Master’s Thesis

Julidn Alarte Aleixandre

September 12, 2014



Site-Level Web Template Extraction Based on Hyperlink Analysis



Abstract

Web templates are one of the main development resources for website en-
gineers. Templates allow them to increase productivity by plugin content
into already formatted and prepared pagelets. Templates are also useful for
the final users, because they provide uniformity and a common look and feel
for all webpages. However, from the point of view of crawlers and index-
ers, templates are an important problem, because templates usually contain
irrelevant information such as advertisements and banners. Processing and
storing this information is likely to lead to a waste of resources (storage space,
bandwidth, etc.). It has been measured that templates represent between
40% and 50% of data on the Web. Therefore, identifying templates is es-
sential for indexing tasks. This work proposes a novel method for automatic
template extraction that is based on similarity analysis between the DOM
trees of a collection of webpages that are detected using menus information.



Resumen

En el desarrollo Web, el uso de plantillas es uno de los recursos méas impor-
tantes para los ingenieros. Las plantillas les permiten incrementar la produc-
tividad mediante la inserciéon de contenido dentro de péaginas previamente
formateadas con un diseno definido. Las plantillas también son de gran uti-
lidad para el usuario final, porque proporcionan uniformidad y un disefio
comin al sitio web. Sin embargo, desde el punto de vista de los buscadores
e indexadores, las plantillas pueden suponer un importante problema, por-
que normalmente suelen contener informacién irrelevante como publicidad,
etc. El procesamiento y almacenamiento de toda esa informacién incide en
un mal aprovechamiento de recursos tales como espacio de almacenamiento,
ancho de banda, etc. Algunos estudios indican que entre el 40 % y el 50 %
de los datos totales de las paginas web forman parte de las plantillas. Por
lo tanto, la identificacién de las plantillas es fundamental para llevar a ca-
bo tareas como la indexacién. Este trabajo propone un nuevo método para
la extraccion automaética de plantillas basado en el analisis de la similitud
de arboles DOM extraidos de una colecciéon de paginas web seleccionadas
mediante la informacion de sus menus.
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Chapter 1

Introduction

1.1 Template detection

A web template (in the following just template) is a prepared HTML page
where formatting is already implemented and visual components are ready
to insert content.

Templates allow developers to compose their webpages with independent
blocks that can be reused. This is good for web development because many
tasks can be automated and webpage sections can be maintained separately.
In fact, many webpage development environments and code generators offer
collections of templates that already include Javascript, CSS, Flash, etc.

Templates are also good for users, which can benefit from intuitive and
uniform designs with a common vocabulary of colored and formatted visual
elements. This fact improves the user experience and the usability of the
website.

Contrarily, templates suppose an important problem for crawlers and
indexers, because they judge the relevance of a webpage according to the
frequency and distribution of terms and hyperlinks. Since templates contain
a considerable number of common terms and hyperlinks that are replicated in
a large number of webpages, relevance may turn out to be inaccurate, leading
to incorrect results (see, e.g., [2, 21, 23]). Moreover, in general, templates do
not contain relevant content, they usually contain one or more pagelets [6], 2]
(i.e., self-contained logical regions with a well defined topic or functionality)
where the main content must be inserted. Therefore, detecting templates
can help indexers to identify the main content of the webpage.

Figure shows two webpages belonging to the UPV website. Both
webpages share a header where we can distinguish the university logo and
an accessibility menu. Below the logo we can find the main menu and all
its options. In both webpages, the main content, which obviously does not
belong to the template, is found inside the dotted square. The footer is
shared by both webpages and it can be found below the main content. In
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this case, the template could be the union of the header and the footer.
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Figure 1.1: UPV webpage template

Modern crawlers and indexers do not treat all terms in a webpage in the
same way. First of all, the template is identified by preprocessing the web-
pages. Template detection allows them to identify those pagelets that only
contain noisy information such as advertisements and banners. This content
should not be indexed in the same way as the relevant content. Indexing the
non-content part of templates not only affects accuracy, it also affects per-
formance. The processing and treatment of this amount of irrelevant data
can lead to a waste of storage space, bandwidth and time.

Template detection enhance indexers by isolating the main content and
assigning higher weights to the really relevant terms. As the main content is
usually complementary to the template, the result of removing the template
will probably isolate the main content. Once templates have been extracted,
they are processed for indexing—they can be analyzed only once for all
webpages using the same template—. Moreover, links in templates allow
indexers to discover the topology of a website (e.g., through navigational
content such as menus), thus identifying the main webpages. They are also
essential to compute pageranks.

Gibson et al. determined that templates represent between 40% and
50% of data on the Web and that around 30% of the visible terms and
hyperlinks appear in templates. This justifies the importance of template
removal [23, 2] for web mining and search.

This approach to template detection is based on the DOM [7] structures
that represent webpages. Roughly, given a webpage in a website, the first
step is to identify a set of webpages that are likely to share a template with
it. Then these webpages have to be analyzed to identify the part of their
DOM trees that they share with the original webpage. This slice of the DOM
tree is returned as the template.

This technique exploits a new idea to automatically find a set of web-
pages that potentially share a template. The process detects the template’s



1.2. RELATED WORK 7

menu and analyzes the links of the menu to identify a set of mutually linked
webpages. One of the main functions of a template is to aid navigation, thus
almost all templates provide a large number of links, shared by all webpages
implementing the template. Locating the menu allows to identify the main
webpages of each category or section in the topology of the website. These
webpages very likely share the same template.

This idea is simple but powerful and, contrarily to other approaches, it
allows the technique to only analyze a reduced set of webpages to identify
the template. Therefore, it can extract the template with good accuracy in
a reduced time.

1.2 Related Work

Template detection and extraction are hot topics due to their direct appli-
cation to web mining, searching, indexing, and web development. For this
reason, there are many approaches that try to face this problem.

Content Extraction is a discipline very close to template detection. Con-
tent extraction tries to isolate the pagelet with the main content of the
webpage. It is an instance of a more general discipline called Block Detec-
tion that tries to isolate every pagelet in a webpage. There are many works
in these fields (see, e.g., [11, 22, 51 [12]), and all of them are directly related to
template detection. Many works have been presented in the CleanEval com-
petition [3], which periodically proposes a collection of examples to be ana-
lyzed with a gold standard. The examples proposed are especially thought
for boilerplate removal and content extraction.

Template detection techniques are often classified into two groups: page-
level and site-level. In both cases, the objective is the same, detecting the
template of a given webpage; but they use different information. While page-
level techniques only use the information contained in the target webpage,
site-level techniques also use the information contained in other webpages,
typically of the same website.

Site-level techniques usually work in two (not necessarily independent)
phases. First, they collect a set of webpages that (hopefully) implement the
same template as the target webpage. Then, they extract the template by
comparing the target webpage with the collected webpages.

In the area of template detection, there are three main different ways to
solve the problem:

e Using the textual information of the webpage (i.e., the HTML code)
e Using the rendered image of the webpage in the browser

e Using the DOM tree of the webpage.
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The first approach is based on the idea that the main content of the
webpage has more density of text, with less labels. For instance, the main
content can be identified selecting the largest contiguous text area with the
least amount of HTML tags [8]. This has been measured directly on the
HTML code by counting the number of characters inside text, and charac-
ters inside labels. This measure produces a ratio called CETR [22] used to
discriminate the main content. Other approaches exploit densitometric fea-
tures based on the observation that some specific terms are more common
in templates [16, [14]. The distribution of the code between the lines of a
webpage is not necessarily the one expected by the user. The format of the
HTML code can be completely unbalanced (i.e., without tabulations, spaces
or even carriage returns), specially when it is generated by a non-human
directed system. As a common example, the reader can see the source code
of the main Google’s webpage. At the time of writing these lines, all the
code of the webpage is distributed in only a few lines without any legible
structure. In this kind of webpages CETR is useless.

The second approach assumes that the main content of a webpage is often
located in the central part and (at least partially) visible without scrolling
[4]. This approach has been less studied because rendering webpages for
classification is a computational expensive operation [I5].

The third approach is where our technique falls. While some works try
to identify pagelets analyzing the DOM tree with heuristics [2], others try to
find common subtrees in the DOM trees of a collection of webpages in the
website [23] 21]. Our technique is similar to these last two works.

With independence of the approach followed, the most extended way
of selecting the webpage candidates is manually. For instance, the content
extractor algorithm and its improved version, the fast content extractor algo-
rithm [17], take as input a set of webpages that are given by the programmer.
The same happens in the methodology for template detection proposed in
[13].

Even though [23] uses a method for template detection, its main goal is
to remove redundant parts of a website. For this, they use the Site Style Tree
(SST), a data structure that is constructed by analyzing a set of DOM trees
and recording every node found, so that repeated nodes are identified by
using counters in the SST nodes. Hence, an SST summarizes a set of DOM
trees. After the SST is built, they have information about the repetition of
nodes. The most repeated nodes are more likely to belong to a noisy part
that is removed from the webpages.

In [21], the approach is based on discovering optimal mappings between
DOM trees. This mapping relates nodes that appear in more than one web-
page, and thus they are considered redundant. Their technique uses the
RTDM-TD algorithm to compute a special kind of mapping called restricted
top-down mapping [18]. In order to select the webpages of the website that
should be mapped to identify the template, they pick random webpages until
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a threshold is reached. In their experiments, they approximated this thresh-
old as a few dozen of webpages. They need 25 webpages to reach a 0.95
F1 measure. Contrarily, in our technique, we do not select the webpages
randomly, we use a method to identify the webpages by analyzing their hy-
perlinks. We only need to explore a few webpages to identify the candidates
that implement the template. Moreover, contrarily to us, they assume that
all webpages in the website share the same template, and this is a strong
limitation for many websites.

In [19], authors exploit the idea that those pages stored in the same
directory contain the same template. In particular, they use as webpage
candidates those webpages stored in the same directory as the target web-
page. Somehow, we also exploit this idea, but we do not restrict ourselves to
one directory. We define an order of relevance using the tree of directories
according to a definition of distance between directories.

1.3 Preliminary definitions

The DOM is an API that provides programmers with a standard set of
objects for the representation of HTML and XML documents. Our technique
is based on the use of DOM as the model for representing webpages. Given a
webpage, it is completely automatic to produce its associated DOM structure
and vice-versa. In fact, current browsers automatically produce the DOM
structure of all loaded webpages before they are processed.

The DOM structure of a given webpage is a tree where all the elements of
the webpage are represented (included scripts and CSS styles) hierarchically.
This means that a table that contains another table is represented with a
node with a successor that represents the internal table (see Figure [1.2)).

BODY

~

NN VRN
J N ) .

ojojclolo
O OC

Figure 1.2: Webpage represented with a DOM tree
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In a DOM tree T' = (N, E) representing a webpage, where N is a finite set
of nodes and F is a set of edges between nodes in N, root(T') denotes the root
node of T'. Given a node n € N, link(n) denotes the hyperlink of n when n is
a node that represents a hyperlink (HTML label <a>), parent(n) represents
node n’ € N such that (n/,n) € E. Similarly, children(n) represents the set
{n’ € N | (n,n') € E}, subtree(n) denotes the subtree of T" whose root is
n € N, path(n) is a non-empty sequence of nodes that represents a DOM
path; it can be defined as path(n) = ngni...n, such that Vi,0 < i <
m. n; = parent(ni;1).

In order to identify the part of the DOM tree that is common in a set
of webpages, our technique uses an algorithm that is based on the notion of
mapping. A mapping establishes a correspondence between the nodes of two
trees.

Definition 1.3.1 (mapping) (based on Kuo’s definition of mapping [20])
A mapping from a tree T = (N,E) to a tree T' = (N',E’) is any set M
of pairs of nodes (n,n') € M, n € N,n' € N' such that, for any two pairs
(n1,n}) and (na,nb) in M, ny = ng iff n} = nl,.

Definition 1.3.2 (top-down mapping) A mapping M between a tree Tj
and a tree Ty is said to be top-down only if for every pair (i1,i2) € M there is
also a pair (parent(iy), parent(iz)) € M, where i1 and iy are non-root nodes
of T1 and Ts respectively

©

Figure 1.3: Top-down mapping between DOM trees

Definition 1.3.3 (restricted top-down mapping) ([18/) A top-down map-
ping M between a tree Th and a tree Ts is said to be restricted top-down only
if for every pair (i1,i2) € M, such that t1[i1] # ta[ia], there is no descendent
of i1 orig in M, where i1 and iy are non-root nodes of T1 and Ty respectively.

In order to identify templates, we are interested in a very specific kind
of mapping that we call ezact top-down mapping (ETDM).
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Figure 1.4: Restricted top-down mapping between DOM trees

Definition 1.3.4 (exact top-down mapping) Given an equality function
= between tree nodes, a mapping M between two trees T and T" is said to be
exact top-down if and only if

e czact: for every pair (n,n')e M, n=n'.

e top-down

Body Body

Cow | [aee | [ane | Tove |

[ p || Table || P e | ow ] [ |

Figure 1.5: Exact top-down mapping between DOM trees

Note that this definition is parametric with respect to equality relation
2. We could simply use the standard equality (=), but we left this relation
open, to be general enough as to cover any possible implementation. In
particular, other techniques consider that two nodes nqy and no are equal if
they have the same label. However, in our implementation we use a notion
of node equality much more complex that uses the label of the node, its CSS
classes, its HT'ML identifier, its children, its position in the DOM tree, etc.

This definition of mapping allows us to be more restrictive than other
mappings such as, e.g., the restricted top-down mapping (RTDM) introduced
in [I8]. While RTDM permits the mapping of different nodes (e.g., a node la-
belled with table with a node labelled with div), ETDM can force all pairwise
mapped nodes to have the same label.
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Figure presents an ETDM example where two nodes with different
label can be mapped, but not their descendants. Figure[I.5|shows an example
of an ETDM using: n = n’ if and only if n and n’ have the same label.

Figure shows a comparison between exact top-down mapping and
restricted top-down mapping. The main difference is that ETDM only allows
mapping pairs of nodes with the same label and RTDM allows mapping pairs
of nodes with different labels. When RTDM maps two nodes with different
labels, their descendants cannot be mapped.

ETDM RTDM
o | R e =
NI ) T L= \ | e N - T

Figure 1.6: ETDM vs RTDM
We can now give a definition of template using ETDM.

Definition 1.3.5 Let py be a webpage whose associated DOM tree is Ty =
(No, Ey), and let P = {p1...pn} be a collection of webpages with associated
DOM trees T = {Ty...T,}. A template of py with respect to P is a tree
(N, E) where

e nodes: N ={neNy |VteT . (n,_)e Mg} where Mg, is an exact
top-down mapping between trees Ty and t.

e edges: E = {(m,m')e Ey | m,m’ € N}.

Hence, the template of a webpage is computed with respect to a set of
webpages (usually webpages in the same website). We formalize the template
as a new webpage computed with an ETDM between the initial webpage and
all the other webpages.

Figure shows a mapping example of 3 webpages using the ETDM
algorithm. The middle column is the initial webpage from which we want
to extract its template. The webpages on both sides are webpages used to
compare their nodes with the initial webpage nodes. The comparison is made
using the ETDM algorithm with the equality relation =. If we focus on the
middle column, we can distinguish nodes in grey and nodes in white: Nodes
in grey are equa]lﬂ in the three webpages, so they belong to the template.
However nodes in white do not belong to the template because they do not
appear in the three webpages.

'Here, we assume that nodes are equal (according to some equality relation =) if they
have the same label.
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Figure 1.7: ETDM mapping example between the key page and 2 webpages
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Chapter 2

Identifying webpages sharing a
template

2.1 Templates

Templates are often composed of a set of pagelets. Two of the most important
pagelets in a webpage are the menu and the main content.

Example 2.1.1 Consider two webpages that belong to the ZME website in
Figure [2.1. At the top of the webpages we see the main menu containing
links to all ZMFEscience principal topics. In the left webpage we can also see
an example of a submenu showing the subsections of topic "Research”. The
left webpage belongs to "Robotics" subsection of topic "Science”, while the
right webpage belongs to "Animals" section of topic "Environment”. Both
share the same menu, their respective submenus, and general structure. In
both webpages the main content, i.e., the news, is inside the pagelet in the
dashed square. In addition to the main content, there is a common pagelet
called "Popular this week" with the most relevant news, and another one
for subscription and social networks. Additionally, a set of related news
(different for each webpage) is shown between the menu and the main content.

Example 2.1.2 Figure[2.9 shows two webpages that belong to the BBC web-
site. The one on the left is the main UK news webpage, and the one on the
right is the US and Canada main news webpage. At the top of both web-
sites there are two menus, one on the top with the main sections of the BBC
website and another one with the subsections of each section. These both
websites are subsections of the main section "News”.

Both webpages share their header which includes the logo, the main menu
and the submenu. They also share the footer which does not appear in the
pictures. The central part of the websites is divided into two pagelets. The
pagelet on the left, is the main content of the website. The pagelet on the
right contains sections like videos, the most popular news, ads, etc.

15
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Figure 2.2: Webpages of BBC sharing a template

Our approach is very simple yet powerful:

1. Starting from the key page, it identifies a complete subdigraph (CS)
in the website topology, and then

2. it extracts the template by calculating an ETDM between the DOM
tree of the key page and some of the DOM trees of the webpages in the
complete subdigraph. Both processes are explained in the following
sections.

2.2 Finding template candidates in a website topol-
ogy

Analyzing the hyperlinks of a website is good way of identifying its topol-
ogy. We observed that webpages linked by the items in a menu are usually
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mutually linked, thus, they form a complete subdigraph. Identifying the CS
is a new way of identifying the webpages that contain the menu. At the
same time, these webpages are the roots of the sections linked by the menu.
The following example illustrates why menus provide very useful information
about the interconnection of webpages in a given website.

Example 2.2.1 Consider the ZMFEscience website. Two of its webpages are
shown in Figure[2.1. In this website all webpages share the same template,
and this template has a main menu that is present in all webpages, and a
submenu for each item in the main menu. The site map of the ZMFEscience
website may be represented with the topology shown in Figure [2.3

Domain A

/Menu \ Domain B

Domain C

\ Submenu .‘

Figure 2.3: ZMEscience Website topology

In this figure, each node represents a webpage and each edge represents
a link between two webpages (we only draw some of the edges for clarity).
Solid edges are bidirectional, and dashed and dotted edges are directed. Black
nodes are the webpages pointed by the main menu. Because the main menu
1s present in all webpages, then all nodes are connected to all black nodes.
Therefore all black nodes together form a complete graph (i.e., there is an
edge between each pair of nodes). Grey nodes are the webpages pointed by a
submenu, thus, all grey nodes together also form a complete graph. White
nodes are webpages inside one of the sections of the submenu, therefore, all
of them have a link to all black and all grey nodes.

Not all the webpages in a website implement the same template, some
of them only implement a subset of a template. For this reason, one of
the main problems of template detection is deciding what webpages should
be analyzed. Minimizing the number of webpages analyzed is essential to
reduce the task. In our technique we introduce a new idea to select the
webpages that must be analyzed: we identify a menu in the key page and
we analyze the webpages pointed out by this menu. Observe that we only
need to investigate the webpages linked by the key page, because they will
for sure contain a CS that represents the menu.

In order to ensure high precision, we search for a CS that contains enough
webpages that implement the template. It is important to remark that
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a webpage can contain several menus and submenus; and not all of them
produce equally good CSs. For instance, consider again the topology shown
in Figure If we assume that the key page is one of the white nodes,
then, a CS formed with the grey nodes (the submenu) will be probably
better than a CS formed by the black nodes (the main menu). This happens
because the white nodes belong to one of the items in the submenu, and
thus, they (probably) are more related semantically, and they (probably)
share more syntax components. Note that at least the submenu is a common
substructure shared by all grey and white nodes (but not necessarily by the
black nodes).

Example 2.2.2 Consider again the graph in Figure[2.3 Figures
and [2.4 provide examples to illustrate the differences between each kind of
node. Firstly, Figure represents a white node because it is a webpage
pointed by a submenu option, that submenu option is pointed by the “news”
main menu option. This webpage shares several components with the grey
nodes also pointed by the “news” main menu option, like the webpages in
Figure[2.5. They all share their header, they both are formed by two columns,
a wider one on the left and another thinner on the right. They also share
the footer element and the boxes style and distribution. Figure[2.0 webpages
represent black node pages, they are links from the main menu. Comparing
this pair of webpages with the webpage in Figure shows that they have
only a few blocks in common, like the footer and the main menu, even the
header is now different between them, so they share only a small part of the
template.

New York regulator plans ‘regulated”
Bitcoin exchanges

1 Ii'\iI:E\'F I.}:‘
HONEST MONEY

GOLD, SILVER, AND BITCOIN

Figure 2.4: White node belonging to bbc.co.uk

2.2.1 Hyperlink analysis

By analyzing the links in the key page, it is possible to select those links that
most likely produce the best CS. This is essential to avoid analyzing all links
and thus significantly increasing the performance. Our strategy to identify
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Figure 2.6: Black nodes belonging to bbc.co.uk

the links that should be analyzed is based on the structure of the website.
We obtain information about the structure of the website from the URLs of
the links.

Example 2.2.3 Consider a key page P whose URL is:
www. upv. es/ research/ maths/ index. html
Consider that P contains four links with the following URLs:

o URL 1 =wuww. tesco. es/

o URL 2 = wuww. upv. es/ research/maths/pi. html

e URL 8 = wuww. upv. es/ sport/

o URL } = www. upv. es/ research/maths/news/ computers. html

URL 1 points to a webpage in another domain. Therefore, the template of this
webpage is probably completely different from the template of the key page.
URL 2 points to a webpage in the same folder as the key page. Hence, very
likely, they both belong to the same section in the hierarchy of the website,


www.upv.es/research/maths/index.html
www.tesco.es/
www.upv.es/research/maths/pi.html
www.upv.es/sport/
www.upv.es/research/maths/news/computers.html
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and thus their structure is probably similar. URL 3 points to a webpage
(index.html) of a folder that is two levels above the current directory. It
probably points to another section (e.g., to another section in the main menu
called sport). Therefore, the structures of the key page and the webpage
pointed by URL 3 are possibly different. Probably, they will only share a small
part of their templates. URL /4 points to a webpage located in a subfolder of
the current folder. Probably, this webpage is semantically related to the key
page, and it contains specialized information (it possibly extends the template
with additional information).

2.2.2 Hyperlink distance

Analyzing the links in the key page, we can establish an order of relevance. In
order to formally define a partial order that can be used by our algorithms to
sorts the links, we need first to provide a notion of link and distance between
links.

Definition 2.2.4 (hyperlink) A hyperlink (or just link) is a sequence of
words separated by slash: h = (dir/)*. The length of a link h is represented
with |h| and it denotes the number of words in the sequence:

1 it b= dir/
[l = { 1+ |B| if h = dir/h where I is a link (2.1)

Note that this definition deliberately ignores the name of the resource
pointed by the URL; it only focusses on the structure (directories or do-
mains). It is general enough as to include URLs such as www.upv.es/,
research/ and research/maths/. In the following we use head(h) to refer
to the first word in a link. E.g., head(dirl/dir2/dir3/) = dirl. We now
provide a notion of distance between two URLs.

Definition 2.2.5 (hyperlink distance) Given two hyperlinks h, h', the dis-
tance from h to h' is defined as:

0 if h="n
Hiha| i B = hin
hDistance(h,h') = < —|hy| if h =h'hy

—lh1| if h = hohy and W' = hohe and head(hi) # head(hs)
—|h] if head(h) # head(h')
(2.2)

Observe that the distance is defined from the first link to the second
link. This is illustrated in Figure that represents a tree of directories
that contain webpages. There, we can see the distance of all webpages to
the webpage in the gray directory. Some particular examples follow:
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hDistance(research/maths/, research/maths/) = 0
hDistance(research/maths/, research /maths/geometry /) = +1
hDistance(research /maths/, research/) = -1
hDistance(research/maths/, research /physics/dynamics) = -1
hDistance(research/maths/, www.upv.es/research/) = -2

> o) [=]
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Figure 2.7: Hyperlink distance

Intuitively, given two links Al and h2, a distance of 0 means that both
links point to the same directory. A positive distance from hl to h2, means
that h2 points to a subdirectory inside the directory pointed by hl. A
negative distance from hl to h2, means that h2 points to a directory outside
the directory pointed by hl. We use the url of the key page as a reference
link to compute distances. And we compare the distances of the links in
the key page. Those links with distance 0 are preferred. Then those with a
positive distance, and finally those with a negative distance.

Example 2.2.6 Consider the BBC website in Figure [2.8 Some examples
of distances between its hyperlinks are the following:

Figure 2.8: BBC news webpage

1. Distance between the news webpage in Figure |2.8 and the tech news
category webpage:
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The tech news webpage is referenced by the news webpage. The tech

Q
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Figure 2.9: Hyperlink distance in a website hierarchy

news webpage is stored in a subdirectory of the news directory, so the
distance between them is a positive distance with value 1.
hDistance(www.bbc.com/news/technology, www.bbc.com/news) = +1

2. Distance between the news webpage in Figure [2.8 and the main web-
page:
The root directory contains the main webpage and the news directory

o
®0 © 00
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Figure 2.10: Hyperlink distance in a website hierarchy

18 a subdirectory of the root directory, so in this example the hyperlink
distance is negative with value 1.
hDistance (www.bbc.com/news, www.bbc.com) = -

3. Distance between the news webpage in Figure [2.8 and the European
news webpage:
The europe directory is a subdirectory of world, which is a subdirectory
of news. That is, there is a positive distance with value 2 between the
pages inside the news directory and the europe directory.
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Figure 2.11: Hyperlink distance in a website hierarchy

hDistance (www.bbe.com/news, www.bbc.com/news/world/europe/) =
+2

4. Distance between the news webpage in Figure[2.8 and the weather main
webpage:
The weather directory, as the news directory, is a subdirectory of the

Jol
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Figure 2.12: Hyperlink distance in a website hierarchy

root directory. Therefore, it is necessary to go back only one level to
reach a path to the weather directory. Thus, the hyperlink distance is
a negative distance with value 1.

hDistance (www.bbe.com/news, www.bbc.com/weather) = -

5. Distance between the news webpage in Figure and a sports article
webpage:

The path to reach the formula 1 directory is completely different to
the path started by the news directory. Therefore, it will be necessary
to go back one level to reach the path to the formula 1 directory, so the
distance between them will be negative with value 1.
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Figure 2.13: Hyperlink distance in a website hierarchy

hDistance (www.bbe.com/news, www.bbe.com/sport/0/formulal /26599556)
-1

2.2.3 DOM distance

In case of a drawﬂ we use another information to determine what link is bet-
ter. For this, we analyze their position in the DOM tree. Often, pagelets ag-
glutinate semantically related information. Thus, different pagelets contain
different information. Therefore, two links that belong to different pagelets
usually point to webpages whose content is semantically different. This is
very useful, because we are interested in locating webpages that share the
same template, and that contain as more differences as possible so that we
can precisely identify the template.

Example 2.2.7 Consider a set of links in a shopping webpage. The links
can point to similar webpages where each webpage contains information about
one particular product. Often, these webpages share the same template that
18 filled with similar information about the products. The similar information
shared by the products can be confused as part of the template because it ap-
pears repeated in many webpages. Hence, template detection algorithms must
avoid comparing only these webpages because they do not provide sufficient
information to isolate the template.

As a consequence, in case of a draw, we prefer those links that are as
separated as possible from the other already selected links in the DOM tree.
In this way, we give preference to links with (probably) different semantic
information. In summary, observe that we obtain webpages that share the

'Note that, according to Deﬁnition the hyperlink distance defines a partial order,
and thus, two different links can have the same distance to a third link.
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same template (using the hyperlink distance) but being as different as pos-
sible (using their position in the DOM tree). To compare the position in the
DOM tree of two links we measure the length of their paths.

Definition 2.2.8 (length of a DOM path) Given a node n in a DOM
tree, the length of its path path(n) is represented with |path(n)|, and it de-
notes the number of nodes in the sequence:

ipath(n)| = 1 if path(n) =ng
P | 1+ |path(n’)| if path(n) = nopath(n’) where path(n') is a path
(2.3)

Example 2.2.9 Consider the DOM Tree in Figure the DOM path of
the black <SPAN> node on the lower left side is:
<BODY><CONTENT><DIV><P><SPAN>

The length of the path corresponds to the number of nodes in the sequence,
so its length value is 5.

Sos0c0c

Figure 2.14: DOM path of a node

In the following definition we use function head to select the first node
in a path: head(noni ...nm,) = ng.

Definition 2.2.10 (DOM distance) Given a DOM tree T = (N,E), two
nodes n,n' € N, and their DOM paths path(n), path(n'), where head(path(n)) =
head(path(n')) = root(T); the DOM distance from n to n' is defined as:

0 if path(n) = path(n’)
) n _ |} |path(ni)| + |path(n2)| if path(n) = path(ng)path(n)
dDistance(n, n’) = and path(n') = path(ng)path(ns2) (2:4)
and head(path(ni)) # head(path(nz))

Note that two links have zero DOM distance if and only if they are
exactly the same link. Contrarily, two different links (even if they have the
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same URL, and thus the same hyperlink distance) necessarily have a positive
DOM distance.

Example 2.2.11 Consider the DOM Tree in Figure [2.1:

1. The DOM path of the black <SPAN> node on the lower left side, fol-
lowed by black arrows, is:
<BODY><CONTENT><DIV><P><SPAN>

2. The DOM path of the gray <IMG> node on the lower side, followed
by gray arrows, is:
<BODY><CONTENT><DIV><DIV><IMG >

The DOM distance between both nodes is calculated as the sum of the nodes
that follow a different path. Both sequences share their first two nodes, then
the third node is different, while in the first sequence it is a <DIV>, in the
second it is another <DIV>. Therefore, the DOM distance between these two
nodes is calculated as the sum of their nodes starting from the third. Both
sequences have 8 nodes from the third to the last one, so the DOM distance
between them is 6.

ONCAICIENNGC
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Figure 2.15: DOM distance of two nodes

2.2.4 Hyperlinks order

We can now define an order of the links in a webpage, it allows us to decide
what links should be explored to extract the template. This order combines
the link relevance order <Z‘nk’ which uses the link distance, and the DOM
relevance order <g0 27> Which uses the DOM distance.

Definition 2.2.12 (link relevance) Given any set of hyperlmk nodes N
and a reference hyperlink h, N is equipped with the preorder < lmk called link
relevance and defined as follows. For any ni,ne € N with



2.2. FINDING TEMPLATE CANDIDATES IN A WEBSITE TOPOLOGY?27

hDistance(h,link(ni)) = hd; hDistance(h,link(ny)) = hds

we have:

Link Relevance:
ni :Z’nk no Zﬂ hdl = hdg
0< hdy < hdy v
ni <;Link ng iff hds < hdy <0 v
hdz <0< hdl

Example 2.2.13 Consider the following hyperlinks belonging to the BBC
website:

link(A') = www.bbc.com/news/

link(A?) = www.bbe.com,/news/world/europe/

link(A3) = www.bbc.com

link(A*) = www.bbe.com/news/uk/

link(A®) = www.bbc.com/sport/0/football/28497920/

link(A%) = www.bbc.com/news/also_in_the news/

If we take the first hyperlink as the reference hyperlink, first of all we need
to calculate the hDistance between the reference hyperlink and the others:

hDistance(Al, A%) = +2
hDistance(A', A3) = -1
hDistance(Al, A*) = +1
hDistance(A', A5) = -1
hDistance(Al, A%) = +1

Knowing the distance between the reference hyperlink and the others, we could
order them depending on the link relevance function:
www.bbe.com/mews/uk/ =1 . www.bbc.com/news/also_in_the news/ <k .
www.bbe.com/news/world/europe/ <\ www.bbe.com =k
www.bbe.com/sport/0/football/284 97920/

Definition 2.2.14 (DOM relevance) Given any set of hyperlink nodes N
and a reference set of hyperlink nodes N', N is equipped with the preorder
<J,§’0M called DOM relevance and defined as follows. For any ni,ne € N
with

n} = Hel}\lfll dDistance(n,ny) dn) = dDistance(n),n1)
n

nh = Hel}\r;l/ dDistance(n,nz) dnly = dDistance(nb, na)
n

we have:
DOM Relevance:
N’ . / /
n1 =pou 12 iff dny = dnj
ny <Vou 2 iff dnl > dnl,
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We strictly follow the combination of link relevance and DOM relevance
to select the links that should be explored first to find a CS in the website
topology. For this, we use Algorithm

Algorithm 1 Sort links

Input: A set of hyperlink nodes links and a reference hyperlink h.
Output: A sorted list of links with respect to the preorders $an and <g0M'

begin
sortedLinks = [];
while (links # &)
links = links\links';
sortedLinks’ = [];
while (links’ # &)
link = | € links' | 31 € links' A U <sgriedLinks’ p.
links' = links"\{link};
sortedLinks’ = sortedLinks' ++ [link];
sortedLinks = sortedLinks ++ sortedLinks’;
return sortedLinks;
end

Algorithm [I] sorts the links in a webpage combining the link relevance
and the DOM relevance. First, it takes each set of hyperlink nodes in the
order provided by the link relevance. Then, it sorts each of these sets using
the order provided by the DOM relevance. Finally, the concatenation of each
sorted set is the order that we use to explore the links of a webpage.

Example 2.2.15 Consider the DOM tree in Figure [2.16 It represents a
partial DOM tree of the webpage www.bbc.com/news/. The gray nodes are
links to other pages:

link(A') = www.bbe.com/news/world/europe/

link(A?) = www.bbc.com

link(A3) = www.bbe.com /news/uk/

link(A*) = www.bbc.com/sport/0/football /28497920/

link(A®) = www.bbc.com/news/also_in_the news/

As in example the hyperlink relevance order is:

www.bbe.com/news/uk/ =1 . www.bbc.com/news/also_in_the news/ <l .
www.bbe.com,/news/world/europe/ <N . www.bbe.com =
www.bbe.com/sport/0/football /284 97920/

Once the set of hyperlinks is ordered by the link relevance algorithm, it
has to be sorted again using the DOM relevance, following Algorithm 1

The first two elements in the hyperlink relevance order, link(A3) and
link(A3) have the same relevance, so they have to be ordered by the DOM
relevance algorithm:
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Figure 2.16: Partial DOM tree of www.bbc.com/news/

dDistance(A3,A') = 6
dDistance(A3,A%) = 3
dDistance(A3,A*) = 7
dDistance(A3,A%) = 7

dDistance(A%,A') = 5
dDistance(A®,A%) = 6
dDistance(A®,A3) = 7
dDistance(A®,A*) = 6

The minimum values of the distances above, following the DOM relevance
algorithm, indicate that link(A>) is prior to link(A3), so the correct order of
the first two links is:

{www.bbc.com/news/also_in_the_news/, www.bbc.com/news/uk/}

Then, we can add the following hyperlink, link(A*), in the link relevance
order:

{www.bbc.com/news/also_in_the news/,
www.bbc.com/news/uk/,
www.bbe.com/news/world/europe/ }

The following two hyperlinks link(A?) and link(A*) in the link relevance or-
der are drawn, so we need the DOM relevance algorithm:

dDistance(A%,A') = 5
dDistance(A?,A3) = 3
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dDistance(A%,A*) = 6
dDistance(A%,A%) = 6

dDistance(A*,A') = 5
dDistance(A*,A%) = 6
dDistance(A*, A3) = 7
dDistance(A*,A%) = 6

The minimum values of the distances above, following the DOM rele-
vance algorithm, indicate that link(A*) is prior to link(A?), therefore the set
of links is ordered as follows:

{www.bbc.com/news/also_in_the news/,
www.bbe.com/news/uk/,
www.bbe.com/news/world/europe/,
www.bbe.com/sport/0/football /284 97920/,

www.bbe.com}

2.2.5 Extracting the n-CS

Now we are in a position to describe our algorithm that identifies a CS in a
website. This algorithm is Algorithm [2]

Algorithm 2 Extract a n-CS from a website

Input: An initial Link that points to a webpage and the expected size n of the CS.
Output: A set of links to webpages that together form a n-CS.
If a n-CS cannot be formed, then they form the biggest m-CS with m < n.

begin
keyPage = load WebPage (initialLink);
reachableLinks = getLinks(keyPage);
processedLinks = (J;
connections = J;
bestCS =
foreach link in reachableLinks
webPage = loadWebPage(link);
existingLinks = getLinks(webPage) n reachableLinks;
processedLinks = processedLinks U {link};
connections = connections u {(link — ezistingLink) | existingLink € existingLinks};
CS = {ls € P(processedLinks) | link € ls AV, I' e ls . (I > U'),(I! > 1) € connections};
mazimalCS = cs € CS such that Ves’ € CS . |es| = |es/[;
if |mazimalCS| = n then return mazimalCS;
if |mazimalCS| > |bestCS| then bestCS = mazimalCS;
return bestCS;
end

The algorithm uses two trivial functions:

e loadWebPage(link), which loads and returns the webpage pointed by
the input link, and
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e getLinks(webpage), which returns the collection of (non-repeated) linksﬂ
in the input webpage (ignoring self-links).

Function sortLinks corresponds to Algorithm[I} Observe that the main loop
iteratively explores the links of the webpage pointed by the initial Link (i.e.,
the key page) until it founds a n-CS. Note also that it only loads those
webpages needed to find the n-CS, and it stops when the n-CS has been
found. We want to highlight the mathematical expression

CS = {ls € P(processedLinks) | link € ls A¥,I'els . (I >1),(I' > 1) €

connections}

where P(X) returns all possible partitions of set X.

This line is used to find the set of all CS that can be constructed with
the current link. The current link must be part of the CS (link € Is) to
ensure that we make progress (not repeating the same search of the previ-
ous iteration). Moreover, because the CS is constructed incrementally, the
statement

if |mazimalCS| = n then return mazimalCS

ensures that whenever a n-CS can be formed, it is returned.
Figure shows an IEEE webpage on the left, and 4 hyperlinks forming a
4-CS obtained from that IEEE webpage on the right.

2In our implementation, this function removes those links that point to other domains
because they are very unlikely to contain the same template. Here, we do not impose this
restriction to keep the algorithm general.
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Analysis Results

‘The following URLS very likely implement the same template:

hitp:lieeexplore.ieee. org/xpliaboutUs jsp.

e —— i losoorssece rghtboote o
. hupiiceexpi Jxpitocalerts_list
A study on template extraction YT A study on tey "Pecepereieee.orgipliocaierts listisp
S htpiiceexplor.ieee.orgxplisitemap.jsp
o

Figure 2.17: 4-CS in the IEEE website



Chapter 3

Template detection

3.1 Parameters

Once we have found a set of webpages linked by a menu of the website (the
CS), we need to decide what nodes in the DOM tree of the key page belong
to the template. Of course, those nodes that belong to the DOM trees of
all webpages in the CS should be considered part of the template. But the
question is: what should we do with those nodes that appear in only some
of the webpages? Probably, a node that appears in all webpages but one
belongs to the template. It is just that for some reason this webpage has
skipped this part of the template. What should be the general criterion?
To how many CS webpages should belong a node to mark it as part of the
template? What is the best CS size?

We have answered these questions with empirical evaluation. Given a
n-CS, we call ¢ to the threshold used to decide in how many webpages must
be a node to be considered part of the template. The process to obtain the
optimal n and ¢ values is explained in Section [5.2.2]

Here we present the formalization of our algorithm that is parametric
and can be used with any value for n and t. Given a concrete values for n
and ¢, we first obtain a n-CS with Algorithm [2] and then we use the ETDM
formalism to determine how many webpages contain a given node of the key
page. In particular, all those nodes that belong to an ETDM between the
key page and t webpages of the n-CS are considered part of the template.

3.2 Attributes

We need to enhance the nodes with new attributes that we will use in the
rest of the section to infer whether a node belong to a template. The new
node attributes are described in the following definition.

Definition 3.2.1 (node attributes) Every node n in a DOM tree T =
(N, E) contains the attributes specified in the DOM model [7] including:

33
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Tag: We refer to the tag of a DOM node by using tag(n) and it corresponds
to the DOM attribute nodeName.

Id: We refer to the id of a DOM node by using id(n) and it corresponds to
the DOM attribute id.

Classes: We refer to the set of classes assigned to a DOM node by using
classes(n) and it corresponds to the DOM attribute className.

Attributes: We refer to the set of attribute names defined in a DOM node
by using attributes(n) and it corresponds to the DOM attribute attributes
where we remove the attributes named class and id.

Child Index: We refer to the child index of a DOM node using childIndex(n)
and it is derived from the DOM attributes parentNode and childNodes.

With these node attributes, we can find out whether two nodes are equal.
This information is crucial to check the template membership of a node. If
a node is equal to a node in the key page, then we can relate both webpages
and start to infer the template. Our notion of equality cannot be defined
with an exact formula, because DOM trees belonging to different webpages
rarely share exactly the same nodes. Instead of that, we use a notion based
on probabilities. We use each attribute of the nodes to infer individuals
probabilities that we join in the last step to give a probability for two nodes
to be equal. When we join these individual probabilities, we can give different
weights to each of them. We chose to let this information as a parameter,
allowing us to test with empirical evaluation (described in Section {)) the
best values for each one. Apart form these parameters, we need another
ones to define the probability of two nodes when one of the attributes is
not present in both nodes, so we defined a parameter for missed attributes
for each individual probability. Our notion of equality is formalized in the
following definition.

Definition 3.2.2 (equality probability) The probability P— for two nodes
n1 and ng to be equal is calculated as follows.

0 if tag(ni) # tag(nz)
1 if tag(ni) = tag(n2) A id(n1) = id(n2)
wcxpc(nl,n%Pnc) +

P_(ni,n2) = v x Pl i) 4
Wep X Pch(n17n27pnch) +
wp X Pp(ni,m2) otherwise
where:

e P. is the probability to be equal according to the nodes classes. It is

defined as follows:

P,. if classes(ny) = & A classes(ng) = &
Pc(nh na, Pnc) = |classes(ny) [ classes(ns)|

[classes(ny) ] classes(ns)| otherwise
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e P, is the probability to be equal according to the nodes attributes. It is
defined as follows:

P,. if attributes(ny) = & A attributes(ng) =
P, (nl, naz, Pna) = lattributes(ny) () attributes(ng)|
lattributes(ny) | attributes(nz)|

otherwise

o P, is the probability to be equal according to the number of children.
It is defined as follows:

Poch if |children(ni)| = 0 A |children(ng)| = 0
Pep (nh n2, Pnch) = min(|children(ni)|,|children(nz)|)

maz(|children(ny)|,|children(n2)|) otherwise

e P, is the probability to be equal according to the nodes position. It is
defined as follows:

Given two trees T = (N,E) and T" = (N',E'), four nodes p € T,
p eT', neT such that (p — n) € E, n’' € T' such that (p - n') e E,
c and ¢ the number of children of p and p' respectively, i and i the
child positions starting from the left of n and n' respectively, j and j'
the child position starting from the right of n and n' respectively, and
cx = min(c, ). P, is the probability of n to be n’ (and n' to be n)
according to the nodes position and is calculated as follows:

—Ifd =cthen1 - (i —i'] /cx)
— Ifd >cthen 1 - (max(0,i 1,5 —j') /cx)
— Ifd <cthen 1 - (max(0,i —i,j —j) /cx)

P, shows how to assign a position probability to each pair of nodes of different
trees. Roughly speaking, the probability is higher as more similar are both
positions in their trees. Once their positions are less similar, their probability
descends as well. We show two examples showing this idea.

Example 3.2.3 Figure[3.1] shows that the fourth node starting from the left
in the tree A has a probability of 100% of being the fourth node starting from
the left in the tree B. In addition, it is the first node starting from the right
in the tree A, so the first node starting from the right in the tree B will also
have a 100% probability.

Example 3.2.4 Figure[3.4 shows that the fourth node starting from the left
in the tree A has a probability of 100% of being the fourth node starting from
the left in the tree B. In addition, it is the second node starting from the right
in the tree A, so the second mode starting from the right in the tree B will
also have a 100% probability.
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Figure 3.1: Position probability example

o 0O
0000 OOO0
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Figure 3.2: Position probability example

Example 3.2.5 Consider the two DOM trees in Figure [3.3,

The gray node of the DOM tree on the left has the following attributes:
1. ClassName = "Author”

2. Attributes = {float:left, color: black, background-color:silver}

3. Children = 2

4. Position = 11

The gray node of the DOM tree on the right has the following attributes:
1. ClassName = "Author"

2. Attributes = {float:left, color: gray, background-color:silver}

3. Children = 3

4. Position = 9

We assume we obtained the following values with empirical evaluation: w, =
0.4, wqg = 0.1, wep, = 0.1 and w, = 0.4. Now, we can calculate the probability
for the two nodes to be equal applying the definition [3.2.5:
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The tag of both nodes is DIV but the id is not present, so the probability
cannot be 0 or 1 and we have to infer it from the attributes.
1. P. = 1 because the ClassName of both nodes is equal.
2. P, = 0.66 because they share two of their three attributes.

3. P.p, = 0.66 because the first node only has two children and the other
has three.

4. B, = 0.95 because of their position.

If we sum all the partial probabilities we get: P—_(ny,ng2) = we X P. + wg X
Py+wep X Pep+wp x Py, = 0.4x140.1x0.66+0.1x0.66+0.4x0.95 = 0.912

In consequence, their probability of being the same node is 91.20%. If
there is not another pair of nodes (ny,ng) with higher probability, they will
be considered the same node.

BODY BODY

OO OO OO OO

Figure 3.3: DOM trees

3.3 Exact top-down mapping

Before introducing our algorithm to extract the template, we need to define
a mapping between two sets of nodes. This mapping is essential to relate
the nodes of two DOM trees because it allows us to discard those parts that
are not equal. The mapping that we use here is an exact top-down mapping
according to Definition and it is mainly based on the equality proba-
bility of Definition [3:2.2] The following definition describes and formalizes
our mapping.
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Definition 3.3.1 (exact top-down mapping based on equality prob-
ability) The exact top-down mapping between two sets of nodes N1 and No
according to the equality probability is defined as follows.
mapping(N1, N2) = (n1,n2) U
mapping(before(ny, N1), before(ng, N2) |
mapping(after(ni, N1), after(na, Na))
where:

e ny € Ni,ng € Ny such that fﬂ(n’l,né) € Ny x Ny . P_(nf,nb) >
P_(ny1,n2) A P_(n1,n2) > P, being Py an arbitrary constant

e before(n,N) = {n’ € N | childIndex(n') < childIndex(n)}
e after(n,N) = {n’ € N | childIndex(n’) > childIndex(n)}

The key idea in the mapping calculation is that given two sets of nodes we
select the best matching nodes among all the possible combinations. After
this step, we divide the rest of nodes into two groups (nodes before and after
the selected nodes), then, we continue calculating the mapping between these
sets separately. The constant P, is a threshold used to decide whether two
nodes ny and ny are the same based on a given probability P—(ni,ns).

3.4 Extraction algorithm

We are now in a position to describe our algorithm. After we have found a
set of webpages linked by the menu of the site (the complete subdigraph),
we identify an ETDM between the key page and all webpages in the set.
For achieve this, we use Algorithm [3| that is mainly based on the function
ETDM. This function computes the biggest ETDM between a tree and a set
of trees. It iterates between the children of the root of the given tree T'. For
each child nq, it first looks for nodes that match n; among the set of trees P.
This matching is checked with an exact top-down mapping based on equality
probability, as defined in Definition [3:3.1] With the results of this search a
new set of trees P’ is built. This set includes the subtrees of the matching
nodes. Note that, at this point, some of the trees that form P can be skipped.
With the set P’ and the subtree of nq, a recursive call is made with the ETDM
of the subtrees. This ETDM is joined to the ETDM computed for the other
children of the root of T'. The function includes a third parameter, a number
t that represents the minimum number of coincidences (i.e., threshold) that
have to share a node in tree T with nodes in set P to include it in the ETDM.
The nodes that do not fulfill this condition will be discarded by means of
the first condition of the function.
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Algorithm 3 Extract a template from a set of webpages

Input: A key page px = (N1, E1) and a set of n webpages P.
Output: A template for pg with respect to P.

begin
template = py;
foreach (p in P)
if root(py) = root(p)
template = ETDM (template, p);
return template;
end

function ETDM(tree T, = (Nl, El), tree To = (NQ,EQ))

r1 = root(T1);

ro = root(12);

nodes = {r1};

edges = J;

foreach n1 € N1, ng € Na . n1 = na, (r1,n1) € E1 and (r2,n2) € Es
(nodes_st,edges _st) = ETDM (subtree(n), subtree(nz));
nodes = nodes U nodes_st;
edges = edges U edges st U {(r1,n1)};

return (nodes, edges);
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Chapter 4

Implementation

4.1 Implementation

The technique presented, including all algorithms described, has been im-
plemented as a Firefox’s toolbar. We selected Firefox because it is one of
the most powerful and widely used browsers, and it is free and open source.
Firefox toolbars are implemented using XUL, an XML based language used
to implement the interface; and Javascript, which implements the behavior
and actions of the toolbar. In total, it contains 2577 LOC.

Firefox extensions add more functionality to the Firefox browser. Firefox
has several kinds of extensions. Ours is an overlay extension, which is a
traditional extension that uses a XUL overlay. Overlay extensions always
use:

e XUL overlays to specify the interface.

e APIs available to privileged code such as tabbrowser and Javascript
modules to interact with the application and content.

Figure shows our Firefox plugin architecture. A user browsing a webpage
uses the toolbar to get the web template. The toolbar obtains the web
template using the API, that extracts the DOM nodes that form the template
from the webpage represented as a DOM tree.

The source code of the plugin is public (but the use of this code needs
permission from the authors). It contains the following files:

e chrome.manifest: Identifies the plugin (within Firefox) and specifies its
internal organization.

e install.rdf: Contains installation information (version, developers, mim-
ium requirements...)

e ff-overlay.xul: The interface specified in XUL files.

41



42 CHAPTER 4. IMPLEMENTATION

Browser

DOM

N User

Figure 4.1: Firefox plugin architecture

The core algorithm of the technique is implemented with Javascript. It
is formed by the following files:

e TemplateExtractor.js:
e DomainGraph.js:

e DOMNodesMap.js:

e WebNode.js:

e HierarchyLinks.js:

The main options of the toolbar are extract web template and toggle view.
Ezxtract web template gets the template from the current webpage loaded by
the active window in the browser. Once the template is obtained and the
browser shows only the template nodes, Toggle view is used to switch between
the template and the original webpage.

Figure [£.2] shows the main modules from the core algorithm. Once the
template detection process is started, the algorithm starts computing a CS.
Functions load current page, load page and load next page load the pages
the algorithm needs to analyze in order to build the CS. Function process
node basically loads and processes the links in a webpage. The load graph
function calls the obtain C'G function which computes the CS and then, it
calls the filter template function which uses the CS to compute the ETDM.
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Figure 4.2: Firefox plugin architecture

In this tool, the user can browse on the Internet as usual. Then, when
she wants to extract the template of a webpage, she only needs to press the
"Extract Template" button and the tool automatically loads the appropriate
linked webpages to form a CS, analyzes them, and extracts the template.
The template is then displayed in the browser as any other webpage. The
tool also has a button to toggle the view between the full webpage and the
template.

4.2 The firefox toolbar

Archivo Editar Wer Historial Marcadores Herramientas Ayuda

| < Water Facts: Water HT]

- » [ @ water.org/water-crisis/water-facts/water/

Extract web template Toggle view Check Benchmarks

Figure 4.3: Firefox toolbar

The Firefox plugin toolbar has three buttons:

o FExtract web template is used to extract the template from the webpage
the user is browsing in that moment. The plugin reads the webpage
links, then it orders the links and loads the appropriate webpages to
build a CS. Finally, it analyzes the CS and extracts the template.
Note that the plugin only selects the webpages in the domainEl from
which it extracts the template.

'In our implementation, we restrict our search to webpages in the same domain as the
key page. This is not necessary, but significantly increases the performance with a small
(rarely appreciable) cost in the precision.
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e Toggle view changes the browser view when the user has already ex-
tracted the template. It is possible to change the view between the
template view and the opposite to the template.

o Check benchmarks executes a prepared benchmark on some webpages
previously prepared for that process. The plugin needs to be configured
with a list of webpages and the source location where it can find them.
However, these websites need to be prepared by marking the nodes that
do not belong to the template. When executing the benchmarks, the
plugin extracts the webpages’ template and compares that template
with the template marked by the user. That is the way the plugin can
find out the precision, recall and F1 measures.

4.3 Examples

The following examples show the result of applying the plugin to extract the
template on some websites.

Figure 4.4: DSIC website: Before and after extracting the template

Figure shows the template detection result on the www.dsic.upv.es
main webpage. There is a header at the top of the page and two columns
below it. There is also a footer at the bottom of the webpage. The template
detection process keeps as template the header and the left column which
contains the main menu. It also keeps the footer. The right column dis-
appears because it contains the main content of the webpage and does not
belong to the template.

Figure [£.5] shows the template detection result on the www.eclipse.org
main webpage. At the top of the webpage we can find a header which
includes an advertisement, the main menu and a secondary menu. The main
content block is below the header, and there is also a footer at the bottom
of the page. The plugin extracts the template from the webpage and keeps
as template the header except the advertisement. It also keeps the footer.
The main content block disappears because it is not part of the template.

Figure shows the template detection result on the water.org/water-
crisis/water-facts /water/ webpage. There is a header block at the top of
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Figure 4.6: Water.org website: Before and after extracting the template

the webpage. It contains a logo, a main menu and two buttons. There
are three columns below the header. The left column contains a secondary
menu, the central column contains the main content and the right column
contains other secondary blocks. We can also find a footer at the bottom of
the webpage. The template detection process keeps as template the entire
header, the left and the right columns, and finally the footer. It does not
mark as template the central column, which contains the main content of
the webpage.
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Chapter 5

Empirical evaluation

5.1 Experiments

Several experiments were conducted with real, online webpages to provide a
measure of the average performance regarding recall, precision and the F1
measure (see, e.g., [10] for a discussion on these metrics). Initially, we wanted
to use a public standard collection of benchmarks, but we did not find any
public dataset for template detection. In particular, we could not use the
standard CleanEval suite [3] of content extraction benchmarks, because it
contains a gold standard prepared for content extraction (each part of the
webpages is labelled as main-content or non-content), but it is not prepared
for template detection. Then, we tried to use the same benchmark set as
the authors of other template detection papers. However, due to privacy
restrictions, copyright, or unavailability[] of the benchmarks we could not
use a previous dataset. Therefore, we decided to produce a new suite of
benchmarks. We have produced a new publicly accessible dataset, with an
automatizable gold standard. It is one of the main contributions of our work.
This benchmark suite is explained in detail in Chapter [6]

The dataset is composed of a collection of web domains with different
layouts and page structures. This allows us to study the performance of
the techniques in different contexts (e.g., company websites, news articles,
forums, etc.). To measure our technique, we randomly selected an evaluation
subset.

Table summarizes the results of the performed experiments. The first
column contains the URLs of the evaluated website domains (the URL of
the key page). For each benchmark, column DOM nodes shows the number
of nodes of the key page’s DOM tree; column Template shows the number of
nodes of the gold standard template; column Retrieved shows the number of
nodes that were identified by the tool as the template; column Recall shows

'Some authors answered that their benchmarks were not stored for future use, or that
they did not save the gold standard.
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the number of correctly retrieved nodes divided by the number of nodes in the
gold standard; column Precision shows the number of correctly retrieved
nodes divided by the number of retrieved nodes; finally, column F1 shows
the F1 metric that is computed as (2 P+ R)/(P + R) being P the precision

and R the recall.

CHAPTER 5. EMPIRICAL EVALUATION

DOM Template Total Template Recall | Precision F1
Benchmark nodes nodes retreived | retreived % h h
water.org 948 711 665 665 | 93,53 % 100 % | 96,66 %
www. jdi.org.za 626 305 305 305 100 % 100 % 100 %
stackoverflow.com 6450 447 459 447 100 % 97,39 % | 98,68 %
www.eclipse.org 256 156 160 152 | 97,44 % 95,00 % | 96,20 %
www.history.com 1246 669 579 576 | 86,10 % 99,48 % | 92,31 %
www.landcoalition.org 1247 393 433 387 | 98,47 % 89,38 % | 93,70 %
es.fifa.com 1324 276 239 234 | 84,78 % 97,91 % | 90,87 %
cordis.europa.eu/fp7/ict/fire/ 959 335 327 326 | 97,01 % 99,39 % | 98,19 %
clotheshor.se 459 231 225 225 | 97,40 % 100 % | 98,68 %
www . emmaclothes. com 1080 374 360 360 | 96,26 % 100 % | 98,09 %
www. cleanclothes. org 1335 266 286 264 | 99,25 % 92,31 % | 95,65 %
www.mediamarkt . es 805 337 329 329 | 97,63 % 100 % | 98,80 %
www . ikea.com/gb/en/ 1545 407 564 406 | 99,75 % 71,99 % | 83,63 %
www . swimmingpool . com 607 499 349 349 | 69,94 % 100 % | 82,31 %
www.skipallars.cat/en/ 1466 842 828 828 | 98,34 % 100 % | 99,16 %
www.tennis.com 1300 624 542 542 | 86,86 % 100 % | 92,97 %
www. tennischannel.com 661 303 227 227 | 74,92 % 100 % | 85,66 %
www. turfparadise. com 1057 726 815 724 | 99,72 % 88,83 % | 93,96 %
riotimesonline.com 2063 879 861 861 | 97,95 % 100 % | 98,97 %
www.beaches. com 1928 1306 1171 1171 | 89,66 % 100 % | 94,55 %
users.dsic.upv.es/”jsilva/ 197 163 163 163 | 100 % 100 % 100 %
/wwv2013/index2.html

users.dsic.upv.es/"dinsa/en/ 241 T4 89 T4 100 % 83,15 % | 90,80 %
www. engadget . com 1818 768 445 439 | 57,16 % 98,65 % | 72,38 %
www.bbc.co.uk/news/ 2991 364 353 353 | 96,98 % 100 % | 98,47 %
www.vidaextra.com 2331 1137 992 992 | 87,25 % 100 % | 93,19 %
www.0x.ac.uk/staff/ 948 525 533 522 | 99,43 % 97,94 % | 98,68 %
clinicaltrials.gov 543 389 392 378 | 97,17 % 96,43 % | 96,80 %
en.citizendium.org 1083 414 447 414 100 % 92,62 % | 96,17 %
www.filmaffinity.com/es/ 1333 351 355 351 100 % 98,87 % | 99,43 %
edition.cnn.com 3934 192 174 174 | 90,63 % 100 % | 95,08 %
www. lashorasperdidas. com 1822 553 536 536 | 96,93 % 100 % | 98,44 %
labakeryshop. com 1368 218 169 159 | 72,94 % 94,08 % | 82,17 %
www.felicity.co.uk 300 232 232 232 100 % 100 % 100 %
www . thelawyer. com 3349 1293 1443 1213 | 93,81 % 84,06 % | 88,67 %
www.us-nails. com 249 171 227 171 100 % 75,33 % | 85,93 %
www.informatik.uni-trier.de 3085 64 56 56 | 87,50 % 100 % | 93,33 %
www.wayfair.co.uk 2671 660 665 640 | 96,97 % 97,711 % | 97,34 %
catalog.atsfurniture.com 340 301 304 301 100 % 99,01 % | 99,50 %
www. glassesusa. com 1794 1506 1498 1498 | 99,47 % 100 % | 99,73 %
www .mysmokingshop. co.uk 575 407 421 407 100 % 96,67 % | 98,31 %
Average [ 18] 47 480 | 461 ] 9353 % | 96,15 % | 9434 % |

Table 5.1:

Experiments reveal a very high average precision and recall: more than
93% in both cases. This is the highest recall and precision that we have seen
in a tool for template detection. We have observed that other techniques
obtain good values of F1 in certain webpages, but their average precision,

Results of the experimental evaluation
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recall and F'1 are significantly lower than ours. For instance, in [2] the average
precision is always lower than 91% in template removal. In [21], the authors
get an F1 higher than 95% in some cases, but their average F1 is significantly
lower than ours. Other techniques related to content extraction like [10] and
[22] get F'1 values between 80% and 94% in certain cases

Observe that some benchmarks produced a recall of about 70%. These
benchmarks are particularly difficult ones that produce the same problem
in previous techniques such as [2I]. The problem in these benchmarks is
that some webpages pointed by the key page’s links do not use exactly the
same template than the key page (i.e., some webpages feature the menu,
or the necessary links in some form, but they do not implement the whole
template). Therefore, the intersection with these webpages produces one
with less items, that is, a webpage with a lower recall. The interested reader
is referred to the code of these webpages and their gold standard that are
publicly available in the benchmarks repository.

5.2 Optimizations and tunning

In our theoretical formalization we presented our technique in an abstract
way. Some definitions such as hyperlink distance, DOM distance, and rele-
vance, reveal features of a website that must be considered when extracting
templates. Other features, however, have been left as parameters of our al-
gorithms. For instance, Algorithm [2| can compute a CS of any specified size;
and the voting system of Algorithm [3] needs to know how many votes are
needed to consider a DOM node as part of the template. In this section we
discuss how to know the impact of these parameters, and we give concrete
values to our algorithms based on empirical evaluation.

5.2.1 Optimization experiments

In order to determine the best parameters, we created a set of 20 training
benchmarks. Then, we prepared a set of experiments that helped us to
determine all the variables we wanted to test.

At the end we did 478720 experiments repeating the set of 20 training
benchmarks with different parameter combinations. FEach experiment took
4.5 seconds on average. Therefore, the execution time for all the experiments
was about 600 hours.

The execution of all the experiments produced the following average val-
ues:

1. Average precission = 63,39
2. Average recall = 94.91

3. Average F1 = 67,15
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But, the optimal combination of values obtained is:
1. Optimal precission = 93,53

2. Optimal recall = 96,15

3. Optimal F1 = 94,34

The following sections present the optimal values found for each param-
eter.

5.2.2 Determining n and t parameters

Algorithm [2] computes a n-CS in a website. As we previously explained, there
are several combinations of webpages that form a CS. One could think that
the more links the key page has, the better; so we could even think in calcu-
lating the maximal CS. Nevertheless, this is not a good idea. Firstly, because
computing the maximal CS has an exponential cost. And secondly, because
experiments reveal that increasing the size of the CS does not necessarily
imply a better precision or recall.

As we introduced in section given a n-CS, we call ¢ to the threshold
used to decide in how many webpages must be a node to be considered
part of the template. We evaluated a collection of webpages with different
sizes for the CS, from size 1 to size 8, and with all possible values of ¢t. We
determined that the best value for n is 8 and the best value for t is 4. But we
have considered that the best values are not the optimal values because the
time needed to compute an 8-CS with ¢ = 4 is excessively high. Therefore,
we determined that the optimal value for n is 3 and the optimal value for ¢
is 2. There are better combinations for n and t, but they increase the time
to compute the ETDM. In certain cases, increasing the n parameter in one
unit almost doubles the time needed to compute the ETDM. Therefore we
consider n = 3 and t = 2 optimal values because the computing time with
these values is reasonably acceptable. As a result, all our experiments have
been done using these values for n and .

t\n 1 2 2 4 5 6 7 8
1 75,90 % 89,22 % 88,97 % 86,82 % 86,84 % 86,28 % 86,08 % 86,06%
2 88,16 % 92,35 % 92,11 % 92,08 % 93,82 % 93,31 % 93,15%
3 88,26 % 92,81 % 92,81 % 92,54 % 92,24 % 94,11%
4 87,04 % 92,84 % 92,15 % 92,52 % 94,63%
5 86,60 % 91,87 % 92,28 % 92,68%
6 86,46 % 90,86 % 91,73%
7 83,58 % 90,49%
8 83,52%
BEST 75,90% 89,22% 92,35% 92,81% 92,84% 93,82% 93,31% 94,63%

Table 5.2: Determining values n and ¢

Figure shows the F1 values obtained with different combinations of
values for n and ¢. We have chosen n = 3 and ¢t = 2 as the best combination
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considering F1 and computation time; but there are several better combi-
nations like n = 4 and t = 3, n = 5 and t = 4, etc. if we only consider
F1. Our choice produces a value for F1 very similar to other combinations
but a significantly better computation time. We observed that increasing
n and t makes the time to compute the ETDM sensibly higher. Therefore,
we repeated the experiments to measure the time needed to compute all the
possible combinations.

1 2 3 1 5 6 7 8
3s. | 6,ls. | 10,7s. | 13,ls. | 1501 s. | 21,17s. | 23,08s. | 22,65 s.
49s. | 104s. | 12,7s. | 1544s. | 20,76 s. 224s. | 22,65s.
691s. | 12,7s. | 1545s. | 20,68s. | 22,42s. | 22,71 s.
88s. | 1541s. | 20,72s. | 22,51s. | 22,77s.
10,62 s. 20,7s. | 22,39s. | 22,76 s.
13,34s. | 2249 s. 228 s.
15,03 s. | 22,74 s.
15,97 s.

t

=}

N U WN

Table 5.3: Determining values n and ¢

Figure [5.3] presents the average time needed to compute the ETDM in
seconds for different n and t values. Our selected combination (n = 3 and
t = 2) has a computation time of 10.4 seconds, and the best combination
(n = 8 and t = 4) has a computation time of 22.77 seconds. However, the
best combination only gets an F1 value 2.3% higher than our selected com-
bination. This is why we choose n = 3 and ¢ = 2 in our implementation: it
is almost as good as the best combination, but it needs less than half of the
computation time.

5.2.3 Making precise the comparison of DOM nodes

Algorithm [3] needs to compare DOM nodes to define a ETDM. As we in-
troduced in section deciding whether two DOM nodes of two different
webpages are the same node is an important problem. From the implemen-
tation point of view, it is a difficult problem because some parts of the DOM
tree can be missing, or changed. There can exist new DOM nodes that
change the relative position between the original nodes, etc.

In section [3.2) we explained that in order to compare two DOM nodes we
consider the following information:

e The HTML tag of the node
Node identifier

Class name of the node

Position of the node in the DOM tree
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e Attributes of the node
e Children of the node in the DOM tree

We also assigned a weighting system based on the following DOM node
components: Classes, Position, Attributes and Children. At first, the weight-
ing was 40% for classes, 40% for position, 10% for attributes and 10% for
children. We experimented changing the weights and finally we found that
the best results happen when the weights of the position and attributes were
20%. The weight of the children is only 10% relevant. As a result, we ob-
served that the classes is the most important aspect when comparing two
nodes, 50%. This optimization increased the F1 value in a 2%.

The node comparison added another need to the implementation. When
comparing the classes of two nodes, we found the need to determine what
happened when the nodes had no classes. When the classes attribute was
not defined, the node could not be reliably compared with other nodes with-
out classes attribute. We needed to add a penalization when comparing two
nodes with no classes, because we cannot be sure if two nodes without classes
are the same or not. This penalization is defined as a constant called not-
ClassesProbability. Our experiments demonstrate that a value higher than
0,75 and lower than 1 produced the best results. Likewise, we had to de-
fine a similar constant to determine what happened when two nodes had
no attributes, which is called notAttributesProbability, and another one to
determine when two nodes had no children, called notChildrenProbability.
Experiments revealed that the best values for these constants are 0,25 for
notAttributesProbability and 1 for notChildrenProbability.

We also defined a boolean variable called activatePosition. When this
variable is true, it checks the order of the nodes when they match with
other nodes, e.g., if the algorithm resolves that two nodes A and B are the
same, another node prior to A cannot match to a node after B. This is
used to guarantee the order of the nodes when comparing nodes to find the
template, if the order of the nodes is not correct, we will be unable to find
the correct template. Experiments revealed that this optimization provides
an improvement about 1% to the F1 value.

The addition of a constant called similarity Threshold has been an impor-
tant optimization. This constant establishes the nodes mapping threshold
value that was introduced in Definition ?7. Two nodes cannot be the same
if their calculated probability is lower than the probability threshold. If
this constant is not used, the mapping between two nodes will be always
produced, even if their are not probably the same node because their prob-
ability is low. Therefore, this constant prevents the mapping of two nodes
with low probability. Our experiments reveal that with the introduction of
this constant, the F1 value has been improved about a 2,5%.
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5.2.4 Domain boundaries

Another important optimization is related to the domain boundaries of the
websites analyzed. It is possible that several webpages of different domains
are mutually linked. Sometimes this is even usual between the main web-
pages of different companies in an alliance. They all point to the others,
e.g., with a set of logos. Nevertheless, the templates of the companies are
often different. In fact, in our experiments, we did not find a shared tem-
plate between different domains. Therefore, for efficiency reasons, external
domains are omitted when computing the CS. In our implementation, the
CS represents a set of intra-domain linked webpages (usually by a common
menu).

5.2.5 Implementation and experiments download

Our implementation and all the experimentation is public. All the infor-
mation related to the experiments, the source code of the benchmarks, the
source code of the tool and other material can be found at:

http://www.dsic.upv.es/~ jsilva/retrieval/templates/


http://www.dsic.upv.es/~jsilva/retrieval/templates/
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Chapter 6

Benchmark suite

6.1 Introduction

In the last decade, there have been important advances that produced sev-
eral techniques for both template detection and content extraction. Hybrid
methods that exploit the strong points of several techniques have been de-
fined too. In order to test, compare and tune these techniques, researchers
need:

e collections of benchmarks that are heterogeneous (to ensure generality
of the techniques) and

e a gold standard (to ensure the same evaluation criteria).

A benchmark suite is essential to measure the performance of these tech-
niques, and to compare them with previous approaches. Benchmark suites
are used in the testing phase and in the evaluation phase. The testing phase
allows developers to optimize the techniques by adjusting parameters. Once
the technique has been tuned, the evaluation phase allows us to know its per-
formance with objective measures. It is obvious that the set of benchmarks
used in the testing phase cannot be used in the evaluation phase, thus, they
need disjoint sets of webpages.

This chapter presents a benchmark suite together with a gold standard
that can be used for template detection and for content extraction. All
benchmarks have been labelled so that every HT'ML element of the webpages
indicates whether it should be classified as main content or not, and whether
it should be classified as template or not. The suite also incorporates scripts
to automatize the benchmarking process.

This suite has been developed as the result of a research project. We
developed a new technique for content extraction [12] that was later adapted
for template detection [I]. In the evaluation phase, our initial intention was
to use a public benchmark suite. We first tried to use the CleanEval [3] suite
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of content extraction benchmarks, because it has been widely used in the
literature. Unfortunately, it is not prepared for template detection. Then,
we contacted the authors of other techniques that had already evaluated
their techniques. However, we could not use these benchmarks due to pri-
vacy (they belong to a company or project whose results were not shared),
copyright (they were not publicly available) or unavailability (they had been
lost). Finally, we decided to build or own benchmark suite and make it free
and publicly available.

6.2 The TECO Benchmark Suite

TECO (TEmplate detection and COntent extraction benchmarks suite) was
created as a benchmark suite specifically designed for template detection
and content extraction. It can be used for testing and evaluation of these
techniques, and it is formed from 40 real websites downloaded from Internet.
We selected heterogenous websites such as blogs, companies, forums, per-
sonal websites, sports websites, newspapers, etc. Some of the websites are
well known, like the BBC website or the FIFA website, and others are less
known like personal blogs or small companies websites. The downloading of
the webpages was done in some cases using the OS X software SiteSucker,
and in other cases using the Linux command wget.

It is important to know how the websites were downloaded and stored,
so that other researchers can increase the suite if it is needed. The follow-
ing command downloads a website from the Linux terminal using the wget
command:
$ wget -convert-links -no-clobber -random-wait -r 3 -p -E -e
robots=off -U mozilla http://www.example.org
The meaning of the flags used is:

e -convert-links: Converts links so they can work locally.
e -no-clobber: Do not overwrite any existing file.

e -random-wait: Random waits between downloads.

e -1 3: Recursive downloading up to 3 levels of links.

e -p: Downloads everything.

e -e robots=off: Act as not being a robot.

e -E: Get the right file extension.

e -U mozilla: Identify as a Mozilla browser.

Each benchmark is composed of:
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e A principal webpage, called key page. It is the target webpage from
which the techniques should extract the main content or the template—
note that it is not necessarily the main webpage of the website (e.g.,
index.html)—.

e A set of webpages that belong to the same website as the key page.
This set contains all those webpages that are linked by the key page,
and also the webpages linked by them.

6.2.1 Producing the gold standard

The suite comes with a gold standard that can be used as a reference to
compare different techniques. The gold standard specifies for each key page
what parts form the template. This is indicated in the own webpage by using
HTML classes that indicate what elements are classified as notTemplate. It
has been produced manually by careful inspection of the websites and mixing
the opinion of several people.

In particular, once all the websites were downloaded (the key page and
two levels of linked webpages in the same domain), four different engineers
did the following independently:

e They manually explored the key page and the webpages accessible from
it to decide what part of the webpage is the template and what part
is the main content.

e They printed the template and the main content of the webpage.

Then, the four engineers met and performed again these two actions
but now all together sharing their individual opinions. Using the results
of this agreement, each website was prepared for both, template detection
and content extraction. On the one hand, all elements from the key page not
belonging to the template were included in a HTML class called notTemplate.
This way, a template detection tool can automatically compare its output
with the nodes not belonging to the notTemplate class. On the other hand,
all elements belonging to the main content were included in an HTML class
called mainContent. Therefore, a content extraction tool can easily compare
its output with the nodes belonging to that class.

6.2.2 Benchmark details

A classification of the benchmarks is important and useful depending on the
application and technique that is being fed with them. We provide different
classifications according to the purpose and properties of the benchmarks.
First, all benchmarks have been classified into five groups:

Companies / Shops, Forums / Social, Personal websites / Blogs,
Media / Communication, Institutions / Associations.
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Table shows this classification together with the URLs from which we
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extracted the benchmarks.

Website type

Original URL of the webpage

Companies / Shops

clotheshor.se
www.emmaclothes.com
www.mediamarkt.es
www.ikea.com/gb/en.html
www.swimmingpool.com
www.skipallars.cat/en.html
www.turfparadise.com
www.beaches.com
www.felicity.co.uk
www.us-nails.com
www.wayfair.co.uk
catalog.atsfurniture.com
www.glassesusa.com
www.mysmokingshop.co.uk

Forums / Social

stackoverflow.com
www.filmaffinity.com/es/main.html

Personal / Blogs

users.dsic.upv.es/~jsilva/wwv2013/index2.html
users.dsic.upv.es/~dinsa/en/index.html
labakeryshop.com

Media / Communication

www.history.com
www.tennis.com
www.tennischannel.com
riotimesonline.com
www.engadget.com
www.bbc.co.uk/news
www.vidaextra.com
en.citizendium.org
edition.cnn.com
www.lashorasperdidas.com
www.thelawyer.com

Institutions / Associations

water.org

www.jdi.org.za

www.eclipse.org

www.landcoalition.org

es.fifa.com

cordis.europa.eu/fp7/ict/fire.html
www.cleanclothes.org
www.ox.ac.uk/staff/index.html
clinicaltrials.gov/ct2/search/index/index.html

www.informatik.uni-trier.de/~ley/pers/hd/s/Silva_ Josep.html

Table 6.1: Sources of the benchmarks

Table[6.2]shows some properties of the benchmarks. Here, column Nodes
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indicates the total number of DOM nodes in the key page, column Tem.
Nodes shows the number of DOM nodes that belong to the template and
column M.C. Nodes refers to the number of DOM nodes that belong to
the main content.

Id | Benchmark Nodes | Tem. | M.C.

Nodes | Nodes
1 | water.org/index.html 948 711 237
2 | www.jdi.org.za/index.html 626 305 225
3 | stackoverflow.com/index.html 6450 447 6003
4 | www.eclipse.org/index.html 256 156 100
5 | www.history.com/index.html 1246 669 260
6 | www.landcoalition.org/index.html 1247 393 588
7 | es.fifa.com/index.html 1324 276 737
8 | cordis.europa.eu/fp7/ict/fire.html 959 335 179
9 | clotheshor.se/index.html 459 231 228
10 | www.emmaclothes.com /index.html 1080 374 706
11 | www.cleanclothes.org/index.html 1335 266 1069
12 | www.mediamarkt.es/index.html 805 337 40
13 | www.ikea.com/gb/en.html 1545 407 1138
14 | www.swimmingpool.com/index.html 607 499 176
15 | www.skipallars.cat/en.html 1466 842 573
16 | www.tennis.com/index.html 1300 463 676
17 | www.tennischannel.com /index.html 661 303 148
18 | www.turfparadise.com/index.html 1057 726 322
19 | riotimesonline.com/index.html 2063 879 969
20 | www.beaches.com/index.html 1928 1306 149
21 | users.dsic.upv.es/~jsilva/wwv2013/index2.html 197 163 34
22 | users.dsic.upv.es/~dinsa/en/index.html 241 74 167
23 | www.engadget.com/index.html 1818 768 1050
24 | www.bbc.co.uk/news/index.html 2991 364 1360
25 | www.vidaextra.com/index.html 2331 1137 1194
26 | www.ox.ac.uk/staff/index.html 948 525 410
27 | clinicaltrials.gov/ct2/search /index/index.html 543 389 120
28 | en.citizendium.org/index.html 1083 414 667
29 | www.filmaffinity.com/es/main.html 1333 351 976
30 | edition.cnn.com/index.html 3934 192 3742
31 | www.lashorasperdidas.com/index.html 1822 553 722
32 | labakeryshop.com/index.html 1368 218 962
33 | www.felicity.co.uk/index.html 300 232 68
34 | www.thelawyer.com/index.html 3349 1293 1580
35 | www.us-nails.com 250 184 35
36 | www.informatik.uni-trier.de 3085 64 3021
37 | www.wayfair.co.uk/index.html 1950 702 437
38 | catalog.atsfurniture.com/index.html 340 301 39
39 | www.glassesusa.com /index.html 1952 1708 244
40 | www.mysmokingshop.co.uk/index2.html 575 407 168

Table 6.2: Benchmark properties

The benchmarks were also classified according to the number of webpages
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that implement the template. Table shows this information. Here, the
identifier of the benchmarks (Id) comes from Table[6.2] For each benchmark,
column VL indicates the number of hyperlinks in the main menu, column
TT shows the number of webpages accessible from the main menu that im-
plement entirely the template, column PT indicates the number of webpages
accessible from the main menu that implement partially the template, col-
umn DT shows the number of pages accessible from the main menu that
do not implement the template at all, and finally, column Notes explains,
when applicable, why not all webpages implement the template.
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Id | VL | TT | PT | DT | Notes (peculiarities)

1 9 0 9 0 | All pages add a block in the footer that does not belong to the key
page.

2 10 10 0 0

3 4 4 0 0

4 8 8 0 0

5 12 5 6 1 | The website uses two different footers (hence, two templates). There-
fore, some pages only implement partially the template of the key
page.

6 26 7 19 0 | All pages share the same header and footer but there are pages with
a different layout.

7 8 0 8 0 | Some pages use two columns while other use three. All of them are
different to the key page.

8 24 5 19 0 | Some pages use two columns while other use three. All of them are
different to the key page.

9 6 6 0 0

10 6 6 0 0

11 6 6 0 0

12 16 16 0 0

13 10 0 10 0 | The submenu appears inside the main content.

14 16 16 0 0 | The main content of the key page uses a layout that is different to the
other pages.

15 42 42 0 0

16 13 13 0 0

17 29 0 29 0 | All pages use more blocks than the key page. For instance, advertise-
ment blocks.

18 74 74 0 0

19 23 23 0 0

20 7 77 0 0

21 12 12 0 0

22 5 5 0 0

23 65 65 0 0

24 5 0 5 0 | There are several different templates (but they are very similar).

25 7 7 0 0

26 7 7 0 0 | All pages share the same template. There is a breadcrumb inside the
main content.

27 36 36 0 0

28 32 32 0 0

29 32 32 0 0

30 13 13 0 0 | All pages share the same template, but the header is a bit different
between the key page and the other pages.

31 11 11 0 0 | All pages share the same template, but the header is a bit different
between the key page and the other pages.

32 14 4 0 0 | All pages share the same template. There is a big amount of
javascript.

33 6 6 0 0

34 69 69 0 0

35 10 10 0 0

36 6 5 0 1 | One page linked from the main menu uses a different template.

37 | 377 | 377 0 0

38 6 6 0 0

39 86 86 0 0

40 35 35 0 0

Table 6.3: Template data of the benchmarks
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6.2.3 Guidelines for using the suite

Downloading and configuring the suite

TECO is freely distributed and can be downloaded from the URL:
http://www.dsic.upv.es/~jsilva/retrieval /teco

After downloading the suite, a directory that contains 40 folders, one for
each website, is created. Table shows the path to the key page of each
benchmark.

Rules for using the suite and report

All researchers and developers that use TECO must follow two basic princi-
ples:

1. They must publish their results so that they are publicly available.

2. They must provide enough information so that anyone can easily du-
plicate their experiments.



6.2. THE TECO BENCHMARK SUITE 63
Id | Path to the key page
1 | pages/water.org/index.html
2 | pages/www.jdi.org.za/index.html
3 | pages/stackoverflow.com /index.html
4 | pages/www.eclipse.org/index.html
5 | pages/www.history.com/index.html
6 | pages/www.landcoalition.org/index.html
7 | pages/es.fifa.com/index.html
8 | pages/cordis.europa.eu/fp7/ict/fire.html
9 | pages/clotheshor.se/index.html
10 | pages/www.emmaclothes.com/index.html
11 | pages/www.cleanclothes.org/index.html
12 | pages/www.mediamarkt.es/index.html
13 | pages/www.ikea.com/gb/en.html
14 | pages/www.swimmingpool.com /index.html
15 | pages/www.skipallars.cat/en.html
16 | pages/www.tennis.com/index.html
17 | pages/www.tennischannel.com/index.html
18 | pages/www.turfparadise.com /index.html
19 | pages/riotimesonline.com/index.html
20 | pages/www.beaches.com/index.html
21 | pages/users.dsic.upv.es/~jsilva/wwv2013/index2.html
22 | pages/users.dsic.upv.es/~dinsa/en/index.html
23 | pages/www.engadget.com /index.html
24 | pages/www.bbc.co.uk/news/index.html
25 | pages/www.vidaextra.com/index.html
26 | pages/www.ox.ac.uk/staff/index.html
27 | pages/clinicaltrials.gov/ct2/search/index/index.html
28 | pages/en.citizendium.org/index.html
29 | pages/www.filmaffinity.com/es/main.html
30 | pages/edition.cnn.com/index.html
31 | pages/www.lashorasperdidas.com/index.html
32 | pages/labakeryshop.com/index.html
33 | pages/www.felicity.co.uk/index.html
34 | pages/www.thelawyer.com/index.html
35 | pages/www.us-nails.com/Unternehmen/Ueber Uns/ueber uns_12-dat=5860687c.php.html
36 | pages/www.informatik.uni-trier.de/~ley/pers/hd/s/Silva_ Josep.html
37 | pages/www.wayfair.co.uk/index.html
38 | pages/catalog.atsfurniture.com/index.html
39 | pages/www.glassesusa.com/index.html
40 | pages/www.mysmokingshop.co.uk/index2.html

Table 6.4: Path to the key page of each benchmark
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Chapter 7

Conclusions

Web templates are a very useful tool for website developers. By auto-
matically inserting content into templates, website developers and content
providers of large web portals achieve high levels of productivity. Not only
is the productivity improved, but also the usability. Website developers us-
ing web templates produce webpages that are more usable thanks to their
uniformity.

This work presents a new technique for template detection. The tech-
nique provides a great benefit for website developers because they can auto-
matically extract a clean HTML template of any webpage. This feature is
particularly interesting in order to reuse components of other webpages.

Moreover, the technique can be used by other systems and tools such as
indexers or wrappers as a preliminary stage. Extracting the template allows
them to identify the structure of the webpage and the topology of the website
by analyzing the navigational information of the template. In addition, the
template is useful to identify menus, pagelets, repeated advertisement panels,
and what is particularly important, the main content.

The technique is also beneficial for indexers and crawlers in another way
because they can easily detach the content from the template. As a result,
they can save resources and optimize the storage space by analyzing the web
templates only once.

Our technique uses the initial webpage hyperlinks for identifying a set of
webpages that share the same template with a high probability. Then, it uses
the DOM structure of the webpages in that set to identify the blocks that are
common to the major part of them. These blocks together form the template.
To the best of our knowledge, the idea of using the webpage hyperlinks to
locate the template is new, and it allows us to quickly find a set of webpages
from which we can extract the template. This is especially interesting for
performance, because loading webpages to be analyzed is expensive, and this
part of the process is minimized in our technique. Our implementation and
experiments have shown the usefulness of the technique.
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This approach could be also used for content extraction. Detecting and
removing the template of a webpage is very helpful in order to detect the
main content. Firstly, the main content must be formed by DOM nodes that
do not belong to the template, so removing the template of a website may
result in the main content or the main content plus any other information.
Secondly, the main content is usually inside one of the pagelets that are more
centered and visible, and with a higher concentration of text.

To sum up, this template detection technique is not only helpful to ex-
tract the template of a website, it can also provide significant improvements
to content extraction algorithms by removing the template.
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Future work

¢ Reduction of the number of webpages loaded: We plan to in-
vestigate a strategy to further reduce the amount of webpages loaded
with our technique. The idea is to directly identify the menu in the
key page by measuring the density of links in its DOM tree. The menu
has probably one of the higher densities of links in a webpage. There-
fore, our technique could benefit from measuring the links—DOM nodes
ratio to directly find the menu in the key page, and thus, a complete
subdigraph in the website topology.

e Integration with content extraction: The template detection al-
gorithm can be integrated with a content extraction algorithm, like
[12], in order to improve its performance. Using a content extraction
algorithm before detecting the template makes the template detection
process more efficient. The process has to use the content extraction
algorithm to remove the main content, thus webpages will have less
nodes and the process of computing the ETDM will be more efficient
because most of those nodes will belong to the template with a high
probability.

Our technique can also provide a benefit to content extraction algo-
rithms like [I2]. Removing the template reduces the amount of DOM
information that a content extraction algorithm has to analyze. This
could result in more efficient content extraction algorithms because
they should analyze less amount of data.

e Improved DOM node comparison: This technique needs to com-
pare DOM nodes in order to define a ETDM. As we introduced in
section the main problem is to decide if two nodes from two differ-
ent webpages are the same or not. This problem appears because two
different webpages surely have two different DOM trees, even if they
have share the same template. There can also be new DOM nodes that
change the relative position between the original nodes, etc. We plan
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to improve the algorithm with the comparison of DOM subtrees. If
a template is present in two or more webpages, their DOM trees will
share similar parts. Those parts of their DOM trees could be in dif-
ferent positions, but if they really share the template, they will share
some DOM subtrees.

Atypical template detection: Sometimes one of the webpages in-
cluded in the n-CS does not follow the template at all. In this case,
the algorithm needs a mechanism to detect that webpages with atypi-
cal template, so they can be replaced by another webpage. This feature
could be implemented in the algorithm that computes the ETDM. If
there are several nodes that match with high probability in all web-
pages but one (always the same), this webpage will probably implement
a different template.
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Contributions

During the thesis writing process, the following articles have been published:

9.1 International publications

1. Julian Alarte, David Insa, Josep Silva, and Salvador Tamarit. Tem-
plate Extraction Based on Menu Information. In Josep Silva and An-
tonio Ravara, editors, Proceedings of the 9th International Workshop
on Automated Specification and Verification of Web Systems (WWV
13), page Article 5, 2013.

This paper provides an approach to the template etraction process
based on the information provided by the menu of the webpage. The
links analyzed to buid the complete subdigraph are in the main menu,
so all the webpages that belong to the complete subdigraph share the
same menu. Then, an ETDM is obtained with the pages of the CS.
Once the ETDM is obtained, the nodes that belong to it are the tem-
plate nodes.

2. Julian Alarte, David Insa, Josep Silva, and Salvador Tamarit. Auto-
matic Detection of Webpages Candidates for Site-Level Web Template
Extraction. In Josep Silva and Antonio Ravara, editors, Invited Con-
ference of the 10th International Workshop on Automated Specification
and Verification of Web Systems (WWV 14), page Article 13, 2014.

This publication is an approach to improve the method of the building
a complete subdigraph from a website. It is based on the hyperlink
analysis of a webpage.

3. Julian Alarte, David Insa, Josep Silva, and Salvador Tamarit. Auto-
matic Detection of Webpages that Share the Same web Template. In
Maurice H. ter Beek and Anténio Ravara, editors, Proceedings 10th
International Workshop on Automated Specification and Verification
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of Web Systems, Vienna, Austria, July 18, 2014, volume 163 of Flec-
tronic Proceedings in Theoretical Computer Science, pages 2—15. Open
Publishing Association, 2014.

The article presents a new way of computing a complete subdigraph of
a website based on the analysis of the hyperlinks in the key webpage.
The algorithm uses concepts like hyperlink distance, DOM distance, link
relevance and DOM relevance to ensure that the CS really represents
the website template.

National publications

Julidn Alarte, David Insa, Josep Silva, and Salvador Tamarit. Site-
Level Template Extraction Based on Hyperlink Analysis. Proceedings
of the 14th Spanish Workshop on Programming Languages (PROLE’1}),
sep 2014. to appear in proceedings of PROLE 2014.

This publication uses two of the main ideas presented in this thesis,
the building of a complete subdigraph based on hyperlink analysis, and
then, the compute of an ETDM using the CS. However, the ETDM in

an simpler way.
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