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Abstract

It is known that the performance of adaptive algorithms are constrained

by their computational cost. Thus, affine projection adaptive algorithms

achieve higher convergence speed when the projection order increases, which

is at the expense of a higher computational cost. However, regardless of

computational cost, a high projection order also leads to higher final error at

steady state. For this reason it seems advisable to reduce the computational

cost of the algorithm when high convergence speed is not needed (steady

state) and to maintain or increase this cost only when the algorithm is in

transient state to encourage rapid transit to the permanent regime. The

adaptive order affine projection algorithm presented here addresses this sub-

ject. This algorithm adapts its projection order and step size depending on

its convergence state by simple and meaningful rules. Thus it achieves good

convergence behavior at every convergence state and very low computational

cost at steady state.

Keywords: Adaptive filter, Affine projection algorithm, Variable step size,

Computational cost.
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1. Introduction

Generally speaking affine projection algorithm (APA) [1] is a versatile

adaptive strategy that improves the convergence speed of the well known

Least Mean Squares (LMS) algorithm, while maintaining good robustness,

simplicity and stability. The convergence speed of APA algorithm increases

when an integer parameter called projection order (N) is also increased. How-

ever its computational cost and final residual error (final misadjustment) get

worse at the same time. Variable step-size affine projection algorithms have

already been proposed [2] [3] [4] [5] to overcome this duality and achieve bet-

ter performance in steady state without penalizing the speed of adaptation of

the algorithm. Although these strategies achieve better final error in steady

state, their computational cost remains invariant throughout algorithm exe-

cution and depends mainly on its projection order. Moreover, even when the

final residual error is improved, this residual error is not optimum since, as

shown in [6], the final steady state error increases with the projection order.

Although it should be noted that it can also be shown that the final error

can be considered independent of projection order for very small values of

the algorithm step-size µ. It seems clear that to minimize the final error at

steady state, both the step size of the algorithm and the projection order

must be decreased. Moreover the main advantage of reducing the projection

order when the algorithm reaches the steady state, provided residual error is

decreased, is the reduction in computational cost. Therefore, it appears that

the next step of the variable step-size APA evolution is the adaptation of

the projection order in response to algorithm performance. A first approach
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to this idea was proposed in [7], which describes how to combine two affine

projection algorithms of different orders such that the result obtained by the

combination was better than that obtained for each of the algorithms running

independently. Nevertheless, although satisfactory results can be obtained in

terms of convergence speed and final residual error, the computational cost of

such parallel combination of algorithms can increase considerably, since both

algorithms have to work simultaneously. In the present paper an algorithm

capable of changing the projection order subject to a rule dependent on al-

gorithm performance is introduced. Thus, when the algorithm reaches its

steady state, the projection order is reduced providing a dual positive effect:

further minimization of the residual error and decrease in computational cost.

This idea of evolving the projection order to improve the affine projection

algorithm performance was proposed in [8] and more recently in [9]. However

these algorithms adapt the projection order using the instantaneous squared

error and keeps a single step-size µ. Even though this lead to improvement

due to the change in projection order, as a general rule, it does not achieve

optimum residual error in the steady state since this residual error depends

on both µ and the projection order. In contrast, the algorithm proposed in

the present paper simultaneously adapts the projection order and the step

size in a meaningful way, thus it can get profit from both strategies (an alter-

native technique to this is proposed in [10]). Finally, a few other strategies

such as set-membership APA [11] also reduce the computational cost of the

APA at steady state because it does not update the coefficients of the adap-

tive filters at all iterations. This strategy even slightly decreases the final

residual error (because the variance of the filter weights is also reduced),
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but it cannot achieve the overall performance improvements of the algorithm

proposed here.

2. Algorithm description

The APA algorithm with regularization computes the filter coefficient

vector at each iteration with the following update equation

w(n) = w(n− 1) + µAT (n)[A(n)AT (n) + δI]−1e(n), (1)

that can be rewritten as

w(n) = w(n− 1) + µϵ(n), (2)

where the regularization factor is denoted by δ, I is the N × N identity

matrix,

A(n) =


xT (n)

xT (n− 1)
...

xT (n−N + 1)

 d(n) =


d(n)

d(n− 1)
...

d(n−N + 1)

, and e(n) =

d(n)−A(n)w(n− 1).

Parameters µ and N are related to the algorithm step size and the projec-

tion order respectively, and x(n) is a column vector composed by the last L

samples of the input signal. Thus adaptive filters have L coefficients. Finally

vector ϵ(n) is defined as

ϵ(n) = AT (n)[A(n)AT (n) + δI]−1e(n). (3)

A simple adaptation rule that varies the projection order depending on

the working state of the algorithm between a maximum and a minimum
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values is needed. Equation (2) describes the variation of the filter weights,

where the parameter ϵ(n) gives a measure of the size of this change. An

estimation of the mean value of the weight changes can be used into the

adaptation rule of N since it is closely related to the algorithm working state.

The evolution of the projection order in [9] is directed by the instantaneous

squared value of e(n), which is compared with two given thresholds. However

these thresholds are calculated from knowledge of the noise variance that has

to be estimated either a priori or on line, which limits algorithm autonomy.

An estimation of the mean squared value of ϵ(n) is also proposed to control

variations in convergence step size in [2]. It is shown that this variation rule

guarantees that the mean square deviation of the filter weights undergoes

the largest decrease between algorithm iterations. Thus, the variation rule

for the algorithm step size is proposed to be given by [2]:

µ(n) = µmax
∥p(n)∥2

∥p(n)∥2 + C
, (4)

where p(n) is an estimation of the mean value of ϵ(n), which is obtained from

an exponential weighting of its instantaneous value as p(n) = αp(n − 1) +

(1 − α)ϵ(n) (with 0 < α < 1), and C is a positive parameter that depends

on the algorithm projection order. It should be noted that this parameter is

shown to be approximated by N
SNR

in [2], thus it has to be adjusted following

the projection order values. The maximum step-size parameter µmax in (4)

is chosen to guarantee both fast convergence speed and filter stability and

ideally should be less than 1 [4][12].

It seems clear from (4) that the step size will keep close to its maximum

value when changes of the filter weights are high enough, which means that

the algorithm has not achieved its steady state. On the other hand, small
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values of weight changes will lead to a decrease in step size. The affine projec-

tion order could also be changed bounding the step size, thus, maximum and

minimum threshold values using the step size can be defined as µmaxµNup

and µmaxµNdown, with 0 < µ
Ndown < µNup ≤ 1. Consequently the simple

rule of variation of the projection order can be given by

N(n+ 1) =


min {N(n) + 1,Nmax} , µ(n) > µmaxµNup

N(n), other

max {N(n)− 1, 1} , µ(n) < µmaxµNdown

(5)

This way, the proposed algorithm would not only adapt the convergence

step size µ(n) trying to minimize the residual error or accelerate convergence,

but also would adapt the projection order to adjust the convergence and

computational needs of the algorithm to its convergence state and therefore

enhance the effect of the variable convergence step size.

3. Steady-state convergence analysis

The objective of this section is to evaluate the steady-state mean-square

error performance of the proposed APA algorithm. The steady-state mean-

square error (MSE) is defined as

MSE = lim
n→∞

E{|e(n)|2}, (6)

where E{·} denotes mathematical expectation and e(n) = d(n)−x(n)Tw(n−

1) is the output error at time n (note that e(n) is the top entry of error vector

e(n) in (1)).

It has been shown in [6] that the APA algorithm exhibits the following

steady-state MSE
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MSEAPA = lim
n→∞

(
µσ2

r

2− µ

)(
Tr(E{Φ(n)})

Tr(D · E{Φ(n)})

)
+ σ2

r (7)

where matrices Φ(n) and D are given, respectively, in (A.3) and (A.4) ( Tr(·)

denotes the trace of a matrix).

The minimum MSE in (7) is reached when N = 1 as,

MSEAPA=1 =
µσ2

r

2− µ
+ σ2

r ≤ MSEAPA. (8)

It can be assumed that the proposed APA algorithm with the suitable thresh-

old values reaches the steady state when N = 1. A choice of µNdown that

guarantees the projection order will undergo a decrease up to 1 at steady

state is given by (see motivations in Appendix B)

µNdown >
2

2 + C · SNR(2− µmax)
. (9)

Furthermore the proposed APA algorithm dynamically changes the step-size

parameter. Then, from (8), the MSE can be estimated as

MSEproposed APA =
µ∞σ2

r

2− µ∞
+ σ2

r , (10)

where µ∞ is calculated in Appendix A as

µ∞ = lim
n→∞

E{µ(n)} =
(1 + k)−

√
(1 + k)2 − 2µmax)

k
, (11)

and

k =
C

Nσ2
rTr(Φ(n))

≈ C · SNR
N

. (12)

Since µ∞ ≤ µmax, the proposed APA reduces the MSE of the APA algo-

rithm with µ = µmax. Moreover, only the solutions that subtract the square

root term in (11) should be considered. Figure 1 shows the evolution of µ∞

depending on k and µmax. By substituting these values in (10) it leads to

the corresponding theoretical MSE of the proposed APA algorithm.
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4. Results

The proper performance of the proposed algorithm has been contrasted

through various simulations, comparing it with the APA of fixed projection

order and step size, and with the APA of variable step size proposed in

[2]. Although the goal of the proposed algorithm is to improve both the

computational performance and the residual level of the error signal in steady

state, we must ensure that the transient state remains just as efficient as the

other algorithms. Therefore, invariant and variant environments have been

simulated. Thus the ability of the algorithms to adapt to changes in working

conditions can be assessed.

An invariant system identification problem was chosen as first experi-

ment. A plant modeled by a FIR filter of 20 coefficients (random) was used

as the unknown system. The length of the adaptive filters was fixed to 19

coefficients, therefore a residual background noise was always present since

the adaptive filters cannot achieve the exact model of the plant. The pro-

jection order of the APA was N = 10, which was also the maximum and

initial projection order of the APA with adaptive projection order. The

value of µmax was set at 0.08 and the thresholds values were µNup = 1/3 and

µNdown = 1/2. A typical value for α (α=0.99 as in [2]) in the estimation of

mean value of ϵ(n) was used, and C parameter in (4) was fixed to N/1000

(this is a SNR close to 30dB although other close values are also possible

without remarkable changes in algorithm behavior). Under these conditions

and for each algorithm 3000 simulations were performed and averaged, using

as reference signal, x(n), random white noise of zero mean. The learning

curves given by 10log

[
e2(n)

d2(n)

]
were calculated and are shown in Fig. 2. The
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evolution of the computational cost of each algorithm and the evolution of

the projection order of the proposed algorithm are also represented in Fig. 2.

It can be appreciated that as the algorithm approaches the steady state the

projection order decreases and, consequently, so does its computational cost.

Moreover, the final residual error not only is not worsened by this strategy

but is slightly improved over the variable step-size APA and significantly

improved compared to the APA of fixed parameters N and µ. Furthermore,

the last two adaptive strategies do not adapt their computational cost to the

algorithm state.

Although the first experiment demonstrates the efficiency of the algorithm

when the proposed adaptive system operates within an stationary environ-

ment and the variation of the projection order is monotone decreasing, it

would be interesting to see if it can also adjust when faster convergence is

needed and hence also increments of the projection order. Thus the previ-

ous experiment was repeated but the coefficients of the plant were randomly

changed after 10000 iterations and again after 20000 iterations, so the adap-

tive system had to readjust its working parameters from its input signals.

The setup of this experiment was the same as the previous one. In this sec-

ond case it is intended to illustrate the ability of proposed algorithm to track

changes in system conditions. Fig. 3 shows the learning curves, the evolution

of the projection order of the proposed APA and the computational cost of

the algorithms for this second experiment. As can be seen in Fig. 3, the

proposed APA presents better performance in terms of computational cost

and final residual error. However, this algorithm shows a somewhat slower

convergence behavior during transients because its projection order cannot
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achieve the value of the other algorithms, so it cannot reach their convergence

speeds. This drawback could be improved simply by either better adjusting

the threshold levels of the projection order changes or its step size, for in-

stance automatically switching to the highest projection order when a fast

transient is detected. Thus it would be guaranteed that the proposed algo-

rithm would show a transient behavior as good as the other, although the

number of operations in the transients would consequently be higher. Fig. 4

presents the results of the experiment but with the above conditions. The

thresholds have been changed to µNup = 1/2 and µNdown = 1/4 and when

N has to grow, it automatically switches to its maximum value (Nmax = 10

in this case). As can be appreciated from Fig. 4, the proposed algorithm

improves its behavior within transient periods but it does not performs as

well as before at steady state. Furthermore, the number of operations does

not decrease as much as in the case shown in Fig. 3. The residual error and

the computational cost of the proposed algorithm are, however, still better

than for the other two adaptive AP alternatives even in this case.

To prove the behavior of the algorithm with colored noise, Gaussian noise

filtered through an AR1 filter (y(n) =
√
1− 0.92x(n)+0.9y(n−1)) has been

also used as reference signal, getting satisfactory results as it is shown in

Fig. 5, and finally, the results when the input signal is exponentially dis-

tributed (non Gaussian) are shown in Fig. 6. The behavior of the algorithm

is very similar for all of them.
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5. Conclusion

In this paper an APA with variable step size and projection order has

been presented. This algorithm fulfils two objectives: first to adjust comput-

ing needs to the actual demand of the convergence state (fast convergence

speed is needed in transient state and hence higher projection orders and

high computational load, whereas the reverse is true at steady state), and

second, to further minimize the final residual error at steady state, since

it decreases with the projection order. Although the second objective was

already addressed by the algorithms of variable step size, the proposed al-

gorithm overcomes the performance of these algorithms and improves the

computational cost without any loss of convergence speed. Even though the

total computational cost is greatly improved by the fact that the algorithm

is not always working with the maximum or initial projection order. This

algorithm can reduce its cost even further by using fast strategies developed

for the APA family [13].
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Figure 1: Estimated steady-state step size (µ∞(n)) for different µmax values.

Appendix A. Computation of µ∞

The data vector d(n) can be modeled as the output of an unknown sys-

tem [6]

d(n) = A(n)wo + r(n), (A.1)

where wo is the vector we wish to estimate, r(n) is an N dimensional vector

comprised of samples of the measurement noise r(n) with σ2
r variance and zero

mean. The independence assumption between the different random variables

that appear in the theoretical analysis is considered. Specifically, the variable
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Figure 2: Learning curves (a), evolution of N (b) and computational cost (c) for an

invariant system identification experiment (white noise).
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Figure 3: Learning curves (a), evolution of N (b) and computational cost (c) for a variant

system identification experiment (original thresholds).
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Figure 4: Learning curves (a), evolution of N (b) and computational cost (c) for a variant

system identification experiment (modified thresholds).

19



0 2000 4000 6000 8000 10000
-40

-35

-30

-25

-20

-15

-10

-5

0

Iterations

d
B

 

 

AP variable   and N

AP N=10

AP variable  

(a)

0 2000 4000 6000 8000 10000
1

2

3

4

5

6

7

8

9

10

Iterations

N

(b)

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

Iterations

fl
o

p
s

 

 

AP variable   and N

AP N=10

AP variable  

(c)

Figure 5: Learning curves (a), evolution of N (b) and computational cost (c) for a system

identification experiment (colored noise).
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Figure 6: Learning curves (a), evolution of N (b) and computational cost (c) for a system

identification experiment (non Gaussian source signal).
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step-size parameter µ(i) is considered to be statistically independent of the

remaining random variables. Similarly to the steady-state MSE of the AP

algorithm studied in [6], we find that the steady-state MSE of the proposed

AP is given by (δ ≈ 0)

MSEAP = lim
n→∞

(
µ(n)σ2

r

2− µ(n)

)(
Tr(E{Φ(n)})

Tr(E{D(n)Φ(n)})

)
+ σ2

r (A.2)

where the projection order at steady state is not limited to N = 1 and

matrices Φ(n) and D(n) are given, respectively, by

Φ(n) = [A(n)AT (n)]−1 (A.3)

and

D(n) =



1 0 · · · 0

0 [1− µ(n)]2 0 · · · ...
... 0 [1− µ(n)]4

. . . 0

0 [1− µ(n)]2(N−1)


. (A.4)

The first term on the right-hand side of (A.2) is known as the excess

mean-square error (EMSE), which is defined by

EMSE = lim
n→∞

E{|ea(n)|2}, (A.5)

where ea(n) is the top entry of ea(n) = A(n)[wo −w(n− 1)].

In order to evaluate µ∞, defined by

µ∞ = lim
n→∞

E{µ(n)}, (A.6)
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we consider the steady-state condition p(n) = p(n − 1) = ϵ(n). Using

E∥p(n)∥2 instead of ∥p(n)∥2 in (4), the steady-state step size becomes

µ∞ = lim
n→∞

µmax
E{∥p(n)∥2}

E{∥p(n)∥2}+ k ·Nσ2
rTr(E{Φ(n)})

(A.7)

where the positive constant C is taken as a multiple of Nσ2
rTr(E{Φ(n)}) [2].

If we express E{∥p(n)∥2} in terms of ea(n), it holds the following approx-

imation (see, e.g., [6] for details)

E{∥p(n)∥2} = E{(ea(n))TΦ(n)ea(n)}+ E{rT (n)Φ(n)r(n)}

= Tr(E{ea(n)(ea(n))TΦ(n)}) + Tr(E{r(n)r(n)TΦ(n)})

≈ E{|ea(n)|2}Tr(E{D(n)Φ(n)}) + E{|r(n)|2}Tr(E{Φ(n)}).

(A.8)

Then, from (A.5), it yields

lim
n→∞

E{∥p(n)∥2} = EMSE · Tr(E{D(n)Φ(n)}) + σ2
rTr(E{Φ(n)}). (A.9)

By applying (A.9) in (A.7)

µ∞ = µmax
EMSE · Tr(E{D(n)Φ(n)}) + σ2

rTr(E{Φ(n)})
EMSE · Tr(E{D(n)Φ(n)}) + σ2

rTr(E{Φ(n)}) + kNσ2
rTr(E{Φ(n)})

.

(A.10)

If we consider N = 1, we obtain

µ∞ = µmax
EMSE + σ2

r

EMSE + σ2
r + kσ2

r

. (A.11)

where E{D(n)Φ(n)} = E{Φ(n)} = E{(∥x(n)∥2)−1}. From (10), being N =

1, the EMSE is given by

EMSE =
µ∞σ2

r

2− µ∞
. (A.12)

By substituting (A.12) in (A.11), and solving the corresponding second order

equation, it leads to the steady-state step size

µ∞ =
(1 + k)±

√
(1 + k)2 − 2µmax)

k
. (A.13)
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Appendix B. Optimum µNdown

From (A.10), we can derive the optimum µNdown in order to guarantee

the algorithm decreases its projection order. Thus,

1

µ∞
=

1

µmax

[
1 +

kNσ2
rTr(E{Φ(n)})

EMSE · Tr(E{D(n)Φ(n)}) + σ2
rTr(E{Φ(n)})

]

=
1

µmax

[
1 +

kN
µ∞

2−µ∞
+ 1

]
≥ 2 + kN(2− µmax)

2µmax
,

(B.1)

this leads to

µ∞ ≤ 2µmax
2 + kN(2− µmax)

≈ 2µmax
2 + C · SNR(2− µmax)

, (B.2)

and finally

µNdown >
2

2 + C · SNR(2− µmax)
. (B.3)

This value guarantees the projection order decreases up to reach the steady-

state with N = 1 and the corresponding estimated MSE is given in (10).

24


