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Abstract 

 

The aim of this study is to establish the thermal characteristics of a biocomposite 

(Arbofill kokos®), stabilized with different natural phenolic additives, in order to check 

the antioxidant capacity of the resulting compounds on the biocomposite. The phenolic 

compounds used were thymol, carvacrol, α-tocopherol and tannic acid, and the 

concentrations used were 0.5wt% and 2wt% of each compound. The results obtained 

were compared with the same biocomposite stabilized with an industrial antioxidant 

agent (octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate). Thermo-analytical 

techniques were used (DSC and TGA) to carry out the study. The antimicrobial effect of 

these natural phenolic compounds on the biocomposite was also studied by analyzing of 

the growth of bacterial colonies. The comparison between the phenolic compounds and 

the industrial compound showed good antioxidant action of the phenolic compounds on 

the base biocomposite; in all the mixtures of biocomposite and antioxidant agent the 

oxidation onset temperature (OOT) of the biocomposite increased. Of all the phenolic 

compounds studied the highest OOT was achieved with α-tocopherol, which, compared 

with the temperature of the base composite, showed an increase of almost 45%. 
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INTRODUCTION 

 

Biobased polymers are gaining increasing interest in the plastics industry. This is 

mainly due to the fact that these materials are derived from natural sources, giving them 

a huge advantage over petroleum-derived materials due to the ever increasing cost of 

petroleum. Moreover, biopolymers biodegrade very quickly and thus are more 

environmentally friendly as their waste material has very little impact on the 

environment. The use of biopolymers represents a significant reduction in the toxicity 

produced by traditional, petroleum-derived polymers [1]. 

 

Biopolymers represent a valid alternative to petrochemical polymers over a 

range of applications, including packaging and agricultural. These polymers have the 

advantage that they have less environmental impact, are more ecological and are 

available at competitive prices [2]. When these polymers are deposited in bioactive 

environments they degrade very quickly due to the enzyme action of the 

microorganisms, and the polymer breaks down into biomass, CO2, CH4, water and other 

natural substances [2, 3]. 

 

The development and use of biopolymers is limited due to their poor physical 

and chemical properties, low mechanical values and difficulties in processing [4, 5]. 

 

There are already a number of biopolymers that are currently being used over a 

range of applications. Polymers such as polylactic acid (PLA), poly-β-hydroxybutirate 

(PHB), poly-β-hydroxybutirate-co-valerate (PHBV), are some of the most commonly 

used biopolymers today. More than 140,000 tonnes of biopolymers are currently being 
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produced per year world wide [2]. These materials are in constant development to 

improve their chemical and mechanical characteristics, with the ultimate aim of 

substituting the majority of petroleum-derived polymers with biopolymers.  

 

Arbofill® is a processable thermoplastic composite. It is manufactured from 

modified alkali lignin obtained from pulp industry, natural additives as well as annual 

plant fibres like a flax or hemp and wood particles, respectively. In this study we used 

Arbofill kokos®. It is a biopolymer composite that contains natural fibers of coconut. 

Can be processed as a thermoplastic and which possesses similar properties to wood. 

The main components of Arbofill kokos are a lignin, cellulose, additives and coconut 

fiber. Products made using Arbofill show good mechanical properties in comparison 

with wood, have great rigidity and possess an acceptable resistance to fire without the 

need to incorporate flame resistant agents. There are numerous applications for this 

material as it is a compound that appeals to both the wood and polymer industries. The 

main uses for this material at present are as carcasses for electronic equipment 

(televisions, audio and video equipment), food industry components (containers, plates, 

cups, etc.), and a line of furniture is currently being designed that has the appearance of 

wood but which has lower production costs and produces less waste material than wood 

due to the degradability of coconut fiber [6, 7]. 

 

One of the requisites sought in this research work is resistance to oxidation of 

the material and one of the aims here is to check the materials resistance when used in 

applications where high temperatures are present. For this reason mixtures of arbofill 

kokos® biocomposite with natural antioxidant agents were characterized. Traditional 

antioxidant agents consist of synthetic compounds, mainly derived from phenol, but 
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these compounds may be toxic in the case of migration of particles of the compound [8, 

9]. Natural antioxidants are currently being studied for use with biopolymers as they 

possess a similar capacity for stabilization while having a non-toxic character. Phenolic 

compounds such as α-tocopherol, thymol, carvacrol, tannic acid, carnocic acid, etc. [10-

14], show acceptable antioxidant activity in plastics and rubbers [15], whether they are 

used to improve processing or melting conditions or to thermally stabilize polyolefins 

[16, 17].  

 

Thermal degradation is responsible for a great deal of damage in many polymer 

materials during their processing and later use if they have to withstand high 

temperatures. High temperatures during processing may degrade the molecular structure 

of the polymer creating a more brittle material. Therefore, precise control of processing 

and working conditions is important to obtain a material without degradation and with 

good properties [18, 19]. 

 

In this research, we studied the efficiency of a range of phenolic compounds as 

antioxidant agents when used with a biocomposite. The results obtained were compared 

to those of the same biopolymer incorporating an industrial antioxidant (Octadecyl). In 

this way, it was possible to check whether the antioxidant capacity of the phenolic 

compounds was comparable to that of the industrial compounds. To carry out the 

thermal study two thermo-analytical techniques were used: DSC (both dynamic and 

isothermal); and TGA. Thus, we were able to also check the antibacterial action of the 

phenolic compounds on the biocomposites by studying the growth of bacterial colonies 

in samples of the biocomposite. 

 

Page 5 of 28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

EXPERIMENTAL 

 

MATERIALS 

 

In this study, a biocomposite, Arbofill kokos (a mixture of lignin and organic 

coconut fibers, distributed by Tecnaro GMBH) was used. As antioxidant agents, the 

compounds: thymol, supplied by Fluka analytical; carvacrol, 98% pure, FCC, supplied 

by SAFC; pure tannic acid in powder form, supplied by Sigma-Aldrich; α-tocopherol, 

supplied by Sigma-Aldrich; octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 

supplied by Sigma-Aldrich were used. 

 

Figure 1 

 

PREPARATION OF SAMPLES 

 

The composite was mixed with antioxidant agents in quantities of 0.5wt% and 

2wt%, in a babyplast 6/6 injector molding machine (Cronoplast s.l., Barcelona, España) 

at a temperature of 180ºC. The injected material was then pelletized in a rotary grinder.  

For the DSC and TGA tests this pelletized material was used.  

For the antimicrobial analysis the material was injected into sheets of 5x4.5x2mm, in 

the same babyplast 6/6 machine. 

 

EXPERIMENTAL TECHNIQUES 
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Characterization of Thermal Stability. 

Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) was carried out using UNE-EN ISO 

11357 plastics norm “Differential scanning calorimetry (DSC)”. Two DSC tests were 

carried out for the polymers using different thermal programs.  

 

The first thermal program used was a dynamic program, where a sample of the 

composite of between 5-10mg was introduced into the DSC (METLER-TOLEDO 

DSC821e) apparatus, and was then subjected to the thermal program operating from 30 

to 350ºC at 5 ºC/min in an air atmosphere (250 mL/min).  

 

The second thermal program was an isothermal program, where the sample was 

introduced into the DSC apparatus and the sample was taken to 200ºC at 10ºC/min in an 

atmosphere of N2 (60 mL/min), and once this temperature was reached, it was 

maintained for a period of 4 hours, changing the atmosphere from N2 to air 

(250mL/min) in order to observe the oxidation time of the polymer samples.  

 

Thermogravimetry (TGA) 

TGA measurements were carried out by means of a METTLER TOLEDO TGA-

DTA model TGA/SDTA851e/SF/1100. Samples were heated at 10ºC/min, from 30 to 

600ºC in oxygen (flow rate 250mL/min). 

 

Characterization of antimicrobial behavior 

Antimicrobial activity tests were conducted following the guidelines of the 

ATCC Test Method 100. This method allows a quantitative procedure for the evaluation 
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of the antimicrobial activity of treated textile materials [20]. The selected 

microorganisms were Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 

516. The antimicrobial activity test is based on the inoculation of the polymeric material 

with a suitable microorganism, so that when 20 hours of contact between the 

microorganism and the polymeric material have passed, the percentage reduction of the 

microorganism caused by the antibacterial agent will be determined [20-22]. Thus, it is 

possible to evaluate the antimicrobial activity with the following assessment: non-

significant (<0.5), slight (>0.5-<1), significant (≥1-<3), and strong (≥3). 

 

 

RESULTS AND DISCUSSION 

 

CHARACTERIZATION OF THERMAL STABILITY 

 

DSC Studies – Determination of oxidation parameters 

 

DSC is an effective tool to check the antioxidant efficiency of the samples, 

measuring the maximum temperature at which the sample material degrades (oxidation 

onset temperature, OOT). This temperature is affected by the oxidation undergone by 

the polymer. The higher the OOT the greater the oxidation resistance provided by the 

antioxidant agent to the composite. 

 

Figure 2 
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Fig. 1 shows the dynamic DSC analysis carried out between 30 and 350ºC. The 

different DSC curves for OOT can be seen for all the mixtures of biocomposite with the 

different quantities of antioxidant agents (0.5wt% and 2wt%) that were evaluated in this 

study. 

 

The base biocomposite (Arbofill kokos®) shows an initial oxidation temperature 

of 203.9 ºC. As the different quantities of antioxidant (0.5 and 2% by weight in each 

compound) in the majority of cases there was a notable increase in the oxidation 

temperature of the biocomposite. 

 

Looking at the phenolic compound, it was observed that for high quantities of 

additive (2 wt%) the oxidation temperature is higher than with lower percentages (0.5 

wt%), meaning that the antioxidant capacity of the phenolic compounds increases with 

the quantity that is added to the base biocomposite. 

 

Compounds such as carvacrol and thymol are those with the lowest antioxidant 

capacity, increasing the OOT of the Arbofill to only 207.3 and 214.5 ºC respectively, 

which represents only a 10ºC maximum increase when 2wt% is added. With this same 

quantity, tannic acid and α-tocopherol showed the highest antioxidant capacity with the 

Arbofill biocomposite, reaching OOTs of 261.7 and 279.8 ºC, respectively. These 

phenolic compounds have such a great antioxidant capacity that they surpass the 

performance of the industrial antioxidant whose maximum OOT is 242.7 ºC. Of the 10 

samples analyzed (5 phenol compound, 2 quantities of each), the one that gave by far 

the highest oxidation temperature was the α-tocopherol. The results with this compound 
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are due to the effect of α-tocopherol or vitamin E, a natural antioxidant compound [17], 

making tocopherol ideal as an additive in polymers.  

 

The isothermal DSC tests were carried out at 200ºC and this temperature was 

maintained for 4 hours. It was decided to carry out this test with a quantity of 

antioxidant of 2% wt because it was with these mixtures that the higher OOTs were 

achieved in the previous tests. The aim with these tests was to ascertain the length of 

time that the biocomposite would resist before suffering oxidation. 

 

Figure 3 

 

Fig. 2 shows the results for oxidation induction time (OIT) at 200ºC for the 

samples that contained 2wt% antioxidant.   

 

For the sample with 2wt% thymol and the sample with 2wt% carvacrol 

oxidation ocurred only a few minutes after the test temperature was reached. The 

sample with tannic acid showed oxidation 120 minutes after the start of the test, while 

the samples with α-tocopherol and octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) 

propionate suffered no oxidation ocurred during the 4 hours of the DSC test and the 

material remained stable for the entire test period. 

 

With the results obtained in the two DSC tests, we saw that α-tocopherol is an 

excellent antioxidant agent in a range of conditions and atmospheres, but acts 

particularly well in air atmospheres [15, 23]. This effect can be explained by the fact 

that α-tocopherol has a high density of connected structures which are very efficient at 
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trapping free radical thus reducing the degradation of the biocomposite [15, 18]. The 

strong activity of α-tocopherol in limiting oxidation processes can be attributed to the 

structure of the original molecule and to the products of the oxidation, among which we 

can find dimers and trimers, as well as tocoquinones and aldehydes [16]. These products 

of oxidation are considered to be good antioxidants for polymers, meaning that they 

would help improve the antioxidant capacity of α-tocopherol [16]. 

 

Thermogravimetric Studies 

 

A TGA analysis of the composite samples with different compositions of 

phenolic compounds was carried out. A general analysis of the thermograph curves 

showed that the oxidation of the samples took place in two stages. The first occurred at 

between 200 and 250ºC, which is characteristic of the polymeric part of the 

biocomposite, representing around 80% of the compound, and then a second stage 

which occurred at between 350 and 400 ºC depending on the percentage of antioxidant 

agent present in the compound [24]. 

 

Figure 4 

 

Figure 5 

 

The previous figures show the TG curves of weight loss of the thermo-oxidized 

samples for the different percentages of phenol compounds. In the DTG data, showed in 

table 1, a small peak was detected just past 400ºC (Tmax2), corresponding to the 

oxidation of the coconut fiber present in the samples [25]. The value of this temperature 
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indicate that the cross-linking that takes place between polymer and phenol compound 

greatly improves the thermal resistance of the samples, and as can be seen in table 1, the 

temperature of this peak is greater for the compounds which contain α-tocopherol and 

tannic acid. The first peak in the DTG data (Tmax1) corresponds to the oxidation of the 

organic part of the biocomposite. 

 

Table 1 shows the results for the temperatures obtained in the previous 

thermographs, as well as the quantity remaining after oxidation at high temperatures. 

 

Table 1 

 

In the table 1, we can observe as all temperatures are upper in the case of both amounts 

of α-tocopherol and tannic acid, as we observed in the DSC tests, these compounds are 

the two antioxidant agents that improve very well the OOT of the biocomposite, so their 

temperatures are bigger than the other compounds. Also these temperatures are bigger 

than the petroleum-based antioxidant (octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) 

propionate), so α-tocopherol and tannic acid antioxidant behaviour is the best of all 

antioxidant compounds tested. In the column of percentage of carbon mass at 600ºC 

(Char600), is observed that all antioxidant agents had more quantity of carbon mass than 

the sample of biocompsite alone, this is indicative that exists a small amount of 

biocomposite joined with antioxidant agent, and this amount didn’t degradate in the TG 

tests.  

 

CHARACTERIZATION OF ANTIMICROBIAL PROPERTIES 
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To determine the antimicrobial behavior shown by the phenolic compounds in 

the biocomposite, colonies of Staphylococcus aureus ATCC 6538 and Escherichia coli 

ATCC 516 bacteria were inoculated into the polymer samples with different phenol 

compound content. In this way, we analyzed the effect that the antimicrobial properties 

of the phenol compound may have on the base composite. To check this antimicrobial 

effect, a first count of the bacteria colony was taken at the moment of inoculation, and a 

second count was taken 20 hours after inoculation, to determine the growth of the 

colonies [20]. 

 

Table 2 

 

Table 2 shows the values for the quantities of bacteria Staphylococcus aureus 

and Escherichia coli that were inoculated at the start of the antimicrobial analysis 

(106060 bacteria) and the bacteria found, in the recount after 20 hours of growth, in a 

biocomposite sample. As can be seen in the values shown in the table, the quantity of 

bacteria increase by up to three times the original value in the case of Staphylococcus 

aureus, and by up to five times in the case of Escherichia coli, after the 20 hours test 

time, showing that the Arbofill kokos shows no antimicrobial behavior. 

 

Table 3 

 

Table 3 shows the recount values for the Staphylococcus aureus and Escherichia 

coli bacteria after 20 hours growth for each biopolymer sample with each percentage of 

phenolic compounds.  
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Only in the case of the bacteria Staphylococcus aureus in the compounds with 

2wt% of thymol and carvacrol is there a noticeable antimicrobial activity after 20 hours 

of culture growth time. In this case, the bacteria recounts are as follows: <20 CFU·ml
-1

 

[log(CFU·ml
-1

) ≈ 1.2] and 20 CFU·ml
-1

 [log(CFU·ml
-1

) = 1.5] respectively, which 

means there is antimicrobial activity (R) of 4.3 for the compound with 2wt% of thymol 

and of 4 for the compound with 2wt% of carvacrol. These values (R) represent strong 

antibacterial activity on the bacteria Staphylococcus aureus. In the rest of the 

antioxidant agents the data shows that there is practically no improvement in 

antimicrobial activity. In most of the samples the quantity of bacteria after 20 hours 

growth is greater than the quantity inoculated at the start of the test, meaning that when 

added to the biocomposite, the phenolic compounds show no antimicrobial activity. 

 

In the case of the bacteria Escherichia coli, none of the samples showed any 

signs of antimicrobial activity after 20 hours of growth. All the recounts after 20 hours 

showed a greater quantity of bacteria. 

 

 

CONCLUSIONS 

 

Once all the analyses to check the antioxidant capacity of the phenolic 

compounds added to the Arbofill biocomposite were carried out using thermo-analytical 

techniques, it was confirmed that the majority of the phenolic compounds improve the 

OOT of the composite, increasing it to a greater or lesser degree. The order of 

antioxidant efficiency is α-tocopherol > tannic acid > thymol > carvacrol. The results 

clearly showed that with high quantities of phenol compound (2wt%) the antioxidant 
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capacity increased. In the case of α-tocopherol an OOT for the polymer of 269.70 ºC 

was achieved for a quantity of 0.5wt%, while for a quantity of 2wt% of α-tocopherol 

the OOT achieved was 279.87 ºC, an increase of more than 10 ºC.  

 

Of all the phenolic compounds studied, the best antioxidant performance was 

shown by α-tocopherol, which gave an OOT higher than those of industrial antioxidant 

agents such as octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate. The 

compounds thymol and carvacrol were the only ones which gave hardly any 

improvement in the OOTs of the biocomposite. 

 

Analyzing the results obtained in the antimicrobial study, of all the phenolic 

compounds studied the only ones which showed any antimicrobial activity against the 

bacteria Staphylococcus aureus were thymol and carvacrol. For quantities of compound 

of 2wt% these showed antimicrobial activity of (R) > 3, which means they were very 

efficient against these bacteria. The other compounds, in whichever of the quantities 

studied, showed no antimicrobial activity whatsoever given that after 20 hours the 

bacteria colonies increased considerably in size.  
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Figure captions 

Figure 1. Chemical structures of natural phenolic additives used in this study. 

 

Figure 2. Results of the dynamic DSC analysis, carried out at 5ºC/min from 30 to 

350ºC, in which the maximum OOT of each sample of the Arbofill biocomposite were 

obtained. (A) Biocomposite + 0.5wt% antioxidant agent; (B) Biocomposite + 2wt% 

antioxidant agent. 

 

Figure 3. Results of the isothermal analysis, carried out at 200ºC for a period of 4 

hours, in which the oxidation induction time (OIT) of each sample of the Arbofill 

biocomposite with 2wt% of antioxidant agent were obtained.  

 

Figure 4. TGA curves of the different biocomposite/antioxidant agent mixtures.Original 

sample and samples with 0.5 wt% of phenolic compounds. Thermo-gravimetric analysis 

carried out between 30 and 600ºC, at 10ºC/min in an atmosphere of O2. 

 

Figure 5. TGA curves of the different biocomposite/antioxidant agent mixtures. 

Original sample and samples with 2 wt% of phenolic compounds. Thermo-gravimetric 

analysis carried out between 30 and 600ºC, at 10ºC/min in an atmosphere of O2. 
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Table 1. Temperature of the samples at 5% weight loss (T5%), maximum decomposition 

temperatures (Tmax1 y Tmax2) and percentage of carbon mass at 600ºC (Char600). 

Sample T5% (ºC) Tmax1 (ºC) Tmax2 (ºC) Char600 (%) 

Arbofill original 259.3 346.4 441.3 1.33 

Arbofill + 

0.5wt% thymol 

259.0 346.8 441.7 1.70 

Arbofill + 2wt% 

thymol 

259.3 349.7 446.1 1.74 

Arbofill + 

0.5wt%carvacrol 

255.1 346.7 445.5 1.41 

Arbofill + 2wt% 

carvacrol 

265.8 349.9 447.2 1.50 

Arbofill + 

0.5wt% tannic 

acid 

266.3 347.2 443.8 1.62 

Arbofill + 2wt% 

tannic acid 

279.9 352.0 445.3 1.70 

Arbofill + 

0.5wt% α-

tocopherol 

282.1 347.5 446.4 1.75 

Arbofill + 2wt% 

α-tocopherol 

289.9 355.8 452.4 1.85 

Arbofill + 

0.5wt% 

octadecyl 

261.5 348.6 439.2 1.69 

Arbofill + 2wt% 

octadecyl 

266.1 350.9 441.7 1.78 
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Table 2. Values for antimicrobial activity [CFU•mL
-1
 and log(CFU•mL

-1
)] of the 

biocomposite samples for the bacteria Staphylococcus aureus ATCC 6538 and 

Escherichia coli ATCC 516. 

Arbofill kokos 
 

Staphylococcus 

aureus 
Escherichia coli 

Inoculation CFU·ml
-1
 106060 106060 

 Log(CFU·ml
-1
) 5.0 5.0 

Control: t = 20 h CFU·ml
-1
 310000 512000 

 Log(CFU·ml
-1
) 5.5 5.7 
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Table 3. Values for antimicrobial activity [CFU•mL
-1
 y log(CFU•mL

-1
)] of the 

biocomposite samples with different quantities of antioxidant agents after 20 hours test 

time for the bacteria Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 

516. 

 Staphylococcus aureus Escherichia coli 

Sample CFU·ml
-1
 log(CFU·ml

-1
) CFU·ml

-1
 log(CFU·ml

-1
) 

Arbofill + 

0.5wt% thymol 
210200 5.3 512200 5.7 

Arbofill + 2wt% 

thymol 
<20 1.2 413400 5.6 

Arbofill + 

0.5wt%carvacrol 
109848 5.0 740740 5.9 

Arbofill + 2wt% 

carvacrol 
20 1.3 147727 5.2 

Arbofill + 

0.5wt% tannic 

acid 

215.000 5.3 510200 5.7 

Arbofill + 2wt% 

tannic acid 
180500 5.3 435500 5.6 

Arbofill + 

0.5wt% α-

tocopherol 

275000 5.4 510200 5.7 

Arbofill + 2wt% 

α-tocopherol 
253300 5.4 438000 5.6 

Arbofill + 

0.5wt% 

octadecyl 

253000 5.4 740200 5.9 

Arbofill + 2wt% 

octadecyl 
250000 5.4 530000 5.7 
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Figure 1. Chemical structures of natural phenolic additives used in this study.  
309x216mm (300 x 300 DPI)  

 

 

Page 24 of 28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 2. Results of the dynamic DSC analysis, carried out at 5ºC/min from 30 to 350ºC, in which the 
maximum OOT of each sample of the Arbofill biocomposite were obtained. (A) Biocomposite + 0.5wt% 

antioxidant agent; (B) Biocomposite + 2wt% antioxidant agent.  

290x399mm (300 x 300 DPI)  
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Figure 3. Results of the isothermal analysis, carried out at 200ºC for a period of 4 hours, in which the 
oxidation induction time (OIT) of each sample of the Arbofill biocomposite with 2wt% of antioxidant agent 

were obtained.  
289x202mm (300 x 300 DPI)  
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Figure 4. TGA curves of the different biocomposite/antioxidant agent mixtures.Original sample and samples 
with 0.5 wt% of phenolic compounds. Thermo-gravimetric analysis carried out between 30 and 600ºC, at 

10ºC/min in an atmosphere of O2.  
289x202mm (300 x 300 DPI)  
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Figure 5. TGA curves of the different biocomposite/antioxidant agent mixtures.Original sample and samples 
with 2wt% of phenolic compounds. Thermo-gravimetric analysis carried out between 30 and 600ºC, at 

10ºC/min in an atmosphere of O2.  
289x202mm (300 x 300 DPI)  
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