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Abstract— In this paper we propose a method for obtaining an 

analytic model of the battery State-of-Charge (SoC) in wireless 
sensor nodes. The objective is to find simple models that can be 
used to estimate accurately the real battery state and 
consequently the node lifetime. Running the model in the 
network nodes, we can provide the motes with the required 
information to implement applications that can be considered as 
battery-aware. The proposed methodology reduces the 
computational complexity of the model avoiding complicated 
electrochemical simulations and treating the battery as an 
unknown system with an output that can be predicted using 
simple mathematical models. At a first stage, during a setup 
period, the method starts with the measurement of several 
battery parameters under different environmental and 
operational conditions. After that, the method uses the previous 
collected data for building mathematical models, considering the 
linear regression or the multilayer perceptron as the most 
appropriated. Finally, the models are validated experimentally 
with new measures. Results show the suitability of the method 
that produces accurate and simple models, capable of being 
implemented even in low-cost and very constrained real motes.  
 

Index Terms—Batteries modeling, batteries State-of-Charge, 
energy, wireless sensor networks 

I. INTRODUCTION 
IRELESS Sensor Networks (WSN) has become one of 
the most important and most active research topics in 

last years. The network’s nodes (motes) are composed of low-
cost and low power components, including a wireless 
communications transceiver, a microcontroller, some sensors 
and a battery. The kind of work a mote does is usually very 
simple, due to its low computational capabilities, and it 
involves the data sampling process and its subsequent 
transmission through the wireless link to a central base station. 
The motes have very strict constrains in terms of size, 
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computing capacity or energy. The mote’s available energy 
sources are normally batteries and in some cases an additional 
energy-harvesting hardware that can recharge the battery or 
any other alternative energy storage device.  When the mote is 
equipped only with batteries, they are usually of the lithium or 
alkaline type. The mote can capture energy from the 
environment using several sources like solar panels, 
piezoelectric generator, RF harvester, etc and the storage 
element can be a battery, a supercapacitor or a combination of 
them [1]. 

One important issue in the design and implementation of 
WSN applications is the optimization of the nodes’ power 
consumption. This problem has been studied from different 
points of view: the optimization of the communications 
protocols, the improvement of the semiconductor components, 
the optimization of algorithms, etc. In [2], it is stated that a 
higher optimization of the power consumption can be 
achieved through the reduction of the device power 
consumption rather than optimizing only the network 
protocols, although they are not mutually exclusive methods. 
In this context, some papers highlight the necessity of 
developing battery models that allow a precise estimation of 
the available battery capacity with the objective of improving 
the power consumption efficiency and the network lifetime. 
This estimation is essential for establishing a suitable duty 
cycle at the MAC layer, sustainable routing paths, scheduling 
the workload, etc. But battery modeling, and in particular for 
Lithium batteries, is still an open problem, and to the best of 
our knowledge, there is very little work about the development 
of lightweight rechargeable battery models that can be run on 
a network mote. So, the main objective of this paper is to 
propose a method for obtaining simple battery models that can 
estimate precisely the state of charge of the mote’s battery, 
using exclusively the original mote’s hardware. In the article 
five mathematical models based on linear regression and the 
multilayer perceptron (MLP) are studied, evaluating the 
goodness of the fit between the model and the actual battery 
behaviour. 

The paper is organized as follows. In section 2, we provide 
the state of art. Section 3 summarizes the steps to be carried 
out for building models. The hardware used for collecting the 
experimental data is shown in section 4. Section 5 presents the 
mathematical models. In section 6 the validation of the models 
is carried out. Finally, section 7 is devoted to present the 
conclusions and future work. 
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II. STATE OF ART 
Wireless sensor networks have been conceived as a 

versatile technology that can be applied to a large quantity of 
different scenarios. But there is a common limitation in the 
majority of these applications that is the power consumption. 
This constrain is even more pronounce in outdoors 
deployments, where the motes are placed at distant or remote 
locations. Because energy efficiency is of primary importance 
in WSN, the network’s motes should be aware of the charge 
that is left in the battery. In some cases, this matter is 
addressed modeling the power consumption of the motes. In 
references [3-5] the model is focused on determining the 
consumption of the wireless transceiver, because it is the 
element with highest impact in the total power consumption, 
whereas in [6] the microcontroller and the sensors effects are 
also taken into account. Typical WSN applications put the 
mote in three different states during its operation: sensing 
(acquiring the data), data transmission (using the wireless 
transceiver) and some power down mode (sleep state). The 
mote passes from one state to another following the scheduler 
commands, changing the state periodically and completing the 
orders programmed in the software. The mote’s current 
consumption varies depending on each specific power state, 
but a global model can be developed considering the 
consumption at each state and the transitions between them [7, 
8]. The consumption models can be applied to estimate the life 
expectancy of the batterys' nodes or to make better decisions, 
such as: to optimize the network protocols [2,3,9-11] and 
algorithms [12,13]. In [14] the WSN platform is parameterized 
with a constant average current for each action that it can do. 
The SoC estimation is performed by a software component 
that accumulates the current values over the period of time at 
which each action is carried out; thus, this method is similar to 
a Coulumb counter by software. However, these models are 
not completely precise because they do not include the battery 
behaviour. 

The most common and simple way of estimating the battery 
state of charge (SoC) of a sensor node is to measure the 
battery voltage [15]. In this case the management system 
needs only to measure the battery voltage either in open circuit 
or with a load connected. After that, the voltage-based method 
tries to estimate the charge level relating the SoC with the 
voltages measured. However, the battery voltage of a lithium 
battery is nonlinear and its voltage drops very fast in the last 
moments of its lifetime. This is because there are several 
different types of polarization in the battery operation. During 
the ohmic polarization the battery response is quasi-linear, but 
after the concentration polarization there is a quick voltage 
drop [16]. An example that follows this approach is presented 
in [17]. This method generates a SoC model from a voltage 
trace acquired during a constant current discharge. The model 
estimates the SoC using a polynomial function that is adjusted 
to the battery voltage trace. In order to avoid the dependence 
with the current value, a second adjustment is carried out over 
several experimental initial traces with different currents to 
generate the polynomial coefficients with distinct loads. This 
model is the only one that we have found in the bibliography 

which fits well the WSN constrains in terms of computational 
complexity, but the duty cycle operation of the motes that 
produces an irregular current consumption can negatively 
affect its accuracy. There are other methods that estimate the 
SoC measuring the discharge current. In this case, the 
remaining charge contained in the battery can be determined 
subtracting the charge that is extracted. Nevertheless, these 
methods can accumulate errors, require periodic recalibration 
and usually need additional hardware to perform the coulomb 
counting [18]. Other parameters, which can modify the battery 
effective capacity and are not considered in the previous 
methods, are: temperature, load percentage, number of 
charge/discharge cycles, pulsed cycles [13] and aging that 
produces a modification of the internal structure of the 
electrodes due to losses of the active material dissolution [19]. 

In the literature, there are also many battery models that can 
be applied to the SoC estimation. The first kind of models 
treats the battery as a complex electrochemical system and 
they simulate the internal chemical processes of the battery in 
a detailed way [20]. As a result, the electrochemical models 
present a high estimation precision but a huge computational 
cost that makes them too complex to be executed on a 
microntroller [21]. The second approach is represented by 
analytical methods that avoid the underlying chemical process, 
modeling the battery at a higher abstraction level. In this 
group, the most popular method is based on the Peukert's law 
that predicts the SoC of a lead-acid battery measuring its 
discharging rate. However, this formula was developed for 
lead-acid batteries, and it is not directly applicable for lithium 
batteries [22]. Moreover, Peukert's law assumes a constant 
load and it does not fit well with the WSN constrains. Other 
methods take into account other parameters or estimate them 
in some way, for example the internal resistance of the battery 
[23,24]. All batteries have internal impedance. This 
impedance can be measured in AC or DC, but in both cases it 
has a high correlation with aging and the capacity loss. This 
impedance is related to the electric resistance of internal 
materials and the ionic resistance caused by electrochemical 
conductivity factors [25]. There are different methods of 
measurement. For example in vehicle applications [26] the DC 
resistance is calculated draining different current levels and 
sampling the battery voltage. The battery voltage decreases 
with a higher current demand [27] and thus the resistance can 
be calculated as: 

𝑅 =
𝑉2 − 𝑉1
𝐼2 − 𝐼1

 (1)  

Other analytic models attempt to provide an equivalent 
representation of the battery and estimate the SoC using neural 
networks combined with extended Kalman filters [28]. 
Unfortunately, the implementation of the extended Kalman 
filters is too complex for WSN. As a conclusion, it is clear that 
current battery SoC models are not suitable to be implemented 
in motes with low computational capabilities and new 
approaches are needed in this sense. On the other hand, simple 
models developed specifically for WSN do not cover all the 
battery parameters and the particular conditions that appear in 
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real WSN applications. Moreover, the development of better 
consumptions models and battery SoC estimators can benefit 
other research aspects. For example, it has been found that 
simulators lack good power consumption models [2], which 
can negatively affect research on new protocols and 
architectures [7]. Another potential application is to detect or 
predict when maintenance would be necessary to change or 
recharge batteries. 

 

III. METHODOLOGY 
In the article, we have followed a sequence of steps to 

complete the generation and validation of the battery SoC 
models. These steps are explained below to illustrate the 
process with the aim that it can be followed by other 
researches interested in the method. The process to develop 
the models is: 

1). Measurement. It is an initial acquisition stage that 
consists of several monitoring experiments of the battery 
connected to the mote during its normal operation. The device 
sends the sampled data, e.g.: voltage, current and temperature 
to a base station. The session will begin with a battery totally 
charged, and ends when the node stops working. Each session 
will have particular conditions, such as: temperature or 
number of charge/discharge cycles. 

2). Modeling. First of all a filter is applied to reduce the 
noise. After that, new parameters are calculated from the 
original data. Conditions of the measurements are also 
introduced as new parameters. The SoC is calculated for every 
sample using the total duration of each session and the time of 
each sample, the SoC is the percentage of remain time from 
the beginning of the session. Finally, a set of representative 
data of each session is extracted to form a final data set, which 
will be used to build a model. During the model generation the 
parameters that provide more information are selected and the 
others are discarded. The selected parameters are used in 
several data mining algorithms to predict the SoC. 

3). Validation. This section is included for testing the 
models. First of all, some results on the prediction accuracy 
using the same data files are provided. But since these models 

are generated using the same data, they could depend on them, 
making the test invalid. So in this step, new data 
measurements sessions are used to study the prediction 
accuracy with completely new data.  

 

IV. MEASUREMENT 
In this section we describe the experimental setup used for 

acquiring the data traces during the initialization phase. This 
experimental data include some parameters taken during the 
discharge of a rechargeable battery under different 
environmental conditions. The setup hardware collects the 
parameters that are relevant to the battery behaviour. This 
acquisition of the data involves a sequence of charge and 
discharge cycles performed automatically in a stress testbench 
to capture the evolution of the battery SoC. In order to make 
our work open to other researches and easily reproducible, we 
include a detailed description of the hardware and provide all 
the schematics and the software programs through this link 
(http://www.uv.es/jjperezs/models/materials-models.zip). In 
addition, we have made use of open hardware, that is, devices 
that can be easily built or commercially purchased because 
they are well known and widely used. 

A. Measusement setup 
A.1. Mote’s hardware 
Now we describe the hardware used in the acquisition of the 

battery current and voltage when it is connected to the mote. 
With these hardware elements, we will build and validate the 
battery SoC models that are proposed in the next section. The 
batteries that we have used during all this work are the PRT-
11316 [29], of 40 mAh form xtra-power that are rechargeable 
and provide a sufficient current to supply a mote. We have 
selected this model because it has a relative low capacity, a 
feature that allows us to carry out the measures more quickly, 
although this method could be applied to any another model of 
battery. 

The WSN mote considered in the experimental setup is the 
well-known tmote Sky [30]. This platform has a TI 
MSP430F1611 microcontroller running at 8 MHz, a CC2420 
wireless transceiver, USB connection, 3 LEDs, Flash and 
RAM memory and three kind of sensors: temperature, 
humidity and light. The LEDs have a resistor with values 470, 
220 and 100 Ω (considering Vcc=3.7 V it represents 4.3, 7.3 
and 16 mA respectively). The microcontroller has several low-
power modes. The active mode needs 500 µA when the 
microcontroller runs with a 1 MHz clock, and 2.6 µA in 
standby mode. The transceiver [31] consumes 18.8 mA in 
reception mode, 17.4 mA in transmission, 426 µA in sleep, 20 
µA in power down, and 0.02 µA in shut down. The 
temperature sensor is a Sensirion SHT11 [32], which consume 
2 µW in sleep mode and 3 mW during the conversion. 

We have used a shunt resistor in order to measure the 
current drained by the mote. The voltage in the first terminal 
of the shunt resistor is the power line of the microcontroller. 
This voltage is measured internally using the microcontroller’s 
ADC with a reference voltage of 2.5 V. The other terminal is 
the battery voltage, which can be measured using a basic 

 
Fig. 1.  Schematic of the setup used for measuring voltage and current. 
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circuit connected to other ADC input, as it represented in Fig. 
1. If the value of the divisor resistors is low, the current 
drained will be higher. On the other hand, if the value of these 
resistors is high, it will be necessary an operational amplifier 
to convert the analogue signal properly. Considering both 
cases and establishing a trade-off between them, we take a 
value of 1 kΩ for each resistor. The shunt resistor that we have 
selected is of 32 Ω for extending the measures voltage range 
in the model generation phase. This is especially appropriate 
with low currents, because it allows us to obtain better quality 
data.  

A.2. Software of the mote 
The code of the mote constitutes a typical WSN application 

that performs a periodic sensor sampling and a subsequent 
wireless transmission of the data to the central base station. 
After sending the data, the node goes to sleep and put all the 
elements in a power down mode. The tmote Sky application is 
programmed in TinyOS [33], which is open source and widely 
used due to its low power consumption [34]. The sampling 
period that is established in the program is one second. The 
detailed list of actions that the program carries out is: 

1. Measures the battery voltage and current (V_low, 
I_low) during the low power mode. 

2. Measures the temperature (Temp). 
3. Wakes up the transceiver and builds the data 

frame. 
4. Sends the data. 
5. Switches-on the LEDs with the purpose of 

increasing the current consumption (high state). 
6. Measures the battery voltage and current (V_high, 

I_high). 
7. Shuts-down LEDs, transceiver and 

microcontroller. 
The battery measurements are performed with the analogue 

to digital converter ADC integrated in the microcontroller and 
it is configured with an internal reference of 2.5 V for 
measuring Vcc. This action is carried out using the VoltageC 
component of TinyOS library. The Fig. 2 shows a graph of the 
current drained during the mote operation. There are different 
current levels between low (sensing) and high (transmitting 
and LEDs on) states. The measurement corresponds with the 
shunt voltage. There are 625 µA during 272 ms in the low 
state, and 28 mA during 28 ms in the high state. 

The reception mote is another tmote Sky running the 
BaseStation TinyOS application. It retransmits all the data 
through the serial port. This board is connected to a PC, where 
a LabVIEW software receives and saves the data. The 
measurement ends when the transmitter mote depletes the 
battery and cannot send more data frames. 

In this moment, we calculate the real SoC using the 

timestamp of each sample and the total time. We use a pre-
processing stage in order to calculate others parameters. The 
pre-processing stage recovers or eliminates measurement 
errors and reduces the noise applying a IIR filter to the data. 

The number of charge/discharge cycles can be calculated by 
the microcontroller in the same way presented in [17]. This 
method is built as a finite state machine that checks the 
voltage level and the slope. The original method can be 
simplified if we are only interested in the charge/discharge 
phases. Basically, the microcontroler monitorizes continuously 
the battery voltage; if there is an over-voltage (V > Vfloat), the 
battery is charging and it can increment the counter of cycles. 
But, when the voltage is equal or inferior to the nominal value 
and decreases, the battery is discharging. This method can be 
seen in Fig. 3 the system begins from an unknown state (init). 
If the battery voltage decreases, the battery is discharging and 
the system goes to this state. On the other hand, if battery 
voltage increases over Vfloat, the battery is charging and the 
system changes in this way its state. This method could be 

extended by tracking the duration and/or current of the charge 
cycle. 

 
A.3. Stress testbench 
We have developed a system for accelerating the wear of 

the batteries that is shown in Fig. 4. This system applies 
consecutives cycles of charge and discharge automatically. 
The system has a LiPo battery charger, with reference 
MCP73831 [35], which regulates the voltage and current in 
the charge phase. The maximum charge current is configured 
to the nominal current for this battery. 

Fig. 2.  Consumption of tmote Sky. Rshunt = 32 Ω. 
 
 
  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5 

The load resistor simulates the node consumption, but the 
current has been increased. The wear depends on the discharge 
ratio [36], but we are going to assume that it is a constant and 
discharges completely the battery for simplicity. This 
assumption is extracted from the results presented in reference 
[36] since it is not appreciated a noticeable dependence 
between the Deep-of-Discharge (DoD) and the capacity. The 
discharge current is selected using a load of 100 Ω, being the 
nominal current value of the battery 40 mA. 

The system has two MOS-switches, the first one enables the 
battery charge, and the second one enables the discharge 
across the load resistor. A control system opens and closes the 
switches, and it monitors the battery voltage. The control 
system begins detecting the battery status: charged or 
uncharged, then, it makes a cycle of charge or discharge. 
When the voltage drops below 2.7 V is considered uncharged, 
and when the voltage is above 3.7 V and the STAT signal of 
charger chip is enabled, the battery is considered fully 

charged. The control system that is constituted by an arduino 
platform is able to manage three independent wear testbenchs. 
The evolution of a battery voltage can be seen in Fig. 5. 

B. Measurement results 
We have performed the measurements with two tmote Sky 

with different temperatures (low temperature 0-5 °C and 
ambient temperature 20-30 °C, controlled by a thermostat) and 
cycles (low wear 0-10 cycles, medium wear 40-50, high wear 
200-250). We have repeated the experiments 6 times in each 
condition. The measurement process acquires V_high, V_low, 
I_high, I_low, temperature and a timestamp. All measures are 
transmitted using channel 16 (2.48 GHz), power 0 dBm and a 
distance between node and base station of 1-2 meters. The 
measurements are summarized in table 1, and the autonomy in 
Fig. 6. 

The autonomy follows a curve that is similar to the 
logarithmic function. Therefore we will use the logarithm of 
the number of cycles as a parameter for building the models. 
All traces are represented in the Fig. 7; histograms of wear and 
temperature are on the left, and the voltage on the right. 

A first approximation for estimating the SoC considers the 
voltage extreme points and the temperature. Using V_low, the 
battery has 3.94±0.04 V when it is fully charged, and 2.53±0 
V when it is discharged. This data allow us to calculate (2): 

 
𝑆𝑜𝐶(%) = 70.92 · 𝑉 − 179.43 (2)  

 

 
Fig. 3.  State machine for monitoring battery status. 

 
  

 
Fig. 4.  Wear system. 

 
  

 
Fig. 5.  Evolution of battery voltage. 

  

 
 

Fig. 6.  Evolution of battery autonomy. 
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Fig. 7.  Measurement distributions & evolution of battery voltage. 

 

V. MODELING 
The first step in this section is the pre-processing of the data 

traces obtained in the stress testbench to eliminate noise and 
measurement errors. The data is filtered using a second order 
IIR filter, with a cut-off frequency of 0.02 Hz. Once the data is 
filtered, several additional parameters extracted from the 
original data (V, I and temperature) are calculated for each 
sample. Some of these parameters may not provide relevant 
information and they will be discarded at a subsequent step. 
So, the complete list of parameters is: 

- V_high, V_low, I_high, I_low and temperature. 
These are the original parameters measured directly 
in the experiments. 

- Exponentiation of V_low, with different values: 2 to 
5 (V_low2, V_low3, etc). These parameters are 
needed to test polynomial fittings. 

- Slope of V_low, calculated in a window of 100 
samples. 

- Exponentiation of slope, from 2 to 5. 
- Ten to the power of V_low (10V_low). 
- Difference between V_high and V_low. 
- Relationship between voltages and currents (R) at 

high and low power states as expressed in (1). This 
parameter is related to the internal resistance, but it 
should be noted that it is not the real internal 
resistance since it is not measured in open circuit. 

- Cycles of charge/discharge and the logarithm of the 
value. 

- Relative time from the starting time of the trace (this 
parameter is used to estimate the real SoC and it is 
not used during the modeling process). 

During the experiment, data traces were taken at two different 
temperatures (low temperature: 0-5 °C; ambient temperature: 
25-30 °C) and three different battery states in terms of number 
of charge/discharge cycles (low wear: 0-10; medium wear: 40-

50; high wear: 200-220). Each experiment was repeated six 
times, and we selected four of them giving a total of 24 data 
traces. From every trace, 1000 random samples are selected 
providing a final file with 24000 samples and including 20 
parameters for each sample. In each trace, 100 samples out of 
1000 are reserved for the last part of the trace, so we can 
consider that this part is over represented in the final file. All 
these samples are included because the slope of this part is 
very high and the duration of this interval is very short. So, it 
is necessary to take a major density of points in the last 
segment to have good global results and a good fitting in this 
part. 
It has been used an algorithm based on correlations [37] to 
determine which parameters provide more relevant 
information. These parameters will be used to build the 
models. We have applied the data mining software Weka [38] 
to evaluate two families of algorithms: regressions and neural 
networks. 
A. Regressions 
We have evaluated different linear regression models using 
one or more parameters to compare different approaches. The 
simpler case is based on a linear regression that uses only the 

TABLE I 
SUMMARY OF LIFETIME (HOURS) FOR EACH MEASUREMENT. MEAN ± 

STANDARD DEVIATION (STANDARD ERROR) 

Charge/disch
arge Cycles 

Low temperature  
(0-5 °C) 

Ambient temperature 
 (20-30 °C) 

Low wear  
(0-10 cycles) 
 

11.96 h ±1.15   (0.436) 13.47 h ±1.45   (0.593) 

Medium wear  
(40-50 cycles) 
 

9.47 h ±1.02   (0.415) 10.44 h ±0.59   (0.242) 

High wear 
(200-250 
cycles) 

8.49 h ±1.43   (0.584) 8.91 h ±1.36   (0.554) 
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voltage level (V_low). In this case, the expression obtained 
from the combination of the experimental data is: 

𝑆𝑜𝐶(%) = 88.6 · 𝑉 − 273.3 (3)  
 
A first variant of this equation would divide the traces in 
segments, due to the different slopes that we have at the first 
part of the trace and after the cut-off voltage. In the first flat 
segment of the trace, one fit is calculated and a different 
regression covers the fast decreasing part of the curve. A 
decision tree algorithm can be employed in order to select the 
threshold voltage. This can be calculated with the Weka 
software using a Decision Stump. The result for our 
experimental data was 3.6 V. If we divide the samples into 
two groups with the previous criteria, the following equations 
are obtained: 

𝑆𝑜𝐶(%) = �𝑉 > 3.6 → 253.7 · 𝑉 − 884.3
𝑉 ≤ 3.6 → 23.5 · 𝑉 − 67.2  (4)  

 
However, the battery voltage is not necessarily the best 
parameter. Evaluating subsets of attributes as [37], we 
obtained that the best parameters are: power of ten, logarithm 
of cycles and temperature. The regression model using these 
parameters is: 

𝑆𝑜𝐶(%) = −0.18 · 𝑇𝑒𝑚𝑝 + 0.016 · 10𝑉 + 1.13
· log(𝐶𝑦𝑐𝑙𝑒𝑠) − 26 (5)  

 
Finally, just for the sake of comparing with different 
possibilities, we built a model using all the parameters and 
another one using only the 5 main components obtained after a 
principal component analysis (PCA) transformation. But, in 
both cases the results were similar or worse than in the 
previous case, with the side effect of the increment of the 
computational cost. 
 
B. Neural Networks 

The second group of algorithms that we have evaluated are 
based on the multilayer perceptron (MLP) [39], since it is a 
model that has been previously used in electric vehicles [40, 
41]. In this case, the experimental data must be normalized 
and the output optionally de-normalized. The neural network 
can be trained on the PC, and then it can be deployed on the 
nodes. The neural networks are configured with two layers, 
500 maximum epochs to train through, and sigmoid as 
activation function. The training phase consists on a learning 
method which minimizes a signal error, its outputs are the 
neural network's coefficients; this process is performed with 
weka. 

We begin as in the previous case evaluating only V_low. In 
this model, named as MPL1, a two-neurons network is used 
and it can be expressed as: 

𝑆𝑜𝐶(𝑛𝑜𝑟𝑚) = 𝑡ℎ2 + 𝑘2 ·
1

1 + 𝑒−(𝑘1·𝑉+𝑡ℎ1) (6)  

 
Where the coefficients are k1 = -10.38; th1 = 5.96; k2 = -1.85; 
th2 = 0.95. 

Also, we have used a four-neurons network, named as 
MPL5, which uses the number of cycles (C), temperature (T), 
relationship between voltages and currents (R), and slope (S). 
The expression of this model is: 

𝑛1(𝑛𝑜𝑟𝑚) =
1

1 + 𝑒−(𝑘11·𝑅+𝑘12·𝑉+𝑘13·𝑇+𝑘14·𝑆+𝑘15·log (𝐶)+𝑡ℎ1) 

𝑛2(𝑛𝑜𝑟𝑚) =
1

1 + 𝑒−(𝑘21·𝑅+𝑘22·𝑉+𝑘23·𝑇+𝑘24·𝑆+𝑘25·log (𝐶)+𝑡ℎ2) 

𝑛3(𝑛𝑜𝑟𝑚) =
1

1 + 𝑒−(𝑘31·𝑅+𝑘32·𝑉+𝑘33·𝑇+𝑘34·𝑆+𝑘35·log (𝐶)+𝑡ℎ3) 
 

𝑆𝑜𝐶(𝑛𝑜𝑟𝑚) = 𝑡ℎ4 + 𝑘41 · 𝑛1 + 𝑘42 · 𝑛2 + 𝑘43 · 𝑛3 

(7)  

 
Where the coefficients are: 
k11 = -3.6; k12 =-8.98; k13 = -0.07; k14 = -0.17; k15 = -0.04;  
th1 = 6.61 
k21 = 0.73; k22 =5.22; k23 = -0.41; k24 = -0.52; k25 = -5.62;  
th2 = -6.7 
k31 = -4.4; k32 =8.55; k33 = 0.14; k34 = -0.55; k35 = -6.15;  
th3 = -6.76 
k41 = -2.03; k42 =-1.33; k43 = 1.04; th4 = 1.07 
  

VI. VALIDATION AND RESULTS 
TheIn the last step, we evaluate the models proposed in the 

previous section. First of all, we are going to assess the models 
using the same experimental data that comprises the file with 
the 24000 samples. This assessment can give an indication of 
the goodness of each model. Results can be seen in table 2. 

Fig. 8 shows the graphical representation of the SoC fitting, 
where the blue line is the real SoC, calculated from the total 
duration and the timestamp of each sample, and the remaining 
lines correspond to each proposed model. 

The line calculated from extreme points in (2) has the 
biggest error, this model only has accurate values at the origin 
and the end of the line: near 0 and 100%. The line for the 
V_low regression in (3) presents a similar shape than the case 
before, so it has identical values for correlation, but it has less 
absolute error because the estimations are bounded in the 
central part of the graph. The segmented regression in (4) has 
a very good correlation for most of the range, however the 
error in the last section is bigger. And it has another main 
problem, because there may be a discontinuity when voltage 
crosses the threshold. The two neural networks fit the desired 
line better in the entire range. 

 
TABLE II. 

MEAN RESULTS OF THE PROPOSED MODELS ON THE ORIGINAL MEASURES. 
Model Correlation Absolute 

error  
(SoC) 

Squared 
error 
(SoC) 

Relative 
abs error 
(%) 

Relative 
squared 
error 
(%) 

Eq 2 0.79 30.19 35.11 121.55 121.92 
Eq 3 

(reg1) 
0.79 14.67 17.62 59.08 61.18 

Eq 4 (reg 
segm) 

0.97 5.72 7.11 23.04 24.69 

Eq 5 
(reg3) 

0.93 8.63 10.30 34.75 35.75 

Eq 6 
(MLP1) 

0.98 5.20 6.46 20.93 22.42 

Eq 7 
(MLP5) 

0.99 3.41 4.59 13.71 15.93 
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Fig 8. Comparison of fiting between estimations for a representative full 

operating session. 
 
The estimation of SoC only uses instantaneous 

measurements, i.e., it does not take into consideration the 

previous samples with only the exception of the slope, which 
uses a window of one hundred samples of the voltage. So the 
generated models could be used without the knowledge of the 
previous battery state. 

Finally, we carry out a new validation using a different set of 
measures for studying the accuracy and generality of the 
models. The new dataset was acquired with different batteries 
and conditions: 

• A new battery of the same type. 
• A different battery of 110 mAh. 
• Different temperatures (10 and 35 °C) and 

charge/discharge cycles numbers (20 and 720). 
In addition, we compare the results of the new dataset with a 

commercial battery monitor, a MAX17043 fuel gauge [42]. 
This IC is a lithium batteries monitor that it does not need a 
calibration step, it eliminates the current measure and it has 
temperature compensation. 

TABLE III. 
RESULTS OF THE PROPOSED MODELS USING A NEW MEASURES DATASET. 

Session Model Correlation Absolute 
error (SoC) 

Squared 
error (SoC) 

Relative 
abs error 

(%) 

Relative 
squared error 

(%) 
40 mAh, 
 10 °C,  
3 cycles 

Eq 2 0.83 32.66 38.61 135.01 138.20 
Eq 3 Reg1 0.83 17.13 19.58 70.81 70.10 
Eq 4 segm 0.98 5.82 7.70 24.08 27.56 
Eq 5 Reg3 0.95 9.89 11.89 40.87 42.57 
Eq6 MLP 1 0.99 7.41 9.04 30.62 32.37 
Eq7 MLP 5 0.99 4.72 5.30 19.61 19.04 
MAX 0.99 7.96 9.87 31.83 34.20 

40 mAh, 
 35 °C, 
21 cycles 

Eq 2 0.85 33.45 38.64 139.93 139.96 
Eq 3 Reg1 0.85 16.01 18.36 66.97 66.52 
Eq 4 segm 0.99 7.71 8.71 32.27 31.55 
Eq 5 Reg3 0.97 7.61 8.84 31.83 32.02 
Eq6 MLP 1 0.97 9.33 10.60 39.05 38.39 
Eq7 MLP 5 0.99 8.55 9.44 36.17 34.57 
MAX 0.95 6.51 9.38 26.05 32.48 

40 mAh. 
10 °C, 726 
cycles 

Eq 2 0.87 31.87 36.40 134.11 132.61 
Eq 3 Reg1 0.87 14.09 16.06 59.28 58.53 
Eq 4 segm 0.99 6.23 6.76 26.23 24.64 
Eq 5 Reg3 0.97 8.11 9.73 34.13 35.45 
Eq6 MLP 1 0.98 6.63 7.76 27.89 28.25 
Eq7 MLP 5 0.99 6.41 7.45 26.96 27.16 
MAX 0.99 5.18 6.80 20.71 23.56 

110 mAh. 
10 °C, 1 
cycles 

Eq 2 0.92 35.19 40.28 141.90 140.64 
Eq 3 Reg1 0.93 16.00 18.94 64.53 66.13 
Eq 4 segm 0.98 13.55 14.52 54.64 50.71 
Eq 5 Reg3 0.96 12.76 15.01 52.49 53.43 
Eq6 MLP 1 0.98 12.81 13.82 51.64 48.27 
Eq7 MLP 5 0.99 3.10 4.33 12.76 15.41 
MAX 0.99 4.55 5.02 18.20 17.39 

As we can see, all models improve the baseline case (2), and 
the results are better with more complicated models. The 
models with better results are the MLP, being comparable to 
the MAX17043 in accuracy but with the advantage of no 
requiring an additional hardware. 

The only related models that we have found in the 
bibliography are [14] and [17]. Other models are not suitable 
for WSN due to the computational cost. The method [14] is 
Coulomb counter estimator that does not use direct 
measurements of voltage or current during the mote operation 
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and its error over a particular application is about 30% of the 
real SoC. The method proposed in [17] is more comparable. 
This method is described in section 2 and its result is a 
quadratic equation, whose coefficients are obtained from a 
previous fitting. The model only uses voltages (and currents 
for obtaining the coefficients in the training step), but it does 
not take into account the temperature or wear cycles directly. 
Although the method assumes a constant load, and this is not 
strictly true in our case, we are going to apply this method for 
comparing with our results. We can simplify the model 
obtaining the best regression using only the voltages on the 
low state (V_low) from our original traces. The best fitting we 
have obtained is: 

 
𝐷𝑜𝐷 =  −142.9557 · 𝑉𝑙𝑜𝑤2 +  861.4243 · 𝑉𝑙𝑜𝑤

−  1184.2632 (8)  

𝑆𝑜𝐶 = 100 − 𝐷𝑜𝐷 (9)  
 
This model achieves a correlation over our measurements of 

0.93 and a relative square error of 41.8 %. As it was expected, 
the results are better than in the case of the simple regression, 
but worse than models with MLP, which can adjust better non-
linear behaviours. 

We have implemented the above models on TinyOS and the 
tmote Sky using the floating-point math.h library to assess 
their computational cost. We have included the current 
calculation, slope, and other parameters when it is necessary. 
Also, the normalization of input data has been included in the 
MLP algorithms. But we have not included the data 
acquisition, filters and other pre-processing operations, or de-
normalization for MLP output because it is an optional step. 
The measurement was made using the Counter32khz32C 
component from TinyOS. This component implements a 32 
kHz clock using a microcontroller's timer. The computational 
cost using lineal regression models is 17, 20, and 734 cycles 
respectively; and with MLP is 249 and 664 cycles 
respectively. The high cost of 3-parameter regression is 
mainly due to the float-point exponentiation function. These 
times could be translated into current consumption in 
particular conditions. We begin with the actual average 
current, 954 µA. If we assume a current consumption of 2.5 
mA (MSP430 @ 4 MHz) during the computation of the 
models in the microcontroller, and we assume that the models 
are executed each second, the average current would be 
incremented +1%, +1%, +4.8%, +2% and +4% respectively, 
as it is shown in table 4. Obviously, in a practical 
implementation the period for calculating the SoC prediction 
would be greater and still lower consumptions can be 
achieved. 

TABLE IV. 
COMPUTATIONAL AND ENERGY COST OF THE MODELS. 

Model Time (ms) I average (mA) 
Eq 2&Eq 3 Reg1 0.531 0.955 
Eq 4 segm 0.625 0.955 
Eq 5 Reg3 23 1 
Eq6 MLP 1 7.8 0.973 
Eq7 MLP 5 16.6 0.994 
 

Finally, we have also evaluated the computational cost of 
(8). Its implementation using the same previous conditions 
produces an execution time of 19 cycles (0.593 ms and 0.955 
mA), which is similar to the cost of models based on linear 
regression. With this, we can conclude that our models can 
accurately predict the battery SoC without a too high 
computational cost and any additional hardware following list 
outlines the different types of graphics published in IEEE 
journals.  

VII. CONCLUSION 
It has been found that the proposed method is valid for 

determining the battery SoC in sensor network nodes. The 
method involves several stages and uses open hardware and 
software. The first step includes the acquisition of the 
temperature, the battery current and its voltage during the 
operation of a tmote Sky under different conditions. The 
number of charge/discharge cycles of the battery has been 
taken into account and a testbench for applying a certain 
number of cycles to the battery in an autonomous way has 
been developed. Once the data is sampled, the processing 
stage includes an initial filtering for eliminating errors and 
noise and the model generation using linear regression and 
MLP. The models have been posteriorly validated with a new 
set of measurements and batteries. The conducted experiments 
have demonstrated the validity of the generated models. In the 
best cases, with models based on MLP, the results have 
demonstrated the accuracy of the adjustment, achieving a 
correlation of 0.99 and an absolute error around 5. Most of the 
models have a low computational cost and they are suitable 
for being executed on a microcontroller. 

The models have been able of predicting the battery SoC for 
different batteries and conditions not included during the 
model training. The influence of the number of 
charge/discharge cycles has been studied in very extreme 
values and it is included as a significant parameter in some 
models. The algorithms proposed can be especially useful for 
simple motes, which have not battery monitors, like tmote, 
micaz, etc. This method can be used with other batteries, 
conditions or specific applications. In addition, it can be part 
of a simulation algorithm and it can allow an improvement in 
the prediction of the network lifetime. As it is shown in the 
results section, the two first models have the worst 
performance. These models are the simplest and they are 
widely used, although they may be unsuitable in cases in 
which a high precision in the SoC estimation is required. 
In the future, this work can be extended by adding more 
parameters and considering others models or algorithms. 
Although a conclusion may review the main points of the 
paper, do not replicate the abstract as the conclusion. A 
conclusion might elaborate on the importance of the work or 
suggest applications and extensions.  
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