in 

the reinforcement directions had been registered. Experimental stresses are obtained in an approximate 

way. In all cases it is assumed a Young modulus for steel Es=200000 MPa and steel stress is limited to its 

corresponding steel yield stress. The results of this comparison are shown in Table 4 and include a total of 
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57 specimens. The scatter of results of steel stress predictions is high, even though in a significant number 

of cases yielding of the reinforcement is both obtained experimentally and with the proposed method.  

Moreover, it is interesting to study the accuracy that the steel stresses prediction presents and its influence 

on the ultimate shear stress. To this end, it is also included in Table 4 the ultimate shear stress obtained in 

the laboratory u,exp, the ultimate shear stress predicted by the proposed method u,cal, and the ultimate 

shear stress predicted by the proposed method according to Eq. (23) but considering the values of the 

stresses obtained experimentally u,calexp. In Fig. 7a it is compared u,calexp vs. u,exp, in Fig. 7b u,cal  vs. 

u,calexp, and in Fig. 7c u,cal vs. u,exp. In the first comparison (Fig. 7a), the ultimate shear stress u,calexp is 

underestimated in comparison with u,exp with a mean value of 0.86 and a CV=16.39%. This result makes 

sense given the fact that other mechanisms apart from reinforcement play a role in the ultimate shear 

stress of the panels. In the second comparison (Fig. 7b), it is shown that the proposed method 

overestimates the ultimate shear stress compared with steel stresses obtained experimentally with a mean 

value of 1.12 and a CV=14.45%. This result also makes sense since there are mechanisms of shear 

transfer that have been neglected in the simplified method proposed. Finally, in the third comparison (Fig. 

7c), a good accuracy of the method proposed can be observed compared with the experimental results, 

with a mean value of 0.95 and a CV=11.47%. This latter result remains in between the first and the 

second results. It is worth noting that a significant poor prediction of steel stress not necessarily results in 

a poor prediction of the ultimate shear stress. 

 

5. Numerical validation 

The proposed verification method has been formulated to predict the ultimate shear stress of 

reinforced concrete membrane elements for any combination of normal stresses. Nevertheless, the 

experimental verification has demonstrated that the method provides good predictions only in regions A, 

B, and C. There are some other regions in which no experimental results have been reported so far. 

A comparison with a well-known material model like MCFT makes it possible to study whether 

predictions of the verification method are good enough in regions with no experimental tests reported. 

The program Membrane-2000 includes the behavior of MCFT and is available online [3]. A comparison 

was carried out using the input data corresponding to specimen PV-20, included in Membrane-2000, and 

used to demonstrate how this software works. 
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For specimen PV-20, an extensive bunch of combinations of normal stresses was chosen. The normal 

stress σxd ranged between -26.0 MPa and 8 MPa, while normal stress σyd ranged between -22.0 MPa and 2 

MPa. For each normal stress, a variation of 2 MPa intervals resulted in 234 different combinations 

included in all of the regions described in the verification method. 

 Predictions of the ultimate shear stress according to Membrane-2000 and the proposed verification 

method were carried out for all 234 combinations. For each method a 3D surface plot is included in Fig. 8 

to show the prediction of the ultimate shear stress of the panel for all the combinations of normal stresses. 

All the graphs shown make use of an interpolation function to plot the 3D surface, which should be 

reasonably accurate given the fact that the number of combinations of normal stresses considered is high 

and uniformly smeared. In both graphs it can be observed that the overall shape of the surface is quite 

similar, even though major differences can be observed on the edges of the graph. In both cases the part 

of the surface governed by a diagonal cracking mode of failure and the part with dominant concrete 

crushing in biaxial compression can be seen. It is interesting to note that when normal compression 

stresses are dominant the proposed method gives lower predictions than those obtained with Membrane-

2000. For example, the maximum ultimate shear stress predicted in Membrane-2000 is 10.3 MPa, while 

in the proposed method it is 9.8 MPa, limiting the value to the maximum possible, 0.5fc, as stated in 

section 3. Thus, the proposed method is on the safe side compared to Membrane-2000 when compression 

normal stresses are dominant. This makes sense given the type of simplification considered in the 

development of this method. Finally, in Fig. 9 the difference between the predictions of the two methods 

is shown. This graph shows part of the total combinations employed, and a reasonable approximation is 

achieved. 

6. Comparison with other simplified methods 

Finally, the results in the literature for the 88 specimens (Table 1) with the proposed verification method 

have also been compared with the following simplified methods proposed by Kaufmann and Marti (1998) 

[11], Carbone, Giordano and Mancini (2001) [4], and Rahal (2008) [16]. Table 5 summarizes the 

formulation of the three methods in order to show how we have implemented these methods for 

comparison. Moreover, Annex I shows the comparison between the different simplified methods for all 

the specimens considered, and the experimental ultimate shear stress (u,exp) in comparison with the 

ultimate shear stress predicted by each simplified method (u,cal). Moreover, Table 2 includes some 

statistical values to show the behavior achieved with each of the methods. All these results have been 
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grouped in terms of the mode of failure according to the prediction of the verification method proposed in 

this paper. For the specific case of region A (yielding of reinforcement in tension in both directions, Y-

Y), the four methods show the same mean value and the same variation coefficient. In these regions the 

four methods employed predict exactly the same results except for specimen HB4 tested by Hsu TTC, 

Zhang L [8]. However, the methods by Kaufmann and Marti (1998) [11] and Carbone, Giordano and 

Mancini (2001) [4] predict the same mode of failure as that detected in the laboratory (region 2, T-Y), see 

Table 3. For the case of region B (T-Y) and region C (T-T), the proposed verification method shows a 

minor scatter of results (exp/cal) closer to 1, and with the lowest coefficient of variation in comparison 

with the other simplified methods considered. Regarding the overall comparison including the bulk of the 

experimental data, the proposed verification method has an average error which is closer to 1, the lowest 

coefficient of variation, a 5% percentile similar to all the other simplified methods, and greater accuracy 

in regions B (T-Y) and C (T-T).  Moreover, the modes of failure registered in the experimental tests and 

the modes of failure predicted by the simplified method proposed in this paper, and also with the 

simplified methods by Kaufmann and Marti (1998) [11], Carbone, Giordano and Mancini (2001) [4], and 

Rahal (2008) [16] are compared in Table 3.  The accuracy achieved with the proposed method is 87%, 

while with Kaufmann and Marti (1998) [11] is 84%, with Carbone, Giordano and Mancini (2001) [4] is 

84% and with Rahal (2008) [16] is 90%.  In all these cases, the accuracy is high and greater than 84%. 

7. Conclusions 

A simple verification method for predicting the ultimate shear stress and the mode of failure of reinforced 

concrete membranes has been presented in this paper. This method, based on a simplified model for 

considering concrete behavior at failure, is straightforward and no iterative processes are required. 

It can be applied under any normal stress combination with any combination of reinforcement ratios in 

both orthogonal directions and can also predict the steel stresses of reinforcement both in tension and 

compression, as well as distinguishing whether yielding is reached. Thus, with this method it is possible 

to establish a rational classification of modes of failure. 

The proposed verification method provides good agreement with the 88 experimental tests selected, 

which cover different modes of failure, a wide range of reinforcement ratios, and several material 

strengths. Accuracy is high in terms of ultimate shear stress and mode of failure.  

Since the experimental validation only covers the most common modes of failure, the method has been 

validated extensively for the entire range of normal stresses by carrying out comparisons using 
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Membrane-2000 software, which includes the MCFT material model. The comparison shows good 

accuracy in terms of ultimate shear stress predicted, and the shape of the failure surface predicted in both 

cases is very similar. 

The proposed verification method was also compared with the simplified methods by Kaufmann and 

Marti (1998) [11], Carbone, Giordano and Mancini (2001) [4], and with the SMCS by Rahal (2008) [16] 

and showed the lowest mean value and coefficient of variation compared to the experimental results 

considered, especially in the predictions where at least one reinforcement did not yield. 
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Notation 

xyyx  ,,
     

Normal and shear stresses applied to membrane 

dydxd  ,,
  

Normal and shear design stresses applied to membrane 

cxycycx  ,,
   

Average normal and shear stresses resisted by concrete 

cyucxu  ,
       

Normal stresses resisted by concrete at failure 

sysx  ,         Average steel stresses in x and y directions 

yx  ,
           

Reinforcement ratios in x and y directions 

     21 , cc         Principal stresses in concrete ( 21 cc  ) 

                Inclination of the minor principal stress of concrete  

cycx  ,       Average concrete strains in x and y directions 

sysx  ,        Average steel strains in x and y directions 

21 ,          Principal strains of the membrane element 

               Inclination of the minor principal strain of concrete

                 Softening factor to reduce compressive strength of diagonal cracked concrete 
 

cf              Cylinder compressive strength of concrete 

yif
   

Tension yield stress of the reinforcement in i-direction 

yicf    Strength of steel in compression in i-direction 

0c     Peak strain of concrete 

yi     Yield strain of the reinforcement in i-direction 

,seccE   
Secant modulus of elasticity for concrete at failure 

sE     Modulus of elasticity of steel 

bc
u     Ultimate shear stress predicted for concrete crushing with biaxial compression 

dc
u     Ultimate shear stress predicted for concrete crushing with diagonal cracking 

1.1 

1.2 
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Research team Specimen designation Number 

Vecchio FJ, Collins MP [18] PV1, … , PV30 18 

Hofbeck JA, Ibrahim IO, Mattock AH [7] 1.1A, … , 6.4 37 

Pang X, Hsu TTC [13] A1, … , A4, B1, …, B6 10 

Hsu TTC, Zhang L [8] HB1, HB3, HB4 3 

Marti P, Meyboom J [12] PP1, PP2, PP3 3 

Vecchio FJ, Collins MP, Aspiotis J [17] PHS2, … , PHS10, PA1, PA2 11 

Xie L, Bentz EC, Collins MP [21] PL1,…PL6 6 

 Total 88 

 

Table 1 

2.7 
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Mode of 
Failure 

(Predicted) 

Region No. Statistical  
values 

Simplified Method 

Proposed Kaufmann 
and Marti  

Carbone  
et al. 

Rahal  

Y-Y A 17 

Average (exp/cal) 1.06 1.06 1.06 1.06 

C.V. 0.18 0.17 0.17 0.18 

Max 1.67 1.67 1.67 1.67 

Percentile (95% ) 1.29 1.29 1.29 1.29 

Percentile (5% ) 0.87 0.91 0.91 0.87 

Min 0.86 0.86 0.86 0.86 

T-Y B 57 

Average (exp/cal) 1.05 1.17 1.21 1.12 

C.V. 0.15 0.19 0.17 0.16 

Max 1.45 1.76 1.82 1.61 

Percentile (95% ) 1.31 1.71 1.56 1.40 

Percentile (5% ) 0.86 0.92 0.97 0.87 

Min 0.57 0.68 0.72 0.64 

T-T C 14 

Average (exp/cal) 1.02 1.13 1.05 1.13 

C.V. 0.10 0.16 0.11 0.15 

Max 1.22 1.47 1.19 1.52 

Percentile (95% ) 1.18 1.41 1.19 1.44 

Percentile (5% ) 0.87 0.90 0.89 0.96 

Min 0.86 0.85 0.87 0.93 

All 88 

Average (exp/cal) 1.05 1.14 1.16 1.11 

C.V. 0.15 0.19 0.18 0.16 

Max 1.67 1.76 1.82 1.67 

Percentile (95% ) 1.29 1.64 1.52 1.43 

Percentile (5% ) 0.87 0.90 0.91 0.87 

Min 0.57 0.68 0.72 0.64 
 

Table 2 

2.7 
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Spec. 

Exp. Proposed 
Kaufmann 
and Marti 

Carbone 
et al. 

Rahal Spec. Exp. Proposed 
Kaufmann 
and Marti 

Carbone 
et al. 

Rahal

A1 Y-? Y-Y Y-Y Y-Y Y-Y PA2 T-Y Y-Y Y-Y Y-Y Y-Y 

A2 Y-Y Y-Y Y-Y Y-Y Y-Y PV4 Y-Y Y-Y Y-Y Y-Y Y-Y 

A3 Y-Y Y-Y Y-Y Y-Y Y-Y PV6 Y-Y Y-Y Y-Y Y-Y Y-Y 

A4 Y-Y T-T Y-T Y-T T-T PV9 T-T T-T Y-T Y-T T-T 

B1 Y-Y Y-Y Y-Y Y-Y Y-Y PV10 T-Y T-Y Y-Y Y-Y T-Y 

B2 Y-Y Y-Y Y-Y Y-Y Y-Y PV11 Y-Y Y-Y Y-Y Y-Y Y-Y 

B3 Y-Y Y-Y Y-Y Y-Y Y-Y PV12 T-Y T-Y T-Y T-Y T-Y 

B4 T-Y T-Y T-Y T-Y T-Y PV16 Y-Y Y-Y Y-Y Y-Y Y-Y 

B5 T-Y T-Y T-Y T-Y T-Y PV19 T-Y T-Y T-Y T-Y T-Y 

B6 T-Y T-Y T-Y T-Y T-Y PV20 T-Y T-Y T-Y T-Y T-Y 

HB1 Y-Y Y-Y Y-Y Y-Y Y-Y PV21 T-Y T-Y T-Y T-Y T-Y 

HB3 Y-Y Y-Y Y-Y Y-Y Y-Y PV22 T-T T-T Y-T Y-T T-T 

HB4 T-Y Y-Y T-Y T-Y T-Y PV23 T-T T-T Y-T Y-T T-T 

PP1 T-Y T-Y T-Y T-Y T-Y PV24 C-C T-T Y-T Y-T T-T 

PP2 Y-Y T-Y Y-Y Y-Y Y-Y PV25 T-T T-T Y-T Y-T T-T 

PP3 Y-Y T-Y Y-Y Y-Y Y-Y PV26 T-Y T-Y T-Y T-Y T-Y 

PHS2 T-Y T-Y T-Y T-Y T-Y PV27 T-T T-T Y-T Y-T T-T 

PHS3 T-Y T-Y T-Y T-Y T-Y PV28 T-T T-T Y-T Y-T T-T 

PHS4 T-Y T-Y T-Y T-Y T-Y PV29 T-Y T-Y T-Y T-Y T-Y 

PHS5 T-Y T-Y T-Y T-Y T-Y PL1 T-Y T-Y T-Y T-Y T-Y 

PHS6 T-Y T-Y T-Y T-Y T-Y PL2 T-Y T-Y T-Y T-Y T-Y 

PHS7 T-Y T-Y T-Y T-Y T-Y PL3 T-Y Y-Y Y-Y Y-Y Y-Y 

PHS8 T-Y T-Y T-Y T-Y T-Y PL4 C-T T-Y T-Y T-Y T-Y 

PHS9 T-Y T-Y T-Y T-Y T-Y PL5 T-Y T-Y T-Y T-Y T-Y 

PHS10 T-Y T-Y T-Y T-Y T-Y PL6 Y-Y Y-Y Y-Y Y-Y Y-Y 

PA1 T-Y Y-Y Y-Y Y-Y Y-Y       
 

Table 3 

2.7 
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Specimen 
 

exp,x  exp,y  
aprox
sx exp,  

(MPa) 

aprox
sy exp,  

(MPa) 
calcsx,  

(MPa) 
calcsy,

(MPa) exp,

exp,

u

calu




 
exp,

,

calu

calu




 

exp,

,

u

calu




 

A1 0.00251 - 444.90 - 444.90 444.90    

A2 0.01225 0.01426 462.80 462.80 462.80 462.80 1.03 1.00 1.03 

A3 0.00610 0.00590 446.50 446.50 446.50 446.50 1.04 1.00 1.04 

A4 0.00272 0.00251 469.90 469.90 404.63 404.63 1.24 0.86 1.07 

B1 0.00623 0.01750 462.80 444.90 462.80 444.90 0.96 1.00 0.96 

B2 0.00464 0.00962 446.60 462.90 446.60 462.90 1.08 1.00 1.08 

B3 0.00309 0.00849 446.50 444.90 446.50 444.90 1.05 1.00 1.05 

B4 0.00076 0.01070 152.00 444.90 424.39 444.90 0.68 1.67 1.14 

B5 0.00137 0.00746 274.00 462.80 406.85 462.80 0.94 1.22 1.14 

B6 0.00172 0.00593 344.00 446.60 407.73 446.60 0.99 1.09 1.08 

PP1 0.00165 0.00824 330.00 480.00 401.69 480.00 0.90 1.10 0.99 

PP2 0.00291 0.00826 486.00 480.00 429.11 480.00 0.93 0.95 0.88 

PP3 0.00343 0.00812 480.00 480.00 478.19 480.00 0.88 1.00 0.88 

PHS2 0.00216 0.01628 432.00 521.00 520.13 521.00 0.82 1.10 0.90 

PHS3 0.00157 0.00553 314.00 521.00 479.23 521.00 0.80 1.24 0.99 

PHS4 0.00182 0.01107 364.00 521.00 563.10 521.00 0.73 1.28 0.94 

PHS5 0.00141 0.01393 282.00 521.00 462.88 521.00 0.56 1.32 0.74 

PHS6 0.00176 0.00964 352.00 521.00 378.57 521.00 0.81 1.03 0.83 

PHS7 0.00137 0.00310 274.00 521.00 408.72 521.00 0.86 1.18 1.01 

PHS8 0.00239 0.00988 478.00 521.00 476.32 521.00 0.92 1.00 0.92 

PHS9 0.00173 0.00947 346.00 521.00 402.47 521.00 0.83 1.07 0.88 

PHS10 0.00208 0.00793 416.00 521.00 485.37 521.00 0.81 1.09 0.89 

PA1 0.00223 0.00413 446.00 522.00 522.00 522.00 0.89 1.08 0.96 

PA2 0.00216 0.00468 432.00 522.00 522.00 522.00 0.89 1.10 0.98 

PV4 0.00594 0.00100 242.00 242.00 242.00 242.00 0.88 1.00 0.88 

PV6 0.00713 0.00113 266.00 266.00 266.00 266.00 1.04 1.00 1.04 

PV9 0.00134 0.01017 268.45 213.85 210.13 210.13 1.14 0.88 1.00 

PV10 0.00088 0.00327 176.64 276.00 248.07 276.00 0.74 1.19 0.88 

PV11 0.00150 0.00510 235.00 235.00 235.00 235.00 1.01 1.00 1.01 

PV12 0.00094 0.00075 187.60 269.00 280.64 269.00 0.64 1.22 0.78 

PV16 0.00525 0.00428 255.00 255.00 255.00 255.00 0.88 1.00 0.88 

PV19 0.00115 0.00860 229.00 299.00 330.41 299.00 0.75 1.20 0.90 

PV20 0.00120 0.00533 239.20 297.00 348.83 297.00 0.79 1.21 0.95 

PV21 0.00135 0.00137 270.22 302.00 347.45 302.00 0.86 1.13 0.98 

PV22 0.00137 0.00092 274.80 382.20 342.60 378.81 0.88 1.11 0.98 

PV23 0.00093 -0.00008 186.48 227.92 212.39 212.39 0.81 1.01 0.82 

PV24 -0.00012 0.00042 -24.60 -14.76 141.85 141.85 0.79 1.46 1.15 

PV25 0.00030 0.00270 60.58 79.22 89.86 89.86 0.83 1.05 0.87 

PV26 0.00132 0.00123 264.48 463.00 368.09 463.00 0.87 1.18 1.02 

PV27 0.00115 0.00188 229.84 234.26 355.82 355.82 0.65 1.53 1.00 

PV28 0.00222 0.00435 444.36 410.55 416.97 416.97 0.99 0.97 0.96 

PV29 0.00084 0.00154 167.58 324.00 293.96 324.00 0.85 1.20 1.02 

2.2-2.7 
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PL1 0.00031 0.00891 62.00 529.00 265.38 529.00 0.71 1.16 0.82 

PL2 0.00064 0.00688 128.00 529.00 474.89 529.00 0.71 1.43 1.01 

PL3 0.00273 0.01100 546.00 529.00 604.00 529.00 0.77 1.08 0.84 

PL4 -0.00034 0.00258 -68.00 516.00 149.64 529.00 0.71 1.15 0.81 

PL5 0.00232 0.01410 464.00 529.00 600.55 529.00 0.84 1.14 0.95 

PL6 0.00585 0.01070 604.00 529.00 604.00 529.00 0.60 1.00 0.60 

     Average 0.86 1.12 0.95 

     C.V. 16.39% 14.45% 11.47% 

     Max 1.24 1.67 1.15 

     Percentile (95% ) 1.07 1.45 1.12 

     Percentile (5% ) 0.64 0.96 0.79 

     Min 0.56 0.86 0.60 

 

Table 4 
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Author Model 

Kaufmann and Marti 
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Figure 2 
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Figure 3 
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Figure 5  

Fig 5b: Evaluation of steel stresses in case of concrete crushing w/ diagonal cracking, and  mode of failure
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

 
 
 

Units (MPa) 

σyd  

-1.2

-1.2

-1
.2

-1

-1

-1

-1

-1

-1

-1

-1
-0.8

-0.8

-0.8

-0.8 -0.8

-0

-0.8

-0.8

-0.8

-0.8

-0.6

-0.6

-0.6

-0.6

-0.6

-0.6

-0.6

-0.6

-0
.6

0.6

-0.4

-0.4

-0.4

4

-0.4

-0
.4

-0.4

-0.4

-0.2

-0.2

-0.2

-0
.2

-0.2

-0.2

0

0

0

0

0

0.2

0.2

0

-20 -15 -10 -5 0
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

σxd 



38 of 42 

 

Annex 1 Data and results predicted by the proposed model for 88 experimental tests 

Reference Test 
fc 

(MPa) c0 x 
fyx 

(MPa) y 
fyy 

(MPa)
x 

(MPa)
y 

(MPa)
exp 

(MPa)
exp/cal

Proposed
Kaufman 
- Marti 

Carbone 
et al. 

Rahal 

Hofbeck JA, 
Ibrahim IO, 
Mattock AH 

[7] 

1.1A 27.0 0.0020 0.05604 314.6 0.00440 349.8 0.00 0.00 5.18 1.30 1.55 1.67 1.46 

1.1B 29.9 0.0020 0.05604 314.6 0.00440 331.2 0.00 0.00 5.82 1.45 1.76 1.82 1.61 

1.2A 26.5 0.0020 0.05604 314.6 0.00879 349.8 0.00 0.00 6.90 1.24 1.37 1.53 1.39 

1.2B 28.8 0.0020 0.05604 314.6 0.00879 331.2 0.00 0.00 6.76 1.21 1.35 1.51 1.34 

1.3A 26.5 0.0020 0.05604 314.6 0.01318 349.8 0.00 0.00 7.59 1.11 1.22 1.32 1.25 

1.3B 27.0 0.0020 0.05604 314.6 0.01318 331.2 0.00 0.00 7.38 1.10 1.21 1.32 1.23 

1.4A 31.1 0.0020 0.05604 314.6 0.01758 349.8 0.00 0.00 9.38 1.12 1.24 1.31 1.24 

1.4B 26.6 0.0020 0.05604 314.6 0.01758 331.2 0.00 0.00 8.83 1.15 1.27 1.35 1.29 

1.5A 31.1 0.0020 0.05604 314.6 0.02197 349.8 0.00 0.00 9.66 1.03 1.17 1.20 1.14 

1.5B 28.0 0.0020 0.05604 314.6 0.02197 331.2 0.00 0.00 9.55 1.09 1.24 1.27 1.22 

1.6A 29.7 0.0020 0.05604 314.6 0.02637 349.8 0.00 0.00 9.88 1.00 1.19 1.10 1.11 

1.6B 27.9 0.0020 0.05604 314.6 0.02637 331.2 0.00 0.00 9.80 1.04 1.23 1.15 1.16 

2.1 21.4 0.0020 0.05604 314.6 0.00440 349.8 0.00 0.00 4.07 1.13 1.29 1.50 1.28 

2.2 21.4 0.0020 0.05604 314.6 0.00879 349.8 0.00 0.00 4.69 0.92 0.99 1.12 1.04 

2.3 26.9 0.0020 0.05604 314.6 0.01318 349.8 0.00 0.00 5.80 0.84 0.92 1.00 0.94 

2.4 26.9 0.0020 0.05604 314.6 0.01758 349.8 0.00 0.00 6.90 0.87 0.97 1.02 0.97 

2.5 28.8 0.0020 0.05604 314.6 0.02197 349.8 0.00 0.00 8.97 0.99 1.13 1.15 1.10 

2.6 28.8 0.0020 0.05604 314.6 0.02637 349.8 0.00 0.00 9.56 0.98 1.18 1.09 1.10 

3.1 27.9 0.0020 0.05604 314.6 0.00010 345.7 0.00 0.00 1.66 0.87 1.36 1.02 0.97 

3.2 27.7 0.0020 0.05604 314.6 0.00399 391.9 0.00 0.00 3.59 0.89 1.06 1.14 0.99 

3.3 21.4 0.0020 0.05604 314.6 0.00879 349.8 0.00 0.00 4.69 0.92 0.99 1.12 1.04 

3.4 27.9 0.0020 0.05604 314.6 0.01571 325.7 0.00 0.00 7.09 0.97 1.06 1.14 1.08 

3.5 27.9 0.0020 0.05604 314.6 0.02462 292.6 0.00 0.00 7.95 0.91 1.03 1.07 1.02 

4.1 28.1 0.0020 0.05604 314.6 0.00440 456.1 0.00 0.00 4.86 1.06 1.22 1.39 1.18 

4.2 28.1 0.0020 0.05604 314.6 0.00879 456.1 0.00 0.00 6.76 1.04 1.14 1.25 1.16 

4.3 29.9 0.0020 0.05604 314.6 0.01318 456.1 0.00 0.00 8.14 1.00 1.10 1.16 1.11 

4.4 29.9 0.0020 0.05604 314.6 0.01758 456.1 0.00 0.00 9.66 1.02 1.18 1.19 1.14 

4.5 23.4 0.0020 0.05604 314.6 0.02197 456.1 0.00 0.00 9.11 1.11 1.29 1.18 1.27 

5.1 16.9 0.0020 0.05604 314.6 0.00440 349.8 0.00 0.00 3.52 1.07 1.19 1.41 1.23 

2.7-2.9-2.10 



39 of 42 

5.2 18.1 0.0020 0.05604 314.6 0.00879 349.8 0.00 0.00 4.83 1.01 1.08 1.23 1.16 

5.3 16.5 0.0020 0.05604 314.6 0.01318 349.8 0.00 0.00 5.59 1.00 1.07 1.19 1.14 

5.4 17.8 0.0020 0.05604 314.6 0.01758 349.8 0.00 0.00 5.49 0.86 0.93 0.97 0.98 

5.5 18.1 0.0020 0.05604 314.6 0.02197 349.8 0.00 0.00 6.97 1.05 1.17 1.16 1.23 

6.1 27.3 0.0020 0.05604 314.6 0.00440 331.2 0.00 0.00 5.52 1.42 1.71 1.81 1.59 

6.2 27.1 0.0020 0.05604 314.6 0.02197 331.2 0.00 0.00 8.56 0.99 1.12 1.16 1.11 

6.3 27.3 0.0020 0.05604 314.6 0.00440 331.2 0.00 0.00 2.21 0.57 0.68 0.72 0.64 

6.4 27.1 0.0020 0.05604 314.6 0.02197 331.2 0.00 0.00 6.37 0.74 0.84 0.86 0.82 

Pang X, Hsu 
TTC [13] 

A1 42.2 0.0020 0.00596 445.0 0.00596 445.0 0.00 0.00 2.28 0.86 0.86 0.86 0.86 

A2 41.3 0.0020 0.01193 463.0 0.01193 463.0 0.00 0.00 5.38 0.97 0.97 0.97 0.97 

A3 41.7 0.0020 0.01789 447.0 0.01789 447.0 0.00 0.00 7.67 0.96 0.96 0.96 0.96 

A4 42.5 0.0020 0.02982 470.0 0.02982 470.0 0.00 0.00 11.32 0.94 1.08 0.94 0.93 

B1 45.3 0.0020 0.01193 463.0 0.00596 445.0 0.00 0.00 3.97 1.04 1.04 1.04 1.04 

B2 44.1 0.0020 0.01789 447.0 0.01193 463.0 0.00 0.00 6.13 0.92 0.92 0.92 0.92 

B3 44.9 0.0020 0.02982 447.0 0.00596 445.0 0.00 0.00 4.37 0.95 0.95 0.95 0.95 

B4 44.8 0.0020 0.02982 470.0 0.00596 445.0 0.00 0.00 5.08 0.88 0.95 1.02 0.88 

B5 42.9 0.0020 0.02982 470.0 0.01193 463.0 0.00 0.00 7.17 0.88 0.89 0.95 0.87 

B6 43.0 0.0020 0.02982 470.0 0.01789 447.0 0.00 0.00 9.15 0.93 0.96 0.98 0.92 

Hsu TTC, 
Zhang L [8] 

HB1 66.5 0.0020 0.01193 409.0 0.00596 445.0 0.00 0.00 4.32 1.20 1.20 1.20 1.20 

HB3 66.8 0.0020 0.01789 447.0 0.00596 445.0 0.00 0.00 4.89 1.06 1.06 1.06 1.06 

HB4 62.9 0.0020 0.02982 470.0 0.00596 445.0 0.00 0.00 5.33 0.87 0.92 0.92 0.87 

Marti P, 
Meyboom J 

[12] 

PP1 27.0 0.0020 0.01942 479.0 0.00647 480.0 0.00 0.00 4.95 1.01 0.97 1.08 0.98 

PP2 28.1 0.0020 0.01295 486.0 0.00647 480.0 -2.07 0.00 5.50 1.13 1.08 1.08 1.08 

PP3 27.7 0.0020 0.00647 480.0 0.00647 480.0 -4.40 0.00 5.50 1.14 1.14 1.14 1.14 

Vecchio FJ, 
Collins MP, 
Aspiotis J 

[17] 

PHS2 66.1 0.0025 0.03230 606.0 0.00410 521.0 0.00 0.00 6.66 1.11 1.31 1.23 1.10 

PHS3 58.4 0.0024 0.03230 606.0 0.00820 521.0 0.00 0.00 8.19 1.01 1.07 1.17 1.00 

PHS4 68.5 0.0026 0.03230 606.0 0.00820 521.0 1.65 1.65 6.91 1.07 1.20 1.17 1.03 

PHS5 52.1 0.0026 0.03230 606.0 0.00410 521.0 0.99 0.99 4.81 1.34 1.73 1.41 1.31 

PHS6 49.7 0.0023 0.03230 606.0 0.00410 521.0 -1.92 -1.92 9.89 1.20 1.30 1.40 1.24 

PHS7 53.6 0.0021 0.03230 606.0 0.00820 521.0 -2.60 -2.60 10.26 0.99 1.07 1.11 1.02 

PHS8 55.9 0.0022 0.03230 606.0 0.01240 521.0 0.00 0.00 10.84 1.09 1.14 1.20 1.10 

PHS9 56.0 0.0027 0.03230 606.0 0.00410 521.0 -1.98 -1.98 9.37 1.13 1.21 1.31 1.14 

PHS10 51.4 0.0025 0.03230 606.0 0.01240 521.0 1.96 1.96 8.58 1.12 1.16 1.26 1.10 
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PA1 49.9 0.0020 0.01650 522.0 0.00820 522.0 0.00 0.00 6.34 1.04 1.04 1.04 1.04 

PA2 43.0 0.0020 0.01650 522.0 0.00820 522.0 0.00 0.00 6.22 1.02 1.02 1.02 1.02 

Vecchio and 
Collins 

(1986) [18] 

PV4 26.6 0.0025 0.01056 242.0 0.01056 242.0 0.00 0.00 2.89 1.13 1.13 1.13 1.13 

PV6 29.8 0.0025 0.01785 266.0 0.01785 266.0 0.00 0.00 4.55 0.96 0.96 0.96 0.96 

PV9 11.6 0.0028 0.01785 455.0 0.01785 455.0 0.00 0.00 3.74 1.00 0.85 0.90 1.01 

PV10 14.5 0.0027 0.01785 276.0 0.00999 276.0 0.00 0.00 3.97 1.14 1.08 1.17 1.11 

PV11 15.6 0.0026 0.01785 235.0 0.01306 235.0 0.00 0.00 3.56 0.99 0.99 0.99 0.99 

PV12 16.0 0.0025 0.01785 469.0 0.00446 269.0 0.00 0.00 3.13 1.28 1.25 1.50 1.27 

PV16 21.7 0.0020 0.00740 255.0 0.00740 255.0 0.00 0.00 2.14 1.13 1.13 1.13 1.13 

PV19 19.0 0.0022 0.01785 458.0 0.00713 299.0 0.00 0.00 3.95 1.11 1.06 1.23 1.11 

PV20 19.6 0.0018 0.01785 460.0 0.00885 297.0 0.00 0.00 4.26 1.05 1.01 1.16 1.06 

PV21 19.5 0.0018 0.01785 458.0 0.01296 302.0 0.00 0.00 5.03 1.02 0.97 1.08 1.03 

PV22 19.6 0.0020 0.01785 458.0 0.01524 420.0 0.00 0.00 6.07 1.02 0.97 0.99 0.99 

PV23 20.5 0.0020 0.01785 518.0 0.01785 518.0 -3.46 -3.46 8.87 1.22 1.37 1.19 1.39 

PV24 23.8 0.0019 0.01785 492.0 0.01785 492.0 -6.59 -6.59 7.94 0.87 1.11 0.87 1.09 

PV25 19.3 0.0018 0.01785 466.0 0.01785 466.0 -6.29 -6.29 9.12 1.15 1.47 1.18 1.52 

PV26 21.3 0.0019 0.01785 456.0 0.01009 463.0 0.00 0.00 5.41 0.98 0.93 1.02 0.97 

PV27 20.5 0.0019 0.01785 442.0 0.01785 442.0 0.00 0.00 6.35 1.00 0.98 0.99 1.00 

PV28 19.0 0.0019 0.01785 483.0 0.01785 483.0 1.86 0.00 5.80 1.04 0.94 1.01 0.98 

PV29 21.7 0.0018 0.01785 441.0 0.00885 324.0 -2.07 -2.07 5.87 0.98 0.98 1.07 1.02 

Xie L, Bentz 
EC, Collins 

MP [21] 

PL1 38.5 - 0.01588 604.0 0.00186 529.0 -8.62 0.00 4.31 1.21 1.60 1.12 1.30 

PL2 38.2 - 0.01588 604.0 0.00186 529.0 -3.21 0.00 3.21 0.99 1.19 1.02 0.97 

PL3 42.0 - 0.01588 604.0 0.00186 529.0 3.04 0.00 3.04 1.20 1.20 1.20 1.20 

PL4 43.1 - 0.01588 604.0 0.00186 529.0 -13.23 0.00 4.81 1.23 1.74 1.12 1.38 

PL5 38.1 - 0.01588 604.0 0.00186 529.0 0.00 0.00 3.21 1.05 1.19 1.05 1.04 

PL6 43.5 - 0.01588 604.0 0.00186 529.0 7.36 0.00 2.47 1.67 1.67 1.67 1.67 
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Annex 2. Verification examples 

Example 1: Specimen PV25 by Vecchio and Collins (1986) [18] 

Materials: fc = 19.25 MPa; c0 = 0.0018; ρx = ρy = 0.01785; fyx = fyy = 466 MPa 

Stresses at failure: xd = yd = -6.29 MPa; u,exp = 9.12 MPa 

Step 1: verify
yyyydyycyc

yxxxdyxcxc

fff

fff









 

 
32.829.667.25

46601785.029.636001785.025.19




  Yes 

Step 2: 1



 yycyc

yd

yxcxc

xd

ffff 





 

 149.0
67.25

29.6
2 




  Yes, diagonal cracking 

Step 3: Type of region and steel stresses 

276.0
466

500
)018.03333.0(

3.0







 yx 

 

113.1
36001785.025.19)276.06.11(

36001785.029.625.19 


 yx 
 

00.329.6 ,  yxxcyxAxxd ff    & 29.651.86.1,  xdcxBx f   

00.329.6 ,  yyycxyAyyd ff   & 29.651.86.1,  ydcyBy f   

Hence, the membrane region is C and the mode of failure is (T-T) 

   
MPa 86.89

46601785.025.191277.06.0

46625.19276.016.129.6

6.0

6.1










 yxxcyx

yxcyxxddc
sx ff

ff




  

 
MPa 86.89

6.0

6.1






yyycxy

yycxyyddc
sy ff

ff




  

Step 4: Concrete stresses at failure 

MPa 90.786.8901785.029.6  dc
sxxxdcxu 

 

MPa 90.7 dc
syyydcyu   

Step 5: Ultimate shear stress of the panel 

MPa 90.7)90.7()90.7(  cyucxu
dc
u   

15.1/exp, dc
uu 

 

Example 2: Specimen PL1 by Xie L, Bentz EC, Collins MP [21] 

Materials: fc = 38.5 MPa; c0 = 0.002 (estimated); ρx = 0.01588; ρy = 0.00186; fyx =604 MPa; fyy = 529 MPa 

Stresses at failure: xd = -8.62 MPa; yd =0 MPa; u,exp = 4.31 MPa 

2.5 

2.1 

1.1 
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Step 1: verify
yyyydyycyc

yxxxdyxcxc

fff

fff









 

 
98.052900186.0024.3940000186.05.38

59.960401588.062.885.4440001588.05.38


   Yes 

Step 2: 1



 yycyc

yd

yxcxc

xd

ffff 





 

 119.0
24.39

0

85.44

62.8






  Yes, diagonal cracking 

Step 3: Type of region and steel stresses 

2495.0
604

500
)01588.03333.0(

3.0







x

 

2596.0
529

500
)00186.03333.0(

3.0







y

 

1123.1
40001588.05.38)2495.06.11(

40001588.062.85.38





 xx 
 

1169.1
40000186.05.38)2596.06.11(

40000186.005.38





 yy 
 

0123.062.8 ,  yxxcyxAxxd ff   & 62.837.156.1,  xdcyxBx f   

01.90 ,  yyycxyAyyd ff   

Hence, the membrane region is B and the mode of failure is (T-Y) 

   
MPa 38.265

60401588.05.3812495.06.0

6045.3812495.06.162.8

6.0

6.1











 yxxcyx

yxcyxxddc
sx ff

ff




  

MPa 529 yy
dc
sy f  

Step 4: Concrete stresses at failure 

MPa 83.1238.26501588.062.8  dc
sxxxdcxu 

 

MPa 98.052900186.00  dc
syyydcyu   

Step 5: Ultimate shear stress of the panel 

MPa 55.3)98.0()83.12(  cyucxu
dc
u   

21.1/exp, dc
uu 

 


