

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/chapter/10.1007%2F978-3-642-54624-2_12

http://hdl.handle.net/10251/47179

Springer Verlag (Germany)

Alpuente Frasnedo, M.; Ballis, D.; Frechina, F.; Sapiña Sanchis, J. (2014). Inspecting
rewriting logic computations (in a parametric and stepwise way). En Specification, algebra,
and software: essays dedicated to Kokichi Futatsugi. Springer Verlag (Germany). 229-255.
doi:10.1007/978-3-642-54624-2_12.

Inspecting Rewriting Logic Computations
(in a parametric and stepwise way) ?

M. Alpuente1, D. Ballis2, F. Frechina1, and J. Sapiña1

1 DSIC-ELP, Universitat Politècnica de València,
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain,

2 CLIP Lab, Technical University of Madrid,
E-28660, Boadilla del Monte, Madrid, Spain,

Abstract. Trace inspection is concerned with techniques that allow the
trace content to be searched for specific components. This paper presents
a rich and highly dynamic, parameterized technique for the trace in-
spection of Rewriting Logic theories that allows the non-deterministic
execution of a given unconditional rewrite theory to be followed up in
different ways. Using this technique, an analyst can browse, slice, filter,
or search the traces as they come to life during the program execution.
Starting from a selected state in the computation tree, the navigation of
the trace is driven by a user-defined, inspection criterion that specifies
the required exploration mode. By selecting different inspection crite-
ria, one can automatically derive a family of practical algorithms such
as program steppers and more sophisticated dynamic trace slicers that
facilitate the dynamic detection of control and data dependencies across
the computation tree. Our methodology, which is implemented in the An-
ima graphical tool, allows users to capture the impact of a given criterion
thereby facilitating the detection of improper program behaviors.

1 Introduction

Dynamic analysis is crucial for understanding the behavior of large systems. Dy-
namic information is typically represented using execution traces whose analysis
is almost impracticable without adequate tool support. Existing tools for analyz-
ing large execution traces rely on a set of visualization techniques that facilitate
the exploration of the trace content. Common capabilities of these tools include
stepping the program execution while searching for particular components and
having the option to simplify the traces by hiding some specific contents.

?This work has been partially supported by the EU (FEDER), the Spanish MEC
project ref. TIN2010-21062-C02-02, the Spanish MICINN complementary action ref.
TIN2009-07495-E, and by Generalitat Valenciana ref. PROMETEO2011/052. This
work was carried out during the tenure of D. Ballis’ ERCIM “Alain Bensoussan” Post-
doctoral Fellowship. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n. 246016. F. Frechina was supported by FPU-ME grant AP2010-5681.

2

Program animation or stepping refers to the very common debugging tech-
nique of executing code one step at a time, allowing the user to inspect the
program state and related data before and after the execution step. This allows
the user to evaluate the effects of a given statement or instruction in isolation
and thereby gain insight into the program behavior (or misbehavior). Nearly
all modern IDEs, debuggers, and testing tools currently support this mode of
execution optionally, where animation is achieved either by forcing execution
breakpoints, code instrumentation, or instruction simulation.

Rewriting Logic (RWL) is a very general logical and semantic framework,
which is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [?] and Web systems [?,?]). RWL is efficiently
implemented in the high-performance system Maude [?]. Roughly speaking, a
rewriting logic theory seamlessly combines a term rewriting system (TRS) with
an equational theory that may include equations and axioms (i.e., algebraic laws
such as commutativity, associativity, and unity) so that rewrite steps are per-
formed modulo the equations and axioms. In recent years, debugging and opti-
mization techniques based on RWL have received growing attention [?,?,?,?],
but to the best of our knowledge, no versatile program animator or trace inspec-
tion tool for RWL/Maude has been formally developed to date.

To debug Maude programs, Maude has a basic tracing facility that allows the
user to advance through the program execution stepwisely with the possibility
to set break points, and lets him/her select the statements to be traced, except
for the application of algebraic axioms that are not under user control and are
never recorded explicitly in the trace. All rewrite steps that are obtained by
applying the equations or rules for the selected function symbols are shown in
the output trace so that the only way to simplify the displayed view of the trace
is by manually fixing the traceable equations or rules. Thus, the trace is typically
huge and incomplete, and when the user detects an erroneous intermediate result,
it is difficult to determine where the incorrect inference started. Moreover, this
trace is either directly displayed or written to a file (in both cases, in plain text
format) thus only being amenable for manual inspection by the user. This is in
contrast with the enriched traces described in this work, which are complete (all
execution steps are recorded by default) and can be sliced automatically so that
they can be dramatically simplified in order to facilitate a specific analysis. Also,
the trace can be directly displayed or delivered in its meta-level representation,
which is very useful for further automated manipulation.

Contributions. This paper presents the first semantic-based, parametric trace
exploration technique for RWL computations that involve rewriting modulo as-
sociativity (A), commutativity (C), and unity (U) axioms. Our technique is
based on a generic animation algorithm that can be tuned to work with different
modalities, including incremental stepping and automated forward slicing, which
drastically reduces the size and complexity of the traces under examination. The
algorithm is fully general and can be applied for debugging as well as for opti-
mizing any RWL-based tool that manipulates unconditional RWL theories. Our
formulation takes into account the precise way in which Maude mechanizes the

3

equational rewriting process modulo B, where B may contain any combination
of associativity, commutativity, and unity axioms for different binary operators,
and revisits all those rewrite steps in an informed, fine-grained way where each
small step corresponds to the application of an equation, equational axiom, or
rule. This allows us to explain the input execution trace with regard to the set
of symbols of interest (input symbols) by tracing them along the execution trace
so that, in the case of the forward slicing modality, all data that are not de-
scendants of the observed symbols are filtered out. The ideas are implemented
and tested in a graphical tool called Anima that provides a skillful and highly
dynamic interface for the dynamic analysis of RWL computations.

Related Work. Program animators have existed since the early years of pro-
gramming. Although several steppers have been implemented in the functional
programming community (see [?] for references), none of these systems applies
to the animation and dynamic forward slicing of Maude computations. An alge-
braic stepper for Scheme is defined and formally proved in [?], which is included
in the DrScheme programming environment. The stepper reduces Scheme pro-
grams to values (according to the reduction semantics of Scheme) and is useful
for explaining the semantics of linguistic facilities and for studying the behavior
of small programs. In order to discover all of the steps that occur during the
program evaluation, the stepper rewrites (or “instruments”) the code, which is
in contrast to our technique which does not rely on program instrumentation.

In [?,?], an incremental, backward trace slicer was presented that generates
a trace slice of an execution trace T by tracing back a set of symbols of in-
terest along (an instrumented version of) T , while data that are not required
to produce the target symbols are simply removed. This can be very helpful in
debugging since any information that is not strictly needed to deliver a critical
part of the result is discarded, which helps answer the question of “what program
components might effect a selected computation”. However, for the dual problem
of “what program components might be effected by a selected computation”, a
kind of forward expansion is needed (which has been overlooked to date in RWL
research).

Plan of the paper. After some preliminaries in Section ?? that describe basic
notions of RWL, Section ?? summarizes the rewriting modulo equational theo-
ries defined in Maude and provides a convenient trace instrumentation technique
that facilitates the stepwise inspection of Maude computations. Section ?? for-
malizes trace inspection as a semantics-based procedure that is parameterized
by the criterion for the inspection. Section ?? formalizes three different explo-
ration techniques that are mechanically obtained as an instance of the generic
scheme: 1) an interactive program stepper that allows rewriting logic theories
to be stepwisely animated; 2) a partial stepper that is able to work with par-
tial inputs; and 3) an automated, forward slicing technique that is suitable for
analyzing complex, textually-large system computations by filtering out the ir-
relevant data that do not derive from some selected terms of interest. The Anima
tool is described in Section ??, and Section ?? concludes.

4

2 Preliminaries

Let us recall some important notions that are relevant to this work. We as-
sume some basic knowledge of term rewriting [?] and Rewriting Logic [?]. Some
familiarity with the Maude language [?] is also required.

We consider an order-sorted signature Σ, with a finite poset of sorts (S,<)
that models the usual subsort relation [?]. We assume an S-sorted family
V = {Vs}s∈S of disjoint variable sets. τ(Σ,V)s and τ(Σ)s are the sets of terms
and ground terms of sort s, respectively. We write τ(Σ,V) and τ(Σ) for the cor-
responding term algebras. The set of variables that occur in a term t is denoted
by Var(t). In order to simplify the presentation, we often disregard sorts when
no confusion can arise.

A position w in a term t is represented by a sequence of natural numbers that
addresses a subterm of t (Λ denotes the empty sequence, i.e., the root position).
By notation w1.w2, we denote the concatenation of positions (sequences) w1 and
w2. Positions are ordered by the prefix ordering; that is, given the positions w1

and w2, w1 ≤ w2 if there exists a position u such that w1.u = w2.
Given a term t, we let Pos(t) denote the set of positions of t. By t|w, we

denote the subterm of t at position w, and t[s]w specifies the result of replacing
the subterm t|w by the term s.

A substitution σ ≡ {x1/t1, x2/t2, . . . , xn/tn} is a mapping from the set of
variables V to the set of terms τ(Σ,V) which is equal to the identity almost
everywhere except over a set of variables {x1, . . . , xn}. The domain of σ is the
set Dom(σ) = {x ∈ V | xσ 6= x}. By id we denote the identity substitution. The
application of a substitution σ to a term t, denoted tσ, is defined by induction
on the structure of terms:

tσ =

{
xσ if t = x, x ∈ V
f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn), n ≥ 0

Given two terms s and t, a substitution σ is the matcher of t in s, if sσ = t.
The term t is an instance of the term s, iff there exists a matcher σ of t in s.
By matchs(t), we denote the function that returns a matcher of t in s if such a
matcher exists.

A labelled equation (or simply equation) is an expression of the form [l] :
λ = ρ, where λ, ρ ∈ τ(Σ,V), V ar(ρ) ⊆ V ar(λ), and l is a label, i.e., a name
that identifies the equation. A labelled rewrite rule (or simply rewrite rule) is
an expression of the form [l] : λ ⇒ ρ, where λ, ρ ∈ τ(Σ,V), V ar(ρ) ⊆ V ar(λ),
and l is a label. When no confusion can arise, rule and equation labels are often
omitted. The term λ (resp., ρ) is called left-hand side (resp. right-hand side) of
the rule λ⇒ ρ (resp. equation λ = ρ).

A Term Rewriting System (TRS for short) R is a finite set of rewrite rules.
We formalize the rewrite relation →R w.r.t. a TRS R as follows. A rewrite step
is the application of a rewrite rule to a term t that replaces a redex (reducible
expression) of t by its contracted version, or contractum. Formally, a term t

rewrites to a term t′ (in symbols t
r,σ,w→R t′) iff there exists a rewrite rule [r] :

5

(λ⇒ ρ) ∈ R, a substitution σ, and a position w of t such that the redex t|w = λσ
and t′ = t[ρσ]w.

3 Rewriting Modulo Equational Theories

Roughly speaking, a rewriting logic theory [20] seamlessly combines a term
rewriting system with an equational theory that may include equations and ax-
ioms (i.e., algebraic laws such as commutativity, associativity, and unity) so that
rewrite steps are applied modulo the equations and axioms. Within this frame-
work, the system states are typically represented as elements of an algebraic data
type that is specified by the equational theory, while the system computations
are modeled via the rewrite rules, which describe transitions between states.

More formally, an order-sorted equational theory is a pair (Σ,E), where Σ is
an order-sorted signature, E = ∆∪B with ∆ a collection of (oriented) equations,
and B a collection of equational axioms (i.e., algebraic laws such as associativity,
commutativity, and unity) that can be associated with any binary operator ofΣ1.
The equational theory (Σ,E) induces a congruence relation on the term algebra
τ(Σ,V), which is denoted by =E . A rewrite theory is a triple R = (Σ,∆∪B,R),
where (Σ,∆ ∪B) is an order-sorted equational theory, and R is a TRS.

Example 1. The following rewrite theory, encoded in Maude, specifies a buggy
version of the fault-tolerant client-server communication protocol of [?].
mod CLIENT-SERVER-TRANSF is inc NAT .

sorts Content State Msg Cli Serv Host
Data CliName ServName Question Answer .

subsorts Msg Cli Serv < State .
subsorts CliName ServName < Host .
subsorts Nat < Question Answer < Data .

ops Srv-A Srv-B : -> ServName .
ops Cli-A Cli-B : -> CliName .
op null : -> State .
op _&_ : State State -> State [assoc comm

id: null] .
op _<-_ : Host Content -> Msg .
op {_,_} : Host Data -> Content .
op [_,_,_,_] : CliName ServName

Question Answer -> Cli .
op na : -> Answer .
op [_] : ServName -> Serv .
op f : ServName CliName Question -> Answer .

var C S H : Host .
var Q : Question .
var A : Answer .
var D : Data .
var CNT : Content .

eq [inc] : f(S, C, Q) = (Q + 1) .

rl [req] : [C, S, Q, na] =>
[C, S, Q, na] &
S <- {C, Q} .

rl [reply] : S <- {C, Q} & [S] =>
[S] &
C <- {S, f(S, C, Q)} .

rl [rec] : C <- {S, D} &
[C, S, Q, A] =>
[C, S, Q, A] .

rl [dupl] : (H <- CNT) =>
(H <- CNT) & (H <- CNT) .

rl [loss] : (H <- CNT) => null .
endm

The specification models an environment where several clients and servers
interact. Each server can serve many clients. However, for the sake of simplicity,
we assume that each client communicates with a single server.

The names of clients and servers belong to the sorts CliName and ServName,
respectively. Clients are represented as 4-tuples of the form [C, S, Q, A], where
C is the client’s name, S is the name of the server it wants to communicate with,

1 Equational specifications in Maude can be theories in membership equational logic,
which may include conditional membership axioms not addressed in this paper.

6

Q is a natural number that identifies a client request, and D is either a natural
number that represents the server response, or the constant value na (not avail-
able) when the response has not yet been received. Servers are stateless and are
represented as structures [S], with S being the server’s name. All messages are
represented as pairs of the form H <- CNT, where H is either the client or server
host name, and CNT stands for the message contents. These contents are pairs
{H,D}, with H being the host’s name and D being a data value that represents
either a request or a response.

The server S uses a function f (only known to the server itself) that takes
a question Q from client C as input. This function is defined by means of the
equation inc, which specifies that the call f(S, C, Q) computes Q + 1.

Program states are formalized as a soup (multiset) of clients, servers, and
messages, whereas the system behavior is formalized through five rewrite rules
that model a faulty communication environment in which messages can arrive
out of order, can be duplicated, and can be lost. Specifically, the rule req allows
a client C to send a message with request Q to the server S. The rule reply

lets the server S consume the client request Q and send a response message
that is computed by means of the function f. The rule rec specifies the client
reception of a server response D that should be stored in the client data structure.
However, the right-hand side [C, S, Q, A] of the rule rec includes an intentional,
barely perceptible bug that does not let the client structure be correctly updated
with the incoming response D. The correct right-hand side should be [C, S, Q, D].
Finally, the rules dupl and loss model the faulty environment and have the
obvious meaning: messages can either be duplicated or lost.

Given a rewrite theory (Σ,E,R), with E = ∆ ∪B, the rewriting modulo E
relation (in symbols, →R/E) can be defined by lifting the usual rewrite relation
on terms →R [?] to the E-congruence classes [t]E on the term algebra τ(Σ,V)
that are induced by =E [?]; that is, [t]E is the class of all terms that are equal
to t modulo E. Hence the rewrite relation →R/E is defined as =E ◦ →R ◦ =E .
Unfortunately, →R/E is, in general, undecidable since a rewrite step t →R/E t′

involves searching through the possibly infinite equivalence classes [t]E and [t′]E .

The exploration technique formalized in this work is formulated by consid-
ering the precise way in which Maude proves the rewrite steps modulo an equa-
tional theory E = ∆∪B (see Section 5.2 in [?]). Actually, the Maude interpreter
implements rewriting modulo E by means of two much simpler relations, namely
→∆,B and →R,B . These allow rewrite rules and equations to be intermixed in
the rewriting process by simply using an algorithm of matching modulo B.

Roughly speaking, the relation→∆,B uses the equations of ∆ (oriented from
left to right) as simplification rules: thus, for any term t, by repeatedly apply-
ing the equations as simplification rules, we eventually reach a normalized term
t↓∆,B to which no further equations can be applied. The term t↓∆,B is called a
canonical form of t w.r.t. ∆ modulo B. On the other hand, the relation →R,B

implements rewriting with the rules of R, which might be non-terminating and
non-confluent, whereas ∆ is required to be terminating and Church-Rosser mod-

7

ulo B in order to guarantee the existence and unicity (modulo B) of a canonical
form w.r.t. ∆ for any term [?].

Formally, →R,B and →∆,B are defined as follows: given a rewrite rule [r] :
(λ ⇒ ρ) ∈ R (resp., an equation [e] : (λ = ρ) ∈ ∆), a substitution σ, a term

t, and a position w of t, t
r,σ,w→R,B t′ (resp., t

e,σ,w→∆,B t′) iff λσ =B t|w and
t′ = t[ρσ]w. When no confusion can arise, we simply write t →R,B t′ (resp.

t→∆,Bt
′) instead of t

r,σ,w→R,B t′ (resp. t
e,σ,w→∆,B t′).

Under appropriate conditions on the rewrite theory, a rewrite step s→R/E t
modulo E on a term s can be implemented without loss of completeness by
applying the following rewrite strategy [?]:

1. Equational simplification of s in ∆ modulo B, that is, reduce s using
→∆,B until the canonical form w.r.t. ∆ modulo B (s ↓∆,B) is reached;

2. Rewrite (s ↓∆,B) in R modulo B to t′ using →R,B , where t′ ∈ [t]E .

A computation (trace) C for s0 in the rewrite theory (Σ,∆ ∪ B,R) is then
deployed as the (possibly infinite) rewrite sequence

s0 →∗∆,B s0↓∆,B →R,B s1 →∗∆,B s1↓∆,B→R,B . . .

that interleaves →∆,B rewrite steps and →R,B rewrite steps following the strat-
egy mentioned above. Note that, following this strategy, after each rewriting step
using→R,B , generally the resulting term si, i = 1, . . . , n, is not in canonical nor-
mal form and is thus normalized before the subsequent rewrite step using →R,B

is performed. Also in the precise strategy adopted by Maude, the last term of a
finite computation is finally normalized before the result is delivered.

Therefore, any computation can be interpreted as a sequence of juxtaposed
→R,B and →∗∆,B transitions, with an additional equational simplification →∗∆,B
(if needed) at the beginning of the computation, as depicted below.

︷ ︸︸ ︷
s0 →∗∆,B s0↓∆,B →R,B s1 →∗∆,B s1↓∆,B →R,B s2 →∗∆,B s2↓∆,B . . .︸ ︷︷ ︸

We define a Maude step from a given term s as any of the sequences s→∗∆,B
s↓∆,B→R,B t→∗∆,B t↓∆,B that head the non-deterministic Maude computations
for s. Note that, for a canonical form s, a Maude step for s boils down to
s →R,B t→∗∆,B t↓∆,B t. We define mS(s) as the set of all such non-deterministic
Maude steps stemming from s.

3.1 Instrumented Computations

In this section, we introduce an auxiliary technique for instrumenting computa-
tion traces. The instrumentation allows the relevant information of the rewrite
steps, such as the selected redex and the contractum produced by the step, to
be traced despite the fact that terms are rewritten modulo equational axioms

8

that may cause their components to be implicitly reordered. Given a computa-
tion C, let us show how C can be expanded into an instrumented computation T
in which each application of the matching modulo B algorithm that is used in
→R,B-steps and→∆,B-steps is explicitly mimicked by the specific application of
a bogus equational axiom, which is oriented from left to right and then applied
as a rewrite rule in the standard way.

Typically hidden inside the B-matching algorithms, some pertinent term
transformations allow terms that contain operators obeying equational axioms to
be rewritten into supportive B-normal forms that facilitate the matching modulo
B. In the case of AC-theories, these transformations allow terms to be reordered
and correctly parenthesized in order to enable subsequent rewrite steps. Basi-
cally, this is achieved by producing a single, auxiliary representative of their AC
congruence class (i.e., the AC-normal form) [?]. An AC-normal form is typically
generated by replacing nested occurrences of the same AC operator by a flat-
tened argument list under a variadic symbol, sorting these arguments under some
linear ordering and combining equal arguments using multiplicity superscripts
[?]. For example, the congruence class containing f(f(α, f(β, α)), f(f(γ, β), β))
where f is an AC symbol and subterms α, β and γ belong to alien theories
might be represented by f∗(α2, β3, γ), where f∗ is a variadic symbol that re-
places nested occurrences of f . A more formal account of this transformation is
given in [?].

As for purely associative theories, we can get an A-normal form by just
flattening nested function symbol occurrences without sorting the arguments.
This case has practical importance because it corresponds to lists. C-normal
forms are just obtained by properly ordering the arguments of a commutative
binary operator. Finally, for function symbols that satisfy the unit axiom U, the
identity element of U is not included in the U-normal form, and variables under
a U symbol can always be assigned the identity element through U-matching [?].

Then, rewriting modulo B in Maude proceeds by using the special form of
matching called B-matching on the internal representation of terms as B-normal
forms, where B may contain, among others, any combination of associativity,
commutativity, and unity axioms for different binary operators. Moreover, in a
Maude step, all terms in the sequence are shown in B-normal form (without
multiplicity superscripts).

In the following, we discuss how we can simulate B-matching in our frame-
work by means of specific “fake” axioms that mimick the B-matching transfor-
mation of terms that occur internally in Maude. This allows these transforma-
tions to be unhidden and explicitly revealed in the output trace.

Example 2. Consider a binary AC operator f together with a simple, standard
lexicographic ordering over constant symbols. Given the term f(b, f(f(b, a), c)),
let us reveal how this term matches modulo AC the left-hand side of the rule
[r] : f(f(x, y), f(z, x))⇒ x with AC-matching substitutions {x/b, y/a, z/c} and
{x/b, y/c, z/a}. For the first solution, this is mimicked by the transformation se-

quence f(b, f(f(b, a), c))
toACnf−→ f∗(a, b2, c)

fromACnf−→ f(f(b, a), f(c, b)), where 1) the
first step corresponds to a term transformation that obtains the AC-normal form

9

[Srv-A] & [Cli-A,Srv-A,7,na]
& [Cli-B,Srv-A,17,na] & Srv-A
<- {Cli-A,7}

S0

[Srv-A] & Cli-A <- {Srv-A,f(
Srv-A,Cli-A,7)} & [Cli-A,Srv-A,
7,na] & [Cli-B,Srv-A,17,na]

S4 toACnf

rl: reply

rl: reply

[Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,
17,na] & ([Srv-A] & Cli-A <- {Srv-A,
f(Srv-A,Cli-A,7)})

S3

[Srv-A] & Cli-A <- {Srv-A,f(
Srv-A,Cli-A,7)} & [Cli-A,Srv-A,
7,na] & [Cli-B,Srv-A,17,na]

S4

[Srv-A] & [Cli-A,Srv-A,7,na]
& [Cli-B,Srv-A,17,na] & Srv-A
<- {Cli-A,7}

fromACnf

[Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,
17,na] & ([Srv-A] & Srv-A <- {Cli-
A,7})

S2

[Srv-A] & Srv-A <- {Cli-A,7}
& [Cli-A,Srv-A,7,na] & [Cli-
B,Srv-A,17,na]

S1 toACnf
S0

Figure 1. A rewrite step and its instrumented version

f∗(a, b2, c), and 2) the second step corresponds to the inverse, unflattening trans-
formation that delivers the AC-equivalent term f(f(b, a), f(c, b)) that syntacti-
cally matches the left-hand side of rule r with substitution {x/b, y/a, z/c}. Note

that an alternative unflattening transformation is possible f∗(a, b2, c)
fromACnf−→

f(f(b, c), f(a, b)) that actually delivers the second AC-matcher {x/b, y/c, z/a}.

Obviously, in our implementation, rewriting modulo B proceeds by using the
standard form of B-matching on B-normal forms supported by Maude, where
B-normalization is applied both to the states and to the (left-hand sides and
right-hand sides) of the rules. The artifice described above is only a means to
reveal the term transformations of subterms forced by the step so that any
position can be properly traced across rewriting steps. Let us see an example.

Example 3. Consider the rewrite theory of Example ?? together with the rewrite
step and corresponding instrumentation shown in Figure ??, whereB-normalized
nodes are represented in white, whereas nodes not in B-normal form are shown
shaded in grey. The instrumented version of the rewrite step reveals that the
normalized rule2

rl [reply] : [S] & S <- {C, Q} => [S] & C <- {S, f(S, C, Q)} .

is not actually applied into the term s0, but rather into a B -equivalent term s2

that is chosen to syntactically match the left-hand side of the applied rule. As a
result, all the information we collect from the application of the rule (e.g., the

2 Note that, in this specific case, the B-normalization of the reply rule simply consists
of a reordering of arguments in the left-hand side of the rule. Given any program
rule, when no confusion can arise we always use the same label for the original rule
and for the B-normalized version of the rule that is internally used by Maude.

10

position where the rule was applied) corresponds to the s1, s2, and s3 states,
which are omitted in the non-instrumented version of the rewrite step.

Therefore, any given instrumented computation consists of a sequence of
rewrite steps using the equations (→∆), rewrite rules (→R), equational axioms,
and (internal) B-matching transformations (→B). More precisely, each rewrite

step s
r,σ,w→R,B t (resp., s

e,σ,w→∆,B t) is broken down into a rewrite sequence

s →∗B s′
r,σ,w→R,∅ t

′ →∗B t (resp., s →∗B s′
e,σ,w→∆,∅ t

′ →∗B t), where s′ =B s
and s′ syntactically matches the left-hand side of the equation e or rule r that
is applied in the considered rewrite step. We define the rewrite relation →K

as →R ∪ →∆ ∪ →B . By instrument(C) we denote a function that takes a
computation C and delivers its instrumented counterpart.

Example 4. Consider the rewrite theory of Example ?? together with the fol-
lowing computation C that consists of a single Maude step (note that the last
term is normalized):

C = [Srv-A] & Cli-A <- {Srv-A, f(Srv-A, Cli-A, 7)}
& [Cli-A, Srv-A, 7, na]

inc−→∆,B

[Srv-A] & Cli-A <- {Srv-A, 8} & [Cli-A, Srv-A, 7, na]
rec−→R,B

[Srv-A] & [Cli-A, Srv-A, 7 , na]

The corresponding instrumented computation T , produced by instrument(C),
is given by suitably parenthesizing and reordering the arguments of the second
term by applying ACU-matching transformations for the operator & .

These internal transformations allow the rec rule to be applied by syntacti-
cally matching the third term of T within its left-hand side.

T = [Srv-A] & Cli-A <- {Srv-A, f(Srv-A, Cli-A, 7)}
& [Cli-A, Srv-A, 7, na]

inc−→∆

[Srv-A] & Cli-A <- {Srv-A, 7+1}
& [Cli-A, Srv-A, 7, na]

builtIn(+)−→∆

[Srv-A] & Cli-A <- {Srv-A, 8} & [Cli-A, Srv-A, 7, na]
fromACUnf−→B

[Srv-A] & (Cli-A <- {Srv-A, 8} & [Cli-A, Srv-A, 7, na])
rec−→R

[Srv-A] & [Cli-A, Srv-A, 7, na]

The second rewrite step of the instrumented trace is simply proven with the
bogus rule:

rl [fromACUnf] : [Srv-A] & Cli-A <- {Srv-A, 8}
& [Cli-A, Srv-A, 7, na] =>

[Srv-A] & (Cli-A <- {Srv-A, 8}
& [Cli-A, Srv-A, 7, na]) .

In order to improve readability, we omit B-matching transformations and
built-in evaluations when displaying Maude steps (unless explicitly stated other-
wise). This is consistent with the strategy adopted by Maude and is the default

11

option in our tool. As described in Section ??, by using the tool Anima, the user
can visualize either the simplified view of a rewrite step or the complete and
detailed instrumented version of the step.

4 Exploring Computation Trees

Given a rewrite theory R, the transition space of all computations in R from
the initial term s can be represented as a computation tree3, TR(s). RWL com-
putation trees are typically large and complex objects to deal with because of
the highly-concurrent, nondeterministic nature of rewrite theories. Also, their
complete generation and inspection are generally not feasible since some of their
branches may be infinite as they encode nonterminating computations.

Example 5. Consider the rewrite theory of Example ?? together with the initial
term [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]. In this case,
the computation tree consists of several infinite computations that start from
the considered initial term and model interactions between clients Cli-A, Cli-B
and server Srv-A. A fragment of the computation tree is depicted in Figure ??
where we only display the equations and rules that have been applied at each
rewrite step, while other information such as the computed substitution and the
rewrite position are omitted in the depicted tree. Also for simplicity, note that
we merge the two edges leading from s1 to the same node s4 with the rules req
and dup, respectively.

Note that the instrumented version of a computation tree TR(s) can be con-
structed from TR(s) by expanding each computation in TR(s) into its corre-
sponding instrumented counterpart as explained in Section ??. Also, it is possi-
ble to switch from the instrumented computation tree to the non-instrumented
one by simply hiding the intermediate B-matching transformations and alge-
braic axiom applications that occur in the instrumented tree. In the sequel, we
let T +

R (s) denote the instrumented computation tree that originates from the
state s.

The rest of this section presents a slicing-based exploration technique that
allows the user to incrementally generate and inspect a portion of the instru-
mented computation tree T +

R (s) by expanding (slices of) its computation states
into their descendants starting from the root node. The exploration is an inter-
active procedure that can be completely controlled by the user, who is free to
choose the computation states to be expanded. Roughly speaking, in our slices
certain subterms of a term are omitted, leaving “holes” that are denoted by
special variable symbols.

3 In order to facilitate trace inspection, computations are visualized as trees, although
they are internally represented by means of more efficient graph-like data structures
that allow common subexpressions to be shared.

12

[Srv-A] & [Cli-A,Srv-A,7,na]
& [Cli-B,Srv-A,17,na]

S0

[Srv-A] & Srv-A <- {Cli-A,7} &
[Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S1 rl: req

[Srv-A] & Srv-A <- {Cli-B,17}
& [Cli-A,Srv-A,7,na] & [Cli-B,
Srv-A,17,na]

S2 rl: req

[Srv-A] & Cli-A <-
{Srv-A,f(Serv-A,Cli-A,
7)} & [Cli-A,Srv-A,7,
na] & [Cli-B,Srv-A,17,
na]

S3 rl: reply

[Srv-A] & Srv-A <-
{Cli-A,7} & Srv-A <-
{Cli-A,7} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S4 rl: req/dupl

[Srv-A] & Srv-A <-
{Cli-A,7} & Srv-A <-
{Cli-B,17} & [Cli-A,
Srv-A,7,na] & [Cli-B
,Srv-A,17,na]

S5 rl: req

[Srv-A] &
[Cli-A,Srv-A,
7,na] & [Cli-
B,Srv-A,17,
na]

S6 rl: loss

[Srv-A] & Cli-A <-
{Srv-A,8} & [Cli-A
,Srv-A,7,na] &
[Cli-B,Srv-A,17,na]

S7 eq: inc

･･
･

･･
･

･･
･

･･
･

･･
･

Figure 2. Computation tree

4.1 Term Slices and Instrumented Computation Slices

A term slice of the term s is a term s• that hides part of the information in s;
that is, the irrelevant data in s that we are not interested in are simply replaced
by special •-variables of appropriate sort, denoted by •i, with i = 0, 1, 2,
Given a term slice s•, a meaningful position p of s• is a position p ∈ Pos(s•)
such that s•|p 6= •i, for all i = 0, 1,

By MPos(s•), we denote the set that contains all the meaningful positions
of s•. Symbols that occur at meaningful positions of a term slice are called
meaningful symbols. Basically, a term slice records just the information the user
wants to observe of a given term.

Example 6. Consider the client-server specification of Example ??. Then, the
term slice [Cli-A, Srv-A, •1, •2] represents any request from client Cli-A

to communicate with server Srv-A where the request and response identification
numbers are irrelevant. For this term slice, the set of meaningful positions is
{Λ, 1, 2}.

The next auxiliary definition formalizes the function Tslice(t, P) that allows
a term slice of t to be constructed w.r.t. a set of positions P of t. The function
Tslice relies on the function fresh• whose invocation returns a (fresh) variable
•i of appropriate sort that is distinct from any previously generated variable •j .

Definition 1 (Term Slice). Let t ∈ τ(Σ,V) be a term and let P be a set
of positions s.t. P ⊆ Pos(t). Then, the term slice Tslice(t, P) of t w.r.t. P is
computed as follows.

13

(frag)
V • = I(U•, U → V) ∧ V • 6= fail

〈U → V →∗ W,S••→∗ U•〉 =⇒ 〈V →∗ W,S••→∗ U••→ V •〉

Figure 3. The inference rule frag of the transition system (Conf ,=⇒).

Tslice(t, P) = recslice(t, P, Λ), where

recslice(t, P, p) =


f(recslice(t1, P, p.1), . . . , recslice(tn, P, p.n))

if t=f(t1, . . . , tn), n ≥ 0, and p ∈ P̄
t if t ∈ V and p ∈ P̄
fresh• otherwise

and P̄ = {u | u ≤ p ∧ p ∈ P} is the prefix closure of P .

Roughly speaking, the function Tslice(t, P) yields a term slice of t w.r.t. a
set of positions P that includes all symbols of t that occur within the paths from
the root of t to any position in P , while each maximal subterm t|p, with p 6∈ P ,
is replaced by means of a freshly generated •-variable.

Example 7. Let t = d(f(g(a, h(b)), c), a) be a term, and let P = {1.1, 1.2}
be a set of positions of t. By applying Definition ??, we get the term slice
t• = Tslice(t, P) = d(f(g(•1, •2), c), •3) and the set of meaningful positions
MPos(t•) = {Λ, 1, 1.1, 1.2}.

Definition 2 (Inspection criterion). An inspection criterion is a function
I(s•, s →K t) that, given a →K-rewrite step s →K t, and a term slice s• of s,
computes a term slice t• of t.

Roughly speaking, inspection criteria allow us to control the information
content conveyed by term slices resulting from the execution of →K-rewrite
steps. It is worth noting that distinct implementations of the inspection criteria
may produce distinct slices of the considered rewrite step. Several examples
of inspection criteria are discussed in Section ??. We assume that the special
value fail is returned by the inspection criterion whenever no slice t• can be
computed by I. Actually, for any sensible criterion I, I(•, s →K t) = fail (i.e.,
no meaningful result can be derived when no relevant information is considered).

Given the instrumented computation T = (s0 →K s1 . . . →K sn), with
n ≥ 1, an instrumented computation slice of T w.r.t. the inspection criterion I
is the sequence T •I = (s•0•→ s•1•→ . . . •→ s•n) that can be generated by sequentially
applying I to the steps that compose T . We often write T • for an instrumented
computation slice T •I when the inspection criterion I is clear from the context.

Let us formalize a calculus to generate instrumented computation slices by
means of a transition system (Conf ,=⇒) [?] where

14

– Conf is a set of configurations of the form 〈T ,F•〉, where T is a an instru-
mented computation and F• is an instrumented computation slice of a prefix
of T ;

– the transition relation =⇒ implements the calculus of instrumented compu-
tation slices and is the smallest relation that satisfies the inference rule frag
given in Figure ??. By =⇒∗, we denote the usual transitive and reflexive
closure of the relation =⇒.

Roughly speaking, the rule frag transforms the configuration 〈U →K V →∗K
W,S••→∗K U•〉 into the configuration 〈V →∗K W,S••→∗ U••→ V •〉 where the
first step U →K V has been consumed and its corresponding slice U••→ V • w.r.t.
I has been added to S••→∗ U•. The rule frag only applies when the inspection
criterion I generates a term slice V • that is not the fail value.

The sequential application of the considered inference rule allows the instru-
mented computation T to be traversed in order to produce the sliced counterpart
T • of T w.r.t. I. More formally,

Definition 3 (Computation slice). Given the instrumented computation T =
(s0 →K s1 →K . . .→K sn), with n ≥ 1, the instrumented computation slice T •
of T w.r.t. the inspection criterion I and term slice s•0 of s0 is defined by the
function Cslice(s•0, T , I) which is defined as follows.

Cslice(s•0, T , I) = if 〈T , s•0〉 =⇒∗ 〈ε, T •〉 then T • else fail

where ε denotes the empty computation. Note that the second component s•0 of
the initial configuration 〈T , s•0〉 matches the sequence S••→∗ U• in rule frag by
taking s•0 for U• and considering a sequence S••→∗ U• consisting of zero steps.

4.2 Instrumented Computation Tree Slices

Instrumented computation tree slices are formally defined as follows.

Definition 4 (Instrumented Computation Tree Slice). Let T +
R (s0) be an

instrumented computation tree for the term s0 in the rewrite theory R = (Σ,∆∪
B,R); let s•0 be a term slice of s0; and let I be an inspection criterion. An
instrumented computation tree slice for s•0 in R w.r.t. I is a tree T +

R,I(s•0)

(simply denoted by T +
R (s•0) when no confusion can arise) such that:

1. the root of T +
R (s•0) is s•0;

2. each branch of T +
R (s•0) is an instrumented computation slice T • w.r.t. I and

s•0 of a computation T in T +
R (s0).

3. for each instrumented computation T in T +
R (s0), there is one, and only one,

instrumented computation slice T • of T in T +
R (s•0).

In the following section, we show how tree slices of a given instrumented
computation tree in R = (Σ,∆∪B,R) can be generated by repeatedly unfolding
the nodes of the original tree.

15

function expand(s, s•,R, I)
1. A = ∅
2. for each M∈ mS(s)
3. M• = Cslice(s•, instrument(M), I)
4. if M• 6= fail then A = A ∪ {M•}
5. end
6. return A
endf

Figure 4. The one-step expand function.

4.3 Exploring the Computation Tree

In our methodology, instrumented computation tree slices are incrementally con-
structed by expanding tree nodes (i.e., term slices), starting from the root node
(i.e., the initial term slice). Formally, given the term s and the term slice s• of
s, the expansion of s in the rewrite theory R = (Σ,∆ ∪B,R) w.r.t. the inspec-
tion criterion I is defined by the function expand(s, s•,R, I) of Figure ?? which
unfolds the term slice s• by deploying and then slicing all the possible instru-
mented Maude computation steps stemming from s that are given by mS(s). In
other words, for each Maude step M = s →∗∆,B s↓∆,B →R,B t →∗∆,B t↓∆,B , we
first compute its instrumented version and then the corresponding instrumented
Maude step slice M• is generated, which is then added to the set of arcs A.

The overall construction methodology for instrumented computation tree
slices is specified by the function explore, defined in Figure ??. Given a rewrite
theory R, a term slice s•0 of the initial term s0, and an inspection criterion
I, the function explore essentially formalizes an interactive procedure that is
driven by the user starting from an elemental tree slice fragment, which only
consists of the sliced root node s•0. The instrumented computation tree slice
T +
R (s•0) is built by choosing, at each loop iteration of the algorithm, the tree

leaf that represents the term slice to be expanded by means of the auxiliary
function pickLeaf (T +

R (s•0)), which allows the user to freely select a leaf node
from the frontier of the current tree T +

R (s•0). Then, T +
R (s•0) is augmented by

calling addPaths(T +
R (s•0), s•, expand(s, s•,R, I)). This function call adds all the

instrumented computation slices w.r.t. I and s• that correspond to the Maude
steps that originate from the term s.

The special value EoE (End of Exploration) is used to terminate the inspec-
tion process: when the function pickLeaf (T +

R (s•0)) is equal to EoE, no term to
be expanded is selected and the exploration terminates delivering (a fragment
of) the computation tree slice T +

R (s•0).

5 Particularizing the Exploration

The methodology given in Section ?? provides a generic scheme for the explo-
ration of (instrumented) computation trees w.r.t. a given inspection criterion I

16

function explore(s0, s
•
0,R, I)

1. T +
R (s•0) = s•0

2. while((s• = pickLeaf (T +
R (s•0))) 6= EoE) do

3. T +
R (s•0) = addPaths(T +

R (s•0), s•, expand(s, s•,R, I))
4. od
5. return T +

R (s•0)
endf

Figure 5. The interactive explore function.

that must be selected or provided by the user. In this section, we show three
implementations of the criterion I that produce three distinct exploration strate-
gies. In the first case, the considered criterion allows an interactive program step-
per to be derived in which rewriting logic theories can be stepwisely animated. In
the second case, we implement a partial stepper that allows computations with
partial inputs to be stepped. Finally, in the last instantiation of the framework,
the chosen inspection criterion implements an automated, forward slicing tech-
nique that simplifies the traces and allows relevant control and data information
to be easily identified within the computation trees.

5.1 Interactive Stepper

Given an instrumented computation tree T +
R (s0) for an initial term s0 and a

rewrite theory R, the stepwise inspection of the computation tree can be directly
implemented by instantiating the exploration scheme of Section ?? with the basic

inspection criterion Istep(s, s
r,σ,w→ K t) = t which simply returns the reduced term

t of the rewrite step s
r,σ,w→ K t.

This way, by starting the exploration from a term slice that corresponds to the
whole initial term s0 (i.e., s•0 = s0), the call explore(s0, s

•
0,R, Istep) generates (a

fragment of) the instrumented computation tree T +
R (s0) whose topology depends

on the program states that the user decides to expand during the exploration
process.

Example 8. Consider the rewrite theory R in Example ?? and the computa-
tion tree in Example ??. Assume the user starts the exploration by calling
explore(s0, s

•
0,R, Istep), with s0 = s•0, which allows all the Maude steps that

stem from the initial term s0 to be expanded w.r.t. the inspection criterion
Istep . This generates the instrumented computation tree fragment T +

R (s0) in
Figure ??.

Now, the user can either quit or carry on with the exploration of nodes s3

and s5, which would result in the instrumented version of the tree fragment that
is shown in Figure ??.

17

[Srv-A] & [Cli-A,Srv-A,7,na]
& [Cli-B,Srv-A,17,na]

S0

[Srv-A] & Srv-A <- {Cli-A,7}
& [Cli-A,Srv-A,7,na] & [Cli-
B,Srv-A,17,na]

S3

- -

rl: req

[Srv-A] & [Cli-B,Srv-A,
17,na] & [Cli-A,Srv-A,7,na]

S1

[Srv-A] & [Cli-B,Srv-A,17,na]
& Srv-A <- {Cli-A,7} & [Cli-
A,Srv-A,7,na]

S2

[Srv-A] & [Cli-A,Srv-A,7,na]
& Srv-A <- {Cli-B,17} &
[Cli-B, Srv-A,17,na]

S4

[Srv-A] & Srv-A <- {Cli-B,17}
& [Cli-A,Srv-A,7,na] & [Cli-
B, Srv-A,17,na]

S5

fromACnf

toACnf

rl: req

toACnf

Figure 6. Inspection of the state s0 w.r.t. Istep

5.2 Partial Stepper

The computation states produced by the program stepper defined above do not
include •-variables. However, sometimes it may be useful to work with partial
information and hence with term slices that “abstract some data” by using •-
variables. This may help the user focus on those parts of the program state that
he/she wants to observe, while disregarding pointless information or unwanted
rewrite steps.

We define the following inspection criterion

Ipstep(s•, s
r,σ,w→K t) = if s•

r,σ•,w→K t• then t• else fail

Roughly speaking, given a rewrite step s
r,σ,w→K t, the criterion Ipstep returns a

term slice t• of the reduced term t, whenever s• can be rewritten to t• using
the very same rule r at the same position w with the corresponding matching
substitution σ•.

The particularization of the exploration scheme given by the criterion Ipstep
allows an interactive, partial stepper to be derived, in which the user can work
with state information of interest, thereby producing more compact and focused
representations of the visited slices of the (instrumented) computation trees.

Example 9. Consider the computation tree of Example ?? whose initial term
is s0 = [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]. Let s•0 =
(•1 & [Cli-A,Srv-A,7,na] & •2) be a term slice of s0 where only client Cli-A
data structure is considered of interest. Assume that the inspection criterion
Ipstep is used to generate computation tree slice fragments. The computation
tree slice fragment shown in Figure ?? is obtained by first expanding the node
s•0 into s•1, and then the node s•1 into s•2, s•3. The expanded nodes have been
highlighted in the figure. Note that the adopted partial stepping strategy allows a
simplified view of (a part of) the considered computation tree to be constructed.
Specifically, the generated computation tree slice fragment isolates client Cli-A’s
behavior. More precisely, given the input encoded in the initial term slice s•0, the

18

･1 & [Cli-A,Srv-A,7,na] & ･2
S0
･

rl: req

･1 & ･2 & Srv-A <- {Cli-A,7} & [Cli-A,Srv-A,7,na]
S1
･

rl: req/dupl

･1 & ･2 & Srv-A <- {Cli-A,7} & Srv-A
<- {Cli-A,7} & [Cli-A,Srv-A,7,na]

S2
･

rl: loss
･1 & ･2 & [Cli-A,Srv-A,7,na]
S3
･

+

+ +

Figure 7. Computation tree slice fragment for s•0 w.r.t. Ipstep

computation can evolve by only applying either the rule req to the Cli-A data
structure, or the rules dupl and loss to Cli-A’s request messages.

In other words, this amounts to saying that a client-server protocol interac-
tion cannot be successfully carried out when the input term does not specify a
sever data structure (in this specific case, [Srv-A] should be included in s•0),
since its presence is essential to fire the reply rule that is in charge of producing
server responses.

5.3 Forward Trace Slicer

Forward trace slicing is a program analysis technique that allows computations
to be simplified w.r.t. a selected slice of their initial term. More precisely, given
an instrumented computation T with initial term s0 and a term slice s•0 of s0,
forward slicing yields a simplified view T • of T in which each term s of the
original instrumented computation is replaced by the corresponding term slice
s• that only records the information that depends on the meaningful symbols of
s•0, while irrelevant data are simply pruned away.

In the following, we define an inspection criterion Islice that implements the

forward slicing for a single rewrite step. Given a rewrite step µ = (s
r,σ,w→ K

t) (with r = λ ⇒ ρ) and a term slice s• of the term s, it delivers the term
slice t• that results from “rewriting” s• at position w with the rule r and a
suitable substitution that abstracts any irrelevant information of the computed
substitution σ with •-variables. A precise formalization of the inspection criterion
Islice is provided by the algorithm in Figure ??.

Note that, by adopting the inspection criterion Islice , the exploration scheme
of Section ?? automatically turns into an interactive, forward trace slicer that
expands computation states using the slicing methodology encoded into the in-
spection criterion Islice . In other words, given an instrumented computation tree
T +
R (s0) and a user-defined term slice s•0 of the initial term s0, any computation

slice s•0 •→ s•1 . . . •→ s•n in the tree T +
R (s•0), which is computed by the explore func-

tion, is the sliced counterpart of an instrumented computation s0 → s1 . . .→ sn
(w.r.t. the term slice s•0) in the instrumented computation tree T +

R (s0).
Roughly speaking, the inspection criterion Islice works as follows. When the

rewrite step µ occurs at a position w that is not a meaningful position of s•

19

function Islice(s•, s
λ⇒ρ,σ,w→K t)

1. if w ∈MPos(s•) then
2. θ = {x/fresh• | x ∈ V ar(λ)}
3. λ• = Tslice(λ,MPos(s•|w) ∩ Pos(λ))

4. ψλ = 〈|θ,matchλ•(s•|w)|〉
5. t• = s•[ρψλ]w
6. else
7. t• = fail
8. fi
9. return t•

endf

Figure 8. Inspection criterion that models the forward slicing of a rewrite step

(in symbols, w 6∈ MPos(s•)), trivially µ does not contribute to producing the
meaningful symbols of t•. This amounts to saying that no relevant information
descends from the term slice s• and, hence, the function returns the fail value.

On the other hand, when w ∈ MPos(s•), the computation of t• involves
a more in-depth analysis of the rewrite step, which is based on a refinement
process that allows the descendants of s• in t• to be computed.

The following definition is auxiliary and is used to update (override) a substi-
tution σ1 with the substitution σ2, where both σ1 and σ2 may contain •-variables.

Definition 5 (substitution update). Let σ1 and σ2 be two substitutions,. The
update of σ1 w.r.t. σ2 (in symbols 〈|σ1, σ2|〉) is defined by 〈|σ1, σ2|〉 = σ|̀Dom(σ1),
where the substitution σ is given by

xσ =

{
xσ2 if x ∈ Dom(σ1) ∩Dom(σ2)
xσ1 otherwise

The main idea behind the operator 〈| , |〉 is that, in order to compute a
rewrite step from the term slice s• using the rule r, all variables in r are näıvely
assumed to be initially bound to •-variables that model irrelevant data, and the
bindings are incrementally updated as we apply the rule r.

More specifically, given the rewrite step µ : s
r,σ,w→ t, with r = λ⇒ ρ, and the

term slice s•, we initially define the substitution θ = {x/fresh• | x ∈ V ar(λ)}
that binds each variable in λ ⇒ ρ to a fresh •-variable. This corresponds to
assuming that all the information in µ, which is introduced by the substitution
σ, can be marked as irrelevant. Then, θ is refined as follows.

We first compute the term slice λ• = Tslice(λ,MPos(s•|w) ∩ Pos(λ)) that
filters the meaningful symbols of the left-hand side λ of the rule r w.r.t. the set
of meaningful positions of s•|w. Then, by matching s•|w into λ•, we generate a

matcher matchλ•(s•|w) that extracts the meaningful symbols from s•|w. Such a

matcher is then used to compute ψλ, which is an update of θ w.r.t. matchλ•(s•|w)
containing the meaningful information to be propagated across the rewrite step.
Finally, the term slice t• is computed from s• by replacing its subterm at position

20

w with the instance ρψλ of the right-hand side of the applied rule r. This way,
we can transfer all the relevant information marked in s• into the slice of the
resulting term t•.

Example 10. Consider the rewrite theory in Example ?? together with the fol-
lowing rewrite step

s
req→ t : [Srv-A] & [Cli-A,Srv-A,7,na]

req→
[Srv-A] & Srv-A <- {Cli-A,7} & [Cli-A,Srv-A,7,na]

that applies (at position w = 2) the rule req: λ⇒ ρ, with λ =[C,S,Q,na] and
ρ = [C, S, Q, na] & S <- {C, Q}.

Let s• = •1 & [Cli-A,•2,7, •3] be a term slice of s. The execution of the
inspection criterion Islice(s•, s

req→ t) that computes a term slice t• of t proceeds
as follows.

First, the substitution θ is initialized to {C/•4, S/•5, Q/•6} and the slice λ•

of λ is computed w.r.t. the meaningful positions of s•|Λ.2 that also appear in λ.

Specifically, λ• = Tslice(λ, {Λ, 1, 3}) = [C,•7,Q,•8]. Then, the update ψλ of θ
is calculated. More precisely, matchλ•(s•|w) = match[C,•7,Q,•8]([Cli-A,•2,7,•3])
= {C/Cli-A, •7/•2, Q/7, •8/•3} and ψλ = 〈|θ,matchλ•(s•|w)|〉 = {C/Cli-A, S/•5,
Q/7}. Roughly speaking, the computed update ψλ refines θ by replacing the
uninformed bindings C/•4 and Q/•6 with C/Cli-A and Q/7, respectively. Fi-

nally, Islice(s•, s
req→ t) returns the term slice t• = s•[ρψλ]2 = •1 & [Cli-A, •5

,7,na] & •5 <-{Cli-A,7}.

The following example describes the interactive construction process of a
fragment of an instrumented computation tree slice based on the Islice criterion.
To improve its readability, we omit the transformation steps that are required
to mimick the behavior of the Maude B-matching algorithm. The example also
demonstrates how forward trace slicing can be fruitfully employed to debug RWL
specifications.

Example 11. Consider the computation tree of Example ?? whose initial term
is s0 = [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na]. Let s•0 =
(•1 & [Cli-A,•2,7, •3] & •4) be a term slice of s0 where only request 7 of
client Cli-A is considered of interest. We get the computation tree slice fragment
shown in Figure ?? by first expanding (w.r.t. the inspection criterion Islice) the
node s•0 into s•1; the node s•1 into s•2, s•3 (which is automatically normalized to
s•5 using the equation inc), and s•4; and finally the node s•5 into {s•6 . . . s•9}. The
branch leading from s•0 to s•9 is highlighted.

Note that the intermediate node s•3 does not have to be expanded since it is
an intermediate node generated by the expansion of node s•1 that is automatically
normalized into s•5. Indeed, the computation slice generated by expanding the

node s•1 is s•1
reply
•→ s•3

inc•→ s•5, which corresponds to the forward slicing of a Maude
step from s1.

The slicing process automatically computes a computation tree slice fragment
that represents a partial view of the protocol interactions from client Cli-A’s

21

･1 & [Cli-A,･2,7,･3] & ･4
S0
･

rl: req

･1 & ･2 <- {Cli-A,7} & [Cli-A,･2,7,na] & ･4
S1
･

rl: req/dupl
･1 & ･2 <- {Cli-A,7} & ･2 <-
{Cli-A,7} & [Cli-A,･2,7,na] & ･4

S2
･ rl: reply

[･2] & Cli-A <- {･2,f(･2,Cli-A
,7)} & [Cli-A, ･2,7,na] & ･4

S3
･

rl: loss
･1 & [Cli-A,･2,7,na] & ･4
S4
･

[･2] & Cli-A <- {･2,8} & [Cli-A, ･2,7,na] & ･4
S5
･

[･2] & ･2 <- {Cli-A,7} & Cli-A
<- {･2,8} & [Cli-A,･2,7,na] & ･4

S6･ rl: req
[･2] & Cli-A <- {･2,8} & Cli-A
<- {･2,8} & [Cli-A,･2,7,na] & ･4

S7
･

rl: dupl
[･2] & [Cli-A,
･2,7,na] & ･4

S8
･

rl: loss
[･2] & [Cli-A,
･2,7,na] & ･4

S9
･ rl: rec

+

+ + +

+

+ + + +

eq: inc

Figure 9. Computation tree slice fragment for •1 & [Cli-A,•2,7, •3] & •4 w.r.t.
Islice

perspective. Actually, irrelevant information is hidden and rules applied on irrel-
evant positions are directly ignored, which allows a simplified slice to be obtained
thus favoring its inspection for debugging and analysis purposes. In fact, if we
observe the highlighted branch in Figure ??, we can easily detect the wrong
behavior of the rule rec. Specifically, by inspecting the term slice s•9 = ([•2] &
[Cli-A,•2, 7,na] & •4), which is generated by an application of the rule rec,
we immediately realize that response 8 produced in the parent node s•5 has not
been stored in s•9, which clearly reveals the bug in the applied rule rec.

Finally, it is worth noting how the forward trace slicer implemented via the
criterion Islice differs from the partial stepper given at the end of Section ??.

Given a term slice s• and a rewrite step s
r,σ,w→K t, Islice always yields a slice t•

when the rewrite step occurs at a meaningful position, whereas the inspection
criterion Ipstep encoded in the partial stepper may fail to provide a computed
slice t• when s• does not rewrite to t•, which allows the user to identify those
states that can be reached, from any instance of the sliced input state, by stan-
dard rewriting.

Example 12. Consider the computation tree of Example ?? whose initial term is
s0 = [Srv-A] & [Cli-A,Srv-A,7,na] & [Cli-B,Srv-A,17,na], and the ini-
tial term slice s•0 = (•1 & [Cli-A,•2,7, •3] & •4) of Example ??. Then, no
expansion of node s•0 is possible using the inspection criterion Ipstep , since the
input encoded in s•0 does not suffice to enable the application of any protocol
rule, whereas the forward slicing strategy specified by the criterion Islice allows
the computation tree fragment in Figure ?? to be generated. Nevertheless, tree
fragments computed by forward slicing do not generally describe valid compu-
tations, that is, computations that can be proven for any instance of the sliced
input state.

22

Database

Anima Client

JAX-RS API

Initial State Rewriting Logic
Specification

Animation

Anima Web Service

Anima Core

Figure 10. Anima architecture.

6 Implementation
The exploration methodology developed in this paper has been implemented in
the Anima tool, which is publicly available at http://safe-tools.dsic.upv.

es/anima/. The underlying rewriting machinery of Anima is written in Maude
and consists of about 250 Maude function definitions (approximately 2000 lines
of source code). Anima also comes with an intuitive Web user interface based on
AJAX technology, which allows users to graphically animate their programs and
display fragments of computation trees. The core exploration engine is specified
as a RESTful Web service by means of the Jersey JAX-RS API.

The architecture of Anima is depicted in Figure ?? and consists of five main
components: Anima Client, JAX-RS API, Anima Web Service, Database, and
Anima Core. The Anima Client is purely implemented in HTML5 Canvas4 and
JavaScript. It represents the front-end layer of our tool and provides an intu-
itive, versatile Web user interface, which interacts with the Anima Web Service
to invoke the capabilities of the Anima Core and save partial results in the Mon-
goDB Database component, which is a scalable, high-performance, open source
NoSQL database that perfectly fits on our needs.

Figure ?? displays a screenshot that shows the Anima tool at work on the case
study that is described in Example ??. The figure depicts (a fragment of) the
computation tree slice for this example program and several capabilities offered
by the tool.

These are the main features provided by Anima:

1. Inspection strategies. The tool implements the three inspection strategies
described in Section ??. As shown in Figure ??, the user can select the
desired strategy by using the selector provided in the option pane.

2. Select meaningful symbols for slicing. State slices can be specified by high-
lighting with the mouse the state symbols of interest directly on the tree.

3. Expand/Fold program states. The user can expand or fold states of the tree by
double-clicking or right-clicking on them with the mouse and then selecting

4 For the sake of efficiency, browsers limit the maximum dimensions of a canvas object
(eg., Chrome limits a canvas to a maximum width or height of 8192 pixels). Exceeding
these limits may cause the inability to properly display the current exploration.

http://safe-tools.dsic.upv.es/anima/
http://safe-tools.dsic.upv.es/anima/

23

Figure 11. Anima at work.

either the Expand Node option or Fold Node option that are offered in the
contextual menu. For instance, in Figure ??, a state slice on the frontier
of the computed tree slice fragment has been selected and is ready to be
expanded through the Expand Node option that will add all the possible slices
of the Maude steps to the tree starting from the selected node. The whole
branch leading from the root to the selected node of the tree is highlighted.
Common actions like dragging, zooming, and navigating the tree are allowed.
Also, when a tree node is selected, the position of the tree on the screen is
automatically rearranged to keep the chosen node at the center of the scene.

4. Display instrumented trace. The user can freely choose to display either a
default, simplified view of a rewrite step (where only the applied rewrite rule
is displayed), or the complete and detailed sequence of steps in the corre-
sponding instrumented trace that simulates the step. This facility can be
locally accessed by clicking in the +/− symbols that respectively adorn the
standard/instrumented view of the rewrite step, or by checking/uncheck-
ing the Instrumented steps option in the Anima option pane for the entire
computation tree.

5. Tree Query mechanism. The search facility illustrated in Figures ?? and
?? implements a pattern language that allows the selected information of

24

Figure 12. Anima search mechanism.

interest to be searched on huge states of complex computation trees. The
user only has to provide a filtering pattern (the query) that specifies the set
of symbols that he/she wants to search for, and then all the states matching
the query are automatically highlighted in the computation tree.

6. Show rewrite step information. Anima facilitates the inspection of any rewrite
step s → t of the computation tree by underlining the differences between
the two states (typically the selected redex of s and its contractum in t). In
the case of a non-instrumented step s →∆,B t (resp. s →R,B t), we cannot
highlight in general the redex and contractum of the step as they might not
exist in s and t because of the matching modulo B that precedes the rewrite
step, and the normalization that occurs after the rewrite step. Actually, recall
that s and t are eventually reordered, augmented with identity elements,
and parenthesised, yielding the B-equivalent terms s′ and t′ that star in an
intermediate rewrite step s′ →∆ t′ (resp., s′ →R t

′). In this case, we underline
the antecedents in s of the reduced redex in s′ (and the descendants in t of
the contractum that appears in t′).

25

Figure 13. Anima trace information.

Furthermore, by clicking on the corresponding edge label of the tree, addi-
tional transition information is also displayed in the transition information
window that shows up at the top, including the computed substitution and
the normalized rule/equation applied.

7. Show trace information. By right-clicking a tree node and by selecting the
Show trace information option, the user can obtain the complete information
of the execution trace from the root to the selected node. This information
is presented in a table that includes the labels of the rules and equations
applied, the terms that result from the application of each rule or equation
and the computed trace slice (if applicable) as shown in Figure ??. Moreover,
Anima offers the possibility to export the displayed trace into meta-level
representation, so the user can easily transfer the selected trace to any other
Maude trace analyzer tool like, for example, iJulienne [?].

8. Show statistics. Finally, detailed statistics of the current computation tree
can be accessed by selecting the Statistics option that appears in the contex-
tual menu for any node in the tree. This shows, among others, the number
of terms (normalized or not) that are reachable from this node, its number
of children and depth in the tree, and the global size of the computation tree.

7 Conclusions

The analysis of execution traces plays a fundamental role in many program anal-
ysis approaches, such as runtime verification, monitoring, testing, and specifica-
tion mining. We have presented a parametrized exploration technique that can
be applied to the inspection of rewriting logic computations and that can work
in different ways. Three instances of the parameterized exploration scheme (an
incremental stepper, an incremental partial stepper, and a forward trace slicer)

26

have been formalized and implemented in the Anima tool, which is a novel pro-
gram animator for RWL. The tool is useful for Maude programmers in two ways.
First, it graphically exemplifies the semantics of the language, allowing the eval-
uation rules to be observed in action. Secondly, it can be used as a debugging
tool, allowing the users to step forward and backward while slicing the trace in
order to validate input data or locate programming mistakes.

As already mentioned, the present version supports the instrumentation of
matching modulo associativity, commutativity, and (left-, right- or two-sided)
unity. Nevertheless, Anima has an extensible design so that instrumentation for
other equational axioms such as idempotency can be easily added in the future.

As future work, we intend to apply our exploration technique to more so-
phisticated rewrite theories that may include membership axioms as well as
conditional rules and equations. Furthermore, we plan to integrate the analysis
capabilities of the backward trace slicer iJulienne [?] in Anima. The idea is to
first apply forward trace slicing to a given computation in order to remove all
the information that does not affect the observed symbols. This procedure may
produce “incorrect” computation slices, that is, computation slices that do not
precise all the concrete input data that are required to generate the relevant
symbols in the output/final state of the computation slice, as seen in Example
??. Hence, backward trace slicing might be applied to the generated computa-
tion slice to enrich it with new input symbols computed as antecedents of the
relevant output with the aim of ensuring the correctness of the slice.

Finally, we envisage to equip Anima with dynamic program slicing techniques
to extract the minimal program slice that is needed to generate any selected
execution trace of the computation tree.

References

1. M. Alpuente, D. Ballis, M. Baggi, and M. Falaschi. A Fold/Unfold Transformation
Framework for Rewrite Theories extended to CCT. In Proc. PEPM 2010, pp.
43–52. ACM, 2010.

2. M. Alpuente, D. Ballis, J. Espert, and D. Romero. Model-checking Web Appli-
cations with Web-TLR. In Proc. ATVA 2010, vol. 6252 of LNCS, pp. 341–346.
Springer-Verlag, 2010.

3. M. Alpuente, D. Ballis, J. Espert, and D. Romero. Backward Trace Slicing for
Rewriting Logic Theories. In Proc. CADE 2011, vol. 6803 of LNCS, pp. 34–48.
Springer-Verlag, 2011.

4. M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. Slicing-Based Trace Analysis
of Rewriting Logic Specifications with iJulienne. In Proc. ESOP 2013, vol. 7792
of LNCS, pp. 121–124. Springer-Verlag, 2013.

5. M. Alpuente, D. Ballis, F. Frechina, and D. Romero. Using Conditional Trace
Slicing for improving Maude programs. Science of Computer Programming, to
appear, 2013.

6. M. Alpuente, D. Ballis, and D. Romero. A Rewriting Logic Approach to the
Formal Specification and Verification of Web applications. Science of Computer
Programming, to appear, 2013.

27

7. M. Baggi, D. Ballis, and M. Falaschi. Quantitative Pathway Logic for Computa-
tional Biology. In Proc. CMSB 2009, vol. 5688 of LNCS, pp. 68–82. Springer-Verlag,
2009.

8. R. Bruni and J. Meseguer. Semantic Foundations for Generalized Rewrite Theories.
Theoretical Computer Science, 360(1-3):386–414, 2006.

9. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Maude Manual (Version 2.6). Technical report, SRI Int’l Computer Science
Laboratory, 2011. Available at: http://maude.cs.uiuc.edu/maude2-manual/.

10. J. Clements, M. Flatt, and M. Felleisen. Modeling an Algebraic Stepper. In Proc.
ESOP 2001, vol. 2028 of LNCS, pp. 320–334. Springer-Verlag, 2001.

11. F. Durán and J. Meseguer. A Maude Coherence Checker Tool for Conditional
Order-Sorted Rewrite Theories. In Proc. WRLA 2010, vol. 6381 of LNCS, pp.
86–103. Springer-Verlag, 2010.

12. S. Eker. Associative-Commutative Matching via Bipartite Graph Matching. The
Computer Journal, 38(5):381–399, 1995.

13. S. Eker. Associative-Commutative Rewriting on Large Terms. In Proc. RTA 2003,
vol. 2706 of LNCS, pp. 14–29. Springer-Verlag, 2003.

14. J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, vol. I, pp. 1–112.
Oxford University Press, 1992.

15. N. Mart́ı-Oliet and J. Meseguer. Rewriting Logic: Roadmap and Bibliography.
Theoretical Computer Science, 285(2):121–154, 2002.

16. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

17. J. Meseguer. The Temporal Logic of Rewriting: A Gentle Introduction. In Concur-
rency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion of
his 65th Birthday, vol. 5065 of LNCS, pp. 354–382. Springer-Verlag, 2008.

18. G. D. Plotkin. The Origins of Structural Operational Semantics. The Journal of
Logic and Algebraic Programming, 60-61(1):3–15, 2004.

19. A. Riesco, A. Verdejo, R. Caballero, and N. Mart́ı-Oliet. Declarative Debugging
of Rewriting Logic Specifications. In Proc. WADT 2008, vol. 5486 of LNCS, pp.
308–325. Springer-Verlag, 2009.

20. A. Riesco, A. Verdejo, and N. Mart́ı-Oliet. Declarative Debugging of Missing
Answers for Maude. In Proc. RTA 2010, vol. 6 of LIPIcs, pp. 277–294, 2010.

21. TeReSe. Term Rewriting Systems. Cambridge University Press, 2003.

http://maude.cs.uiuc.edu/maude2-manual/

