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ABSTRACT 

Glass fiber reinforced cement (GRC) is a composite material made of portland cement mortar and alkali resistant 

(AR) fibers. AR fibers are added to portland cement to give the material additional flexural strength and toughness. 

However ageing deteriorates the fibers and as a result the improvement in the mechanical properties resulted from 

the fiber addition disappears as the structure becomes old.  The aim of this paper is monitoring GRC ageing by 

nondestructive evaluation (NDE) techniques.  Two different NDE techniques – 1) nonlinear impact resonant 

acoustic spectroscopy analysis and 2) propagating ultrasonic guided waves - are used for this purpose. Both 

techniques revealed a reduction of the nonlinear behavior in the GRC material with ageing. Specimens are then 

loaded to failure to obtain their strength and stiffness. Compared to the un-aged specimens the aged specimens are 

found to exhibit more linear behavior, have more stiffness but less toughness. Finally,  undisturbed fragments on the 

fracture surface form mechanical tests are inspected under the electron microscope, to understand the fundamental 

mechanisms that cause the change in the GRC behavior with ageing.   

Keywords: Glass Fiber Reinforced Cement, Material Ageing, Ultrasonic Guided Waves, Nonlinear Impact Resonant 

Acoustic Spectroscopy, Nondestructive Evaluation. 

1 Introduction 

Alkali resistant glass fiber reinforced portland cement is a cement-based composite material that has higher flexural 

strength and toughness than plain cement [1]. However, GRC undergoes a rapid ageing process especially in humid 

and alkaline environment (pH>12).  This ageing can nullify the positive effects of glass fibers undergoing from a 

ductile to a brittle material. The loss of mechanical properties with ageing has been attributed to two different 

mechanisms -  a stress corrosion cracking process in glass materials called static fatigue [2] and the growth of 



hydration products, mainly portlandite around the single filaments in the strand [1]. This concern relegates GRC 

mainly to nonstructural applications, such as façade panels, acoustic barriers, permanent formwork or cladding 

tunnels. Recent applications of GRC as structural material have been investigated in telecommunication towers by 

combining carbon fiber, glass fiber and steel reinforcement [3]. 

Different strategies for improving the durability of GRC have been attempted by modifying the fibers and/or by 

altering the alkalinity of the matrix [7-9].  All these improvements have been evaluated by mechanical tests after 

accelerated ageing. Accelerated ageing tests have been broadly accepted for testing the durability of GRC. They can 

be classified as i) Deemed to satisfy tests, (EN 1170-8 [10]) where the GRC specimens are exposed to severe 

conditions, and ii) predictive accelerated ageing tests [11] that are commonly used to predict the service life of the 

material, in real weather conditions. For example, Purnell et al. [2] established that GRC soaked for 1 day in water 

at 55ºC, corresponds to 100 days of exposure to the real weather conditions in the United Kingdom. However, it 

should be noted that the correspondence between the accelerated ageing tests and the real aging conditions is still 

being investigated, especially when different matrix compositions are to be compared [11-12]. Typically the ageing 

process has been assessed by mechanical testing or by strand in cement (SIC) tests [13-14].  The aim of this work is 

to assess the ageing process in GRC by two nondestructive testing techniques – 1) resonance frequency tests at 

different impact energy levels called Nonlinear Impact Resonance Acoustic Spectroscopy (NIRAS) and 2) 

Ultrasonic Guided Wave (UGW) tests. GRC specimens are subjected to accelerated ageing by placing them in water 

baths at elevated temperatures.  NIRAS and UGW tests are conducted on aged and un-aged specimens to study the 

effect of ageing on different parameters measured by these tests. The specimens are then loaded to failure and 

fragments from the fracture surface of the specimens are inspected under the electron microscope to investigate the 

effect of ageing on the strength, toughness and internal composition of GRC specimens. The final objective of this 

research is to be able to monitor the health (strength and toughness) of GRC by nondestructive testing, and to 

understand why and how this material degrades with time.  



2 Background 

2.1 Nonlinear Impact Resonant Acoustic Spectroscopy 

In general, cement based materials as a result of their intrinsic heterogeneities, can be classified as Nonlinear 

Mesoscopic Elastic (NME) materials [15]. This particular behavior is manifested as a frequency shift in their 

resonant frequencies known as fast dynamic effect. Experimental findings have demonstrated that fast dynamic 

effect is related to hysteresis in the strain-stress relationship [16]. After Guyer et al. [17] a phenomenological model 

to describe the hysteresis in the Preisach-Mayergoyz space [18] can be written as: 

( )[ ])(1 2 εεαδεβε signEE o +∆+++=          (1) 

where E0 is the linear elastic modulus, β and δ are the cubic and quartic anharmonicities, ε is strain, Δε is the strain 

amplitude, 𝜀𝜀̇ is the strain rate due to hysteresis, and sign is the sign function which is equal to 1 if 𝜀𝜀̇ > 0,  -1 if 𝜀𝜀̇ < 0  

and 0 if 𝜀𝜀̇ = 0. The hysteresis nonlinearity parameter α is a measure of the material hysteresis and is related to the 

fast dynamics as follows [19]. 

εα ∆=
− ·
o

o

f
ff                                                                               (2) 

where f0 is the linear resonance frequency and f is the resonance frequency with increasing strain amplitude. NIRAS 

technique requires exciting the resonant frequencies at different energy levels.  The main advantage of NIRAS 

measurements is that multiple modes are generated with a single impact and their corresponding dynamic nonlinear 

parameter α can be obtained.  It has been demonstrated that α is a sensitive indicator of damage in cement based 

materials subjected to alkali silica reaction [20-21], carbonation [22] and compressive mechanical damage [23]. 

Boundary conditions and sample shape differ in our study from those of others. In this study we report the hysteretic 

parameter α for various vibration modes and its sensitivity to the ageing process of GRC. 

2.2 Ultrasonic Guided Waves – Linear and Nonlinear Techniques 

Traditionally, linear ultrasonic inspection technique is used for detection of material damage or anomalies.  

Macroscopic anomalies such as cracks, notches, inclusions and corrosions can be detected in this manner by 

propagating ultrasonic bulk waves or guided waves [24-25] through the specimen. The wave is reflected by the 

anomaly or transmitted through it undergoing mode conversion because of the linear interaction between the 
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anomaly and the propagating wave.  Only macroscopic anomalies having dimensions in the order of the wavelength 

or larger can be detected in this manner while anomalies that are much smaller than the wavelength remain hidden to 

the linear ultrasonic technique.  However, the presence of smaller anomalies can be detected by the nonlinear 

ultrasonic method.  The nonlinear ultrasonic techniques are classified primarily under two categories – (i) those 

based on the generation of higher harmonics [26] and (ii) those based on the generation of the side bands [27].   

If an ultrasonic signal of frequency ω is sent through a linear specimen its frequency remains unchanged.  However, 

a nonlinear specimen alters the frequency of the propagating wave. The signal propagating through a non-linear 

specimen contains frequency components that are different from the original frequency ω.  When the received signal 

frequency 𝛺𝛺𝑖𝑖 (𝛺𝛺𝑖𝑖 = 𝑛𝑛𝑖𝑖𝜔𝜔) is an integer multiplier of the original frequency ω, then the generated signals are called 

higher harmonics.  The degree of nonlinearity of the material can be related to the strength of the higher harmonic 

signals using the β-factor [25].  If the high frequency signal is modulated by a high amplitude low frequency signal 

then the spectral plot of the received signal shows several smaller frequency peaks at 𝛺𝛺𝑖𝑖(= 𝜔𝜔 ± 𝑘𝑘𝑘𝑘𝑖𝑖) near the high 

frequency peak at ω.  These frequencies 𝛺𝛺𝑖𝑖 are not integral multipliers of ω  and are called sidebands.  The degree of 

nonlinearity is related to the strength of the sidebands. Higher the material nonlinearity stronger are the sidebands.  

3 Experimental Investigation 

3.1 Specimen Fabrication 

GRC specimens of dimension 225x50x10 mm were produced following the European standard EN 1170.  The 

samples were made from cement of type CEM I/52.5R EN 197-1 and siliceous aggregate with cement-aggregate 

proportion of 1:1 and a fineness modulus of 3.1. Water to cement ratio was taken as 0.35 and Glenium ACE 32 

superplasticizer was added (0.43% of cement weight) in order to obtain a slump of 165 mm as instructed in EN 

1170-1 [28].  Non dispersible AR Glass fibers CemFil with a length of 12 mm were added to the mortar. The fiber 

weight was 3% of the mortar weight. 

The specimens were stored at 20ºC and relative humidity of 100%. After more than 28 days of curing, the specimens 

were aged in a hot water bath at 65ºC. Two different types of nondestructive inspections were conducted to assess 

the ageing process: NIRAS and UGW. Then mechanical testing and scanning electron microscopy observations 

were performed. 



3.2 Inspection Methods 

3.2.1 Nonlinear Impact Resonant Acoustic Spectroscopy 

NIRAS test was conducted on un-aged and aged specimens after 40, 80, 120 and 150 hours of ageing. An impact 

hammer (Bruel & Jaer 8206, 22.7 mV/N) with an aluminum tip struck the prismatic sample, in order to excite the 

resonant frequencies of vibration. The computer program acquired 8192 points, with a sampling frequency of 50 

KHz. An accelerometer (0.956 mV/m/s2) sensed the excitation. Two different test configurations, as shown in figure 

1, were tried out in order to generate the resonant modes. Test configuration 1 generated five resonant frequencies 

while test configuration 2 showed only three resonant peaks. 

 

  Figure1. Schematic diagram of NIRAS test a) Schematic set up b) Lateral view of set-up c) Configuration 1 d) 

Configuration 2 



The eigen value problem for the prismatic specimen was solved numerically using ANSYS 13.0 to obtain different 

eigen-frequencies or resonance frequencies of the specimen. Comparing the computed eigen frequency values with 

the frequency peaks obtained in the experimental spectra different vibration modes associated with the recorded 

frequency peaks were identified. The eigen-frequency solution is a particular case of singular value decomposition 

problem. The Block-Lanczos algorithm was used in the ANSYS 13.0 software considering GRC as a linear isotropic 

material to extract vibration modes in the frequency range 0 to 7 kHz. The results are shown in figure 2. 

a)  b) c)      d)       

e)  f)  g) h)   

Figure 2. Vibration mode shapes for different eigen frequencies, Density=2100 kg/m3, Poisson’s ratio 0.2, E=32 

GPa. Flexural and torsional modes are denoted by FLEX and TOR, respectively and shown in Figures 2a to 2h: a) 

C1FLEX= 787.913 Hz, b) C1TOR=2068.05 Hz, c) C2FLEX= 2149.44 Hz, d) C1FLEXYZ= 3444.57 Hz, e) 

C3FLEX=4148.94 Hz, f) C2TOR=4218.57 Hz, g) C3TOR=6524.11 Hz, h) C4FLEX=6719.18 Hz. 

The identification of higher flexural and torsional resonance modes are difficult since at the higher frequency range 

several modes show very close resonance frequencies, e.g. first torsional and second flexural (experimental values 

F1TOR and F2FLEX or theoretical values C1TOR and C2FLEX, as shown in Figure 2) or third flexural and second 

torsional (F3FLEX and F2TOR).  In order to discern among resonance modes that are very close, modal shapes 

were determined (Figures 3a and 3b) and two test configurations were tried out as shown in Figure 1. Since the test 

configuration 2 struck the sample at nodal points of F1TOR, F2FLEX and F3TOR these modes were poorly excited 

by this strike. However F3FLEX and F2TOR were properly excited. In this manner from the resonance peaks 

generated by the two test configurations one can determine the resonance frequencies corresponding to all vibration 

modes. Experimental and theoretical values are compared in Figure 4.  Experimental peaks for flexural and torsional 



modes are denoted as FjFLEX and FjTOR (j=1, 2 or 3), respectively. On the same graph theoretical values are 

plotted by dashed lines and denoted as CjFLEX and CjTOR. After matching the experimental and theoretical values 

of resonance frequencies the first and second flexural modes (F1FLEX, F2FLEX), and first, second and third 

torsional modes (F1TOR, F2TOR, F3TOR) were identified in the experimental spectra. Finally, the test 

configuration 1 was adopted since with this configuration we obtained five resonance peaks of relatively high 

amplitude against only three resonance modes in the test configuration 2. 

a) b)  

Figure 3. Mode shapes for computed eigen frequencies a) Flexural modes (C1FLEX, C2FLEX and C3FLEX), b) 

Torsional modes (C1TOR, C2TOR, C3TOR). 
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Figure 4. Experimental spectra of an un-aged specimen and computed (FEM) resonance frequencies are shown by 

dashed lines. 

3.2.2 Ultrasonic Guided Waves 

Ultrasonic guided waves were propagated through un-aged and aged specimens. Aged specimens were soaked in hot 

water for 150 hours. Two PZT (Lead-Zironate-Titanate) transducers were placed in direct contact with the GRC 

specimen at its two ends, on the same side of the specimen as shown in Figure 5. To provide a good contact for the 

ultrasonic signals a few drops of water were placed between the transducers and the specimen to make the interface 

wet.  A pulse generator Panametrics-NDT™ Model 5058PR High Voltage pulser-receiver was used to excite one 

transducer that transmitted the signal into the specimen.  The other transducer recorded the propagated ultrasonic 

energy. The propagated signal was digitally recorded by 25000 points with a sampling frequency of 25MHz.  
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Figure 5. Test setup for UGW experiments 

3.2.3 Mechanical test 

Four point bending test was performed in accordance with the European standard EN 1170-5 [29]. Two un-aged and 

two aged (150 hours) specimens were tested in INSTRON universal testing machine (Model 3382) as shown in 

Figure 6.  They were loaded in the displacement control environment at a rate of 1 mm/min.  

 

Figure 6. Mechanical test of GRC specimens. Four point bending test EN 1170-5 

3.2.4 Scanning electronic microscope (SEM) observations  

The microstructure evolution and the integrity of the fiber with ageing were studied by scanning electron 

microscopy (SEM, JEOL JSM6300).  



4 Results and Discussion 

4.1 Nonlinear Impact Resonant Acoustic Spectroscopy 

NIRAS measurement allows monitoring of a number of resonance frequencies and shift in these frequency values 

with increasing level of impact energy. The main advantage of obtaining the resonance frequencies by a hammer 

impact is that it excites several modes of vibration simultaneously since the impact has a wide range of frequencies. 

Figure 7 shows resonance frequencies for un-aged and aged (after 150 hours) specimens at ten different levels of 

impact energy for each NIRAS test. Three observations can be made from the spectra presented here. (i) In all cases 

it can be clearly seen that the resonance frequencies increase with the time of ageing. For example, the resonance 

frequency for F1FLEX increases from 750 Hz to 800 Hz (see Figure 7a). (ii) The gap between the frequency peaks 

changes with ageing (see Figure 7b); in Figure 7b peaks corresponding to F2FLEX and F1TOR are shown. The 

increase of frequency is higher for F1TOR than that for F2FLEX, and iii) the variation of the resonance frequency 

with the striking force amplitude is different for aged and un-aged specimens. 



 

Figure 7. Resonance peaks for un-aged and aged specimens (i.e. 0 and 150 hours of accelerated ageing). A) 

F1FLEX, B) F1TOR and F2FLEX, C) F2TOR and D) F3TOR 

An Analysis of variance (ANOVA) was carried out taking every resonance frequency as the dependent variable 

(F1FLEX, F1TOR, F2FLEX, F2TOR, F3TOR) in order to observe the qualitative differences between different 

durations of ageing considered in this investigation. Slight deviations from hypothesis of homoscedasticity and 

normal distribution of the data as required for ANOVA were noted. Nevertheless the ANOVA is robust to such 

deviations [30]. The null hypothesis is that the mean values between ageing times remain the same while the 

alternative hypothesis is that there exists an ageing time that is statistically different with a significance level of 

95%. If the null hypothesis is rejected, the Least Significant Difference (LSD) intervals are computed for each 

treatment to determine for what ageing times the significant difference exists. 
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nMSrtx glri /·2·2 95.0±           (3) 

Where ix is the mean frequency peak to be investigated,  𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔0.95 is the Student’s-t distribution, MSr is the mean square 

of residuals and n is the number of observations. A total of 5 samples were tested at 5 ageing times 0, 40, 80, 120 

and 150 hours. The frequency spectrum was recorded at 10 different energy levels. Figure 7 shows the mean values 

and the 95% LSD intervals for the identified frequency peaks. In all cases, the ANOVA rejects the null hypothesis 

of mean equivalency at different times of ageing (p<0.05). The identified resonant flexural modes F1FLEX, 

F2FLEX and torsional modes F1TOR, F2TOR, F3TOR show similar behavior.   

While the flexural modes can better distinguish between un-aged and 40 hours long aged specimens in comparison 

to torsional modes, the torsional modes can differentiate better between the intermediate times of ageing (40, 80 and 

120 hours). The natural frequencies of flexural (or bending) and torsional modes increase with time of ageing 

indicating an increase of stiffness of the material. This effect can be attributed to the combined effect of the 

evolution of the hydration products in the matrix and the degradation of the fibers in the cement matrix. 
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Figure 8. Mean and 95% Least Significant Difference for the identified resonance frequencies. 

The second aforementioned effect listed above is that the relative distances between the torsional and flexural peaks 

change with ageing as it can be seen in Figure 7b. The Poisson’s ratio ν, of a linear elastic isotropic material is a 

function of the Young’s modulus E and the shear modulus G [31]. 

1
2

−=
G
Eν              (3) 

Since the Young’s modulus E is related to the flexural mode (F1FLEX) and the shear modulus G affects the 

torsional mode (F1TOR) it can be shown that the Poisson’s ratio is a function of the ratio of these two resonance 

frequencies F1TOR/F1FLEX [32].  Given that E and G are proportional to the squares of these frequencies 

(F1FLEX and F1TOR), the lower ratio F1TOR/F1FLEX indicates higher Poisson’s ratio. Inverse problems will 
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have to be solved to obtain the changes in the elastic properties with ageing. For facilitating the solution of the 

inverse problem an error function (4) that compares experimental and computed eigen frequencies, is used as 

dependent variable in a factorial 32 while E and ν are used as independent variables. 

The error function is based on the root of the squared deviation between experimental and computed eigen 

frequencies of the first flexural mode plus the root squared deviation between the computed and experimental first 

torsional mode to first flexural ratio. The left squared deviation is related to the elastic modulus E and the right term 

is related to the Poisson´s ratio ν. 

( )
2

2

1
1

1
1·11 






 −+−=

FLEXC
TORC

FLEXF
TORFwFLEXCFLEXFERRORij

   (4)
 

Where C1FLEX and C1TOR are the computed resonance frequencies obtained from the FEM analysis for the first 

bending and torsional modes; F1FLEX and F1TOR are the experimental values of the resonance frequencies for the 

bending and torsional modes and w is a weight factor whose value must be chosen in such a manner that the left and 

right terms of the above expression have the same order of magnitude. For our problem w = 100. The working levels 

of the factorial 32 design and their respective computed frequencies are listed in Table 1. The optimal solution 

corresponds to the E and ν values that minimize the error function. 

Table 1. Values obtained by FEM analysis in the factorial design 32 

E, GPa ν C1FLEX C1TOR 

26 0.12 685.87 1862.73 

32 0.12 760.91 2066.51 

38 0.12 829.18 2251.93 

26 0.2 686.13 1800.91 

32 0.2 761.20 1997.93 

38 0.2 829.49 2177.19 

26 0.28 686.53 1745.00 

32 0.28 761.64 1935.90 
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38 0.28 829.98 2109.60 

 

The computed frequencies are compared with 250 observations (i.e. j = 250) for k number of peaks identified for a 

given time of ageing by means of the error function. The number of resonance modes used is 2 (i.e. k = 2) since the 

error function is based on only the first two eigen frequencies, first flexural and first torsional modes. The process is 

repeated for all times of ageing. A schematic diagram describing the process is shown in Figure 9. 

 

Figure 9. Schematic diagram of the process to obtain E and ν values by minimizing the Error function in a 32 

factorial design. 

Figure 10 shows the response surface obtained for 0 and 150 hours of ageing. From this figure it can be concluded 

that the Elastic modulus and the Poisson’s ratio increase with ageing. Table 2 lists the results for various times of 

ageing studied here. Note that the obtained adjusted R2 increases with ageing. It can be due to the fact that the aged 

GRC is closer to a linear isotropic material compared to the un-aged GRC. From this table one can see that the 

predicted values of E and ν increase as the ageing time increases. Closeness of E and ν values obtained from two 

different techniques increases the confidence on our experimental measurements.     

 



 

 

Figure 10. Surface response for the error function at 0 hours of ageing (left) and 150 hours of ageing (right). 

22
0 86.77776.045.166.31013.926.1510 ννν +++−−= EEEERROR h

22
150 93.55074.013.104.31503.7857.1415 ννν +++−−= EEEERROR h

 

Table 2. ANOVA table for the response surfaces of the error function - predicted E and ν values and comparison 

with transverse dynamic modulus of elasticity and dynamic Poisson’s ratio as prescribed in ASTM C-215. 

Ageing 

p-value R2 Predicted values   

E ν E2 ν2 E·ν  Ec νc Ed ASTM νd ASTM 

0 hours 0.00 0.15 0.00 0.04 0.82 53.39 31.64 0.18 31.45 0.16 

40 hours 0.00 0.01 0.00 0.04 0.81 58.59 32.79 0.23 32.95 0.21 

80 hours 0.00 0.07 0.00 0.00 0.74 78.66 32.68 0.21 33.09 0.20 

120 hours 0.00 0.24 0.00 0.00 0.76 72.26 33.44 0.22 33.43 0.20 

150 hours 0.00 0.00 0.00 0.04 0.76 81.07 34.50 0.26 34.99 0.24 
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During the hydration of portland cement, the hydration products are formed as a coherent matrix enclosing remnants 

of anhydrous cement [33]. A major quantity of anhydrous cement is expected for low water to cement ratio, 

w/c=0.35 in this study. Therefore, a densification of the matrix takes place with ageing and as a consequence an 

increase of dynamic modulus can be expected. In addition, when chemical degradation of the glass fibers take place 

with ageing, the fibers are partially combined with the hydration products in the matrix, contributing in this manner 

to the overall densification. Results reported by Payá et al. [7] on 40x40x160 mm GRC samples show that ageing 

increases the compressive strength as a result of the completion of the hydration and the pozzolanic reaction. 

It should be noted that the resonance frequencies vary noticeably with increasing energy of impact for un-aged 

specimens but this variation is very small for fully aged specimens. The resonance frequency shift was assessed for 

every peak using equation (2). Since  the amplitude is proportional to the strain amplitude (∆ε), the hysteretic 

parameter α can be estimated from this amplitude. Figure 11 shows the F1FLEX peaks identified at different energy 

levels and corresponding α calculations (HYST1FLEX). 

 

Figure 11. Resonance Frequency shift for the first flexural mode (F1FLEX) as a function of the impact energy level 

for different ageing times and hysteretic parameter computation HYST1FLEX 
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In a similar analysis conducted on the resonance frequencies, an ANOVA was performed on the obtained hysteretic 

parameter for every resonance peak (HYST1FLEX, HYST1TOR, HYST2FLEX, HYST2TOR, HYST3TOR). 

Figure 12 shows the mean and 95% LSD intervals for every time of ageing. It is found that the hysteretic parameter 

computed for every resonance frequency decreases with ageing. With the exception of the hysteretic parameter for 

the third torsional frequency (HYST3TOR), it is found that the hysteretic nonlinear parameters can only distinguish 

between un-aged and aged specimens but they are not very sensitive to the variations in the time of ageing (40, 80, 

120 or 150). 



 



 

Figure 12. Mean and 95% Least Significant Difference for the computed hysteretic parameters for each frequency 

identified. 

It can be clearly seen that the LSD are much shorter for the third torsional peak.  The monotonic variation of the 

hysteretic parameter with ageing is observed at higher frequency (HYST3TOR) when the hysteretic parameter can 

be estimated more accurately (Figure 13).  



 

Figure 13. Hysteretic parameter obtained for flexural and torsional modes for different durations of ageing  

Nonlinear dynamic hysteretic behavior is related to the amount of mesoscopic defects like pores, cracks, clapping 

contacts or rough contacts between neighboring grains [15]. The incorporation of glass fiber in cement based 

materials represents a mesoscopic defect itself. Zhu and Bartos [34] demonstrated by the microindentation technique 

that the interfacial bond of individual filaments is weaker in the fiber bundle than that at the bundle matrix interface. 

Similar findings were reported by Purnell et al. [35] who studied the interface transition zone by petrographical 

analysis. After ageing, the inner microstructure within the strand becomes denser and stronger. These findings are in 

agreement with the measurement of the nonlinear hysteretic parameter α. Since the mesoscopic defects created by 

the presence of the fibers activate fast dynamic effect in resonance tests, it is mitigated with ageing. Therefore, the 

precipitation of dense hydration products around the fibers improves the bonding between matrix and fiber.  This 

phenomenon is detected nondestructively by NIRAS measurements. 

4.2 Mechanical properties 

The mechanical properties were evaluated for two aged and two un-aged specimens.  Figure 14 shows the load-

displacement curves for these four specimens when they were subjected to displacement control loading in 4-point 

bending configuration.   
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Figure 14. Force-displacement curves for GRC specimens – un-aged (continuous lines) and aged for 150 hours 

(dashed lines). 
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The mechanical properties listed in Table 3 are calculated from equations (5), (6) and from the load-displacement 

curves shown in Figure 14.. These results confirm the findings reported by others that GRC becomes weaker with 

time [1-2]. Although there is no important difference between flexural strength and static modulus of aged and un-

aged samples, the most interesting observations are the toughness decreasing with ageing and the decrease of strain 

at maximum load (εMOR). The fracture behavior of fiber reinforced cement-based materials can be described by the 

bridged crack model [36, 37] and the toughening mechanisms of fiber reinforced cement-based materials are based 

on fiber/matrix interactions. These mechanisms include interfacial debonding, frictional sliding and inclined angle 

effects. The bridging effect of the fibers restricting the opening and propagation of microcracks ends when the fibers 

rupture in the case of brittle fibers like carbon or glass [38]. Despite the low toughness obtained for aged GRC 
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samples, this value is still higher than the unreinforced cement-based material, since we still obtain some additional 

deformation because of the bridging fibers beyond the proportionality limit.  

Table 3. Mechanical properties for un-aged and aged specimens 

Sample AGEING 

(hours) 

σMOR 

(MPa) 

εMOR 

(10-4 mm/mm) 

Static Modulus 

(GPa) 

Work of fracture 

N·mm at 10% of σMOR 

 

U1 0 10.25 5.84 21.27 169.49 

U2 0 9.17 6.95 24.29 139.24 

A1 150 8.61 4.73 22.08 52.16 

A2 150 10.21 5.00 25.21 65.59 

 

4.3 Ultrasonic Guided Waves 

It is then investigated if the nonlinear behavior in GRC can be identified using ultrasonic guided waves. Aged and 

un-aged specimens were tested using ultrasonic guided waves to reconfirm the conclusion of NIRAS that ageing 

makes the GRC specimens more linear. Three un-aged and three aged specimens were inspected and typical spectral 

plots of un-aged and aged specimens are shown in Figure 15.   



 

Figure 15.  Spectral plots of recorded time histories obtained by FFT (Fast Fourier Transform) 

Four most dominant peaks between 25 and 175 kHz and two other relatively strong peaks between 175 and 250 kHz 

are present in both aged and un-aged specimens’ spectra.  These peaks may be generated by different guided wave 

modes (Lamb wave modes) propagating through the plate, standing wave modes or simply the resonance modes of 

the specimen.  To investigate if these are propagating wave modes or simply the resonance modes one can conduct 

the experiment on another plate specimen having the same thickness but different length and width.  If the peak 

positions do not change then they must correspond to the propagating Lamb wave modes, otherwise those are 

generated by different resonance modes or standing wave modes since the frequencies of the resonance modes are 

functions of the length and width of the plate as well.  However, our interest is not in these dominant peaks but in 

the weak peaks in the neighborhood of the strong peaks that are generated by the material nonlinearity and/or the 

anomalies in the material.  The imperfect interface between the fibers and the matrix can give rise to friction 

between glass fibers and cement matrix causing nonlinear behavior of the material.  However, the question remains 

whether in absence of a low frequency high amplitude modulation signal the material can show nonlinear behavior.  

Van Den Abeele et al. [39] have shown that in a nonlinear material the sideband energy for the high frequency (120-

134 kHz) bulk waves increases with the strength of the low frequency (1-20 kHz) modulation signal.  However, 
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even when the modulation signal has almost zero strength the sideband energy for the nonlinear material is 

significant and measurable.  Therefore, in absence of the modulation signal also the nonlinear behavior of the 

material is expected and it can be monitored by the sideband energy.  These smaller peaks can be generated by 

multiple scattering of the waves by anomalies (glass fibers) in the plate as well.  Therefore, it can be safely stated 

that the occurrence of minor peaks is an indication of the presence of anomalies in the material that causes the 

deviation of the material from an ideal homogeneous linear elastic state.  Our investigation focuses on these smaller 

or minor peaks instead of the dominant or major peaks. From Figures 15 and 16 one can clearly see that the un-aged 

specimens show greater number and relatively stronger minor peaks compared to the aged specimens. Therefore the 

un-aged specimens are more non-linear than the aged specimens as was observed by NIRAS.   

 

Figure 16. Peak values (above the threshold value) for the spectral plots of Figure 12 are shown in this figure. 

If the number of peaks above a pre-set threshold value, plotted in Figure 16, is an indirect measure of the material 

nonlinearity then in a non-linear material this value should increase with increasing amplitude of the driving voltage.  

This is because with increasing driving voltage as the amplitude of the propagating wave increases the energy loss 

due to friction at the fiber-matrix interfaces or micro-crack surfaces in contact should increase resulting more 

nonlinear behavior in the material.  Figure 17 shows that, as expected, the number of peaks above the threshold 
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value increases with the driving voltage for both un-aged and aged specimens.  However, for the un-aged specimen 

this increase is much more than that for the aged specimen. For example note that when the driving voltage is 

increased from 200V to 600V the curves for the aged specimen do not change significantly but for the un-aged 

specimen there is a big jump indicating strong nonlinear behavior for the un-aged specimen.    

One shortcoming of any vibration based technique including NIRAS is that the specimen is susceptible to surface 

damage due to repeated hammer strikes at the same spot with increasing intensity.  This shortcoming is absent in the 

UGW testing. No new damage is generated in the specimen from the UGW test since the excitation energy level is 

much smaller in this case and yet it is sensitive to the deviation of the material from its linear elastic homogeneous 

state, as seen here. 

 

 

 

 

 

 

 

Figure 17. Number of peaks above the preset threshold for different driving voltage values 

4.4 SEM observations 

The fibers in the un-aged matrix are shown in Figure 18 (a and b images). In Figure 18a, it can be seen that the 

multifilament fiber is surrounded by cement hydrated products. These products do not completely fill the voids 

adjacent to the filaments. Figure 18b shows a typical surface of the filament in which damage is not evident - 

showing smooth surface of the filament and compact hydration products surrounding it. Figure 18c shows that after 

ageing the multifilament structure is maintained, and more cement hydration products appear near the filaments. The 

most noticeable change is the formation of unevenly distributed small spots (diameter < 1 µm) on the surface of the 



filament (Figure 18d). Sometimes several spots appear very close to one another, forming relatively bigger flaws, as 

shown in Figure 18d.  This figure shows that the ageing at 65oC produced a severe level of corrosion on the surface 

of the filaments, despite relatively short ageing time (150 hours). Similar high degree of corrosion in filaments under 

accelerated ageing environment was reported by Litherland, Oakley and Proctor [13]. Such accelerated ageing is 

needed to predict the long term strength of GRC composites. It has been reported in the literature [13] that ageing 

temperatures higher than 50°C produce significant reduction in flexural strength in less than 10 days because the 

corrosion rate is high. 

  

(a) (b) 

  

(c) (d) 

Figure 18. Scanning electron microscope generated micrographs: a) and b): Un-aged; c) and d) 150 hours aged. 



5 Conclussions 

Ageing of glass fiber reinforced cement is investigated.  As expected the ageing from the hot water immersion 

deteriorates the glass fibers; it is confirmed by the scanning electron microscopy (SEM) observations. As a result of 

this deterioration the toughness of the specimen gained from the presence of the fibers is lost when the specimen is 

aged. The decrease of toughness with ageing is confirmed by the mechanical testing using universal testing machine.  

However, in contrast to the common wisdom it is observed in this investigation that as the material deteriorates it 

becomes more linear instead of being more non-linear that is observed during other types of material degradation 

such as under fatigue loading.  For GRC specimens the ageing from the hot water immersion deteriorates the fibers 

and thus makes the material weaker but more linear.  Two different sets of nondestructive tests - NIRAS and UGW - 

confirmed that the material becomes more linear with ageing from the hot water immersion.  

NIRAS measurements allow us to monitor several resonant modes simultaneously allowing a complete overview of 

the mechanical integrity of the material. The dynamic signatures of aged GRC specimens were closely studied and 

the following observations were made. 

i) With ageing an increase in the natural frequency of the flexural and torsional modes were observed. 

The ANOVA results could distinguish between different times of ageing. The flexural modes can 

detect accurately the shorter time of ageing while the torsional modes can distinguish between different 

times of ageing. 

ii) The gap between the resonance peaks change with ageing.  

iii) The first two observations (i and ii) indicate a change in Young’s modulus, Shear modulus and 

consequently Poisson’s ratio. An Inverse Problem was designed to obtain the elastic properties 

(Young’s modulus and Poisson’s ratio) of the specimens by mixing a factorial design of experiments 

and Finite element method. From this analysis an increase of the Young’s modulus and the Poisson’s 

ratio was observed with ageing. 

iv) The hysteretic nonlinear parameters identified for every peak is a sensitive indicator of the degradation 

of fibers with ageing. The hysteretic parameter computed from the highest frequency was identified.  It 

was observed that this parameter could be computed more accurately from the third torsional mode 

than other resonance peaks at lower frequencies. 



NIRAS test is suitable for laboratory inspection of specimens and it can provide reliable information about GRC 

ageing, while for UGW, since  the only requirement is that the wave must propagate through a waveguide, it is easy 

to apply this technique for in-situ testing of plate, and shell type structures. 
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