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Abstract:

Context: Software architectures should be evaluated during the early stages of software development in
order to verify whether the Non-Functional Requirements (NFRs) of the product can be fulfilled. This activity
is even more crucial in Software Product Line (SPL) development, since it is also necessary to identify whether
the NFRs of a particular product can be achieved by exercising the variation mechanisms provided by the
product line architecture or whether additional transformations are required. These issues have motivated
us to propose QuaDAI, a method for the derivation, evaluation and improvement of software architectures
in model-driven SPL development.

Objective: We present in this paper the results of a family of four experiments carried out to empirically
validate the evaluation and improvement strategy of QuaDAI.

Method: The family of experiments was carried out by 92 participants: Computer Science Master’s and
undergraduate students from Spain and Italy. The goal was to compare the effectiveness, efficiency,
perceived ease of use, perceived usefulness and intention to use with regard to participants using the
evaluation and improvement strategy of QuaDAI as opposed to the Architecture Tradeoff Analysis Method
(ATAM).

Results: The main result was that the participants produced their best results when applying QuaDAI,
signifying that the participants obtained architectures with better values for the NFRs faster, and that they
found the method easier to use, more useful and more likely to be used. The results of the meta-analysis
carried out to aggregate the results obtained in the individual experiments also confirmed these results.

Conclusions: The results support the hypothesis that QuaDAI would achieve better results than ATAM in the
experiments and that QuaDAI can be considered as a promising approach with which to perform architectural
evaluations that occur after the product architecture derivation in model-driven SPL development processes
when carried out by novice software evaluators.

Keywords: Software Architectures, Software Architecture Evaluation Methods, Quality Attributes, ATAM,
Family of Experiments, Meta-analysis.

1. Introduction

Software architectures are a means to preclude or permit the achievement of the Non-Functional
Requirements (NFRs) of a software system. In Software Product Line (SPL) development, in which a set of
software intensive systems sharing a common managed set of features are developed from a common set of
core assets, the product line architecture should contain variation mechanisms that help to achieve a set of
permitted variations, including functional, structural and quality concerns [23]. The product architecture is
derived from the product line architecture by exercising its built-in architectural variation mechanisms, which
support both the functional and NFRs for a specific product.

Once it has been derived, the product architecture should be evaluated to assess the achievement of
the product’s specific requirements. When the required levels of quality attributes for a specific product fall
outside the original specification of the SPL (and cannot be attained by using product line variation
mechanisms), certain architectural transformations should be applied to the product architecture to ensure
that these NFRs are met [15].



Various studies concerned with the derivation (e.g., [14], [61]) and/or evaluation of software
architectures from several points of view (e.g., [65], [37], [70], [66]) have been proposed in literature. After
reviewing these studies, we have observed that:

(a) There is a lack of systematic methods that model the impact between architectural design
decisions and quality attributes to support the integrated derivation, evaluation and quality
enhancement of software architectures.

(b) Inthe software architecture field, there is a lack of empirical evidences regarding the advantages
of tools and methods [9]. Software architecture researchers must follow a two-pronged strategy:
develop new techniques, methods or tools with which to improve on current practices, and
perform systematic, rigorous assessments of existing and new techniques by following the
empirical paradigm [31].

We have addressed the first issue by proposing the Quality-Driven Architecture Derivation and
Improvement (QuaDAI) method in previous studies [40], [41]. QuaDAl is a model-driven approach to ensure
the desired quality attribute levels for a product by applying architectural transformations to a product
architecture derived from a product line architecture.

With regard to the second issue, in previous works, we have presented a first controlled experiment [41]
and a replication study [42] as an initial step in the empirical validation of the QuaDAI strategy for the
evaluation and improvement of product architectures that consist on the evaluation and transformation
activities. The objective of these experiments was to compare the effectiveness, efficiency, perceived ease of
use, perceived usefulness and intention to use with regard to participants using the product evaluation and
transformation activities of QuaDAI (from now on QuaDAI) as opposed to the Architecture Tradeoff Analysis
Method (ATAM) [50], a well-known and widely-used software architecture evaluation method. The results of
the first experiment (conducted with undergraduate students) showed that QuaDAI was found to be more
efficient and was perceived as easier to use than ATAM. However, although QuaDAI performed better than
ATAM, we could not confirm the other variables, as the differences between both methods were not
statistically significant. In the replication study, QuaDAI also performed better than ATAM, but as opposed to
the original study, all the variables proved to be statistically significant.

Two further replications were therefore conducted in order to provide more evidence about the validity
of these results. These experiments were conducted with Computer Science Master’s and undergraduate
students from the Universitat Politécnica de Valéncia (UPV) in Spain and with Information Science
undergraduate students from the Universita degli Studi della Basilicata in Italy. All the experiments conducted
form a family® of controlled experiments. The objective of this paper is, therefore, to report the results of a
family of four controlled experiments with the aim of empirically validating the effectiveness, efficiency,
perceived ease of use, perceived usefulness and intention to use with regard to participants using QuaDAI as
opposed to ATAM. We have also carried out a meta-analysis in order to aggregate the results obtained in the
individual experiments to provide more general conclusions.

This paper is organized as follows. Firstly, related works on the empirical validation of software
architecture evaluation methods are discussed in Section 2. The architecture evaluation methods that were
evaluated in the family of experiments (QuaDAl and ATAM) are introduced in Section 3. The family of
experiments is described in Section 4. The details of the individual design of each experiment are provided in
Section 5. The results of each experiment are reported and analyzed in Section 6. The results of the family of
experiments are summarized in Section 7, together with those of the meta-analysis. Threats that might affect
the validity of our results are discussed in Section 8. Finally, our conclusions and final remarks are presented
in Section 9.

2. Related Work

The increasing size and complexity of software systems, along with the demand for high-quality systems,
has driven the increased interest in the software architecture sub-discipline of software engineering [2]. In
this context, several methods and tools with which to support the different activities in the architecture
design and evaluation processes have been proposed [9]. However, little attention has been paid in this field
to the empirical validation of the methods and tools proposed. Instead, in general, the empirical studies in

! The concept of replication is extended to the “family of experiments” reported by Basili et al. [12]. A family
is composed of multiple similar experiments that pursue the same goal to build the knowledge needed to
extract significant conclusions [1].



this field are focused on establishing taxonomies for classifying the methods or assessing specific aspects of
a given evaluation method. In this section, we discuss related works that report on comparisons of
architecture evaluation methods and empirical studies that assess various aspects of the architectural
evaluation process.

2.1. Classification Frameworks for Comparing Software Architecture Evaluation Methods

Several studies comparing or establishing frameworks with which to compare software architecture
evaluation methods have recently been reported in literature. The first literature review by Ali Babar et al.
[2] compared four scenario-based software architecture evaluation methods: Scenario-Based Architecture
Analysis (SAAM), the Architecture Level Modifiability Analysis (ALMA), the Performance Assessment of
Software Architecture (PASA) and the Architecture Trade off Analysis Method (ATAM). In a subsequent work,
the same authors presented an extension of this comparison in which they established a framework that
could be used to characterize software architecture evaluation methods based on a literature review [3]. In
this later study, the authors applied their framework in order to compare eight evaluation methods (e.g.,
SAAM, ATAM or ARID). In both studies, the authors followed a fifteen criteria schema (e.g., the maturity
stage, the particular definition behind the method, the process support, the method’s activities). This
framework was also evaluated in Ali Babar and Kitchenham [4] through the use of a survey whose objective
was to analyze the suitability of the elements in the framework. The results of this survey supported the
majority of the elements in the framework, and only in a few of them (i.e., tool support, method activities
and application domain) there were disagreements among the participants.

Roy and Graham [67] presented a survey in which they reviewed thirty-seven software architecture
evaluation methods. They also established a taxonomy for their classification based on the development
phase in which they are applied (i.e., early vs. late), the main analysis technique applied or the artifacts
analyzed (i.e., scenario-based, mathematical models or metric-based), and their ability to deal with styles and
patterns. The main conclusions were: i) it is difficult to be proficient in the use of architectural evaluation
methods; ii) there is a lack of tools supporting the methods; and iii) the majority of the methods (except
SAAM and ATAM) have not been empirically validated.

Etxebarria and Sagardui [30] presented a framework based on a literature review in order to classify
sixteen software architecture evaluation approaches and techniques specifically defined for SPL development
environments. This framework classifies software architecture evaluation approaches based on the
evaluation time (i.e., design time vs. evolution time), the architecture being evaluated (product line
architecture vs. product architecture) and the purpose of the evaluation (e.g., evolution-related product line
architecture evaluation, evaluation during derivation, synchronization-related evaluation).

Finally, Breivold et al., [16] presented a systematic literature review in which, among other topics, the
authors covered the quality evaluation of software architectures focusing on the evolution aspects. They
principally focused on assessing experience-based, scenario-based and metric-based evaluation methods
that are able to deal with evolvability. One of their conclusions was that the techniques that support quality
considerations help to identify key quality attributes early in the software design phase. They also encouraged
the definition of methods and tools with which to design (and manage) software architectures for ultra-large-
systems (e.g., SPL).

The comparisons mentioned above provide an analysis of the characteristics of the methods under
analysis, which can help practitioners and researchers to attain a holistic view of the methods available.
However, they do not provide factual data as to which method is most efficient, effective, easy to use or
useful for a given type of project or development scenario. The majority of these works report surveys that
are based solely on subjective information and do not follow a predefined methodology. Our research, on
the other hand, provides factual objective and subjective information collected by following a well-defined
methodology.

2.2. Empirical Studies Assessing Software Architecture Evaluation

Despite the fact that the interest in the software architecture field has increased over the last few years,
few experiments have been conducted to analyze different aspects of software architecture evaluation
processes (e.g., [5], [7], [8], [32], [33], [39], [53]), or empirical validations through case studies or experience
reports (i.e., [10], [64], [74]). A summary of each of these studies is presented below in chronological order.

Golden et al. [39] reported on a controlled experiment analyzing the value of the different parts of a
usability supporting architectural patterns in the modification of a software architecture design. In this study
the authors evaluated how the architectural solutions produced as a result of using a more complete



specification of a pattern better support the usability needs. The study demonstrates that the use of more
complete specification of the patterns increases the effectiveness and efficiency of usability evaluations.

Various empirical studies evaluating the influence of team size, organization and support as regards the
communication among the members of teams have been reported (i.e., [7], [5], [6]). Ali Babar and
Kitchenham [7] reported on a controlled experiment to analyze the impact of group size on the outcome of
a software architecture evaluation exercise. They analyzed how the group size affects both the quality of
scenario profiles and the participants’ satisfaction with the process and outcomes. The principal result of this
study was that the size of the group affects the quality of the scenarios created. There were also
disagreements as to the group size with which the subjects obtained scenarios with the best quality (i.e.,
groups of five participants) and the group size with which the participants were most satisfied (i.e., groups of
three participants).

Ali Babar et al. [5] presented an experiment comparing distributed and face-to-face meetings within the
software architecture evaluation process. The objective of this study was to assess the effectiveness of the
proposed groupware-supported process in the development of high quality scenarios during the evaluation
process. In a similar study, Ali Babar et al. [6] reported the results of an experiment assessing the use of
LiveNet, a groupware tool that can be used to support the software architecture evaluation process. The
objective of the study was to analyze the perceived ease of use and usefulness of the tool after performing
various collaborative tasks. The results of the first experiment showed that the quality of the scenario profiles
developed by distributed teams using a groupware tool were significantly better than those developed by
face to face teams. The results of the second study showed that the participants found the use of the
groupware tool positive in distributed meetings.

Falessi et al. [32] reported the results of a controlled experiment and its replication [33] with the aim of
analyzing the perceived utility of the information associated with Architectural Design Decisions Rationale
Documentation (DDRD), an artifact with which to document architectural design decisions. The participants
were requested to perform different activities (described using the DDRD Use Cases) and to then rank the
categories of information in DDRDs (e.g., issue, decision, status, constraints, related requirements). The
results showed that the perceived importance of the different information categories in DDRDs depend on
the activity that the DDRD is helping to conduct [32], and that the DDRD should contain only the information
required to perform that activity [33].

Ali Babar [8] presented the assessment of the Architectural Level Security Analysis Framework (ALSAF),
performed with a pilot study and a quasi-experiment. The goal of the study was to identify security attributes
and the security design patterns that are suitable to attain these attributes based on a given list of security
properties. In this study, the control group only had access to the software requirement specification (SRS),
whereas the treatment group had access to both the SRS and ALSAF. The results show that the participants
using ALSAF obtained significantly better results as regards identifying security attributes and patterns, and
also that they found ALSAF useful when performing these tasks.

Martens et al. [53] reported a series of three separated controlled experiments comparing the accuracy
and required effort when applying different software architecture performance evaluation methods. The aim
of the study was to compare three monolithic performance evaluation methods (i.e., SPE, CP and umlPSl)
with the component based performance evaluation method (PCM). The results showed that, in terms of
accuracy, PCM, SPE and CP produced similar results, and that umlIPSI produced over estimations, whereas
the application of PCM required more effort.

Although the intention of the aforementioned studies was to gather empirical knowledge through
experiments or quasi experiments, it will be observed that the majority of them are focused on specific
aspects of the architecture evaluation process or on assessing how a given treatment improves performance.
There is, however, a lack of empirical validations of the methods and tools being proposed, through a
comparison with the existing body of knowledge.

Finally, there are several works reporting experiences on the application of ATAM with different
purposes (i.e., [10], [64], [74]). Reijonen et al. [64] presented an experience report describing the application
of ATAM in eleven architecture evaluations in real industrial projects. In this work, the authors provide a
detailed description of the application steps, the schedule followed in the evaluations, the problems
confronted during the evaluation and the main benefits perceived by the stakeholders. Svahnberg and
Martensson [74] reported their experiences in academic architectural evaluations in student projects. They
applied a lightweight software architecture evaluation method adapted from SAAM and ATAM. The
architecture evaluations were applied both to assess the architectures of the projects developed by the
students and to teach software architecture evaluation. Barbaci et al. [10] presented a case study in which a
product line architecture in the avionics domain was evaluated. These works contribute towards



demonstrating the feasibility of ATAM; all of them highlight the importance of conducting software
architecture evaluations, emphasize the importance of the utility tree (although Reijonen et al. point out the
difficulties found by the evaluators during its creation) and how critical the quality of scenarios is to the
success of the evaluation.

2.3. Discussion

The analysis of the aforementioned studies has allowed us to identify some limitations in the empirical
validation of software architecture evaluation methods, such as: i) the low number of empirical studies
assessing the approaches being defined; ii) the fact that the quantitative and qualitative comparisons with
existing methods has been neglected; and iii) the fact that the majority of the empirical studies tend to be
isolated and not replicated.

The first limitation is in line with the findings of Ali Babar et al. [9], Falessi et al. [31] and Dyba et al. [29]
in which the authors claim that the majority of the approaches being presented in the software architecture
field lack empirical validation. The few available validations of the approaches being proposed are based on
toy examples, case studies or experience reports, as discussed by Qureshi et al. [63], and few of them are
validated through controlled experiments. Moreover, in this field we have found that most of the software
architecture papers used incorrect terminology (e.g., they used the term experiment rather than experience
report, as in the works of Niemela and Immonen [59] or Martesson [54]; or the term case study when
documenting proof of concepts without methodical or data extraction descriptions [63]).

The second limitation concerns the lack of quantitative or qualitative comparisons with existing
methods. The proposed methods and tools that are defined have not been compared with the existing
alternatives in the software architecture evaluation body of knowledge. There are various frameworks (see
Section 2.1) with which to classify software architecture evaluation methods; however, there is a lack of
empirical studies in which the authors analyze how the methods perform as compared with similar ones.

The third limitation is in line with studies that have been performed in the Software Engineering field,
such as that by Sjgberg et al. [72]. This work claims that only 20 out of 113 controlled experiments are
replications. A replication is the repetition of an experiment to confirm findings or to ensure accuracy. There
are two types of replications: close replications, also known as strict replications (i.e., replications that
attempt to keep almost all the known experimental conditions much the same or at least very similar), and
differentiated replications (i.e., replications that introduce variations in essential aspects of the experimental
conditions, such as executions of replications with different kinds of participants) [52]. Both types of
replications are necessary to achieve a greater validity of the results obtained from empirical studies. The
problem of dealing with experimental replications has been addressed with the concept of the family of
experiments. Although many empirical studies have been applied in the software architecture evaluation
field, few families of experiments have been reported so far.

3. Software Architecture Evaluation Methods

The two software architecture evaluation methods evaluated in our family of experiments are: the
ATAM [50] and our proposal QuaDAI [41], both of which are introduced in the following subsections.

Both ATAM and QuaDAI can be classified as early architecture evaluation methods, capable of deal with
multi-attribute evaluations, following the taxonomy of architectural evaluation methods described by Roy
and Graham [67]. Although ATAM was initially defined to assess general purpose software architectures, it
can be used in an SPL environment to assess both the product line architecture and the product architectures
at derivation time at various stages of SPL development (conceptual, before code, during development or
after deployment) [23], [56], [68] taking into account multiple quality attributes, as is shown in various
experience reports (e.g., [10], [64], [68], [74]). QuaDAl is, meanwhile, focused on the evaluation and
improvement of product architectures once they have been derived from the product line architecture.

We opted for ATAM as the baseline for the following reasons:

- It is a widely-used software architecture evaluation method [54].

- It has been widely applied and validated [67] in both industry (e.g., [64], [10]) and academic
environments (e.g., [74]).

- It is capable of addressing multiple attribute analysis [1].

- It performs tradeoff analyses among quality attributes and design decisions [50]. ATAM extend
previous methods such as SAAM to cover the tradeoff among competing quality attributes [54].



- It is capable of reengineering the software architecture and employs activities to extract
architectural styles or design patterns [67] whereas other architectural evaluation methods (e.g.
ARID) are focused on evaluating the suitability of a portion of the architecture to be used by the
developers to complete their tasks [22].

3.1. ATAM

The purpose of ATAM is to assess the consequences of architectural design decisions in the light of
quality attributes [50]. ATAM assists in foreseeing how an attribute of interest can be affected by an
architectural design decision. The quality attributes of interest are clarified by analyzing the stakeholder’s
scenarios in terms of stimuli and responses. Finally, ATAM helps to define which architectural approaches
may affect quality attributes of interest. ATAM makes use of utility trees to translate the business drivers of
a system into concrete quality attribute scenarios. Utility trees are a hierarchical structure in which the utility
of a system is specified in terms of quality attributes which are further broken down into requirements and
scenarios.

The main goals of ATAM are to elicit and refine the architecture’s quality goals; to elicit and refine the
architectural design decisions and to evaluate the architectural design decisions in order to determine
whether they address the quality attribute requirements satisfactorily.

ATAM consists of nine steps that can be separated into four groups: i) Presentation, which involves the
presentation of the method, the business drivers and the architecture being evaluated; ii) Investigation and
analysis, which involves the identification of architectural approaches, the generation of the quality attribute
utility tree and the analysis of the architectural approaches based on the high-priority scenarios identified in
the utility tree; iii) Testing, which involves a brainstorming and prioritization of the scenarios elicited in the
utility tree, the analysis of the architectural approaches taking into account the high priority scenarios of the
utility tree and the definition of the approaches to be applied, the risks and non-risks, sensitivity points and
tradeoff points; and iv) Reporting, which involves presenting the results of ATAM. A summary of these phases
and steps and the main generated artifacts is shown in Fig. 1.

Finally, the outputs of ATAM are: i) a prioritized statement of quality attribute requirements; ii) a
mapping of approaches onto quality attributes; iii) a catalog of the architectural approaches identified and
used; iv) risks and non-risks; v) quality-attribute-specific analysis questions; and vi) sensitivity points and
tradeoff points [50].
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Fig. 1. Summary of the ATAM phases and activities

3.2. QuaDAl

QuaDAl is a generic, integrated method for the derivation and improvement of product architectures
regardless the Architectural Description Language in which they are expressed or the domain. It is based on
an artifact (the multimodel [41]) that represents the SPL viewpoints and a process consisting of a set of
activities conducted by model transformations. QuaDAI has been designed by taking into account the weak
points of existing architecture evaluation methods in order to improve their usability and effectiveness (e.g.,
the need for a highly experienced team: QuaDAI relies on knowledge reuse, which allows a less skilled
evaluator to perform architecture evaluations using the domain expert’s knowledge).

In QuaDAI, a multimodel permits the explicit representation of relationships among entities in different
viewpoints. A multimodel is a set of interrelated models that represent the different viewpoints of a particular
system. A viewpoint is an abstraction that yields the specification of the whole system restricted to a



particular set of concerns, and it is created with a specific purpose in mind. In any given viewpoint it is possible
to produce a model of the system that contains only the objects that are visible from that viewpoint [11].
Such a model is known as a viewpoint model, or view of the system from that viewpoint. The multimodel
permits the definition of relationships among model elements in those viewpoints, capturing the missing
information that the separation of concerns could lead to.

The multimodel plays two different roles in SPL development: i) in the domain engineering phase, during
which the core asset base is created, the multimodel explicitly represents the relationships among the
different views; ii) in the application engineering phase, during which a final product is derived, the
relationships drive the different model transformation processes that constitute the production plan [23]
used to produce a product architecture.

The multimodel used to specify SPLs is composed of (at least) four interrelated viewpoints:

The variability viewpoint, which expresses the commonalities and variability within the product
line. Its main element is the feature, which is a user-visible aspect or characteristic of a system
[23].

The architectural viewpoint, which contains the architectural variability of the Product Line
architecture that realizes the external variability of the SPL expressed in the variability viewpoint.
This variability can be defined on the different architectural viewpoints. It is expressed by means
of the Common Variability Language (CVL) [60], which is a generic language for expressing
variability on a modeling language. Its main element is the architectural variation point.

The quality viewpoint, which includes a quality model for SPL defined in [43]. This quality model
extends the ISO/IEC 25000 standard (SQuaRE) [47], thus providing the quality assurance and
evaluation activities in SPL development with support. The multimodel also permits the
specification of the product line and the product specific NFRs as constraints defined over the
quality model, affecting characteristics, sub-characteristics and quality attributes [43]. The NFRs
can incorporate variability in terms of thresholds (i.e., the interval in which the product quality
attribute levels can vary). The explicit representation of the NFRs in the multimodel provides a
mechanism for the automatic validation of NFR fulfillment once the software artifacts have been
obtained [40].

The transformation viewpoint contains the explicit representation of the design decisions made
in the different model transformation processes that integrate the production plan for a model-
driven SPL. Alternatives appear in a model transformation process when a set of constructs in
the source model admits different representations in the target model. The application of each
alternative transformation could generate alternative target models that may have the same
functionality but might differ in their quality attributes. In this work, we focus on architectural
patterns [18] and [28]. Architectural patterns specify the solutions to recurrent problems that
occur in specific contexts [18]. They also specify how the system will deal with one aspect of its
functionality, impacting directly on the quality attributes. Architectural patterns can be
represented as architectural transformations as a means to ensure the quality of the product
architectures.

The QuaDAI process includes different activities in which the multimodel is used to drive the model
transformation processes for the derivation, evaluation and improvement of product architectures in SPL
development. The activity diagram of the process supporting the approach is shown in Fig. 5(a). It consists of
the following activities:

Product Architecture Derivation. The product architecture is derived from the product line
architecture in the Product Architecture Derivation activity, taking as input the product line
architecture, the quality, the variability and the architectural viewpoints of the multimodel, and
the product configuration containing both the product specific features and the product-specific
NFRs selected by the application engineer (see Fig. 5(b)). In this activity, the decision as to which
architectural variation points should be resolved in the product architecture is made by
considering: i) the composition relationships between features and architectural variation points;
ii) the impact relationships between architectural variation points and NFRs; and iii) the impact
relationships between features and NFRs. The transformation generates the CVL resolution
model that is used to generate the first version of the candidate architecture, through a CVL
transformation [40]. This activity comprises the configuration of the product, the consistency
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checking of the configuration, taking into account the variability and quality constraints but also
the inter-viewpoint relationships. This validation, together with a consistency checking of the
obtained models allows us to assure that the obtained product architecture is well-formed [40].
Once derived, the product architecture should be evaluated in order to analyze the attainment
of non-functional requirements. The QuaDAI derivation activity has been preliminary empirically
validated through two case studies [40].

antilock brake system

€ abs_user_input brake_actuators

abs_brake_out @

user_console

“ user_console_outputs @“ ’

cruise_control_system

throttle actuator

€ cc_user_input

engine I = cc_display_out € J f* tc_throttle_signals
. . | & cc_engine_input cc_throttle_out € = cc_throttle_signals

¢ cc_wheel_speed

Fig. 2 Excerpt of a Product Line Architecture

The activities of the QuaDAI process are illustrated through the use of a running example: a SPL
from the automotive domain that comprises the safety critical embedded software systems
responsible for controlling a car. Fig. 3 shows the product architecture derived from the product
line architecture (shown in Fig. 2) generated by the Product Architecture Derivation for the
automotive example when the application engineer selects only the antilock_brake_system
feature and introduces the product specific NFRs, which come from the system’s requirements,
demanding a fault tolerance of the ABS greater than 99.5% and restricting the ABS latency time
to 5ms.
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Fig. 3 Portion of the Product Architecture showing the ABS system

Product Architecture Evaluation. In the second model transformation process, the Product
Architecture Evaluation applies the software measures described in the quality view of the
multimodel to the product architecture in order to evaluate whether or not it satisfies the desired
NFRs. This evaluation actually measures the degree of fulfillment of the NFRs defined during the
configuration on the product architectural models [40].This transformation takes as input the
product architecture derived, the product specific NFRs and the quality view of the multimodel
containing the metrics to be applied in order to measure the NFRs, generating as output an
evaluation report (see Fig. 5(b)). The method relies on analyzing the derived product architectural
models instead of relying on a set of predicted values, based on a previous measurement process
of a sample of products as in [65], [37], [70]. Those approaches could have scalability concerns,
due to the exponential growth of the number of configurations as a function of the number of
features and they also fail on managing those products that refine or extend the NFRs of the
product line with delta requirements specific for the product under development. Following the
automotive example the evaluation for the architecture shown in Fig. 3 may conclude that the
architecture meets the latency NFR but that the fault tolerance NFR is not achieved, and
architectural transformations may thus be required.



- Product Architecture Transformation. Finally, in those cases in which the non-functional
requirements cannot be achieved by exercising the architectural variability mechanisms in the
third activity, the Product Architecture Transformation automatically applies pattern-based
architectural transformations to the product architecture. These architectural transformations
can be applied to different architectural viewpoints, depending on the nature of the patterns
being considered. The inputs of the Product Architecture Transformation are the product
architecture, the relative importance of the different NFRs and the transformation view of the
multimodel, containing the transformations to be applied. It generates a product architecture as
output in an attempt to cover the NFRs prioritized by the architect (see Fig. 5(b)). The architect
introduces the relative importance of each NFR that the product must fulfill as normalized
weights ranging from 0 to 1 as external parameters when executing the transformation. The
transformation process uses the relative importance of each NFR and the impact relationships
among transformations and quality attributes to select the architectural transformation to be
applied in order to improve the architecture quality attribute levels. These architectural
transformations may help achieving the NFRs. In the automotive example, if the architect selects
both the latency and the fault tolerance as being of equal importance (i.e., with a weight of 0.5
for each one) the transformation process will select the Triple Modular Redundancy pattern
(TMR). The architecture resulting from the application of the TMR pattern is shown in Fig.
4iError! No se encuentra el origen de la referencia..
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Fig. 4 Product architecture after applying the TMR pattern

The process iterates until the NFRs are achieved or when the architect detects that it is not possible to
build the product with the set of NFRs selected in the configuration (Fig. 5a(1)). The evaluation process may
result also in a renegotiation of the NFRs with the customer (Fig. 5a(2)). In this case, the product architecture
should be re-evaluated to check the conformance with the new NFRs. Finally, in some cases the architect
should vary some architectural variation points to modify the candidate product architecture. For instance,
in some cases the first candidate architecture may imply the positive resolution of a set of architectural
variation points that may lead to a quality attribute levels that are far above of a given NFR. Considering
another combination of architectural variation points may also imply the fulfillment of that specific NFR but
also other that were previously unfulfilled.
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Fig. 5. Overview of the QuaDAI process

4. Overview of the Family of Experiments

In this section, we present the family of experiments conducted to empirically validate the evaluation
and transformation activities of QuaDAI. The methodology adopted is an extension of the five-steps proposed
by Ciolkowski et al. [20], in which the fifth step, family data analysis, has been replaced with “family data
analysis and meta-analysis”. Each experiment was designed according to the experimental process proposed
by Wohlin et al. [78].

4.1. Step 1: Experiment Preparation

According to the Goal-Question Metric (GQM) paradigm [13], the goal of the family of experiments is to
analyze the evaluation and transformation activities of QuaDAI and ATAM for the purpose of comparing
them with respect to their effectiveness, efficiency, ease of use, usefulness and intention of use in order to
obtain software architectures that meet a given set of quality requirements from the viewpoint of novice
software architecture evaluators in the context of undergraduate and postgraduate students in Computer
Science.

4.2. Step 2: Context Definition

The context of the family of experiments is the quality evaluation of two software architectures carried
out by novice evaluators. The context is defined by i) the software architecture to be evaluated; ii) the
architectural evaluation method and iii) the selection of participants.

4.2.1.  Software Architecture Evaluated

The software architectures to be evaluated in the family of experiments are two architectures from two
domains: the software architecture of an Antilock Braking System (ABS System) from an automotive control
system SPL and the software architecture of the Savi application (http://g00.gl/1Q490), which is a mobile
application for emergency notifications.




The architecture of the ABS System, represented through its Component and Connector view [21]
expressed in AADL [34], was selected as experimental object 012, and the Savi architecture, represented
through the Deployment view, was selected as experimental object 02. We also selected a set of four
architectural patterns that can be applied to improve the quality attribute levels of interest for each of the
software architectures from two pattern catalogues ([28] for the automotive domain and [57] for the
emergency management domain). The corresponding selected patterns are intended to improve the specific
NFRs specified in each experimental object. Some of these architectural patterns may impact on several
quality attributes of interest, so as to force the subjects in performing tradeoffs. The experimental tasks
include the evaluation of these quality attributes by means of two software metrics in each experimental
object before and after applying the architecture evaluation methods. Table 1 shows the details of the
experimental objects used in the individual experiments. The rationale behind the selection of these two
architectures is to have different problems, in different domains and that deal with aspects represented in
different architectural viewpoints, so as to have an analysis that is not influenced by one specific domain or
one specific architectural concern. In addition, these two architectures are comparable in terms of size and
complexity.

Table 1 Experimental objects details

Software Metrics

Architectural NFRs Reliability Performance Architectural Patterns
View
Object 01: ABS Component &  Reliability, Failure Latency Time  Watchdog, Homogenous Redundancy,
System Connector Performance Probability Sanity Check and Triple Redundancy [28]
Object 02: Savi Deployment Reliability, Uptime Workload Load Balancer, Symmetric Cluster,
Application View Performance Asymmetric Cluster, Failover
Cluster [57]

4.2.2.  Architecture Evaluation Methods Compared

In this family of experiments we focus on the QuaDAI activities that occur after obtaining the product
architecture: the Product Architecture Evaluation and the Product Transformation activities. These activities
deal with the evaluation and improvement of product architectures, which are aligned with the main purpose
of ATAM. Before its execution, the authors first performed the domain expert role for the QuaDAI method,
which includes i) the selection of the architectural patterns for each domain; ii) the selection of the quality
attributes and the metrics that measure each quality attribute; iii) the execution of the tradeoff process
between architectural patterns and quality attributes for the QuaDAI application and iv) the storage of the
tradeoff results in the multimodel. These activities were carried by the authors since it was required for the
subjects to have a full description of the problem, and since we did not expect the subjects to have a deep
knowledge on the domain to identify the metrics and architectural patterns and be able to perform this
tradeoff.

The activities selected from the ATAM method to be included as experimental tasks were the analysis of
Analysis of Architectural Approaches from the investigation and analysis phase, the Scenario Prioritization
and the second Analysis of Architectural Approaches from the testing phase. Before its execution, the authors
first performed the architect role to identify the architectural approaches, along with the first step performed
by the evaluators: the generation of the utility tree. These activities were carried by the authors since, as for
QuaDAl, it was required for the subjects to have a full description of the problem, and since we did not expect
the participants to have a deep knowledge on the domain to identify the architectural approaches by
themselves from the scratch.

In order to have a fair comparison between both methods, we provided the multimodel in the case of
QuaDAI containing the architectural transformations and their impact on the NFRs and the utility tree and
the architectural approaches in the case of ATAM.

4.2.3.  Participants Selection

The context of this family of experiments is the quality evaluation of software architectures from the
perspective of novice architecture evaluators.

2 An excerpt of the description of the architecture is shown in Appendix A.1.1



Although experienced architecture evaluators enhance the value of the evaluation [22], we focus on the
profile of novice evaluators since one of our goals is to provide a software architecture evaluation method
that will help less experienced evaluators to perform architecture evaluation, by reusing the domain expert’s
knowledge. The following groups of participants were therefore identified in order to facilitate the
generalization of results:

- Undergraduate students, all Computer Science students at the Universitat Politecnica de
Valéncia. These students attended the “Advanced Software Engineering” course from September
2012 to January 2013, during which time they had eight hours of lectures on software
architectures and architecture evaluation.

- Master’s students, enrolled on the Software Engineering Master’s degree program at the
Universitat Politécnica de Valéncia. These students attended the “Quality of Web Information
Systems” course from February 2013 to July 2013. One of the main topics on this course is the
quality assurance and control and includes more than eight hours of theoretical content
concerning software architectures and architecture evaluation.

- Undergraduate students, all Computer Science students at the Universitat Politéecnica de
Valéncia. These students attended the “Software Quality” course from February 2013 to July
2013. One of the main topics on this course is the quality assurance and control and also includes
more than eight hours of theoretical content concerning software architectures and architecture
evaluation.

- Undergraduate students, all Computer Science students at the Universita degli Studi della
Basilicata. These students attended the “Software Engineering” course from March 2013 to June
2013. One of the main topics on this course is modeling of object-oriented systems using the
UML. The students had experience in object-oriented programming and Web technology.

We have focused on the profile of final-year undergraduate and Master’s students since it has been
demonstrated that, under certain conditions, there is no great difference between this type of students and
professionals [12]; [44], and that they can be considered as the next generation of practitioners [51].

We did not establish a classification of participants based on their architecture evaluation experience,
since neither the undergraduates nor the Master’s students had a previous background in conducting
architectural evaluations.

4.3. Step 3: Experimental Tasks and Material

The experimental tasks were structured to allow the comparison of both methods, starting with the
software architecture to be evaluated, a set of NFRs (which are documented in different ways depending on
the method), and a set of patterns. We selected a set of NFRs (reliability and performance) which are critical
in the automotive domain [17] and in the mobile applications domain [36]. Depending on the method, each
task was composed of the method activities that help to achieve its purpose. After applying the method, the
participants had to fill in a post-experimental questionnaire with subjective questions regarding the method.

4.3.1.  ATAM Experimental Tasks

The experimental tasks carried out by the participants when applying ATAM included two measurement
processes, the analysis of architectural approaches (both on the investigation and analysis and on the testing
phase) and the scenario prioritization activities of ATAM (see Section 3.1). The system’s software architecture,
the business goals, the architectural approaches to be considered and the utility tree of the system were
provided as input as a result of the activities performed by the authors since they were part of the problem
description (see Section 4.2.2). The experiment consisted of three experimental tasks, which in the case of
ATAM were structured as follows:

e The first experimental task consisted of a first measurement of the architecture to check the
fulfillment of the NFRs described in the utility tree. This helps the participants to understand whether
the architecture meets the NFRs. During this activity, the participants had first to examine the
documentation of the metrics to be applied and then to calculate the metrics values by introducing
the values required in an excel file that automate the metric calculation.

e The second experimental task consisted of three ATAM activities: i) the first analysis of architectural
approaches, in which the participants had to analyze how the architectural approaches identified



support the scenarios and attributes on the utility tree; ii) the prioritization of scenarios activity, in
which the participants had to assign priorities to the utility tree scenarios and; iii) the second analysis
of the architectural approaches, in which the participants had to select the architectural pattern to
be applied.

e Finally the third experimental task consisted of the final measurement of the modified architecture
after the application of patterns in order to check the fulfillment of the NFRs described in the utility
tree by following the same procedure than in the first measurement process.

4.3.2.  QuaDAI Experimental Tasks

The experimental tasks carried out by the participants when applying QuaDAl included two executions
of the Product Architecture Evaluation activity and the Product Architecture Transformation activity (see
Section 3.2). The system’s software architecture, the system’s NFRs and the multimodel with the tradeoff
among architectural transformations and quality attributes were provided as input as a result of the activities
performed by the authors since, as in the case of the inputs of the ATAM method, it is part of the problem
description (see Section 4.2.2). The experiment consisted of three experimental tasks, which in the case of
QuaDAl were structured as follows:

e The first experimental task consisted of a first application of the QuaDAl’s Product Architecture
Evaluation activity, in which the participants performed a first measurement of the architecture to
check the fulfillment of the NFRs. During this activity, the participants had first to examine the
documentation of the metrics to be applied and then to calculate the metrics values by introducing
the values required in an excel file that automate the metric calculation.

e The second experimental task consisted of the QuaDAI’s Architectural Transformation activity, in
which the participants also had to introduce the relative importance of the NFRs as weights ranging
from 0 to 1. These values were introduced by the participant in the excel file that contains the
multimodel and that returns which pattern was selected based on that information.

e Finally, the third experimental task consisted of a second application of the QuaDAl’s Product
Architecture Evaluation activity, in which the participants performed the final measurement of the
modified architecture after the application of patterns in order to check the fulfillment of the NFRs
by following the same procedure than in the first measurement process.

The experimental tasks only comprised one iteration of the method due to the need of defining a set of
experimental tasks that allow us to compare the final results of the process.

4.3.3. Experimental Materials

The experimental material® was composed of a set of documents required to support the experimental
tasks and the training sessions, along with the post-experimental questionnaire.

The training materials included: i) a set of slides containing the introduction to software architectures,
architectural patterns, and software architecture evaluation; ii) a set of slides describing the QuaDAI method,
with an example of its application which also introduced the use of the excel files which partially automate
the metrics calculation; iii) a set of slides describing the ATAM method, along with an example of its
application.

The documents supporting the experimental tasks included:

- Four kinds of booklets which covered the four possible combinations of both evaluation methods
and experimental objects (QuaDAI-O1, QuaDAI-02, ATAM-01, ATAM-02). The purpose of these
booklets was to i) describe the experimental tasks to be performed; ii) describe the systems, the
architecture of each system and the NFRs to be fulfilled; and iii) gather the data from each
experimental task. An excerpt of the architectural description contained on the booklet can be
found in Appendix A.1.1.

- Two appendixes (O1 and 02) containing the description of the architectural pattern to be
applied. The description of each pattern contains its name, the context in which the pattern can
be applied, the description of the problem to be solved, the pattern structure and the

3All the materials are available for download at http://users.dsic.upv.es/~jagonzalez/IST/family.html




consequences in terms of benefits and drawbacks. Two examples of these patterns can be found
in Appendix A.1.3.

- Two appendixes (O1 and 02) containing the description of the software metrics that measure
the systems’ NFRs (Both for ATAM and for QuaDAI). An example of these metrics can be found
in Appendix A.1.4.

- Two appendixes (01 and 02) containing the description of the architecture after the application
of each pattern (Both for ATAM and for QuaDAI). An example of the resulting architecture after
the application of a pattern is shown in Appendix A.1.5.

- Two Excel files (O1 and 02) which automate the calculations of the application of the different
metrics (Both for ATAM and for QuaDAl). The complexity of the calculations required that the
calculations of each metric were partially automated. The participants had to fill in the data
required by each metric (which was provided in the booklet) and they then obtained the final
result, which they had to evaluate.

- Two appendixes containing a detailed explanation of each evaluation method (QuaDAI and
ATAM). The QuaDAl appendix included guideline to help the participants in the definition of the
importance of the quality attributes.

- Two Excel files (O1 and 02) which included the selection of alternative architecture
transformations based on the quality attributes’ relative importance selected by the participant,
to be used during the application of the QuaDAI method.

The post-experimental questionnaire contained a set of closed-questions that allowed the participants
to express their opinion of the method’s ease of use, usefulness and their intention to use that method in the
future. The closed questions included in the questionnaire can be found in Appendix A.2. The order of the
questions in this questionnaire was shuffled in order to prevent systemic response bias, and the questions
were formulated to become negative statements on the left-hand side so as to avoid monotonous responses
[45]. We also included two open questions in order to obtain the participants’ feedback as regards the
changes that they would make to improve the methods and their reasons for using a given method in the
future.

4.4. Step 4: Individual Experiments

The family of experiments is summarized in Fig. 6. The original experiment (UPV1) [41] was replicated
[42] so as to obtain more evidence for the results obtained in the experiment and to verify the remaining
issues. The second experiment (i.e., UPV2) was differentiated internal replication of the original experiment
performed in different settings and the third experiment (i.e., UPV3) as a differentiated internal replication
of the second experiment (i.e., UPV2).

The fourth experiment (UNIBAS) was an external replication of the third experiment (i.e., UPV3)
performed at the Universita degli Studi della Basilicata in Italy so as to verify the findings obtained in the three
previous experiments and to avoid any author bias that may have been present in the previous studies.

1%t Experiment [41] 2"d Experiment [42] 3" Experiment 4t Experiment
UPV1 UPV2 UPV3 UNIBAS
28 Undergraduate 16 Master’s Students 36 Undergraduate Students 12 Undergraduate Students
Students Differentiated Internal Differentiated Internal Differentiated External
Replication of UPV1 Replication of UPV2 Replication of UPV3
(Published at [41]) (Published at [42])

Main factor: Method (QuaDAI vs. ATAM)
Other factors: Experimental Objects (O1 and 02)
Dependent variables: Effectiveness, Efficiency, Perceived Ease of Use, Perceived Usefulness and Intention to Use

Fig. 6. Overview of our family of experiments

4.5. Step 5: Family Data Analysis and Meta-Analysis

The results of each individual experiment were collected using the booklets and the questionnaire
containing the closed-questions, and they were then analyzed. For testing the hypotheses we applied
parametric one-tailed t-tests for testing these variables that were normally distributed and the non-



parametric Mann Whitney test when the data was not normally distributed. For testing whether or not the
data was normally distributed we applied the Shapiro-Wilk test since in each individual experiment the
sample size was less than 50 [24].

We also performed a meta-analysis, based on the Hunter-Schmidt method [46], based on the point
biserial correlation r, in order to aggregate the results, since the experimental conditions were very similar
for each experiment. This analysis, which is detailed in Section 7.2, enabled us to obtain stronger results and
to extract more general conclusions with regard to each individual experiment.

5. Design of Individual Experiments

In this section, we describe the characteristics of each experiment in the family of experiments. To avoid
redundancies, we only discuss some clarifications of the original experiment with regard to the information
presented in the previous section and the differences between the experiments. We conclude the section by
discussing issues related to the documentation used in the external replication and the means of
communication used by the experimenters.

5.1. The Original Experiment (UPV1)
5.1.1.  Planning

Context of the experiment: we used both of the experimental objects (O1 and 02) described in Section
4.2.1 and applied the software architecture evaluation methods described in Section 4.2.2. We selected 31
undergraduate students as participants.

Selection of Variables: The independent variable of interest in this family of experiments is the use of
each architecture evaluation method with nominal values: ATAM and QuaDAI.

There are two objective dependent variables:

- Effectiveness of the method, which was calculated as a function of the Euclidean Distances
between the NFR values attained by the architecture being evaluated by the participant and the
optimal set of values that it was possible to attain when selecting the architectural pattern that
best fits the NFRs for each experimental object.

- Efficiency, which is calculated as the ratio between the effectiveness and the total time spent on
applying the evaluation method.

Effectiveness is calculated by applying formula (1) to normalized Euclidean distances, were p is the
vector of NFRs’ values as obtained by the participant. The normalization is calculated by applying formula (2)
to the Euclidean distances, which is calculated by applying formula (3) and returns a value ranging from 0 to
1. Formula (3), calculates the distance between two n-dimensional vectors of NFRs values, p and q
Normalization is required to avoid the effects of the scales of the metrics that measure each NFR. The optimal
function in formulas (1) and (2) returns the optimal values of the NFRs that can be achieved for a given
experimental object. The Max function returns the maximal distance D observed for a given experimental
object. The values for effectiveness range from 0 (i.e., the minimum possible effectiveness, when the distance
D is the maximum observed for all the participants) to 1 (i.e., the maximum effectiveness, when the distance
Dis 0).

Effectiveness(p) = 1 — Norm(D(p, optimal(Object)) (1)

D (p, Optimal(Object))
Max(Object)

Norm(D(p, Optimal(Object)) = @)

D(p.q) = (3)




For example, if the optimal values for a given experiment object O; are ¢ = (0.5,50) and a given
participant obtains an architecture whose NFRs are p = (0.7,51) the Euclidean distance D =
\/(0.7 —0.5)2 + (51 — 50)% = 1.02. If the maximum distance for this specific experimental object is 1.5;
Norm(D(p, Optimal(Ol-)) = 1-02/1 5= 0.68 and the participants effectiveness is calculated as:
Effectiveness(p) =1 — 0.68 = 0.32.

There are also three subjective dependent variables, which are based on the Technology Acceptance
Model (TAM) [27], since TAM is one of the most widely applied theoretical models when analyzing user
acceptance and usage behavior of emerging information technologies, and has empirical support through
validations and replications [77]. The perceived efficacy [27] of the method can be broken down into the
following subjective dependent variables:

- Perceived Ease of Use, which refers to the degree to which evaluators believe that learning and
using a particular method will be easy.

- Perceived Usefulness, which refers to the degree to which evaluators believe that using a specific
method will increase their job performance within an organizational context.

- Intention to Use, which refers to the extent to which an evaluator intends to use a particular
method. This last variable represents a perceptual judgment of the method’s efficacy — that is,
whether it is cost-effective and is commonly used to predict the likelihood of acceptance of a
method in practice.

These three subjective variables were measured by using a Likert scale questionnaire with a set of 13
closed-questions: 3 questions for perceived ease of use (PEQU), 6 questions for perceived usefulness (PU)
and 4 for intention to use (ITU). The closed-questions were formulated by using a 5-point Likert scale, using
the opposing statement question format. In other words, each question contains two opposite statements
representing the maximum and minimum possible values (5 and 1), where the value 3 is considered to be a
neutral perception. The aggregated value of each subjective variable was calculated as the arithmetical mean
of the answers to the questions associated with each subjective dependent variable.

Hypothesis formulation: We formulated the following null hypotheses, which were formulated in a one-
tailed manner, since we wanted to analyze the effect of the use of QuaDAI on the subjective variables.

Each null hypothesis and its alternative are presented as follows:

- H1,: There is no significant difference between the effectiveness of QuaDAI and ATAM / H1,:
QuaDAI is significantly more effective than ATAM.

- H2,: There is no significant difference between the efficiency of QuaDAI and ATAM / H2,: QuaDAI
is significantly more efficient than ATAM.

- H3,: There is no significant difference between the perceived ease of use of evaluators applying
QuaDAIl and ATAM / H3,: QuaDAl is perceived as easier to use than ATAM.

- H4,: There is no significant difference between the perceived usefulness of QuaDAI and ATAM /
H4,: QuaDAl is perceived as more useful than ATAM.

- H5: There is no significant difference between the intention to use of QuaDAI and ATAM / H5.:
QuaDAl is perceived as more likely to be used than ATAM.

Experimental design: The experiment was planned as a balanced within-participant design with a
confounding effect, signifying that the same participants applied both methods with both experimental
objects in a different order. We established four groups (each of which applied one method to one object)
and the participants were randomly assigned to each group.

Table 2 shows the experimental design schema used in all the individual experiments. The within
participants experimental design is intended to minimize the impact of learning effects on the results, since
none of the participants repeat any treatment or experimental object during the execution. Other factors
which may also have been present needed to be controlled, since they might have influenced the results, i.e.,
the complexity of experimental objects. The comprehension of the architecture to be evaluated, the NFRs,
the metrics evaluating these NFRs and the architectural patterns may have affected the application of both
methods. We attempted to alleviate the influence of this factor by selecting two representative software
systems with software architectures, NFRs, software metrics and architectural patterns of a reasonable



complexity. The complexity of the patterns and metrics selected made them suitable for application in the
time slot available for the execution of the experiments.

Table 2 Experimental design

Groups (sample size = 4n participants)

G1 (n participants) G2 (n participants) G3 (n participants) G4 (n participants)
1st Session ATAM applied in O1 ATAM applied in 02 QuaDAI applied in 01 QuaDAl applied in 02
2nd Session QuabDAl applied in 02 QuaDAl applied in O1 ATAM applied in 02 ATAM applied in 01

Instrumentation: the documents presented in Section 4.3 were used to support the experimental tasks
(4 data gathering documents, 4 appendices and 1 questionnaire and 3 Excel files) and the training material (3
slide sets).

5.1.2.  Operation and Execution

This section describes the experimental operation, including the preparation, the execution, the data
recording and the data validation.

With regard to the operation of the experiment, the experiment was planned to be conducted in three
sessions (Table 3 shows the details for each day). On the first day, the participants were given complete
training on the methods to be applied and also on the tasks to be performed in the execution of the
experiment. On the second and third days, the participants were given an overview of the training before
applying one evaluation method to an experimental object (01 or 02). We established a slot of 90 minutes
with no time limit for any of the methods to be applied. However, we allowed the participants to continue
the experiment even though these 90 minutes had passed in order to avoid a possible ceiling effect [71].

With regard to the experiment execution, the experiment took place in a single room, and no interaction
between participants was allowed. The questions that arose during the session were clarified by those
conducting the experiment.

With regard to the data validation, we verified that one of the participants had not completed the 2nd
session and that it was therefore necessary to eliminate this data point. Since we had 30 participants
distributed in four groups, it was necessary to discard two participants (who did not represent outliers, they
were simply selected randomly) in order to maintain the balanced design, shown in Table 2 (i.e., having
exactly the same number of participants in each group), consisting of a total of 28 participants, with seven
samples in each group.

Table 3 Schedule of the first experiment

1 session (120 min) Training on Software Architecture Evaluation using ATAM and QuaDAI
2" session Software Architecture Evaluation using ATAM and QuaDAI (short training)
(120 min) QuaDAl in 01 | QuaDAl in 02 ATAM in O1 | ATAM in 02
QuaDAI Questionnaire ATAM Questionnaire
3" session Software Architecture Evaluation using ATAM and QuaDAI (short training)
(120 min) ATAM in 02 | ATAM in 01 QuaDAI in 02 | QuaDAI in 01
ATAM Questionnaire QuaDAI Questionnaire

5.2. The Second Experiment (UPV2)
This experiment (first replication) was different to the original experiment in three aspects:

- Participant Selection: The participants were 19 Master students. They attended the “Quality of
Web Information Systems” course, and whose profile is described in Section 4.2.3.

- One level of an NFR in the experimental object O2 was also changed since in this experimental
object it was easier to find the best solution (100% of the participants had selected the best
pattern when dealing with O2 in the original study) as compared to the experimental object O1
(only 71% of the participants had selected the best pattern, regardless of the method).

- Control questions: We included a set of control questions* in the experimental material in order
to analyze the comprehension of the patterns and the metrics being applied. These questions

4 The control questions are included in the booklet (which is available at
http://users.dsic.upv.es/~jagonzalez/IST/family.html) and should be answered by the participants after




helped the participants to focus on understanding the patterns and metrics and allowed us to
control their comprehension of the problem. These questions did not influence the experiment
execution and results; their purpose was solely to control the comprehension of the patterns and
metrics.

With regard to the preparation of the experiment, the experiment was also planned to be conducted by
following the schedule shown in Table 3. As in the original experiment, the experiment took place in a single
room and no interaction between participants was allowed. With regard to the data validation, in order to
maintain a balanced design, it was necessary to discard the data from three participants (who did not
represent outliers, they were simply selected randomly), consisting of a total of 16 participants - 4 samples
in each group.

5.3. The Third Experiment (UPV3)

This third experiment (second replication) was a replication of UPV2. The difference between this
experiment and UPV2 was the participants selected. The participants were 40 undergraduate students. They
attended the “Software Quality” course, and whose profile is described in Section 4.2.3.

The preparation and execution of the experiment were the same as those for UPV2 since the same three
day planning was followed. With regard to the data validation, we verified that three participants had not
completed the 2nd session and that it was therefore necessary to eliminate their first exercise. Since we had
37 participants distributed in four groups, it was necessary to discard one additional participant (who did not
represent an outlier, and was simply selected randomly) so as to maintain the same number of samples per
group, consisting of a total of 36 participants, with nine samples in each group.

5.4. The Fourth Experiment (UNIBAS)

The fourth experiment (third replication in our family of experiments) is an external replication of UPV3.
UNIBAS was different from UPV3 in three respects:

- Participants Selection: The participants were 12 third-year Computer Science undergraduate
students. They attended a “Software Engineering” course.

- Experimental Tasks: we also included a third NFR and a new software metric to be applied in
order to make the tradeoff more complex and less obvious. This also included a new NFR in the
calculation of the effectiveness, following the expressions described in Section 5.1.1.

- Experimental Material: The material was translated from Spanish into English, which was the
language in which the replication was conducted. English was not the mother tongue of the
participants. This may have led to construct and external validity threats because of the
participants’ familiarity with the English language. However, all of the participants had to pass an
English language exam to be enrolled in the second year of their Bachelor program, and the
participants’ knowledge of English was therefore almost homogenous, thus mitigating the
possible threats mentioned above. For the first time, the participants used the electronic version
of the material rather than printed versions of the documents.

The preparation and execution of the experiment were slightly different to those of the other
experiments. A few days before the experiment sessions, the participants attended three training sessions
(180 minutes in total). In the first session (60 minutes), software architecture evaluation concepts were
presented, while ATAM and QuaDAI were introduced in the latter two training sessions, respectively. In order
to better explain the software architecture evaluation approaches that are the object of our study, two
running examples were presented to the participants in these latter two sessions, which lasted about 60
minutes each. It is worth mentioning that the experimental schema used was the same as that used in the
other experiments (see Table 3).

5.5. Documentation and Communication

Issues such as documentation [73] and communication between experimenters [76] may influence the
success of a replication. Deficiencies in documentation and laboratory packages are one of the biggest

reading the pattern description for the questions regarding the patterns and before the first measurement
for the questions regarding the metrics.



sources of problems, and make it difficult to use replication to advance knowledge. As a possible solution,
the authors propose better laboratory packages and the use of knowledge sharing mechanisms.

With regard to the documentation, the experimenters in the three original experiments translated all
the material initially written in Spanish into English. This material included the post-experimental
questionnaire, all the annexes documenting the patterns, the metrics, the software architectures resulting
from the application of patterns, and the excel spreadsheets automatizing the application of each metric. We
also included a set of slides in the training material so as to explain the execution procedure.

In the document, we also discussed the rationale behind the design choices made in the original
experiment, highlighting all the information that was useful to reproduce the experimental conditions. The
experimenter involved in the external replications was also provided with previous publications concerning
the original experiment [41], [42]. The groups of experimenters additionally exchanged the training material
in order to reproduce the same experimental setting as used in UPV1, UPV2 and UPV3. Although
documentation is a key factor in being able to carry out a replication, communication among experimenters
is even more important [76].

The interactions between the groups of experimenters were mainly by e-mail, and instant messaging
tools were also occasionally used. The exchange of documentation was performed by using file sharing tools
in the cloud.

6. Analysis of the Results

In this section, we discuss the results of each individual experiment by quantitatively analyzing the data
according to the hypotheses stated. All the results presented were obtained by using the SPSS v20.

In this analysis, we used descriptive statistics, boxplots and statistical tests in order to analyze the data
collected from each individual experiment. In particular, since the sample size was less than 50, it was
necessary to apply the Shapiro-Wilk test to check whether the data was normally distributed. The Shapiro-
Wilk test allowed us to select the tests to be applied in order to check the hypotheses. When the data was
normally distributed (Shapiro-Wilk p-value > 0.05) we applied the parametric one tailed t-test for
independent samples [48]. However, when the data could not be assumed to be normally distributed, we
applied the non-parametric Mann-Whitney test [24]. The subjective variables were analyzed separately for
each method, by comparing whether the mean of the responses to the questions related to a variable were
significantly greater than the Likert neutral value. In our case, the ordinal scales ranged from 0 to 5 and the
neutral value corresponded to 3.

We applied these tests because they are a set of robust, sensitive and accepted statistical tests that are
widely applied in the Software Engineering community [55]. As is usual, in all the tests we decided to accept
a probability of 5% of committing a Type-I-Error [78], i.e., rejecting the null hypothesis when it is actually
true.jError! No se encuentra el origen de la referencia.Table 4 shows a summary of the overall results of the
architecture evaluations performed in each individual experiment. Mean and standard deviations have also
been used as descriptive statistics for the qualitative subjective variables PEOU, PU and ITU. Even though we
did not further analyze Duration we included the variable in this summary so as to give a first idea of the
complexity of the experimental tasks. In the UNIBAS experiment, duration was higher since we included a
third NFR that make the process less obvious and probably due to the participant’s former level of experience.

Table 4 Summary of the family results

UPV1 (N=56) UPV2 (N=32) UPV3 (N=72) UNIBAS (N=24)
Mean SD Mean SD Mean SD Mean SD
Effectiveness QuaDAl 0.684 0.361 0.797 0.209 0.708 0.351 0.631 0.277
ATAM 0.626 0.388 0.461 0.448 0.462 0.404 0.297 0.285
Efficiency QuaDAI 0.029 0.013 0.023 0.007 0.025 0.015 0.011 0.006
ATAM 0.019 0.018 0.014 0.015 0.015 0.014 0.006 0.007
Duration QuaDAI 25.36 7.258 34.63 7.974 30.11 8.671 69.83 23.486
ATAM 31.11 9.154 39.19 11.356 33.03 9.032 73.17 29.735
Perceived Ease of Use QuaDAl 3.98 0.876 4.312 0.714 3.59 0.659 2.667 1.054
ATAM 3.50 0.816 4.020 0.714 3.59 0.658 2.444 0.729
Perceived Usefulness QuaDAl 3.804 0.832 4.167 0.860 4.07 0.498 3.569 0.329
ATAM 3.723 0.730 3.927 0.672 3.85 0.528 3.458 0.342
Intention to Use QuaDAl 3.654 0.698 4.063 0.710 3.935 0.631 3.458 0.673
ATAM 3.547 0.844 3.906 0.831 3.740 0.638 3.417 0.685

The five-point Likert scale ranging from 1 to 5 adopted for the measurement of the subjective variables
has also been considered as an interval scale [19]. The cells highlighted in bold type in Table 4 show the best



values for each of the statistics. The overall results have allowed us to interpret that the participants achieved
their best performance with QuaDAI in almost all the statistics under analysis.

The following subsections detail the analysis of each dependent variable (Effectiveness, Efficiency,
Perceived Ease of Use, Perceived Usefulness and Intention to Use) and the hypotheses testing.

6.1. Effectiveness

Fig. 7 shows the boxplots for the effectiveness variable per participant and per method for each
experiment in our family. These boxplots show that QuaDAI was relatively more effective than ATAM when
evaluating the architectures in each experimental object. Probably this can be explained by the reuse of the
knowledge stored in the multimodel. It was easier for the participants to interpret the NFRs and prioritize the
quality attributes so as to obtain the correct pattern to be applied rather than the subjective evaluation of
the patterns with regard to the scenarios on the utility tree.

We checked the statistical significance of these tests by performing the Mann-Whitney non-parametric
test so as to verify H1 in UPV1, UPV2 and UPV3, since the Shapiro-Wilk test results evidenced that they were
not normally distributed (p-value=0.000 both for QuaDAIl and ATAM in UPV1, p-value=0.000 for QuaDAIl and
p-value=0.001 for ATAM in UPV2 and finally, p-value=0.000 both for QuaDAIl and ATAM in UPV3). The 1-tailed
t-test was then used for the verification of H1 in UNIBAS since it was normally distributed. The p-values
obtained for these tests were 0.906 for UPV1, 0.036 for UPV2, 0.003 for UPV3 and 0.008 for UNIBAS. These
results therefore support the rejection of the null hypothesis H1o in experiments UPV2, UPV3 and UNIBAS (p-
value < 0.05) and the acceptance of its alternative hypothesis, signifying that the effectiveness of the
participants when applying QuaDAI was significantly greater than their effectiveness when applying ATAM.
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Fig. 7. Effectiveness variable boxplots

6.2. Efficiency

Fig. 8 shows the boxplots for the efficiency variable per participant and per method for each
experiment®. These boxplots show that QuaDAI was relatively more efficient than ATAM when evaluating the
architectures in each experimental object. This can be due to the effectiveness of the participants (the
efficiency variable was calculated as effectiveness/duration) but also because they performed faster, since
the selection of the architectural pattern was automated once they established the priority of the quality
attributes.

We checked the statistical significance of these results by performing the Mann-Whitney non-parametric
test so as to verify H2 in UPV2, UPV3 and UNIBAS, since the Shapiro-Wilk test evidenced that they were not
normally distributed (p-value=0.016 for ATAM in UPV2, p-value=0.000 for ATAM in UPV3 and finally, p-
value=0.001for ATAM in UNIBAS). The 1-tailed t-test was then used for the verification of H2 in UPV1 since it
was normally distributed. The p-values obtained for these tests were 0.030 for UPV1, 0.043 for UPV2, 0.06
for UPV3 and finally 0.045 for UNIBAS. These results therefore support the rejection of the null hypothesis
H2, in all the experiments (p-value < 0.05) and the acceptance of its alternative hypothesis, signifying that
the efficiency of the participants when applying QuaDAIl was significantly greater than their efficiency when
applying ATAM.

> We did not provide specific treatment to the outliers; they are only evident for the efficiency variable
since those two participants finished the experimental tasks in less time than the rest.
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Fig. 8. Efficiency variable boxplots

6.3. Perceived Ease of Use

Fig. 9 shows the density-plots for PEOU per method for each experiment. The mean of each population
is shown with two vertical lines in each density-plot. These density-plots show that, with the exception of
UPV3 in which the participants perceived both methods to be equally easy to use, the participants perceived
QuaDAl to be easier to use than ATAM. This can be owing to the fact that the participants perceived as easier
to decide the priority of the quality attributes once they had finished the measurement process rather than
evaluating the different patterns and how these patterns support the scenarios. This was confirmed by the
participants in their response to the open questions of the questionnaire: “/ find a simple and intuitive way
to evaluate. The use of the spreadsheet facilitates the process”, “It is a method easy to learn and apply”.

We checked the statistical significance of these results by performing the one sample Wilcoxon test with
a test value equal to 3 for each method separately so as to verify H3 for UPV1/QuaDAl, UPV1/ATAM,
UPV2/QuaDAl and UPV3/ATAM, since the Shapiro-Wilk test evidenced that they were not normally
distributed (p-value=0.014 for UPV1/QuaDAl, p-value=0.027 for UPV1/ATAM, p-value=0.026 for
UPV2/QuaDAI and finally p-value=0.046 for UPV3/ATAM). The two-tailed t-test with a test value equal to 3
(the Likert scale’s neutral value) was then used to verify H3 for UPV2/ATAM, UPV3/QuaDAI, UNIBAS/QuaDAI
and finally for UNIBAS/ATAM, since they were normally distributed. The p-values obtained for these tests
were 0.000 for UPV1/QuaDAl, 0.003 for UPV1/ATAM, 0.001 for UPV2/QuaDAl, 0.000 for UPV2/ATAM, 0.000
for UPV3/QuaDAl, 0.000 for UPV3/ATAM, 0.297 for UNIBAS/QuaDAI and 0.023 for UNIBAS/ATAM. These
results therefore support the rejection of the null hypothesis H3, in UPV1, UPV2, UPV3 (p-value < 0.05) and
the acceptance of its alternative hypothesis, signifying that the participants perceived QuaDAI to be easier to
use than ATAM.
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Fig. 9. Perceived ease of use variable density-plots



6.4. Perceived Usefulness

Fig. 10 shows the density-plots for PU per method for each experiment. The mean of each population is
shown with two vertical lines in each density-plot. These density-plots show that the participants perceived
QuaDAI to be more useful than ATAM. This can be owing to the fact that the participants perceived they
perceived as more useful the use of a tool (the spreadsheet) that helps them to take the decision. Since they
are novice architecture evaluators, it seems more useful for them to use a method that allows reusing the
domain expert’s knowledge.

We checked the statistical significance of these results by performing the one sample Wilcoxon test with
a test value equal to 3 for each method separately so as to verify H4 for UPV1/QuaDAl, UPV3/QuaDAl, and
UNIBAS/QuaDAI, since the Shapiro-Wilk test evidenced that they were not normally distributed (p-
value=0.001 for UPV1/QuaDAl, p-value=0.008 for UPV3/QuaDAl and finally p-value=0.005 for
UNIBAS/QuaDAI). The two-tailed t-test with a test value equal to 3 (the Likert scale’s neutral value) was then
used to verify H4 for UPV1/ATAM, UPV2/QuaDAl, UPV2/ATAM, UPV3/ATAM, and UNIBAS/ATAM, since they
were normally distributed. The p-values obtained for these tests were 0.000 for UPV1/QuaDAI, 0.000 for
UPV1/ATAM, 0.001 for UPV2/QuaDAl, 0.001 for UPV2/ATAM, 0.001 for UPV3/QuaDAI, 0.000 for
UPV3/ATAM, 0.002 for UNIBAS/QuaDAI and 0.001 for UNIBAS/ATAM. These results therefore support the
rejection of the null hypothesis H4, in each experiment (p-value < 0.05) and the acceptance of its alternative
hypothesis, signifying that the participants perceived QuaDAI to be more useful than ATAM.
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Fig. 10. Perceived usefulness variable density-plots

6.5. Intention to Use

Fig. 11 shows the density-plots for the ITU per method for each experiment. The mean of each
population is shown with two vertical lines in each density plot. These density-plots show that the participants
perceived QuaDAI to be more likely to be used than ATAM. This can be owing to the fact that since they are
novice architecture evaluators, they perceive that the method provides them mechanisms with which to carry
out software evaluations in a model-driven context. This was confirmed by the participants in their response
to the open questions of the questionnaire: “I have the intention of using this method for the evaluation of
architectures since incorporates the mechanisms to detect the improvements to be made in software
architectures”, “I will use it since allows prioritizing different characteristics and take the decision based on
this prioritization”.

We checked the statistical significance of these tests by performing the one sample Wilcoxon test with
a test value equal to 3 for each method separately so as to verify H5 for UPV1/QuaDAI, UPV2/QuaDAl,
UPV3/QuaDAIl and UPV3/ATAM, since the Shapiro-Wilk test evidenced that they were not normally
distributed (p-value=0.024 for UPV1/QuaDAl, p-value=0.022 for UPV2/QuaDAl, p-value=0.000 for
UPV3/QuaDAI and p-value=0.005 for UPV3/ATAM). The two-tailed t-test with a test value equal to 3 (the
Likert scale’s neutral value) was then used to verify H5 for UPV1/ATAM, UPV2/ATAM, UNIBAS/QuaDAI and
UNIBAS/ATAM, since they were normally distributed. The p-values obtained for these tests were 0.000 for
UPV1/QuaDAIl, 0.000 for UPV/ATAM, 0.001 for UPV2/QuaDAIl, 0.001 for UPV2/ATAM, 0.000 for
UPV3/QuaDAl, 0.000 for UPV3/ATAM, 0.003 for UNIBAS/QuaDAI, 0.059 for UNIBAS/ATAM. These results



therefore support the rejection of the null hypothesis H5¢ in UPV1, UPV2, UPV3 (p-value < 0.05) and the
acceptance of its alternative hypothesis, signifying that the participants perceived QuaDAI to be more likely
to be used than ATAM.
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Fig. 11. Intention to use variable density-plots

7. Consolidated Data Analysis

This section provides a summary of the results obtained. We present an analysis of the results in the
context of our family of experiments, followed by the results of a meta-analysis that aggregates the empirical
findings obtained in the individual experiments.

7.1. Summary of Results

Once the experiments had been carried out, we performed a global analysis of the results in order to
determine whether the main goal of our family of experiments had been attained.

The main result is the empirical validation of a method in the field of software architecture evaluation.
In this family of experiments we have gained empirical evidence on how a method may help novice architects
in performing software architecture evaluations as opposed to a method widely used in industrial
environments. This evidence is a contribution to the body of knowledge on architecture evaluation methods
since it provides factual data about which software architecture evaluation method is more suitable under
certain conditions.

These results may be of interest to the software architecture community in general and to novice
architects in particular (since we have tested its utility for guiding novice architects on performing
architectural evaluations) but also for researchers in the area who want to replicate the experiments (the
research package has been made public). Finally, the validation strategy could be relevant (and could be
reused) by other researchers to validate other existing architecture evaluation methods. As far as we know,
this is the first family of experiments on comparing architecture evaluation methods.

We also analyzed all the results of the individual experiments to search for differences. A summary of
the results obtained in each individual experiment is provided in Table 5.

Table 5 Summary of the results of the family of experiments

Experiment  Type of participants Num. of participants Hypotheses rejected
UPV1 Undergraduate students 28 H2o, H30, H40, H50
UPV2 Master Students 16 H1o, H20, H30, H40, H50
UPV3 Undergraduate students 36 H1o, H20, H30, H40, H50
UNIBAS Undergraduate students 12 H1o, H20, H4o

The individual results show that in all the experiments the participants attained their best results with
the QuaDAIl and that all the alternative hypotheses were accepted in at least two experiments. In the context
of this family of experiments, QuaDAI proved to be more effective and efficient than ATAM. The participants



were also more satisfied when they applied QuaDAI, and they found it easier to use, more useful and more
likely to be used than ATAM in a Model-Driven Software Product Line Development context.

With regard to the Effectiveness variable (see Table 4 and Fig. 7), we detected that after the application
of the QuaDAIl evaluation and transformation activities, the participants obtained software architectures that
were closer to the required NFR values that should have been attained. However, in the UPV1 experiment
the results were not found to be statistically significant. This may be owing to the fact that in the first
experiment the experimental object 02 was much easier than in experiment 01, and this may have affected
this result (there were differences only in the experimental object 01, and these were not sufficient to lead
to the statistical significance). What is more, the differences in the UNIBAS experiment were even more
important; this could have been owing to the addition of a third NFR, making the decision even more
complicated.

With regard to Efficiency (see Table 4 and Fig. 8), we detected that the participants were also faster
when they applied QuaDAI than when using ATAM. This may be owing to the fact that when applying ATAM
the participants had to consider all the architectural approaches (i.e., patterns) and how they affect the NFRs
of interest, whereas when they applied QuaDAI they had to decide on the relative importance of the different
NFRs, and this decision was made automatically based on that relative importance.

With regard to the Perceived Ease of Use variable (see Table 4 and Fig. 9), we found that QuaDAI
achieved mean values higher than ATAM. In general, in all the experiment the mean values for PEOU were
above the Likert neutral value established at 3 points (except in the UNIBAS experiment, where was found to
be non-statistically significant). In the UNIBAS experiment, Perceived Ease of Use was found to be non-
statistically significant perhaps due to the fact that in this experiment the materials were not in the
participants’ mother tongue —ltalian-, which may have influenced the subjective variables owing to the
complexity of the questionnaire questions. We also observed that there was a slight difference between the
Master’s students (who perceived both methods to be easier to use) as compared to the undergraduate
students. This could have been owing to the former level of experience and maturity of the participants, who
have a better appreciation of the difficulties involved in the software architecture evaluation process.

With regard to the Perceived Usefulness variable (see Table 4 and Fig. 10), we found that the QuaDAI
achieved mean values higher than ATAM, signifying that the participants perceived QuaDAI to be more useful
than ATAM. It is also important to note that both scores are good results for both methods since all of them
were above the Likert’s neutral value established at 3 points.

With regard to the Intention to Use variable (see Table 4 and Fig. 11 we found that QuaDAI achieved
mean values higher than ATAM, signifying that the participants perceived QuaDAI to be more likely to be
used than ATAM. It is also important to highlight that both scores are good results for both methods since all
of them were above the Likert’s neutral value established at 3 points. In the case of the UNIBAS experiment,
this variable was not found to be statistically significant.

The variability in all these results and its significance may be due to the number of participants in each
experiment and the heterogeneity of the profiles among experiments. In addition the first experiment it also
suffered from differences on the complexity of the experimental objects, which only could be spotted once
the experiments had been carried out. In the future, and once we have a stable experiment definition, we
plan to execute new replication not only with bigger groups but also with more experienced participants, in
order to analyze the impact that the profile could have on the results.

In summary, the results support the hypothesis that QuaDAI would perform better than ATAM in the
specified context for which had been designed which is the evaluation of product architectures that occur
after the product architecture derivation in model-driven SPL development context. According to the
previously discussed results, we can conclude that QuaDAI can be considered as a promising approach with
which to perform product architecture evaluations in model-driven SPL development processes after the
architecture derivation. Feedback on how to improve the approach was also obtained (e.g., the difficulties
that some participants had when assigning the relative importance to the set of NFRs or the possible reuse
of the measurement results to select from among architectural transformations). Running a family of
experiments (including replications) rather than a single experiment provided us with more evidence of the
external validity, and thus the generalization of the study results. Each replication provided further evidence
of the confirmation of the hypothesis. We can thus conclude that the general goal of the empirical validation
has been achieved.

7.2. Meta-Analysis

Although several statistical methods have been proposed for the aggregation and interpretation of the
results that were obtained from interrelated experiments (e.g., [38], [46], [58], [69]), we used meta-analysis



since it allowed us to extract more general conclusions. Meta-analysis consists of a set of statistical
techniques with which to combine the effect sizes of each experiment so as to obtain a global effect of a
factor. The estimation of effect sizes can be used after the comparison of the different studies to evaluate
the average impact across studies of an independent variable on the dependent variable. Since measures
may originate from different settings and may be non-homogeneous, a standardized measure should be
obtained for each experiment: these measures must be combined to estimate the global effect size of a
factor. In our study, we considered that the architectural evaluation method was the main factor in the family
of experiments.

The meta-analysis was performed by using the Meta53 [69] and applying the Hunter-Schmidt method
[46]. Since all the variables under study had at least one experiment in which the data was not normally
distributed we used the point biserial correlation r. Correlations are the best-known effect sizes, and they
describe the direction and strength of the relationships between two variables within a range of -1.0 and 1.0
[69]. The point biserial correlation r for each experiment can be calculated by applying the formula (4) [58],
where Z is the quartile (z-score) of the p-value obtained by the Mann-Whitney/Wilcoxon tests and N is the
sample size in each case. Since we have different population sizes across the studies, the best way in which
to estimate the effect size for the family of experiments is to calculate the correlation 7 weighted by the
number of participants in each study [46]. This metric assigns more weight to the large N studies and is
calculated using formula (5) [46]. For studies in the Software Engineering field, the effect size calculated using
point-biserial r correlation is rated as follows: small (0-0.193), medium (0.194-0.456), or large (above 0.456)
[49]. The Hunter-Schmidt Method also allows a chi-square significance test of homogeneity across the studies
to be performed. This test is calculated by applying formula (6) [46]. The result of homogeneity test is the chi-
square with k-1 degrees of freedom, for a family of k experiments, and where the weighted variance across
studies Srzis calculated by applying formula (7) [46]. If the chi-square is not significant, this means that there
is strong evidence that there is no true variation across studies, but if it is significant, then the variation may
still be negligible in magnitude [46].
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Table 6 summarizes the results of the meta-analysis. The overall effect of each variable is reported with
the weighted mean 7, its significance, and the homogeneity of the studies with regard to that effect. In each
case, the significance of this effect size was strongly significant, and the population was found to be
homogeneous for the Effectiveness and Efficiency variables and for the Perceived Usefulness of QuaDAl, and
heterogeneous for the remaining variables (i.e., Perceived Ease of Use, ATAM’s Perceived Usefulness and for
Intention to Use). The effect size obtained was medium for Effectiveness and Efficiency, and large for the
subjective dependent variables (i.e., Perceived Ease of Use, Perceived Usefulness and Intention to Use). This
was probably as a result of the number of experiments used in the data meta-analysis.

Table 6 Effect sizes and homogeneity test results

Variable N Significance Test of Homogeneity




Global Effect Size

(Weighted Mean r’) Chi-square  Degrees of freedom Result (p-value)
Effectiveness 184 Medium (0.27197) Yes (p<0.001) 6,7648 3 Homogeneous (p=0,080)
Efficiency 184 Medium (0.32346) Yes (p<0.001) 0,4693 3 Homogeneous (p=0,926)
PEOU QuaDAl 92 Large (0.70681) Yes (p<0.001) 47,0646 3 Heterogeneous (p<0.001)
ATAM 92 Large (0.55076) Yes (p<0.001) 51,4611 3 Heterogeneous (p<0.001)
PU QuaDAl 92 Large (1.00000) Yes (p<0.001) 3,5851 3 Homogeneous (p=0,310)
ATAM 92 Large (0.98694) Yes (p<0.001) 27,6145 3 Heterogeneous (p<0.001)
U QuaDAl 92 Large (0.93938) Yes (p<0.001) 36,8937 3 Heterogeneous (p<0.001)
ATAM 92 Large (0.87296) Yes (p<0.001) 17,4899 3 Heterogeneous (p<0.001)

The results of the cluster analysis, in which the effect size of each individual experiment is also analyzed,
are shown in Table 7. For each experiment, this table reports the population effect size through the
unweighted mean r after applying Mullen and Rosenthal’s cluster analysis method [58]. This effect has also
been classified as Small (S), Medium (M) and Large (L) following the same classification [49] for effect sizes
as those applied to the weighted effect size in Table 6.

Despite the fact that the first experiment contributed to the overall results of the meta-analysis to a
lesser extent, these results have a significant positive effect, and we can thus reject the null hypotheses which
were formulated for each dependent variable (i.e., “there are no significant differences between QuaDAIl and
ATAM”). The meta-analysis therefore strengthens all the alternative hypotheses, providing promising results
as regards QuaDAI’s performance.

Table 7 Individual experiments effect sizes

PEOU PU ITu
Experiment Effectiveness  Efficiency QuaDAI ATAM QuaDAI ATAM QuaDAI ATAM
UPV1 S (0.0146) M (0.2684) L (0.9622) M (0.4374) L (1.0000) L (0.8079) L (0.8880) L (0.7684)
UPV2 M(0.3678) M (0.3585)  L(1.0000)  L(1.0000) L(1.0000) L(0.8011) L(1.0000) L (0.8273)
UPV3 M (0.3502) M (0.3230) L (0.6584) L (0.8495) L (1.0000) L (1.0000) L (1.0000) L (1.0000)
UNBAS L (0.5098) M (0.4069) S(-0.1348) S(-0.6799) L (1.0000) L (1.0000) L (0.7965) L (0.7967)

8. Threats to the Validity

In this section, we explain the main issues that may have threatened the validity of the experiments, by
considering the four types of threats proposed in [25].

8.1. Internal Validity

The threats to internal validity are relevant in those studies that attempt to establish causal relationship.
In our case, the main threats to the internal validity of the family of experiments were: Learning effect,
participants’ experience, information exchange among participants, author’s bias, author influence, order of
methods in the training sessions and the understandability of the documents.

The learning effect was alleviated by defining two experimental objects, ensuring that each participant
applied each method in a different experimental object and considering all the possible combinations of both
the method order and the experimental objects by following a within participants experiment design which
is intended to minimize the impact of learning effects.

There were no differences in the participants’ experience since none of them had any experience in
architecture evaluations. We confirmed this by asking the participants about their previous experience with
architecture evaluation methods. This was the rationale behind providing the training sessions on both
methods in each experiment since it was our intention to balance the participants’ knowledge of architecture
evaluation methods according to the novice evaluator profile. The participants were also provided with an
introduction to the tasks and the problems they would have to solve via training sessions.



The information exchange was minimized by, on the one hand using different experimental objects, and
on the other hand by monitoring the participants while they performed the tasks. However, since the
experiment was designed to take place on more than one day, the participants might have been able to
exchange information during the time between the sessions. In order to alleviate this situation the
participants were asked to return the material at the end of each session.

The author’s bias may have influenced the results in the Spanish experiments (i.e., UPV1, UPV2 and
UPV3) since the training sessions were conducted by one author of the method. In these experiments, the
author’s influence was alleviated by not disclosing the authorship of the QuaDAI method to the participants.
However, in the UNIBAS experiment this threat was alleviated since both the training session and the
experiment were conducted by an external researcher. In addition the authors may also have influenced the
results of the studies since the first activities of both methods were carried out by them resulting on the
artifacts to be used by the participants on their experimental tasks. However this bias is mitigated since in
both cases the set of artifacts were leveled, and, for each experimental object, contained in essence the same
information for both methods. Finally, the authors may have also influenced the results through the addition
of the measurement processes to the ATAM experimental tasks. These measurement processes help the
subjects identifying the whether the architecture meets the NFRs or not. It is probable that the subjects will
take more time if they apply ATAM without applying these measurement tasks. We will investigate this issue
in future experimentations.

We attempted to alleviate the understandability by writing the experimental materials for the first three
experiments (i.e., UPV1, UPV2 and UPV3) in the participants’ mother tongue. However, in the UNIBAS
experiment the experimental material was in English rather than in the participants’ mother tongue (Italian),
and this may have influenced the final results of this replication. Finally, we cleared up any misunderstandings
about the experimental materials that appeared during the experimental sessions in all the experiments in
the family.

8.2. External Validity

This refers to the approximate truth of conclusions involving generalizations within different contexts.
The main threat to external validity is the representativeness of the results. The representativeness of the
results might be affected by the evaluation design, the participant context selected and the size and
complexity of the tasks.

We believe that the results obtained are applicable to SPLs even though the context at the experiments
was not specific for SPL development (this study is focused on validating a subset of QUADAI that provide
activities for evaluating and improving software architectures that can (or not) be obtained as a result of a
derivation activity in a SPL environment). However, the strategy and the mechanisms provided by QuaDAI to
express and validate NFRs make this method suitable to model-driven SPL development.

The evaluation design might have had an impact on the generalization of the results owing to the kind
of architectural models and quality attributes to be evaluated. We attempted to alleviate this by selecting
two architectures with the same size and complexity from two different domains (i.e., the automotive and
mobile applications domains). The architectural models representing the architectural views under study (the
Component and Connector view for O1 and the Deployment view for 02) had a similar number of entities (8
vs 6). With regard to the NFRs, we attempted to select two different and representative NFRs (related to
reliability and performance) and their associated metrics, that had also the same complexity (for each
experimental object one of the metrics was linear and the second was logarithmic/exponential). With regard
to the architectural patterns, the domain experts selected four different patterns for each experimental
object with the intention of improving the NFRs of interest.

With regard to the participant’s experience, the experiments were conducted with students with no
previous experience in architectural evaluations, and who received only limited training in the evaluation
methods. However, since they were final year students they can be considered as novice users of
architectural evaluation methods, and the next generation of practitioners [51]. The results could thus be
considered to be representative of novice evaluators. As further work, we intend to conduct more
experiments involving participants with different participant profiles (e.g., practitioners or students with a
higher level of knowledge and skills in architecture evaluation) and different experimental objects in order to
improve the representativeness of our results. In addition, more external replications should be conducted
by other experimental conductors to reinforce the results of the UNIBAS external replication.

The size and complexity of the tasks might have also affected the external validity. We decided to use
relatively small tasks that would be applied in few representative architectural models since a controlled
experiment requires participants to complete the assigned tasks in a limited amount of time. In addition, the



experiments were designed for executing just one iteration of the experimental tasks and thus the results are
valid only in this context.

8.3. Construct Validity

The construct validity of the family of experiments may have been influenced by both the measures that
were applied during the quantitative analysis and the reliability of the questionnaire. We attempted to
alleviate this threat by using measures that are commonly applied in architecture evaluation and optimization
techniques. In particular, the Effectiveness was measured using the Euclidean distance, which has commonly
been used to measure the goodness of a solution with regard to a set of opposed NFRs with different
purposes (e.g., [26], [75]). The subjective variables are based on the Technology Acceptance Method (TAM),
a well-known and empirically validated model for the evaluation of information technologies [27].

The reliability of the questionnaire was tested by applying the Cronbach test. Table 8 shows the
Cronbach’s alphas obtained for each set of the closed-questions intended to measure the three subjective
dependent variables (i.e., PEOU, PU, and ITU). Except in UNIBAS, all the values obtained for PU and ITU were
higher than the acceptable minimum threshold (a=0.70) [55]. This can be explained by the fact that in UPV1,
UPV2 and UPV3 the materials were in Spanish, the participants’ mother tongue, whereas in the UNIBAS
experiment the materials were in English, and this difference may have had more influence in the case of the
questionnaire.

Table 8 Cronbach's alphas for the questionnaires’ reliability

Dependent Variable UPV1 upPv2 uprv3 UNIBAS

Perceived Ease of Use Acceptable (0.824) Acceptable (0.890) Acceptable (0.738) Acceptable (0.748)
Perceived Usefulness Acceptable (0.870) Acceptable (0.898) Acceptable (0.758) Non-Acceptable (0.011)
Intention to Use Acceptable (0.831) Acceptable (0.814) Acceptable (0.731) Non-Acceptable (0.666)

8.4. Conclusion Validity

The main threats to the conclusion validity of the family of experiments were the data collection and the
validity of the statistical tests applied. With regard to the data collection, we applied the same procedure to
each individual experiment when extracting the data, and ensured that each dependent variable was
calculated by applying the same formula. With regard to the validity of the statistical tests applied, we
alleviated this threat by applying a set of commonly accepted tests employed in the empirical SE community
[55].

9. Conclusions and Further Work

The lack of integrated methods to support the derivation, evaluation, and quality improvement of
software architectures motivated us, in a previous work, to propose the Quality-Driven Architecture
Derivation and Improvement (QuaDAI) [41], a model-driven approach with which to derive, evaluate and
eventually transform software architectures in an SPL environment.

In this paper, we have reported the results of a family of experiments aimed at evaluating participants’
effectiveness, efficiency, perceived ease of use, perceived usefulness and intention to use with regard to the
use of QuaDAI as opposed to a widely-used industrial architectural evaluation method: the Architecture
Tradeoff Analysis Method (ATAM).

The results of the quantitative analysis showed that, under the conditions described above, QuaDAI was
more effective and efficient than ATAM (although in the first experiment the differences in the participant’s
effectiveness did not prove to be statically significant, perhaps owing to the difference in difficulty between
the experimental objects in that experiment). In addition, with regard to the evaluators’ perceptions, the
participants perceived QuaDAI to be easier to use, more useful and more likely to be used than ATAM
(although again in the fourth experiment the differences in the perceived ease of use and intention to use
were not found to be statistically significant, and this was perhaps influenced by the fact that in the last
replication the materials were not in the participants’ mother tongue, which may have influenced the
subjective variables owing to the complexity of the questionnaire questions). The results were supported by
a meta-analysis that was performed in order to aggregate the empirical findings from each individual
experiment. The results of the meta-analysis allow us to conclude that there is a significant positive effect on
all the variables under study associated with the use of QuaDAI as an architecture evaluation method for
evaluating the derived product architecture.



From a research perspective, the family of experiments was a valuable means to obtain feedback with
which to improve QuaDAI (e.g., improve the mechanism used to assign the relative importance to the set of
NFRs or reuse the results from the measurement process to select architectural transformations). To the best
of our knowledge, this is the first empirical study to provide evidence of the usefulness of a software
architecture evaluation method for a model-driven software development process. In our family of
experiments what we did a first validation of the method to obtain some feedback and to analyze ourselves
how the participants performed. We agree that students may not be as helpful as working with practitioners.
However we were running the initial validation of the method. Now when we have a first version of the
method, and when we have a tool for supporting the configuration and derivation stages of the method our
plan is to perform realistic evaluations with practitioners

From a practical perspective, we are aware that this study provides only preliminary results on the
usefulness of QuaDAI as a software architecture evaluation method to be applied to architectures obtained
(or not) as a result of the derivation of product architectures in model-driven SPL development processes.
Although the experimental results provided good results as regards the performance of our software
architecture evaluation method for model-driven SPL development, these results need to be interpreted with
caution since they are only valid within the context established in this family of experiments. It is now
necessary to analyze whether the same results will be obtained with more experienced participants and
practitioners and with new experimental objects, and with a wider set of pattern and non-functional
requirements. It is therefore necessary to carry out more empirical studies in order to test our proposal in
other settings. Nevertheless, this study has value as a first study to test the integration of QuaDAI evaluations
in model-driven software development processes.

The validation through the family of experiments had required us to find out a method with which to
compare QuaDAl, to set up two well-defined experimental objects from two different, representative
domains, together with an example to illustrate the training process. The experimental process had also
taught us that, even though we ran pilot studies, experimental materials and experimental tasks need to be
readjusted to level the difficulty among the experimental objects. We have also experienced that minor
curricula differences among groups may also change the experimental results and sometimes is difficult to
figure out the reasons that justify the differences on the variables under study.

As future work, we intend to perform more replications to minimize the effect of possible threats to
validity for our study. In particular, these replications will consider: more external replications, new kinds of
participants such as practitioners from industry with different levels of experience in software architecture
evaluations, and finally, software architectures originating from different domains and using different and
wider sets of quality attributes, software metrics and architectural patterns.
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Appendix A. Excerpts from the Experimental Material

This appendix presents excerpts from all the different materials. Appendix A.1 presents an excerpt from
the ATAM and QuaDAI O1 booklets. We show the experimental material of one of the experimental objects
since having the whole set of materials of one object it will assist in the comprehension of the experimental
tasks. The materials from the second experimental object (i.e., 02) are available for download at
http://www.dsic.upv.es/~jagonzalez/IST/family.html. Finally, Appendix A.2 presents the post-experimental
questionnaire used to measure the subjective variables.

A.1. Examples of Software Architecture, Patterns and Metrics

A.1.1. Software Architecture to be Evaluated

The first software architecture to be evaluated is from an Antilock Braking System (ABS). The goal of the
ABS Systems is to control the brake actuators of a car. The system monitors the brake pedal sensor and
activates the brake actuator as soon as the driver presses the brake pedal. In addition, so as to prevent wheel
slippage when the brake actuator is activated, the system monitors four wheel rotation sensors, one on each
wheel. Each sensor sends signals while the wheel is rotating. If the system detects wheel slippage, the brake
actuator will be deactivated, and it will be activated again after a short period of time.

Fig. 12 shows the (ABS) system architecture. The input sensors are on the left. We can see the processing
and control software components inside the ABS system, and the actuators are on the right. In this case,
apart from the sensors and actuators, the driving console has also been considered. The driving console
includes the switches used to activate or deactivate the different systems and the signals that indicate to the
user that the ABS has been activated.
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Fig. 12. ABS System architecture

A.1.2. ATAM Utility Tree
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A.1.3. Architectural Patterns

Pattern

Triple modular redundancy pattern [28]

Context

Problem

Pattern
Structure

Consequences

The Triple Modular Redundancy Pattern (TMR, for short) is used to enhance reliability and safety in situations in
which there is no fail-safe state. The TMR pattern has an odd number of channels (three) which operate in parallel.
The computational results or resulting actuation signals are compared, and if there is a disagreement, then a two-
out-of-three majority wins policy is invoked.

The problem addressed by the Triple Modular Redundancy Pattern is the same as that of the Homogeneous
Redundancy Pattern—that is, to provide protection against random faults (failures) with the additional constraint
that when a fault is detected, the input data should not be lost, nor should additional time be required to provide
a correct output response.

The pattern has a replicated structure consisting of three channels operating in parallel, as shown in Fig. 14. Each
channel contains a set of objects that process incoming data in a series of transformational steps. The channels do
not cross-check each other at strategic points. Rather, the three channels in the set operate completely in parallel,
and only the final resulting outputs are compared. The comparator implements a winner-take-all policy such that
the two channels producing the correct results win.

The Triple Modular Redundancy Pattern can only detect random faults. Since the channels are homogeneous, then
by definition any systematic fault in one channel must be present in both of the others. Because the channels
execute in parallel, the source data is also replicated in each channel. In the case of an error, only the erroneous
channel's output is discarded, and the other channels' output is used, so the failure does not result in the loss of
data, nor does it require that the output be re-calculated. This pattern adds to the computation time, thus affecting
the system’s behavior in the general case. TMR has a rather high recurring cost because the hardware and software
in the channels must be replicated. The TMR pattern is common in applications in which reliability needs are very
high and worth the additional cost involved in replicating the channels.
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Fig. 14. Triple modular redundancy pattern structure

Pattern

Watchdog pattern[28]

Context

Problem

Pattern
Structure

Consequences

The watchdog pattern is a lightweight pattern that provides minimal coverage against faults. The watchdog pattern
merely checks that the internal computational processing is proceeding as expected. This means that its coverage
is minimal, and a broad set of faults will not be detected.

Real-time systems are those that are predictably timely. In the most common (albeit simplified) view, the
computations have a deadline by which they must be applied. If the computation occurs after that deadline, the
result may either be erroneous or irrelevant. If the output appears too late, then the system cannot be controlled;
the system is said to be in an unstable region.

The structure of the watchdog pattern is shown in Fig. 15, in which we can see its simplicity. The Actuator Channel
operates pretty much independently of the watchdog, sending a liveness message to the watchdog every so often.
This is called stroking the watchdog. The watchdog uses the timeliness of the stroking to determine whether a fault
has occurred. Most watchdogs check only that a stroke occurs in a particular period of time and do not pay
attention to what happens if the stroke occurs too quickly. Some watchdogs check that the stroke occurs neither
too quickly nor too slowly.

The Watchdog Pattern is a very lightweight pattern that is rarely used alone in safety-critical systems. It is best at
identifying timebase faults, particularly when an independent timebase drives the Watchdog. It can also be used
to detect a deadlock in the actuation channel.

Since its coverage it so minimal, its effect on the reliability is weak, and it is therefore rarely used alone.
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A.1.4. Metrics
Metric Latency Time
Description The latency time is defined as the time that has elapsed between receiving an input event and the generation of
the output by the system.
Calculation For its calculation we should consider the flows of data and events that follow the reception of an input eventin a

sensor until the actuator state is changed. We shall consider only the latency time in the best case.

Latency Time = Z Latency Time (Component)

Components in flow

Interpretation  The latency time gives a positive value as a result. The lower the value is, the better the latency time of the system.
It can be measured using different time units (e.g., ms, sec)

A.1.5. Resulting Architecture after the Application of Patterns
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A.2.

Subjective variables evaluation questionnaire

Table 9 Closed-questions evaluating each subjective dependent variable

Question Positive Statement (5 Points) Negative Statement (1 Point)

PEOU-1 The architecture evaluation method is simple and easy  The architecture evaluation method is complex and
to follow. difficult to follow.

PEOU-2 In general, the software architecture method is easy to  In general, the software architecture method is difficult
understand. to understand.

PEOU-3 The software architecture method is easy to learn. The software architecture method is difficult to learn.

PU-1 | believe that this method would reduce the time and | believe that this method would increase the time and
effort required for the evaluation of software effort required for the evaluation of software
architecture. architecture.

PU-2 In general, the software architecture method is useful. In general, the software architecture method is useless.

PU-3 | believe that this software architecture evaluation | believe that this software architecture evaluation
method is useful as regards obtaining architectures that method is useless as regards obtaining architectures that
fulfill the quality requirements. fulfill the quality requirements.

PU-4 | believe that this method incorporates the mechanisms | believe that this method lacks the mechanisms required
required to detect the improvements to be made to to detect the improvements to be made to software
software architectures. architectures.

PU-5 In general, | believe that this method efficiently In general, | believe that this method does not efficiently
supports the software architecture evaluation. support the software architecture evaluation.

PU-6 The use of this method will improve my performance  The use of this method will not improve my performance
when evaluating software architectures. when evaluating software architectures.

ITU-1 If | need to use a software architecture method in the If | need to use a software architecture method in the
future, | believe that | will consider this method. future, | do not believe that | will consider this method.

ITU-2 | believe that it would be easy to become skilled in using | believe that It would be difficult to become skilled in
this method. using this method.

ITU-3 | intend to use this method in the future. I have NO intention of using this method in the future.

ITU-4 I would not recommend using this software | would not recommend using this software architecture
architecture evaluation method. evaluation method.
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