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Abstract

The ensemble Kalman filter (EnKF) is now widely used in diverse disciplines to estimate model parameters

and update model states by integrating observed data. The EnKF is known to perform optimally only for

multiGaussian distributed states and parameters. A new approach, the normal-score EnKF (NS-EnKF), has

been recently proposed to handle complex aquifers with non-Gaussian distributed parameters. In this work,

we aim at investigating the capacity of the NS-EnKF to identify patterns in the spatial distribution of the

model parameters (hydraulic conductivities) by assimilating dynamic observations in the absence of direct

measurements of the parameters themselves. In some situations, hydraulic conductivity measurements (hard

data) may not be available, which requires the estimation of conductivities from indirect observations, such

as piezometric heads. We show how the NS-EnKF is capable of retrieving the bimodal nature of a synthetic

aquifer solely from piezometric head data. By comparison with a more standard implementation of the

EnKF, the NS-EnKF gives better results with regard to histogram preservation, uncertainty assessment and

transport predictions.
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1. Introduction

The inverse problem in hydrogeology involves characterizing model parameters, mainly hydraulic conduc-

tivity, by integrating measurements of the state variables such as hydraulic head or concentration data. An

inverse method that has attracted much attention in the last years is the ensemble Kalman filter (EnKF).

The EnKF was proposed by Evensen (1994) and further clarified by Burgers et al. (1998) as an extension to

the Kalman filter for the cases in which the state equation is non-linear. It has gained popularity in many

disciplines as an efficient data assimilation algorithm (e.g., Houtekamer and Mitchell, 2001; Bertino et al.,

2003), and it has been extended, through the augmentation of the state vector, to the identification of the

parameters controlling the state of the system (Naevdal et al., 2005; Chen and Zhang, 2006; Moradkhani

et al., 2005; Wen and Chen, 2006; Hendricks Franssen and Kinzelbach, 2008). The popularity of the EnKF

can be attributed to the relative limited CPU time needed as compared with other Monte-Carlo type inverse

modeling (Hendricks Franssen and Kinzelbach, 2009) and the ease of combining the EnKF with virtually

any forward model.

The EnKF is known to provide an optimal solution when the state vector follows a multiGaussian

distribution and the state transfer function is linear (e.g., Arulampalam et al., 2002). However, in many

practical applications of groundwater modeling, hydraulic conductivity cannot be modeled as multiGaussian

distributed. The importance of accounting for non-multiGaussinity and the impact of not accounting for it

has been clearly demonstrated (e.g., Journel and Deutsch, 1993; Gómez-Hernández and Wen, 1998; Zinn and

Harvey, 2003). Zhou et al. (2011) developed a new approach, the normal-score EnKF (NS-EnKF), to better

handle non-Gaussian distributions of hydraulic conductivity and states. Both, states and parameters, are

normal-score transformed at each time step so that they follow marginal univariate Gaussian distributions.

Then, the EnKF is applied on the normal-score transformed states and parameters. The performance of

the NS-EnKF was shown to outperform the standard EnKF in a synthetic test example (Zhou et al., 2011).

Similar measures have been taken in other disciplines to cope with non-Gaussinity (e.g., Gu and Oliver,

2006; Schoniger and Nowak, 2011; Simon and Bertino, 2009; Wen and Chen, 2007)

The purpose of this paper is to evaluate the performance of the NS-EnKF in identifying hydraulic

conductivity patterns in a bimodal aquifer by integrating dynamic hydraulic head data. The NS-EnKF

has proven to work well in the presence of a relatively dense sample of hydraulic conductivities, i.e., direct

measurements or hard data (Zhou et al., 2011). However, in practice, we have to confront the situation in

which the direct measurements of hydraulic conductivity are scarce or simply unavailable. Therefore, we want

to investigate the performance of the NS-EnKF to characterize a non-multiGaussian hydraulic conductivity
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distribution without the use of hard data. Transient hydraulic heads serve as the only information source

for the characterization of hydraulic conductivity; direct measurements of hydraulic conductivity are not

considered in this experiment.

The continues as follows. The NS-EnKF algorithm is briefly introduced in Section 2. The method is

tested on a synthetic bimodal aquifer composed of sand and shale, where the model is conditioned on the

observed hydraulic heads through the NS-EnKF and the standard EnKF. Results and discussions follow the

synthetic example. The paper ends with some conclusions.

2. The normal-score ensemble Kalman filter

The standard EnKF algorithm is described by Evensen (1994), Burgers et al. (1998) and Evensen (2007).

The first application of the augmented EnKF in hydrogeology was done by Chen and Zhang (2006). Details

about the NS-EnKF algorithms can be found in Zhou et al. (2011). The main steps of the NS-EnKF algorithm

are the same as for the standard EnKF, but the big difference is the introduction of additional pre- and

post- processing steps carried out on the states and parameters contained in the augmented state vector.

It starts with an ensemble of realizations that have been generated following a given (non-multiGaussian)

random function. The NS-EnKF method consists of the following four main steps:

1. Forward simulation. For each realization of the ensemble, the state vector at time t− 1 is updated to

time t using a state transfer equation, in our case, piezometric heads are updated from time t − 1 to

time t through the solution of the groundwater flow equation, the hydraulic conductivities, which are

members of the augmented state vector, remain unchanged through this step.

2. Normal score transformation. At each grid cell, and for each component of the augmented state vector

(in our case, hydraulic conductivity and piezometric head) compute, using the ensemble of realizations,

the local cumulative distribution function (CDFs). These local CDFs are used to construct normal-

score transform functions that are used to transform the augmented state vector into a new vector.

All the components of the new vector follow a marginal Gaussian distribution with zero mean and unit

variance.

3. Update. The new state vector is updated similarly as in the standard EnKF:

xu
t = x

f
t +Gt(zt + ε−Hx

f
t ) (1)

where xu
t is the vector with the updated state variables at time t (in Gaussian space) and x

f
t is the
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vector computed from the forward simulation and then normal-score transformed; Gt is the Kalman

gain, derived on the basis of the minimization of the posterior error covariance; zt is the normal-score

transformed observation at time t; ε is an observation error characterized by a normal distribution

with zero mean and a diagonal covariance (it is assumed that errors at different measurement locations

are independent); H is the observation matrix.

4. Back transform. Each component of the updated state vector xu
t is back transformed using the previ-

ously constructed local CDFs.

The above steps loop until all the observed piezometric heads (for a certain time period) are assimilated.

3. Synthetic example

A synthetic bimodal aquifer composed of sand and shale occupies an area of 300 m × 240 m, where the

hydraulic conductivities are characterized by a nonGaussian distribution spreading over several orders of

magnitude. The study domain is discretized into 100 columns by 80 rows (the grid cells have dimensions of

3 m × 3 m). The aquifer is assumed confined with a thickness of 10 m.

The reference facies field is generated by SNESIM (Strebelle, 2002), a multiple-point geostatistical sim-

ulation algorithm, using as training image the one in Figure 1. Each facies is then populated with log-

conductivity values generated by GCOSIM3D (Gómez-Hernández and Journel, 1993) with parameters shown

in Table 1. The reference lnK field is presented in Figure 2. The histogram of log-conductivity is bimodal,

with modes coinciding with the means of the sand and shale distributions, 3.0 ln(m/d) and −2.0 ln(m/d),

respectively, and it has a global mean of −0.47 ln(m/d) and a global standard deviation of 2.39 ln(m/d).

The groundwater flow equation is solved for the reference field using the transient flow simulator MOD-

FLOW (Harbaugh et al., 2000) with impermeable boundary conditions in the north and south, constant

head of 0 m in the west and prescribed flow rate of 270.5 m3/d along the east boundary distributed as shown

in Figure 2. Different flow rates are set on the eastern boundaries depending on their water supply capacity,

i.e., large flow rates correspond to zones with high conductivities. The initial head over the domain is 0 m.

The total simulation period of 500 days is discretized into 100 steps with step sizes that increase following

a geometric series with a ratio of 1.05. Specific storage is assumed constant and equal to be 0.003 m−1.

Using the same training image (Fig. 1) and the same multiple-point geostatistical algorithm (SNESIM),

1000 facies realizations are generated. For each realization both facies are populated with lnK values

generated by sequential Gaussian simulations using the parameters as specified in Table 1. The assimilation

of piezometric head data is performed by the standard EnKF and the NS-EnKF. Observed piezometric
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heads from 111 piezometers in 60 time steps (67.7 days) serve as conditioning data. The locations of the 111

piezometers are shown in Figure 2.

4. Results and discussions

4.1. Characterization of lnK spatial heterogeneity

Figure 3 shows the evolution of the ensemble mean and variance of log-conductivity as the piezometric

head data are assimilated by the NS-EnKF from the initial time step (t = 0) to the end of the data

assimilation period (t = 60). The ensemble mean of the initial (unconditinal) realizations is flat and shows

no feature even though each initial realization honors the same multiple-point geostatistical model implicit

in the training image. The structure of the spatial patterns of lnK starts to appear during the conditioning

to piezometric head data. For instance, at the 5th assimilation step, the channel pattern near the eastern

boundary is identified and at the end of the 60th step, the ensemble mean of lnK resembles closely the

reference field, having identified quite precisely the channel locations in the reference. The variance is also

reduced over the domain as more piezometric heads are integrated. At the end of time step 60 we can even

identify the boundaries of the channels by the largest variance strings. We can argue that assimilation of

transient hydraulic heads with the NS-EnKF plays a critical role in recognizing patterns of lnK and allows

a good characterization of the bimodal aquifer.

Figure 4 shows the results obtained using the standard EnKF. The ensemble mean is similar to the one

obtained by the NS-EnKF, i.e., the lnK patterns are recognized as more piezometric heads are assimilated.

The main difference resides in the variance field. The variance is initially reduced around the piezometers,

which is clearly illustrated by observing the variance field up to the 15th time step, while in the case of

NS-EnKF, the influence area of the piezometer is extended and depends on the channels to a large extent.

Then, at the end of data assimilation (t = 60), the lnK variance in Figure 4 is widely reduced over the entire

domain. On one hand, the variance reduction is what we expect as additional information is incorporated

in the model; on the other hand, the over-reduction of the ensemble variance cannot represent the real

uncertainty, that is, the uncertainty is underestimated by the standard EnKF. This can be reinforced by

Figure 5, which shows the evolution of the average absolute bias (AAB(x)t) and the average ensemble spread

(AESP (x)t).

The AAB(x)t and the AESP (x)t evaluate accuracy and uncertainty of the estimation, respectively. They
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are defined as

AAB(x)t =
1

Nb

Nb
∑

i=1

1

Ne

Ne
∑

r=1

|xt,i,r − xref,i|

AESP (x)t =

(

1

Nb

Nb
∑

i=1

σ2

xt,i

)1/2
(2)

where xt,i,r is the estimated log-conductivity at time step t, node i and realization r, xref,i is the reference

log-conductivity at node i, Nb is the number of nodes, Ne is the number of realizations and σ2
xt,i

is the

variance over the ensemble at time step t and location i. We can see that as assimilation time advances, the

AAB(x)t and the AESP (x)t decrease and approach a stable value. Clearly, the AAB(x)60 corresponding

to the NS-EnKF is smaller than that for the standard EnKF, indicating a more accurate estimation. On

the contrary, the AESP (x)60 corresponding to the NS-EnKF is bigger than that for the standard EnKF,

indicating an estimate with higher uncertainty. The discrepancy between AAB(x)60 and AESP (x)60 is much

larger for the standard EnKF than for NS-EnKF, what, according to Chen and Zhang (2006), indicates that

the former underestimates the uncertainty in relation with the latter.

Figure 6 displays lnK histograms of the reference field, the prior ensemble and the updated ensemble

by the EnKF and the NS-EnKF after piezometric heads are assimilated. The global mean and standard

deviation are preserved during data assimilation for both the standard EnKF and the NS-EnKF. The bimodal

histogram for the prior ensemble (related with the sand and shale facies) is correctly preserved by the NS-

EnKF during data assimilation, but it is not with the standard EnKF. In the latter case, the updated

histogram tends to be Gaussian and the bimodality is almost gone. Besides, the histogram obtained with

the standard EnKF shows extremely high and low values, outside of the range of the reference histogram.

Connectivity plays a key role in solute transport simulation and thus a series of measures has been

proposed to assess it. Here we measure connectivity by the the probability that two points within the same

facies are connected by a continuous path (Stauffer and Aharony, 1994). We focus on the connectivity of

sand along the x direction which is the main orientation of the channels. The log-conductivity values are

first converted to indicator variables according to

I(x) =















1, if lnK ≥ 0

0, otherwise,

(3)

which, in this particular case, is equivalent to partition them into sand and shale. Then, the program

CONNEC3D (Pardo-Igúzquiza and Dowd, 2003) is used to compute the connectivity functions for different
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distance lags for log-conductivities larger than 0 ln(m/d). Figure 7 shows connectivity as a function of

distance before (Fig.7A) and after data assimilation with the standard EnKF (Fig.7B) and the NS-EnKF

(Fig.7C). These figures show the functions for the reference field, for each updated stochastic realization and

they also show the mean of the connectivity functions over the stochastic realizations. We can see that the

reference connectivity function is underestimated by both the standard EnKF and the NS-EnKF over the

considered lags, but the latter performs a little better since the span of the ensemble of realizations includes

almost completely the connectivity function for the reference field at long lags.

A random realization in the ensemble and the corresponding connectivity function is shown in Figure

8. In the updated model by the standard EnKF, the border between facies is smoothed (the first graph of

the third row), i.e., some values between the two facies (around 0s) are observed, which is reinforced by the

histogram in Figure 6C. At the same time, the proportion of being sand is increased (the second graph of

the third row), 0.38 in comparison with 0.31 of the reference, indicating more channels while these channels

are not connected as well as those in the updated model by the NS-EnKF.

4.2. Prediction capacity of updated lnK

The previous assessments focused on the estimation of log-conductivity itself, for that purpose, the

NS-EnKF is found to perform properly in detecting the log-conductivity pattern, preserving the bimodal

histogram and estimating the connectivity. Now, the updated log-conductivity realizations will be tested for

their ability to perform predictions.

Figure 9 shows the hydraulic head evolution with time at two of the piezometers, one located in shale

(Piezometer #19) and the other in sand (Piezometer #44). Hydraulic head predictions for the prior and

updated realizations are displayed. Data assimilation by the standard EnKF and the NS-EnKF result in

a significant reduction of prediction uncertainty for both methods at both piezometers. The accuracy of

hydraulic head prediction is very similar for the NS-EnKF and for the standard EnKF although the updated

lnK fields by NS-EnKF are superior in terms of detection of the spatial patterns of hydraulic conductivities.

This fact can be attributed to the smoothing effect of the groundwater flow equation (Delhomme, 1979), i.e.,

similar piezometric head distributions can be obtained for different lnK fields, and thus the non-uniqueness

of solutions to the inverse problem (Carrera and Neuman, 1986b).

To further evaluate the updated lnK fields we performed a transport prediction experiment for the case

of steady-state flow. Figure 10 shows the set-up of this synthetic experiment. No flow boundary conditions

are defined for the northern and southern boundary and prescribed heads along the western (equal to 0 m)

and eastern boundary (equal to -10 m). Conservative particles are released along a vertical line at x = 19.5
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m and two control planes are located at x = 110 m and x = 290 m, at which the arrival times are recorded.

The random walk particle tracking program RW3D (Fernàndez-Garcia et al., 2005; Li et al., 2011a,b) is used

to solve the conservative transport equation. The integrated breakthrough curves (BTCs) at the two control

planes are computed and compared with the prior BTCs and the reference BTCs (Fig.11). For both the

standard EnKF and the NS-EnKF, the uncertainty of BTC prediction is significantly reduced, indicating the

importance to integrate piezometric head data. With standard EnKF, the bias and uncertainty are reduced

compared with the prior at both control planes. However, the ensemble median deviates from the reference

and the reference is not enclosed in the 90% confidence interval. The travel time is earlier than that in the

reference especially for the control plane A, which can be attributed to the wider channels in the updated

model than in the reference field as shown in Figure 8. With the NS-EnKF, not only the bias and prediction

uncertainty are significantly reduced at both control planes but also the reference is well represented by the

ensemble median, and it is contained within the 90% confidence interval, especially for control plane B.

5. Conclusion

A normal-score transformation is introduced into the EnKF, resulting in a new algorithm, the NS-EnKF

(Zhou et al., 2011), in which EnKF is applied to model parameters and states following a marginal Gaussian

distributions.

The objective of this paper is to investigate the behavior of the NS-EnKF in identifying lnK patterns

for a synthetic non-Gaussian aquifer with a bimodal lnK distribution by assimilating hydraulic heads in the

absence of lnK measurements. The standard EnKF is also used for the same synthetic set-up in order to

compare its performance against the NS-EnKF. The NS-EnKF gives better results than the standard EnKF

in the experiment because: (1) the bimodal histogram is well preserved by the NS-EnKF while it is not

by the standard EnKF, (2) parameter uncertainty is underestimated by the standard EnKF with respect

to the NS-EnKF, (3) channel connectivity along the x direction is underestimated by both methods but

the connectivity functions computed on the ensemble of realizations obtained by NS-EnKF are closer to

the connectivity function in the synthetic reference field, and (4) the fate of conservative solute is predicted

correctly by the updated lnK fields in NS-EnKF, while the results by standard EnKF exhibit a certain

deviation from the reference. In conclusion, transient piezometric head data carry important information

which, in conjunction with a knowledge of the prior histogram of the hydraulic conductivity, permits the

characterization of a non-Gaussian lnK distribution even if no hydraulic conductivity data are available.
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Figure 3: Evolution of the lnK ensemble mean and variance as data are assimilated with the NS-EnKF for time steps 5, 15 and
60. Reference lnK is shown for comparison.
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Figure 4: Evolution of the lnK ensemble mean and variance as data are assimilated with the standard EnKF for time steps 5,
15 and 60. Reference lnK is shown for comparison.
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Figure 6: lnK histograms for the (A) reference, (B) prior, (C) posterior with the standard EnKF, and (D) posterior with the
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Figure 7: Connectivity as a function of the separation distance, measuring the probability that two points along the x direction
are connected by a continuous path of lnK larger than 0 ln(m/d). Results are shown for (A) the prior unconditional realizations,
(B) the realizations conditioned with standard EnKF, and (C) the realizations conditioned with the NS-EnKF.
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Figure 8: From the top row down: the reference field, initial lnK distribution for one of the ensemble realizations, final lnK
distribution for the same realization after data assimilation by the EnKF, final lnK distribution after data assimilation by the
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map (top row, second column), and the average of the ensemble of connectivity functions in all realizations. The proportion of
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Figure 9: Piezometric head evolution for two of the 111 piezometers, the locations of which are indicated in Figure 2. Results are
shown for the prior ensemble (no data assimilation), for assimilation with the standard EnKF and the NS-EnKF (conditioning
to piezometric heads until 67.7 days, indicated by the vertical dashed line). Circles refer to piezometric heads in the reference
field.
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Figure 10: Configuration of the transport prediction experiment. Boundary conditions, locations for particle injection, location
of the two control planes and an example of the particle paths in one of the realizations are shown.
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Figure 11: Breakthrough curves at two control planes for the prior ensemble and for the ensemble updated with the standard
EnKF and the NS-EnKF. The 5th percentile, median, 95th percentile and reference of the breakthrough curves are shown.
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