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ABSTRACT 

 

This work studied the height and coverage of shrub vegetation using LIDAR data. The 

maximum dominant heights of vegetation were measured in the field in 83 stands of a 

0.5 m radius and the data was compared to figures for heights obtained from LIDAR 

data in concentric areas with different radii. The minimum root mean square error 

(RMSE) between the field measurements and LIDAR data was found for radii between 

1.5 m and 2.25 m, RMSE being 0.26 m. When the slopes are low and an accurate digital 

terrain model (DTM) is obtained, it was shown that the radius can be reduced. Shrub 

heights were also studied in plots of 100 m2. In this case, the 95th percentile of the 

LIDAR data included in each plot was the best predictor of height with R2 = 0.71 and a 

RMSE of 0.13 m. For detecting the presence of shrub vegetation, the highest accuracy 

was obtained when the canopy height model (CHM) and a spectral image were 

combined – with an overall accuracy of 90%. 

Keywords: biomass, LIDAR, canopy height model (CHM), digital terrain models 

(DTM), shrub height.  



Introduction 

A high percentage of Mediterranean forest is covered by dense, low shrub. The 

difficulty involved in shrub management and the lack of information about shrub 

behavior means that these areas are often left out of spatial planning projects 

(Velázquez and Anneveling, 2009); nevertheless, these areas are important for the 

environment and landscape because they represent important CO2 sinks; prevent soil 

erosion and desertification; help refill aquifers; and contribute to creating fuel-type 

maps for better accuracy in fire behavior modeling (Riaño et al., 2007). The 

development of efficient tools to carry out the shrub conservation is a technical 

challenge (Velázquez and Fernández, 2009). 

 

To achieve this goal, it is necessary to have updated geographical information to 

produce an environmental diagnosis and to infer indicators that allow a sustainable – 

and often protected – development of these areas (Velázquez and Fernández, 2010). 

New management tools could be based on LIDAR (Light Detection and Ranging) data 

(Popescu et al., 2002; Yu et al., 2004 ; Reutebuch et al., 2005). LIDAR technology is an 

active remote sensing system that registers ground elevation measurements and vertical 

vegetation structures. It is based on the measurement of the time delay from pulse 

emission by an airborne sensor, to its return after reaching the earth’s surface. LIDAR 

systems can register the return signal of a pulse emitted in different echoes and calculate 

the coordinates x, y, and z of the point at which the reflection takes place. To achieve 

this, a differential GPS and an inertial system are used.  This information can then be 

used to provide ground elevations via a digital terrain model (DTM); elevations of 

some objects above the Earth’s surface via a digital surface model (DSM); and heights 

of the forest canopy, via a canopy height model (CHM). With this information, the 



terrestrial surface as well as any object above the ground can be studied with great 

accuracy.  

 

A DTM is the reference surface for calculating dendrometric and dasometric variables 

of vegetation such as height, biomass, and volume. To compute DTM from LIDAR data 

it is necessary to apply algorithms to eliminate points belonging to any object above the 

ground surface, such as vegetation or buildings. Although there are several methods for 

performing these tasks, complete automation is difficult (Baltsavias, 1999). A 

comparison and classification of methods can be found in (Sithole and Vosselman, 

2004). One of the most commonly used algorithms is based on iterative processes in 

which minimum elevations of points are selected (Popescu et al., 2002; Clark et al., 

2004). 

 

Vegetation height allows detection of growth and shows a high correlation with 

biomass. This was observed in forests (Hyyppä and Inkinen, 1999; Nelson et al., 2004). 

However, there are fewer studies in which shrub areas have been studied because of the 

inherent difficulty: this vegetation is low and occupies a continuous surface in which 

individuals cannot be defined. In tree studies, two approaches can be followed (Hyyppä 

et al., 2008): calculation of the dasometric variables in a plot or stand (Nelson et al., 

1998; Means et al., 2000; Næsset, 2004; Hudak et al., 2006); or calculation of the 

dendrometric variables for a tree (Persson et al., 2002; Maltamo et al., 2004; Popescu, 

2007), which requires the crown of a tree to be delineated. For shrub areas, only the first 

approach can be applied because shrubs represent a continuous structure in which  

individual plants cannot be identified. Moreover, their low height requires great 

accuracy in the methodology and characteristics of the LIDAR data. For this reason, 



concentric areas with different radii are used when vegetation heights measured in the 

field are compared to those calculated from LIDAR data (Streutker and Glenn, 2006). 

The approach followed in this work was to select LIDAR points within a buffer of an 

area where the maximum height shrub had also been measured in the field. The radius 

of the buffer area is defined by factors that affect the accuracy of vegetation height 

obtained from LIDAR data. According to Hyyppä et al. (2008), these are: the density 

and coverage of laser pulses; the algorithm used to calculate a DTM; the sensitivity of 

the laser system; the thresholding algorithms used in processing the signal; the pulse 

penetration into the canopy; and tree shapes and species. According to Streutker and 

Glenn (2006), the selection of the radius is related to the horizontal accuracy of the 

LIDAR data and GPS system. Underestimation of canopy height of shrub vegetation 

occurs because the pulse does not reflect the upper part of the vegetation (Gaveau and 

Hill, 2003). Apart from these factors, Su and Bork (2006) reported that errors associated 

with DTM on high slopes decrease the accuracy of vegetation characterization. Scan 

angles also affect pulse penetration: if the vegetation is open and not very dense then the 

pulse penetration will be greater (Hopkinson et al., 2005).  

 

On the other hand, the presence of shrub vegetation can be studied from LIDAR data 

(Streutker and Glenn, 2006). Most studies combine LIDAR data and spectral images to 

improve detection (Mundt et al., 2006; Bork and Su, 2007; Mutlu et al, 2008) and 

produce a classified vegetation map (Hill and Thomson, 2005; Verrelst et al., 2009). 

 

While a number of studies have been carried out on tree areas using LIDAR data, little 

research into shrub vegetation has been conducted; and most has taken place in areas 

with low slopes (Su and Bork, 2006; Streutker and Glenn, 2006). For this reason, 



further work is needed to analyze vegetation in Mediterranean areas – which are 

characterized by mountains with steep slopes and very irregular variation. The aim of 

this work was to study the coverage of shrub vegetation and to estimate its height in a 

steep mountainous area. For height analysis, two approaches were followed: studies of 

the heights in plots, and in stands. The factors producing better accuracy were also 

analyzed.   

 

Materials and methods 

Study area 

The 10 km2 study area is located in Chiva (Valencia, Spain) and is defined by a 

rectangle whose UTM coordinates Xmaximum, Ymaximum, Xminimum, and Yminimum,  were 

689800, 4376028, 683800, and 4373000, respectively (Figure 1). The area is located in 

zone 30 in the European Datum 1950 reference system. It is a mountainous area with a 

predominance of Quercus coccifera although other species can be found such as 

Rosmarinus officinalis, Ulex parviflorus, Cistus albidus L. and Erica multiflora L. 

These species are the most abundant in Mediterranean forests. The average percentage 

occupation is around 55%. The altitude varies between 442 and 1000 meters, and the 

average slope is 45%.  

 

Data 

The LIDAR data was acquired during a flight in December 2007, using an Optech 

ALTM 2050 system. The technical parameters were: flight height – 700 m; pulse 

frequency – 50kHz; scan frequency – 47 Hz; and scan angle – ±18º; pulse density – 4 

points/m2. However, given that 10 overlapping flightlines were registered some areas 

had a higher point density. For this reason, the average point density of the study area 



considering all the returns was 8 points/m2. The numbers of echos were 2. More than 

99% of the LIDAR data belonged to the first pulse. This could be caused by the low 

differences between the canopy of vegetation and ground. 

 

Figure 1. Location of study area in Chiva (Spain). The black polygon represents area 
surveyed for LIDAR data. 

 

To assess the DTM calculated, 1379 ground-surveyed checkpoints throughout the study 

area were measured using a RTK-GPS system (Leica System 1200). A transformation 

between reference systems, ETRS89 to ED50, was carried out with vertical and 

horizontal accuracy of 1 and 5 centimeters, respectively. Horizontal accuracy of LIDAR 

points was 0.5 m according to the specifications of the technical report of the flight. For 

altimetry, 60 checkpoints were selected in flat areas without vegetation (Hopkinson et 

al., 2005). We compared elevations measured from RTK-GPS and an average elevation 

of LIDAR points in a buffer of 0.5 m radius with the measured point at the center. The 

root mean square error (RMSE) was 6 cm. We considered that these results showed that 



the LIDAR data was accurate enough for this study. 

 

A spectral airborne image registered by the Ultracam D, made by Vexcel Imaging 

GMBH, was used with a cell size of 0.5 m. This image was collected in July 2006. It 

contained three spectral bands: infrared, red, and green. The reference system was 

ETRS89. This image was reprojected to an ED50 reference system with an RMSE of 

0.35 m. 

 

DTM and CHM calculation 

To compute the DTM from LIDAR data, it is necessary to apply algorithms to eliminate 

points belonging to any object above the ground surface such as vegetation or buildings. 

To achieve this, we programmed an application based on iterative processes. As input 

data type, we used an image with a pixel size of 1 m; and we selected the lowest LIDAR 

point for each cell.  

 

The DTM iterative algorithm involved five steps: 

 

Step 1: the study area was divided into windows with an initial window size (v1). In 

each analysis window, the lowest elevation point was selected. With these points, an 

initial DTM (DTM1) was calculated by applying the Delaunay triangulation method. 

Step 2: A smaller analysis window (v2) was selected to find new minimum heights 

from the input data.  

Step 3: We compared the points selected in step 2 with DTM1 (calculated in step 1), 

and selected those that were lower than a defined height threshold (u1). Points with 

differences larger than this threshold were rejected. A new DTM (DTM2) was then 



determined with the selected points.  

Step 4: A window size (v3), smaller than v2, was selected. The minimum height in each 

window was selected.  

Step 5: As in step 3, points of minimum height with a difference compared to DTM2 

greater than a second threshold (u2) were eliminated. The final DTM was calculated 

with the remaining points. 

 

The CHM was obtained by selecting the maximum LIDAR data value for each 0.5 x 0.5 

m2 cell. Each cell was then subtracted from the DTM3 value. 

 

Sampling for vegetation height 

To analyze the difference between the shrub heights obtained from the LIDAR data and 

heights measured in the field, two approaches were followed: plots and stands. For 

vegetation height sampling, a grid with cell sizes of 1 km2 was defined in the studied 

area. Then, 29 plots with areas of 100 m2 were randomly selected and distributed among 

the cells with at least one plot with vegetation in each cell. The plots were located in 

different bioclimatic layers (elevation), slopes, and aspects. The maximum dominant 

height was measured in three different stands included in each plot; these were also 

randomly selected. The radius of each stand was 0.5 m; the average height was 1.27 m; 

the standard deviation was 0.29 m; the minimum value was 0.80 m; and the maximum 

value was 2.5 m. The coordinates of the centre of the stand were also measured using a 

RTK-GPS system. In all, 86 stands were measured, but only 83 were used for the 

analysis because no LIDAR data was available for three of the measured points. 

 

 



 

Analysis vegetation height by plots 

The actual maximum dominant height of the vegetation in each plot was taken as the 

average of the dominant heights measured in the three stands. To analyze the difference 

between the shrub heights obtained from the LIDAR data and heights measured, we 

calculated the mean, the maximum height, and the 80th, 90th, and 95th percentiles of 

the LIDAR data for each plot. These parameters were used to predict the actual 

vegetation height using regression models. Values of R2 and RMSE were also 

calculated.  

 

Analysis of vegetation height by stands 

We analyzed the shrub height in stands by comparing the 83 maximum dominant 

vegetation heights measured in the field for each stand with the maximum height 

obtained from the LIDAR data. The three stands in each plot all had different dominant 

heights; some contained different species or a mixture of several species. For this 

reason, the heights were  treated as independent values. Given that some stands had few 

LIDAR points, we looked for the concentric area with the minimum RMSE between the 

vegetation height measured in the field and the LIDAR data. This area was defined by a 

buffer with the selected radius. The radii used were: 0.50, 0.75, 1, 1.25, 1.5, 1.75, 2, 

2.25, 2.5, 2.75, 3, 3.25, and 3.5 m. For each buffer and stand, the maximum height from 

the LIDAR data was selected (Hopkinson et al., 2005; Streutker and Glenn, 2006). 

From this data and the vegetation heights measured in the field, the RMSE was 

calculated. The difference between the LIDAR data and the field measurements for each 

stand and radius was also obtained. The minimum, maximum, mean signed error 

(MSE), and the standard deviation of these differences were then also calculated. 



 

Next, the influence of the radius on the relationship between the shrub height and 

LIDAR height was studied according to the sign of the DTM error, slope and density of 

LIDAR data. To analyze the DTM error, we calculated the difference between 

coordinate z from 82 RTK-GPS points and coordinate z obtained from the DTM. Using 

the resulting data,  we classified the stands according to the sign of the differences: 

error>0 m (n=30) and error<0 m (n=52); n being the number of stands. For each stand 

of the class, the maximum shrub height was selected from the LIDAR data using buffers 

with radii that varied from 0.5 to 3.5 m. This data was compared with the heights 

measured in the field. For each radius and class, the RMSE was calculated. One field 

measurement in this analysis was rejected when the highest radii reached trees making it 

impossible to study this DTM error in this stand. The accuracy of shrub height was also 

studied when LIDAR heights were corrected for the DTM error in areas with slopes 

lower than 20% (n=34). The field shrub heights of these stands were compared to the 

maximum heights obtained from the LIDAR data for each radius so as to obtain the 

RMSE.  

 

To analyze the point density factor, the number of LIDAR points was calculated in an 

area with a radius of 0.5 m for each of the 82 points measured in the field. We used all 

the returns for this analysis, including the LIDAR data registered from overlapping 

flightlines. These points were grouped into two classes: density < 8 points/m2 (n=43); 

and density > 8 points/m2 (n=49), with n being the number of points measured in the 

field. For each class, the field heights of each point were compared to the maximum 

heights obtained from the LIDAR data included in the buffers with the same radii used 

in the previous analysis. For each class, the RMSE was calculated.  



 Analysis of shrub cover 

To determine the presence of shrub vegetation, two approaches were applied. Firstly, 

only CHM obtained from the LIDAR data was used, and its cells were classified using 

the following intervals: 0-0.3 m – ground; 0.3-2.5 m – shrub vegetation; values greater 

than 2.5 m – trees. The threshold 0.30 m was obtained by considering the difference 

between the minimum value for shrub height measured in the field and the RMSE of 

heights when a radius of 0.5 m was used. The classification was assessed by using 166 

points measured in the field and distributed throughout the study area: 83 belonging to 

the shrub vegetation class, and the remaining 83 to the ground class. The second 

approach was based on combining the CHM with an airborne spectral image (Figure 2). 

From this image, the NDVI (normalized difference vegetation index) was calculated and 

a classification into 4 non-supervised classes was applied. Two overlay layers – the 

classified image and original image – were then displayed and a reclassification was 

carried out. The cells with value 1 were classified into non-vegetation and values 2, 3, 

and 4 into vegetation. This result was combined with the CHM and three new classes 

were defined: shrub if a cell of the CHM was between 0.30 and 2.5 m and belonging to 

classes 2, 3, or 4 of the previous classified image; ground if the cell of the CHM was 

lower than 0.3 m; and tree if the cell of the CHM was greater than 2.5 m.  

 

Results and discussion  

DTM calculation 

The lowest RMSE occurred with a medium analysis window size: 10, 5 and 2.5 m (v1, 

v2 and v3), and height thresholds equal to, or greater than, 1.5 m. These parameters 

produced a DTM (Figure 3) with a mean signed error of 0.02 m, a standard deviation of 

0.19 m, and an RMSE of 0.19 m.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Framework for classifying shrub vegetation  

 

 

 

Figure 3. Shaded relief image of a DTM with vector 10, 5, and 2.5 m window; 2.5 m 
threshold; 1x1m image. 
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Vegetation height analysis by plots 

For the study of vegetation heights in plots, six linear regressions were performed using 

the following parameters calculated from the LIDAR data within the plots as 

independent variables: Heightmean, Heightmaximum, and the 80th, 90th, and 95th 

percentiles. The average height measured in the field by plot was selected as a 

dependent variable. As can be observed in Table 1, the maximum correlation was 

achieved when the 95th percentile was used with an R2 value of 70.68 %, and an RMSE 

of 0.13 m, (Table 1). In contrast, the lowest R2 was found when the maximum height 

obtained from the LIDAR data by plots was used. This can be explained by considering 

that there are plants whose maximum height is higher than the maximum dominant 

height of the vegetation in a plot. These results are in line with the findings of Riaño et 

al. (2007), who used the 90th percentile to estimate shrub height, obtaining a R2 of 0.48, 

and an RMSE of 0.18 m. As well as the algorithm used to calculate the DTM, the 

differences could be because the point density and the average vegetation height were 

lower, as it is more difficult to register the shrub height.  

  

Table1. Shrub height estimation from LIDAR data in plots. 

Independent 
variables  

(LIDAR data) 
Symbol Model R2 RMSE (m) 

Mean height  Hmean H = 0.97 + 0.79 Hmean 47.91 0.18 
80th percentile P80 H = 0.74 + 0.72 P80 57.36 0.16 
90th percentile P90 H = 0.66 + 0.67 P90 64.26 0.15 
95th percentile P95 H = 0.61 +0.63 P95 70.68 0.13 

Maximum height  Hmax H = 0.23 + 0.86 Hmax  39.46 0.19 
      H: maximum dominant real height; P80, P90, P95, are 80th, 90th, and 95th percentiles of the LIDAR data, respectively. 

 

Vegetation height analysis by stands 

We analyzed the radius that produced the minimum RMSE between the maximum 

LIDAR data and the field measurements. Figure 4 shows that the minimum RMSE was 

found with radii between 1.50 and 2.25 m were used. From these values upwards, the 
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RMSE increased because points higher than the height measured in the field were 

selected. This result can be observed in the Table 2: when the radius increases, the sign 

of the mean error changes, indicating that higher points than the field measurements are 

being selected. This effect can be appreciated more clearly when a radius of 3.5 m is 

used. For this value, the mean error is positive, while the maximum error and standard 

deviation are the highest. The minimum standard deviation occurs with a radius of 1.5 

m, indicating that the differences between the heights measured in the field and the 

heights from the LIDAR data are smaller. These findings support the results reported by 

Streutker and Glenn (2006), although the conditions of the work were different: their 

point density was 1.2 points/m2, and they worked with a flatter relief.  
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Figure 4. RMSE values from comparison of 83 measured heights and highest LIDAR 

point for each radius. 

 

Table 2 shows that the mean error for each radius is negative up to a radius of 2.75 m. 

This finding is in line with other studies which have shown that LIDAR data tends to 

underestimate shrub heights (Gaveau and Hill, 2003; Hill and Thomson, 2005; 

Hopkinson et al., 2005; Streutker and Glenn, 2006; Bork and Su, 2007; Riaño et al., 

2007). 
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Table 2. Statistical values for 83 heights calculated by comparing  LIDAR data and 

actual measured height  

 Radius of the buffers  (m) 

 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 

Minimum (m) -1.04 -0.84 -0.82 -0.80 -0.77 -0.77 -0.77 -0.77 -0.77 -0.77 -0.69 -0.55 -0.55

Maximum (m) 0.24 0.24 0.24 0.25 0.36 0.36 0.76 0.76 0.76 3.37 3.71 3.94 6.16 

Mean (m) -0.40 -0.31 -0.25 -0.20 -0.15 -0.12 -0.08 -0.06 -0.03 0.05 0.08 0.12 0.16 
Standard 

Deviation  (m) 0.30 0.26 0.25 0.24 0.22 0.23 0.24 0.25 0.27 0.48 0.52 0.54 0.74 

 

The maximum dominant height for stands was estimated by selecting the LIDAR data 

within an area with a radius of 1.5 m. This radius was chosen because it was included 

inside the low RMSE range. Moreover, this radius produced the minimum standard 

deviation between the LIDAR data and field measurements. Consequently, we 

computed linear regression analyses, and used the following parameters obtained from 

LIDAR data within an area of a radius of 1.5 m as independent variables: Heightmean, 

Heightmaximum, and the 80th, 90th, and 95th percentiles. The maximum dominant height 

in each stand was estimated by each independent variable. As can be observed in Table 

3, the maximum correlation was achieved when the maximum height obtained from the 

LIDAR data was selected with values of R2 and an RMSE of 61.49 % and 0.18 m, 

respectively. Unlike the plots, the 95th percentile was not the parameter that produced 

the highest correlation. This is because the area for stand analysis was smaller than the 

area for plots, and so finding heights obtained from LIDAR data that were higher than 

the field measurement was less likely. 

 

Table 3. Shrub height estimation from LIDAR data in stands. 

Independent variables 
LIDAR data 

Symbol Model R2 RMSE (m) 

Mean height  Hmean H = 0.80 + 0.84 Hmean 41.56 0.23 
80th percentile P80 H = 0.74 + 0.68 P80 47.16 0.21 
90th percentile P90 H = 0.68 + 0.67 P90 51.13 0.21 
95th percentile P95 H = 0.61 +0.69 P95 57.37 0.19 

Maximum height  Hmax H = 0.55 + 0.64 Hmax 61.49 0.18 
H: maximum dominant real height; P80, P90, P95, are 80th, 90th, and 95th percentiles of the LIDAR data, respectively  
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Effect of DTM errors on radius selection  

Streuker and Glenn (2006) reported that the selection of the radius is related to the sum 

of the horizontal accuracy and the GPS system. However, there are other factors, such 

as DTM errors and point density, which should be analyzed when considering the value 

of the radius in which the minimum RMSE between LIDAR data and field 

measurements occurs. Figure 5 shows that the RMSE values are lower when the DTM 

error is positive (zGPS-zDTM >0) up to a radius of 2.25 m. In contrast, when this error is 

negative (zGPS-zDTM <0), higher RMSE are found. In the first case, an underestimation 

of the DTM produces higher vegetation (Figure 6). In the second case, an 

overestimation of a DTM produces lower vegetation. Thus, DTM error can produce an 

underestimation or overestimation of canopy height of shrub vegetation. For this reason, 

it is necessary to select suitable parameters that minimize these errors. The parameters 

defined for computing the DTM were the result of a previous analysis in which several 

tests were made in order to select the most suitable parameters in an area with the 

characteristics of the study area, namely, steep mountains with shrub vegetation. We 

found that in areas with dense shrub, the mean signed error for the DTM was -0.10 m, 

which is an acceptable value considering that the average shrub height was 1.27 m.  
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Figure 5.RMSE values for field height and highest LIDAR point for cases of positive 

(n=32) and negative (n=50) DTM error   
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Figure 6. Effects of DTM errors on vegetation height 
 

The MSE was calculated by using points with positive DTM error for each radius. We 

found that these values were negative up to a radius of 2 m. These results indicate that 

although the DTM is underestimated, there is an underestimation of canopy height of 

shrub vegetation. This supports the idea that LIDAR data produces an underestimation 

of canopy height of shrub vegetation.  

 

Figure 7 shows the variation of the RMSE for points with the DTM corrected by adding 

the difference between coordinate z from 34 RTK-GPS points and coordinate z obtained 

from the DTM. A significant decrease in RMSE can be seen when the radius changes 

from 0.5 to 0.75 m. Unlike what happened when the 83 original points were selected 

from a radius of 0.75 m upwards, differences between radii in RMSE were small. This 

finding suggests that if DTM errors are minor and the slopes are low, the minimum 

error between field measurements and LIDAR data is found with lower radii, in this 

case for a radius of 0.75 m. This value is close to the horizontal accuracy of LIDAR 

data. 
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Figure 7. RMSE for all stands (n=83), and stands corrected for DTM error on slopes   

lower than 20% (n=34). 

 

To explain how the slope can affect the accuracy of shrub height, it is important to 

consider the cell size used for computing the DTM; in this case it was 1m. When 

LIDAR data and DTM are overlaid to calculate vegetation height, it is likely that some 

of these points do not coincide with the true cell because of the processes of 

interpolation and the creation of an image. This means that the heights of these points 

are calculated by taking the DTM value from a neighboring cell. When the slopes are 

steep, as in our study area with an average of 45%, the error could be high considering 

that average height studied in our work was 1.27 m. This could not happen in areas with 

low slopes as the adjoining cell value in a DTM would be similar.  

 

Figure 7 illustrates that the values of RMSE are very similar for a radius of 1.5 m,  (0.26 

m.), but they are lower for corrected DTM error in areas with slopes lower than 20% 

(n=34). These values of RMSE could explain the errors associated with the LIDAR 

system. The coincidence in RMSE values for a radius of 1.5 m  suggests that when this 

radius is selected the errors associated with DTM and the slopes are insignificant. This 
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can be explained by the fact that height of vegetation is similar in an area occupied by 

the value of this radius and there are at least nine values of a DTM to assign to the 

LIDAR points included in this area, and so the vegetation height can be calculated with 

more accuracy.  

 

The MSE were calculated from the 34 low slope points corrected for DTM error, and 

the result was negative up to a radius of 2.75 m. This supports the idea that the LIDAR 

system tends to underestimate shrub vegetation even when the heights are corrected for 

DTM error and the slopes are low.  

 

Effect of point density on selection of radius  

 

Figure 8 shows RMSE is lower when a point density is greater than 8 points/m2 up to a 

radius of 2.75 m. The differences between RMSE for both densities decrease from 0.14 

m when a radius of 0.5 m is used, to 0 m for a radius of 2.5 m.  
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Figure 8. RMSE values for field heights and the highest LIDAR point for point density 

> 8 points/m2 (n=43) and point density < 8 points/m2 (n= 49) 
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Analysis of shrub coverage 

The overall accuracy for the classified CHM was 87%. As can be observed in Table 4b, 

the user’s accuracy for the shrub vegetation class was 84%, which indicates that from 

90 points classified as shrub vegetation, 76 were correctly classified and 14 points 

belonged to the ground class. The producer’s accuracy for the shrub vegetation class 

was 92%, meaning that from 83 points that belonged to this class, 76 were correctly 

classified. These results can be improved when a spectral image is used (Mundt et al., 

2006; Bork and Su, 2007; Mutlu et al., 2008). In our study, the combination of CHM 

and spectral imagery gave an overall accuracy of 90%. The user’s accuracy for shrub 

vegetation was 94% (Table 4a). This increase was attributed to the following reason. 

Because an image was used, it was found that some cells with heights between 0.3 and 

2.5 m did not belong to the shrub vegetation class; an NDVI image allows cells such as 

these to be detected . However, the producer’s accuracy when combining LIDAR data 

and the spectral image was lower (87%). This means that when an image was used, 

some cells belonging to the shrub class were not classified as such. This may be because 

the image was taken a year and a half earlier, and the vegetation may not have been 

there at that time. In addition, after geometric correction the RMSE was 0.35 m. This 

error may mean that when cells belonging to the shrub class were overlaid on the CHM 

cells, they did not coincide, thus decreasing the producer’s accuracy. Nevertheless, the 

improvement in the user’s accuracy for the shrub class was greater than the decrease in 

the producer’s accuracy. The combination of the CHM and a spectral image produced 

an increase of 3% in overall accuracy. 
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Table 4. User, producer and overall accuracy with (a)  CHM and airborne image 

combined, and (b) CHM only.  

a) 

 Reference Data 
User's accuracy (%) 

 Ground Shrub Total 
Ground 78 11 89 87.64 
Shrub 5 72 77 93.51 
Total 83 83 166  

Producer's accuracy (%) 93.98 86.75  90.36 (Overall) 
 

b) 

 Reference Data 
User's accuracy (%) 

 Ground Shrub Total 
Ground 69 7 76 90.79 
Shrub 14 76 90 84.44 
Total 83 83 166  

Producer's accuracy (%) 83.13 91.57  87.35 (overall) 
 

 

Conclusion 

This work studied shrub height from LIDAR data in plots and stands. The results 

indicate that LIDAR data can be used to estimate shrub height. This was demonstrated 

with the acceptable coefficients of determination for the models calculated. For stands, 

it was shown that the minimum error between LIDAR data and field measurements was 

found when a buffer between 1.5 m and 2.25 m was used. A lower radius is possible 

when DTM error and slopes are lower. When a radius of 1.5 m was selected, DTM error 

and slope value did not affect the accuracy of the shrub height estimation. For this 

radius, the negative sign of the MSE showed that LIDAR systems tend to underestimate 

shrub vegetation. Although better results were obtained for shrub presence analysis 

when a spectral image and LIDAR data area were combined, the improvement was low.  

In view of the results, it is not worth using it. We used a spectral image to check the 

results of the classification of the CHM to correct the effects of an underestimation or 

overestimation of the DTM in those cells of the CHM whose heights were low. We 

thought it is extremely hard to obtain a more accurate DTM after making several tests to 



 22

select the most suitable parameters for an area with the characteristics of the study area - 

steep mountains with a dense cover of shrub vegetation. 

 

These results can be used to estimate the apparent volume of shrub vegetation, which is 

defined by the area of a stand and the dominant height of vegetation. By means of this 

data an occupation factor can be applied which relates the apparent volume to the real 

volume occupied by the plants. Once the dry density of the materials is known, the 

biomass can be estimated (Velázquez et al., 2010). 

 

This work could be used in change analysis of shrub vegetation. In this analysis two 

approaches can be performed: detection of new communities or growth of the existent 

shrub communities. In the first case, we thought that LIDAR data was accurate enough. 

The results obtained in this paper relating to the shrub cover with an overall accuracy of 

87% may confirm this hypothesis. The second case is more difficult. The results 

obtained for plots could suggest that the shrub growth could be studied for changes 

higher than 0.13 m. When the study is performed in sub-plots it would be necessary to 

define the size of the analyzed area. In this work, it was detected that when concentric 

areas with a radii of 1.5 m are used, the differences between LIDAR data and field 

measurements are smaller. In this case the RMSE was 0.27 m. Logically, it would be 

difficult to study changes for values lower than this. However, we detected that LIDAR 

data produces an underestimation of shrub vegetation, which could affect LIDAR data 

obtained in different data in the same way. Moreover, we detected that when a high 

density of LIDAR data is used, the RMSE is 0.20 m. Therefore, it is an important aspect 

that should be considered when a study of shrub change is carried out.  
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