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Common fixed points of Ćirić-type contractions on partial
metric spaces

By Mujahid Abbas, Ishak Altun and Salvador Romaguera

Abstract. We obtain a common fixed point theorem of Boyd-Wong type for four

mappings satisfying a Ćirić-type contraction on a complete partial metric space. Our

result generalizes and unifies, among others, the very recent results of L. Ćirić, B. Samet,

H. Aydi and C. Vetro [Common fixed points of generalized contractions on partial metric

spaces and an application, Appl. Math. Comput., to appear], S. Romaguera [Fixed

point theorems for generalized contractions on partial metric spaces, Topology Appl.,

to appear], T. Abdeljawad, E. Karapinar and K. Tas [Existence and uniqueness of a

common fixed point on partial metric spaces, Appl. Math. Lett. 24 (2011), 1900-1904],

and D. Ilić, V. Pavlović and V. Rakočević [Some new extensions of Banach’s contraction

principle to partial metric space, Appl. Math. Lett. 24 (2011), 1326-1330].

1. Introduction and preliminaries

In his celebrated paper [6], Ćirić introduced a general kind of contractions
on metric spaces which he called λ-generalized contractions. Since then, many
authors have introduced and discussed several extensions and variants of such
contractions, usually called now Ćirić-type contractions, and have obtained, in
this way, a lot of fixed point theorems for complete metric spaces (see e.g. [4, 7,
15, 28] for some recent contributions in this direction). Related to our work we
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also mention the very recent paper [12], which was pointed out to the authors by
one of the referees.

On the other hand, it is now highly recognized that partial metric spaces
provide an efficient tool both in constructing quantitative computational models
for metric spaces and other related structures ([10, 18, 24, 26, 30], etc) and in
analyzing the complexity of programs and algorithms by means of contractive
self-maps and fixed point methods of denotational semantics on the so-called
complexity quasi-metric space ([9, 21, 23, 25], etc).

Partial metric spaces were introduced by Matthews [16] to the study of de-
notational semantics of dataflow networks. In particular, he proved in [16, The-
orem 5.3] a partial metric version of the Banach contraction principle. Later,
Valero [29], and Oltra and Valero [17] gave some generalizations of the result of
Matthews. In fact, the study of fixed point theorems on partial metric metric
spaces has received a lot of attention in the last three years (see, for instance,
[1, 2, 3, 8, 11, 14, 19, 20, 27] and their references).

Throughout this paper the letters R+, N and ω will denote the set of all
non-negative real numbers, the set of all positive integer numbers and the set of
all non-negative integer numbers, respectively.

In the sequel we recall the notion of a partial metric space and some of its
properties which will be useful later on. The main part of them may be found in
[16] (see also [3, 19]).

Definition 1.1. A partial metric on a nonempty set X is a function p :
X ×X → R+ such that for all x, y, z ∈ X :

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y) (T0-separation axiom),
(p2) p(x, x) ≤ p(x, y) (small self-distance axiom),
(p3) p(x, y) = p(y, x) (symmetry),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z) (modified triangular inequality).

A partial metric space is a pair (X, p) such that X is a non-empty set and p
is a partial metric on X. It is clear that, if p(x, y) = 0, then, from (p1) and (p2),
x = y. But if x = y, p(x, y) may not be 0.

A basic example of a partial metric space is the pair (R+, p), where p(x, y) =
max{x, y} for all x, y ∈ R+.

Other examples of partial metric spaces which are interesting from a compu-
tational point of view may be found in [16, 21, 22, 26, 30].

Each partial metric p on X generates a T0 topology τp on X which has as a
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base the family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X :
p(x, y) < p(x, x) + ε}, for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

for all x, y ∈ X, is a metric on X.
The following well-known equivalence will be used later on.

lim
n→∞

ps(x, xn) = 0⇔ p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm). (1.1)

A sequence (xn)n∈N in a partial metric space (X, p) is called a Cauchy se-
quence if there exists (and is finite) limn,m→∞ p(xn, xm).

A partial metric space (X, p) is said to be complete if every Cauchy se-
quence (xn)n∈N in X converges, with respect to τp, to a point x ∈ X such that
p(x, x) = limn,m→∞ p(xn, xm).

The following crucial fact was essentially shown in [16, p. 194].

Lemma 1.1 Let (X, p) be a partial metric space. Then:
(i) (xn)n∈N is a Cauchy sequence in (X, p) if and only if it is a Cauchy

sequence in the metric space (X, ps).
(ii) (X, p) is complete if and only if (X, ps) is complete.

In [3, Theorem 1], Altun, Sola and Simsek proved the following fixed point
theorem for Ćirić-type contractions on complete partial metric spaces.

Theorem 1.1 ([3]). Let (X, p) be a complete partial metric space and f :
X → X be a map such that

p(fx, fy) ≤ ϕ
(

max
{
p(x, y), p(x, fx), p(y, fy),

1
2

[p(x, fy) + p(y, fx)]
})

,

for all x, y ∈ X, where ϕ : R+ → R+ is a continuous non-decreasing function
such that ϕ(t) < t for all t > 0 and the series

∑∞
n=0 ϕ

n(t) converges for all t > 0
(ϕn denotes the n-th iterate of ϕ). Then f has a unique fixed point.

Recently, Ćirić, Samet, Aydi and Vetro [8, Theorem 2.1] obtained the follow-
ing nice extension of Theorem 1.1 to four self maps.
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Theorem 1.2 ([8]). Let (X, p) be a complete partial metric space and
A,B, S, T : X → X be maps such that AX ⊆ TX, BX ⊆ SX and

p(Ax,By) ≤ ϕ
(

max
{
p(Sx, Ty), p(Ax, Sx), p(By, Ty),

1
2

[p(Sx,By) + p(Ax, Ty)]
})

,

for all x, y ∈ X, where ϕ : R+ → R+ is a continuous non-decreasing function
such that ϕ(t) < t for all t > 0 and the series

∑∞
n=0 ϕ

n(t) converges for all t > 0.
If one of the ranges AX, BX, SX and TX is a closed subset of (X, p), then

(i) A and S have a coincidence point

(ii) B and T have a coincidence point.

Moreover, if the pairs {A,S} and {B, T} are weakly compatible, then A,B, S

and T have a unique common fixed point.

Generalizing Theorem 1.1, Romaguera obtained in [20, Theorem 3] the fol-
lowing fixed point theorem of Boyd-Wong type [5, Theorem 1].

Theorem 1.3 ([20]). Let (X, p) be a complete partial metric space and
f : X → X be a map such that

p(fx, fy) ≤ ϕ
(

max
{
p(x, y), p(x, fx), p(y, fy),

1
2

[p(x, fy) + p(y, fx)]
})

,

for all x, y ∈ X, where ϕ : R+ → R+ is a upper semicontinuous from the right
function such that ϕ(t) < t for all t > 0. Then f has a unique fixed point.

In this paper we prove a fixed point theorem of Boyd-Wong type for four
self maps on complete partial metric spaces that, on one hand, extends Theorem
1.3 and, on other hand, generalizes Theorem 1.2, in a unified approach. It also
improves, among others, very recent results of [1] and [11], respectively. We
illustrate our theorem with some examples.

2. Results and examples

In the sequel, for a partial metric space (X, p) and four maps A,B, S, T :
X → X, we define

M(x, y) := max
{
p(Sx, Ty), p(Ax, Sx), p(By, Ty),

1
2

[p(Sx,By) + p(Ax, Ty)]
}
,
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for all x, y ∈ X.

To avoid repetition of arguments already developed in the proof of [8, Theo-
rem 2.1], we state a result that collects some claims obtained in such a proof and
that will be useful later on.

Lemma 2.1 ([8]). Let (X, p) be a partial metric space and A,B, S, T : X →
X be maps such that AX ⊆ TX, BX ⊆ SX. Then, for each x0 ∈ X there exist
two sequences (xn)n∈ω and (yn)n∈ω in X such that

(i) y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1 for all n ∈ ω;

(ii1) M(x2n, x2n+1) = max{p(y2n−1, y2n), p(y2n, y2n+1)} for all n ∈ N;

(ii2) M(x2n, x2n−1) = max{p(y2n−2, y2n−1), p(y2n−1, y2n)} for all n ∈ N.

If, in addition, there is a function ϕ : R+ → R+ such that

p(Ax,By) ≤ ϕ(M(x, y)),

for all x, y ∈ X, then

(iii) p(yn, yn+1) ≤ ϕ(max{p(yn−1, yn), p(yn, yn+1)}) for all n ∈ N.

Moreover, if ϕ(t) < t for all t > 0, then

(iv) if p(y2k−1, y2k) = 0 for some k ∈ N, it follows that yn = ym for all
n,m ≥ 2k − 1.

Remark 2.1. In [8, Theorem 2.1] it was proved that under the hypothesis
of Lemma 2.1, one has M(x2n, x2n+1) ≤ max{p(y2n−1, y2n), p(y2n, y2n+1)} for all
n ∈ N. Then, the equality given in Lemma 2.1 (ii1) holds from the facts that
p(y2n−1, y2n) = p(Sx2n, Tx2n+1) and p(y2n, y2n+1) = p(Tx2n+1, Bx2n+1), and
the definition of M(x2n, x2n+1). The equality in (ii2) is proved similarly. Con-
sequently, we can deduce claims (iii) and (iv) of Lemma 2.1 without using the
condition that ϕ is non-decreasing (see the proof of [8, Theorem 2.1]).

Let us recall that a function ϕ : R+ → R+ is upper semicontinuous from the
right provided that for each t ≥ 0 and each sequence (tn)n∈N such that tn ≥ t

and limn→∞ tn = t, it follows that lim supn→∞ ϕ(tn) ≤ ϕ(t).
On the other hand if X is a non-empty set, f, g : X → X are self maps of

X and fx = gx for some x ∈ X, then x is called a coincidence point of f and g.

The pair {f, g} is said to be weakly compatible if fx = gx implies fgx = gfx.



6 Mujahid Abbas, Ishak Altun and Salvador Romaguera

Theorem 2.1. Let (X, p) be a complete partial metric space and A,B, S, T :
X → X be maps such that AX ⊆ TX, BX ⊆ SX and

p(Ax,By) ≤ ϕ(M(x, y)), (2.1)

for all x, y ∈ X, where ϕ : R+ → R+ is a upper semicontinuous from the right
function such that ϕ(t) < t for all t > 0.

If one of the ranges AX, BX, SX and TX is a closed subset of (X, ps), then

(i) A and S have a coincidence point

(ii) B and T have a coincidence point.

Moreover, if the pairs {A,S} and {B, T} are weakly compatible, then A,B, S

and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point of X. By Lemma 2.1 (i), we can construct
two sequences (xn)n∈ω and (yn)n∈ω in X such that

y2n = Tx2n+1 = Ax2n and y2n+1 = Sx2n+2 = Bx2n+1 for all n ∈ ω.

We shall show that (yn)n∈ω is a Cauchy sequence in (X, p).

Indeed, by Lemma 2.1 (iii), we have

p(yn, yn+1) ≤ ϕ(max{p(yn−1, yn), p(yn, yn+1)}), (2.2)

for all n ∈ N.
Moreover, if p(y2k−1, y2k) = 0 for some k ∈ N, then yn = ym for all n,m ≥

2k−1, by Lemma 2.1 (iv). So, in this case, (yn)n∈ω is obviously a Cauchy sequence
in (X, p).

Hence, we shall assume that p(yn, yn+1) > 0 for all n ∈ ω.
If p(yn0 , yn0+1) = max{p(yn0−1, yn0), p(yn0 , yn0+1)} for some n0 ∈ ω, we

deduce, from (2.2), that

p(yn0 , yn0+1) ≤ ϕ(p(yn0 , yn0+1)) < p(yn0 , yn0+1)

a contradiction.
Therefore p(yn−1, yn) = max{p(yn−1, yn), p(yn, yn+1)} for all n ∈ ω, and thus

p(yn, yn+1) ≤ ϕ(p(yn−1, yn)) < p(yn−1, yn), (2.3)

for all n ∈ N. Hence (p(yn, yn+1))n∈ω is a decreasing sequence in R+, so there is
c ∈ R+ such that
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limn→∞ p(yn, yn+1) = c.

Consequently

limn→∞ ϕ(p(yn, yn+1)) = c,

by (2.3).
If c > 0, it follows limn→∞ ϕ(p(yn, yn+1)) ≤ ϕ(c), a contradiction, because

ϕ(c) < c. We conclude that

lim
n→∞

p(yn, yn+1) = 0.

Thus, by (p4) in Definition 1.1, we have limk→∞ p(ynk
, ynk+j) = 0 for every

subsequence (ynk
)k∈ω of (yn)n∈ω and j ∈ N fixed. This fact will be used in the

sequel without explicit mention.

Next we prove that for each ε > 0 there is nε ∈ N such that p(y2n, y2m+1) < ε

whenever m > n ≥ nε.
Assume the contrary. Then there is ε > 0 and sequences (nk)k∈N and

(mk)k∈N in N such that mk > nk ≥ k and p(y2nk
, y2mk+1) ≥ ε for all k ∈ N.

Since limn→∞ p(yn, yn+1) = 0, we can suppose, without loss of generality,
that p(y2nk

, y2mk−1) < ε for all k ∈ N.
We show that limk→∞M(x2nk

, x2mk+1) = ε.

Indeed, from the contraction condition (2.1) and the fact that ϕ(t) < t for
t > 0, it follows that

ε ≤ p(y2nk
, y2mk+1) = p(Ax2nk

, Bx2mk+1)

≤ ϕ(M(x2nk
, x2mk+1))

< M(x2nk
, x2mk+1)

= max{p(y2nk−1, y2mk
), p(y2nk

, y2nk−1), p(y2mk+1, y2mk
),

1
2

[p(y2nk−1, y2mk+1) + p(y2nk
, y2mk

)]},

for all k ∈ N.
Since for each δ > 0 there is kδ ∈ N such that

p(y2nk−1, y2nk
) < δ, p(y2mk−1, y2mk

) < δ and p(y2mk
, y2mk+1) < δ,

whenever k ≥ kδ, we deduce, by using (p4) in Definition 1.1, that

ε < M(x2nk
, x2mk+1) < max{2δ + ε, δ, δ,

1
2

[(3δ + ε) + (δ + ε)]} = 2δ + ε,
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for all k ≥ kδ. Thus limk→∞M(x2nk
, x2mk+1) = ε. Hence

lim
k→∞

supϕ(M(x2nk
, x2mk+1)) ≤ ϕ(ε) < ε,

which contradicts that ε ≤ ϕ(M(x2nk
, x2mk+1)) for all k ∈ N.

We conclude that for each ε > 0 there is nε ∈ N such that p(y2n, y2m+1) < ε

whenever m > n ≥ nε.
By using Lemma 2.1 (ii2), we obtain, similarly, that for each ε > 0 there is

n′ε ∈ N such that p(y2n−1, y2m) < ε whenever m > n ≥ n′ε.
From these two facts and limn→∞ p(yn, yn+1) = 0, we deduce that

lim
n,m→∞

p(yn, ym) = 0.

Since (X, p) is complete, by Lemma 1.1 there exists y ∈ X such that

lim
n→∞

ps(y, yn) = 0.

In particular
lim
n→∞

ps(y,Ax2n) = lim
n→∞

ps(y, Tx2n+1) = 0, (2.4)

and
lim
n→∞

ps(y,Bx2n−1) = lim
n→∞

ps(y, Sx2n) = 0. (2.5)

Moreover, from (1.1) we deduce that

p(y, y) = lim
n→∞

p(y, yn) = lim
n,m→∞

p(yn, ym) = 0. (2.6)

Now, assume, without loss of generality, that SX is closed in (X, ps). Then,
by (2.5), y ∈ SX, and thus there is u ∈ X such that y = Su.

We claim that p(y,Au) = 0. Suppose p(y,Au) > 0, and then choose δ ∈
(0, p(y,Au)/2). By (2.6) there exists n0 ∈ N such that

p(y, yn) < δ and p(y2n, y2n+1) < δ,

for all n ≥ n0. Since

M(u, x2n+1) = max{p(y, y2n), p(y,Au), p(y2n, y2n+1),
1
2

[p(y, y2n+1) + p(Au, y2n)]},
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we deduce that, for each n ≥ n0,

M(u, x2n+1) ≤ max{δ, p(y,Au), δ,
1
2

[δ + (p(Au, y) + δ)]} = p(y,Au),

so M(u, x2n+1) = p(y,Au) for all n ≥ n0. Hence

p(y,Au) ≤ p(y, y2n+1) + p(Au, y2n+1)

≤ p(y, y2n+1) + ϕ(M(u, x2n+1)) = p(y, y2n+1) + ϕ(p(y,Au)),

for all n ≥ n0.

Since limn→∞ p(y, y2n+1) = 0, we deduce that p(y,Au) ≤ ϕ(p(y,Au)), which
contradicts our assumption that p(y,Au) > 0.

Therefore p(y,Au) = 0, and thus, y = Au.

Since y = Su, we conclude that Au = Su, i.e., u is a coincidence point of A
and S.

From AX ⊆ TX it follows that y ∈ TX, so y = Tv for some v ∈ X.
Exactly as in the proof of [8, Theorem 2.1], we deduce that y = Bv = Tv, so

v is a coincidence point of B and T.

Finally, suppose that the pairs {A,S} and {B, T} are weakly compatible.
Then, in particular, we have Ay = ASu = SAu = Sy.

We show that p(y,Ay) = 0. Indeed, we first observe that

M(y, v) = max{p(Sy, Tv), p(Ay, Sy), p(Bv, Tv),
1
2

[p(Sy,Bv) + p(Ay, Tv)]}

= max{p(Ay, y), p(Ay,Ay), p(y, y),
1
2

[p(Ay, y) + p(Ay, y)]}

= p(Ay, y).

Then
p(Ay, y) = p(Ay,Bv) ≤ ϕ(M(y, v)) = ϕ(p(Ay, y)),

and consequently p(Ay, y) = 0. We conclude that y = Ay = Sy.

Exactly as in the proof of [8, Theorem 2.1], we deduce that y = By = Ty,

and that, in fact, y is the unique common fixed point of A,B, S and T . �

In his excellent paper [13], Jachymski showed, among others, the following
result.

Lemma 2.2 ([13, Lemma 1]). Let D be a (non-empty) subset of R+ × R+.

Then, the following are equivalent:
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(i) there exist two continuous and non-decreasing functions ψ, φ : R+ → R+

with ψ−1(0) = φ−1(0) = {0}, such that D ⊆ {(t, u) ∈ R+ × R+ : ψ(u) ≤
ψ(t)− φ(t)}.

(ii) there exists a continuous and non-decreasing function ϕ : R+ → R+ with
ϕ(t) < t for all t > 0, such that D ⊆ {(t, u) ∈ R+ × R+ : u ≤ ϕ(t)}.

Combining Theorem 2.1 and Lemma 2.2, we obtain the following.

Corollary 2.1. Let (X, p) be a complete partial metric space and A,B, S, T :
X → X be maps such that AX ⊆ TX, BX ⊆ SX and

ψ(p(Ax,By)) ≤ ψ(M(x, y))− φ(M(x, y)),

for all x, y ∈ X, where ψ, φ : R+ → R+ are continuous and non-decreasing
functions such that ψ−1(0) = φ−1(0) = {0}.

If one of the ranges AX, BX, SX and TX is a closed subset of (X, p), then

(i) A and S have a coincidence point

(ii) B and T have a coincidence point.

Moreover, if the pairs {A,S} and {B, T} are weakly compatible, then A,B, S

and T have a unique common fixed point.

Proof. Put D = {(M(x, y), p(Ax,By)) : x, y ∈ X}. By Lemma 2.2, (i)⇒(ii),
there exists a continuous and non-decreasing function ϕ : R+ → R+ such that
ϕ(t) < t for all t > 0, and p(Ax,By) ≤ ϕ(M(x, y)) for all x, y ∈ X. Theorem 2.1
concludes the proof. �

Remark 2.2. Theorem 2.1 generalizes Theorem 2.1 of [8], whereas Theorem
3 of [20] is a special case of Theorem 2.1 when A = B and S = T = id. On the
other hand, Theorem 5 of [1] is a special case of Corollary 2.1 when S = T = id,
and ψ(t) = t for all t ∈ R+, and Theorem 3.2 of [11] is a consequence of Theorem
2.1 when A = B, S = T = id and ϕ(t) = t for all t ∈ R+.

We conclude the paper with some examples that illustrate Theorem 2.1.

Example 2.1. Let X = R+ and p(x, y) = max{x, y} for all x, y ∈ X. It
is well known that the partial metric space (X, p) is complete (in fact, ps is the
usual metric on R+). Let A,B, S, T : X → X defined by Ax = Bx = x/(1 + x),
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Sx = Tx = x for all x ∈ X. Clearly, the pairs {A,S} and {B, T} are weakly
compatible. Moreover AX ⊆ TX = X and BX ⊆ SX = X.

Now define ϕ : R+ → R+ by ϕ(t) = t/(1 + t). Then ϕ is continuous on R+

and ϕ(t) < t for all t > 0.
For each x, y ∈ X with x ≥ y we have

p(Ax,By) = max{ x

1 + x
,

y

1 + y
} =

x

1 + x

= ϕ(x) = ϕ(p(Sx, Ty)) ≤ ϕ(M(x, y)).

This shows that the contraction condition of Theorem 2.1 is satisfied, so all the
required conditions of that theorem are verified. Hence A,B, S and T have a
unique common fixed point in X. Note that ϕn(t) = t/(1 + nt) for all t ∈ R+

and so
∑∞
n=0 ϕ

n(t) is not convergent for t > 0. Therefore, we can not apply [8,
Theorem 2.1] to this example.

Example 2.2. Let X = [0, 1] and p(x, y) = max{x, y} for all x, y ∈ X.
Then (X, p) is a complete partial metric space (in fact, ps is the Euclidean metric
on X). Let A,B, S, T : X → X, defined by Ax = x/8, Bx = x/4, Sx = 5x/8 and
Tx = 3x/4 for all x ∈ X. Then, clearly AX ⊆ TX and BX ⊆ SX, and AX, BX,
SX and TX are closed subsets in (X, ps). Moreover, the pairs {A,S} and {B, T}
are clearly weakly compatible.

Now define ϕ : R+ → R+ by ϕ(t) = t/(1 + t) for all t > 0. Then ϕ is
continuous on R+ and satisfies that ϕ(t) < t for all t > 0. Note also that it is
non-decreasing.

For all x, y ∈ X, with x ≤ y, we have

p(Ax,By) = max{x
8
,
y

4
} =

y

4
≤ 5y

8 + 5y

= ϕ

(
5y
8

)
≤ ϕ

(
3y
4

)
= ϕ

(
max{5x

8
,

3y
4
})
)

= ϕ(p(Sx, Ty))

≤ ϕ(M(x, y)).

If x > y, we distinguish two cases: (i) x/8 ≥ y/4, and (ii) x/8 < y/4.
In case (i) we obtain, as in the case that x ≤ y, that

p(Ax,By) =
x

8
≤ 5x

8 + 5x
= ϕ

(
5x
8

)
≤ ϕ(p(Sx, Ty)) ≤ ϕ(Mx, y)).
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In case (ii) we obtain

p(Ax,By) =
y

4
≤ 3y

4 + 3y
= ϕ

(
3y
4

)
≤ ϕ

(
max{5x

8
,

3y
4
})
)

= ϕ(p(Sx, Ty)) ≤ ϕ(M(x, y)).

Hence, the contraction condition is satisfied. Thus all the conditions of Theorem
2.1 are satisfied and 0 is unique common fixed point of A,B, S and T in X.

Note that
∑∞
n=0 ϕ

n(t) is not convergent for t > 0; in fact, ϕn(t) = t/ (1 + nt)
for all t ∈ R+. Therefore, we can not apply [8, Theorem 2.1] to this example.

Example 2.3. Let (X, p) be the complete partial metric space of Example
2.2. Let A,B, S, T : X → X, defined by Ax = x/6, Bx = x/9, Sx = 2x/3 and
Tx = 5x/6 for all x ∈ X. Then, clearly AX ⊆ TX and BX ⊆ SX, and AX, BX,
SX and TX are closed subsets in (X, ps). Moreover, the pairs {A,S} and {B, T}
are clearly weakly compatible.

Now define ϕ : R+ → R+ by ϕ(t) = t/2 for all t ∈ [0, 1) and ϕ(t) =
n(n + 1)/(n + 2) for t ∈ [n, n + 1), n ∈ N. Then ϕ is non-decreasing and (right)
upper semicontinuous on R+, with ϕ(t) < t for all t > 0. However it is not
continuous at t = n for all n ∈ N, so we can not apply [8, Theorem 2.1] to this
example.

For all x, y ∈ X we have

p(Ax,By) = max{x
6
,
y

9
} ≤ 1

2
(max{2x

3
,

5y
6
})

= ϕ(max{2x
3
,

5y
6
}) = ϕ(p(Sx, Ty))

≤ ϕ(M(x, y)).

Thus all the conditions of Theorem 2.1 are satisfied. Note also that, in this case,
the series

∑∞
n=0 ϕ

n(t) is convergent for all t ∈ R+.

Acknowledgment. The authors are grateful to one of the referees for calling
our attention about the reference [12].
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