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Abstract 

 

The use of direct injection diesel engines has been widely applied during the 

past ten years. In such engines, the preheating plugs are a key element which 

has a significant contribution in the pollutant emissions. 

In this paper, two different plug designs from Renault are analyzed. The new 

plug reduces substantially the required electrical consumption. Nevertheless, 

the pollutant emissions are higher (fundamentally CO and HCs) and hereby a 

thorough analysis is required to understand the possible reasons.  

Firstly, an infrared thermography analysis of the plugs has been carried out. 

The new plug tip presents 100-200ºC higher temperatures than with the former 

design. Secondly, a thermal model has been developed and validated with 

temperature measurements. The latter model has helped to obtain the energy 

flow diagram. Finally, a thermography analysis of the head of the cylinders has 

been carried out. The results show that the higher exhaust emissions are 

related with an incomplete combustion process due to a thin air gap which 

surrounds the tip of the plug. 
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NOMENCLATURE  

J Total radiation, W m-2 

E Emitted radiation from the surrounding surfaces, W m-2 

σ Stephan-Boltzmann constant, 5.67 x 10-8 W m-2 K4 

G Reflected radiation from the surrounding surfaces, W m-2 

ε Emissivity, adimensional (averaged value at the wavelength range 

of the camera detector: 8-14 microns) 

T Temperature, K 

m Mass, kg 

cp Specific heat, J kg-1 K-1 

I Intensity, A 

V Voltage, V 

Q Thermal power, W 

Δt Time step, s 

C Thermal capacitance, J K-1 

A Heat transfer area surrounding the plug, m2 

h Heat convection coefficient, W m-2 K-1 

  

Subscripts  

conv Convection 

rad Radiation 

cond Conduction 

air Air surrounding the plug 

refl Reflected radiation 

old Old preheating plug 

new New preheating plug 

  

 

 

 



1. Introduction 

 

In the past ten years, diesel engines have been widely used in the automotive 

industry in Europe [1] due to their higher efficiency, fuel economy and reliability. 

Progressively, Direct Injection (DI) diesel engines have replaced the Indirect 

Injection engines. The main advantages are the reduction of the fuel 

consumption [2] and the favorable characteristic torque profile. Additionally, with 

the use of turbo-charging, a high performance is now achieved even for small 

and medium DI diesel engines, which now deliver specific brake powers close 

to those of spark ignition engines [3]. 

Nevertheless, the pollutant emissions are a key issue in the development of 

diesel engines given the recent restrictive legislations. Most of the pollutant 

emissions are produced during the engine start and warm-up [4-6], where the 

emissions of CO, HC and smoke are significant. These emissions are often 

caused by difficulties in obtaining a stable and efficient combustion under these 

conditions [3]. During the rest of the operation conditions from the engine, 

particularly for a constant charge and engine speed, the emissions are 

generally lower. 

In order to start the operation of DI diesel engines, preheating plugs are 

mandatory to achieve the desired thermal conditions when the fuel is injected in 

the combustion chamber. Nevertheless, the preheating plugs require a 

considerably high electric energy consumption from the battery. Thus, the 

improvement of their design is a key issue to reduce both the energy 

consumption and the pollutant emissions.  

In this paper, and for the first time, two different plugs of RENAULT have been 

characterized by means of infrared (IR) thermography. In comparison with other 

conventional measurement techniques such as with thermocouples or thermo-

resistances, IR thermography presents the advantage of providing an 

instantaneous response to any temperature variations. Furthermore IR 

thermography is a non-intrusive tool [7] to characterize small elements such as 

the preheating plugs of a vehicle. Otherwise it would be hardly possible to 

measure the plug temperature under real operating conditions, as the insertion 

of thermocouples would modify the heat transfer conditions. Infrared (IR) 

thermography has already proved to be a useful technique in a wide variety of 

applications such as in the automotive sector [8-10], building inspections [11-

12], HVAC installations [13-14] or in the characterization of heat exchangers 

[15-16]. 

 

 



2. Experimental set-up and methodology 

2.1. Description of the preheating plugs 

 

This paper analyzes the preheating system of a RENAULT Meganne III K9K 

engine. The main features of the engine are given in Table 1. The engine has a 

DI common rail with a turbo-compressor which has a displacement of 1.4 l. Fig. 

1 shows a scheme of the preheating plug next to the cylinders where the 

combustion takes place. The tip of the plug is located inside the combustion 

chamber. 

Two different plug designs have been analyzed. Figs. 2 and 3 show the detailed 

geometry of the tip of the old and new plug respectively.  

The former preheating plug has a bigger diameter (4 mm) than the new plug 

(3.3 mm). Hence, the new plug has a bigger space between the plug and the 

cylinder head. This air gap or crevice can have a significant effect on the 

exhaust gas emissions [5] as discussed further on in the paper. 

 

2.2. Analysis of the exhaust emissions 

 

Before starting the engine, the combustion chamber and the fuel/air mixture are 

cold. In DI diesel engines, preheating plugs are required in order to increase the 

temperature rapidly and herewith ensure a complete combustion since the start-

up.  

Typically, the preheating plugs are used during the first 3 minutes (180s). 

Nevertheless, the vehicle industry has to guarantee an accurate performance of 

the plugs during a whole period of 300s. 

Using a preheating plug implies a higher load for the engine, as it has to deliver 

the required power via the alternator. Thus, the plugs have two opposite effects: 

on the one hand, they can help decrease the pollutant emissions by improving 

the combustion process, but on the other hand, they increase the exhaust 

emissions because the engine has to deliver more power. 

For these reasons, the pollutant emissions have been measured with internal 

and external feeding. In the first case, the power is directly provided to the plugs 

via the alternator, as in real conditions. In the second case, with external 

feeding, a battery feeds the plugs.  



The exhaust gas emissions have been measured following the control 

standards 70/220/EEC, directive Euro 4. The pollutant emissions are measured 

in a test bench which simulates the New European Driving Cycle (NEDC). 

  

 

2.3. Infrared thermography measurements 

 

In the combustion chamber, many parallel chemical reactions take place. The 

formation of NOx, CO and HC is directly correlated with the temperature [5]. 

Thus, the measurement of the temperature field around the plug provides 

complementary information to the exhaust emission tests. 

The temperature of the plugs and the cylinder head have been measured by 

means of IR thermography for both the former design and for the new design. 

IR cameras enable the measurement of the surface temperature of opaque 

objects. The radiosity from opaque surfaces can be expressed as: 

 

                                                    (1)   

                                                 

Thus, the radiosity (output radiation) can be considered as the addition of the 

corresponding emission (E) and reflected irradiation (G) from the surrounding 

surfaces. 

From the Stephan-Boltzmann Law for real (non-blackbody) surfaces, the 

emitted radiation (E) and the reflected irradiation (G) can be calculated as given 

in Eqs. (2) and (3) respectively. 

 

                                                     (2) 

      

                                                     (3) 

 

In the previous equations, T is the object temperature and Trefl is the apparent 

reflected temperature which is the object parameter of the infrared camera that 

takes into account the effect of the irradiation from the surrounding surfaces. It 

is also referred to as “Apparent temperature” since it is a temperature which is 



related to the entire irradiation from the background independently from the 

possible sources. 

The measurements of temperature with IR thermography are subject to 

uncertainties concerning the determination of the typical “Object parameters” 

(emissivity, reflected apparent temperature).  

Table 2 shows the uncertainty of the temperature measurements. In the tests, a 

real temperature of the heating plug of 1000ºC and an apparent reflected 

temperature of 20ºC were obtained. An experimental test was carried out to 

measure the effective emissivity of the tip of the plug, and a value of 0.95 was 

found. As shown in Table 2, even for values of 0.96 or 0.94, the estimated 

temperature from the IR camera would only vary between +0.34% and -0.33%. 

Thus, there is a very small uncertainty due to the emissivity. 

The uncertainty due to the apparent reflected temperature is even lower than for 

the emissivity. Even if the apparent reflected temperature were of 10ºC instead 

of 20ºC, the temperature estimated by the infrared camera would be 

1000.006ºC.  

The conclusion from this uncertainty analysis is that, for so high emissivities and 

temperatures, the effect of uncertainties in the estimated object parameters is 

almost negligible. Thus, the use of the IR camera is very appropriate for this 

application. 

 

2.4. Thermal model of the plugs 

 

In addition to the experimental tests, a thermal model has been developed in 

order to predict the plug temperature and quantify the heat dissipation towards 

the surroundings of the plug.  

Given the small dimensions of the plug tip, a uniform temperature model (Eq. 

(4)) has been applied. The thermal power of the plug is dissipated via the 

following heat transfer mechanisms [17]: 

- Convection heat transfer with the external air at 20ºC 

- Radiation heat transfer to the surrounding walls  

- Conduction towards the cylinder head  

  

        (4) 

 



By introducing the thermal capacitance of the plug (C = m.cp) and by applying a 

time-discretization to Eq. (4), the plug temperature Tn+1 for any time step n+1 

can be calculated directly as a function of the previous temperature (Tn) and as 

a balance of the heat transfer with the surroundings: 

 

(5) 

 

The results and parameters of the zero dimensional model represented in Eq. 

(5) are analyzed further on in subsection 3.3. 

 

 

3. Results and discussion 

3.1. Exhaust emissions 

 

In the first measurement campaign with internal feeding, the CO2 emissions 

were analyzed during the first 180s after the engine start. The new preheating 

plug decreased the CO2 levels in around 20%. 

In the second measurement campaign with external feeding, an increase of 

HCs of 5.9% and 3.4% of CO was detected with the new plug. Both pollutants 

are related with a deterioration of the combustion process and hereby, they 

require a specific analysis. As a first hypothesis, it seems that the differences in 

the exhaust emissions may be due to the crevice which surrounds the plug. It 

has been found [5] that narrow entrances in the combustion chamber often 

provoke a flame quenching, and consequently, the fuel/air mixture inside cannot 

be fully burnt. In order to support this hypothesis, the temperature of the plugs 

has been studied in detail by means of infrared thermography. 

 

3.2. Temperature measurements of the tip of the plugs 

 

A FLIR THERMACAM S65 long wave IR camera was used with close up lenses 

to enlarge the resolution of the images given the small dimensions of the 

preheating plug. 



The infrared images were taken with a frequency of 50 images per second, and 

were directly saved at the hard disk as infrared radiometric sequences. 

The cylinder temperatures were measured once steady-state conditions were 

achieved at the tip of the plug. Fig. 4 shows the thermography measurements of 

4 cylinders in steady-state conditions. All of the images in Fig. 4 have been 

adjusted with the same temperature span and level. 

In Fig. 5, the temperature evolution of the preheating plugs is represented. In 

comparison with the old plug, the new plug induces clearly higher temperatures 

in the cylinders. 

By analyzing Figs. 4 and 5, the following results are obtained: 

 The new plug shows quite uniform and averaged steady temperatures 

around 1000ºC 

 The temperature variations with the old plug are higher, with tip 

temperatures varying between 780ºC and 930ºC. 

 It seems that the pollutant emissions of the new design are not related 

with the temperatures at the tip of the heating plug, since the newly 

designed plug presents higher and more uniform temperatures and less 

variations between cylinders than with the previous design. 

A deep and detailed thermal study of the tip of the preheating plug and the 

surface of the cylinder head is hereby necessary to explain why the exhaust 

emissions are higher with the new plug. The model results given in section 3.3 

provide interesting information which help understand the infrared 

thermography results of the head of the cylinders (section 3.4). 

 

3.3. Model results 

 

Before analyzing the model results, it is first essential to consider the different 

schedules of the electric power supply of each plug. As explained previously, 

the new plug is designed to save electrical energy. This aspect is clearly shown 

in Fig. 6, where the heating power of both plugs is represented. 

In total, during the 300 s represented in Fig. 6, the new plug requires 69% less 

energy consumption than the former plug. This aspect is very attractive given 

the fact that the electric consumption of the auxiliaries is continuously 

increasing in vehicles. 

Fig. 7 shows the experimental and calculated temperature profiles by means of 

Eq. (5). The experimental test in Fig. 7 can be divided into three phases: 



• Initial transient heating of the plug  

• Steady-state heat transfer region 

• Final cooling of the plug 

Although some minor differences are detected in the initial transient heating 

process, the prediction of the steady-state performance and of the final cooling 

process is very accurate (±2%), hereby supporting the use of the uniform 

temperature model. 

Fig. 8 shows the final transient cooling of the plug which is of particular 

relevance in the calculation of the thermal capacitance of the plugs. 

The thermal capacitance of the plugs (C = m.cp) has been obtained by means of 

the temperature profiles during the final transient cooling process (last 10s in 

Fig. 8). The thermal capacitance has been calculated using the Excel Solver by 

minimizing the mean square error between the model and the experimental 

results shown in Fig. 7. The capacitance is important as it determines the 

velocity of the heating process, or equivalently, the necessary time to achieve a 

steady-state condition heat transfer. 

For the former plug, a thermal capacitance of 20 J/K was found. For the fast 

plug, the best results are obtained for a thermal capacitance of 25 J/K. These 

results are coherent with the real physical parameters of both plugs. For 

instance, the former plug has a mass of 23 g  and an estimated specific heat cp 

of 900 J/kg K. This gives a thermal capacitance of 20.7 J/K which is very close 

to the value 20 J/kg found with the uniform temperature model. 

The fast plug has a mass of 26 g, and the same specific heat as the former one. 

Thus, a thermal capacitance of 23.5 J/K is obtained, which is also in good 

agreement with the value of 25 J/kg which is found with the uniform temperature 

model. 

 

Heat dissipation mechanisms 

By means of the developed model, the different heat dissipation mechanisms 

have been quantified and they are summarized in Figs. 9 to 11. The values 

which are shown have been calculated at steady-state conditions. The 

parameters of the uniform temperature model are detailed in Table 3. The 

following results have been obtained: 

 As inferred from Fig. 9, the new plug design induces higher 

temperatures in both the tip of the plug and in the crevice surrounding 

the plug. 



 In the new plug (Fig. 10), due to the high temperatures which are 

achieved, radiation is the predominant heat transfer mode. From the 

generated 33 W, almost all of the power (28.3 W) is provided to the 

the combustion chamber. 

 With the former plug (Fig. 11), from the entire 110W electric power 

provided at steady-state conditions, 92 W are directly conducted to 

the cylinder head, and indirectly to the combustion chamber due to 

heat conduction in the cylinder head. In total after 300s, as there are 

4 plugs, 115000 J are provided to the cylinder head. 15.1 W are 

dissipated in the incandescent tip via radiation.  

 In the old plug, assuming a cylinder head mass of 12 kg and a 

specific heat capacity cp = 900 J kg-1 K-1, this implies that from the 

heating induced by the conduction losses, a mean temperature 

increase of the cylinder head of around 10.6ºC is achieved. This 

temperature increase has been confirmed experimentally, as shown 

in the following section 3.4. 

 

 

3.4. Results and analysis of the cylinder head temperature 

 

From the infrared sequences obtained during the experimental characterization 

of both preheating plugs, it is also possible to analyze the temperatures of the 

surface of the cylinder head during the complete duration of the tests (300s). In 

this case, the temperature range used at the camera must be the lowest one (-

40-160ºC). If the sequences are not registered in the adequate range, it is not 

possible to obtain correct temperature measurements. 

In the next paragraphs, the results are analyzed for cylinder 1. Very similar 

results have been obtained for the other 3 cylinders. With the new design, high 

temperatures (150ºC) are found at the zone which surrounds the plug crevice. 

Fig. 12 shows the temperature profile which is obtained in the cylinder head for 

different distances from the central plug axis. With the new design, the region 

near the axis reaches 150ºC, whereas the old plug presents temperatures 

below 100ºC. These differences in the plug crevice are reasonable given the 

fact that the new plug reaches higher temperatures at the tip of the plug. 

The key point in this study is nevertheless the temperature which is achieved at 

the rest of the cylinder head. The materials which are used at the cylinder 

heads are aluminium alloys, which have high thermal conductivities and 



diffusivities. Thus, the temperatures in the entire cylinder head are rather 

uniform. With the exception of the region right next to the plug (less than 5 mm 

in Fig. 12), due to the heat conduction, the old plug design induces 

approximately 10ºC higher temperatures in the cylinder head. This aspect is in 

coherence with the results of the uniform temperature model. 

Figs. 13 and 14 show the temperature profiles which are obtained in the 

cylinder heads after 300s. After this time, the main part of the cylinder head 

surface where the old plug is mounted shows temperatures about 40ºC due to 

the residual heating of the entire cylinder head caused by the heat conduction. 

On the right-hand side of Figs. 13 and 14, the isotherm camera tool has been 

used to represent in green the temperature range between 40ºC and 160ºC.  As 

may be inferred from Fig. 13, a very large proportion of surface around the 

cylinder head has temperatures above 40ºC. On the contrary, in Fig. 14, where 

the results are given for the new plug, there is only a thin area in the crevice 

with such temperatures, and the rest of the cylinder head is colder than 40ºC. 

 

 

4. Conclusion 

 

In this work, a thermographic study of two different preheating plugs of a 

RENAULT diesel engine has been carried out. The temperature of the tip of the 

plugs and of the head of the cylinders has been measured. A uniform 

temperature model has been developed and has provided a very good 

agreement with the measurements. The model has provided a useful tool to 

quantify the heat transfer losses and to compare both plug designs. The 

following conclusions have been drawn: 

• With the new plug design, almost the entire heating power is transmitted 

directly towards the combustion chamber as radiation. The new plug 

presents higher temperatures in the plug tip and in the plug crevice, but 

not in the rest of the cylinder head.  

• With the old plug, less heating power is directly supplied to the fuel/air 

mixture via radiation, but due to heat conduction, the temperatures in the 

entire cylinder head are around 10ºC higher.  

• The plug crevice is bigger with the new plug and thus, a bigger 

proportion of the fuel/air mixture is partially unburnt. This is the reason for 

the higher pollutant emissions which are observed with the new plug. 

 



In conclusion, although the new plug reduces the electric energy consumption, 

the old plug is preferable because the temperatures are more uniform in the 

cylinder head, and the plug crevice is smaller, hereby reducing the exhaust gas 

emissions. 
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Characteristic Value 

Fuel Diesel 
Bore (mm) 76 

Stroke (mm) 80.5 
Number of cylinders 4 

Injection system 
Direct injection common rail 

with turbo-compressor 

Table 1. Engine characteristics of the RENAULT Meganne III K9K 

 

Table 1



 Variable 
Object 

temperature (ºC) 
Variation (%) 

Emissivity  
Reference: ε = 0.95 

 

0.96 996.7 -0.33 
0.95 1000 0 
0.94 1003.4 +0.34 

Apparent reflected temperature  
Reference Trefl = 20 ºC 

10 ºC 1000.006 +0.0006 

20 ºC 1000 0 

Table 2. Uncertainty of the temperature measurements 

 

Table 2



Parameter Old plug New plug 

Δt [s] 0.02  0.02 
C [J/K] 20  25 
A [mm2] 134.5  197.5 
Qcond [W] 92  0  

hconv [W m-2 K-1] 24  24 
Tair [K] 290  290 

ε [-] 0.95 0.95 
Trefl [K] 290  290 

Table 3. Parameters of the 0-D model 

 

Table 3



 

Fig. 1. General layout of the old preheating plug (units: mm) 

 

Figure 1



 

Fig. 2. Detailed geometry of the tip of the old plug (units: mm) 

 

Figure 2



 

Fig. 3. Detailed geometry of the tip of the new plug (units: mm) 

 

Figure 3



 

Fig. 4. Thermography of the cylinders 

 

Figure 4



 

Fig. 5. Temperature evolution of cylinders 1 to 4 

 

Figure 5



 

Fig. 6. Heating power of the plugs (from I.V measurements) 

 

Figure 6



 

Fig. 7. Validation of the uniform temperature model in the complete test 

 

Figure 7



 

Fig. 8. Validation of the uniform temperature model  
in the final cooling process 

 

Figure 8



 

Fig. 9. Temperatures around the tip of the plug 

 

Figure 9



 

Fig. 10. Energy flow diagram for the new plug 

 

Figure 10



 

Fig. 11. Energy flow diagram for the old plug 

 

Figure 11



 

Fig. 12. Temperature near the cylinder 1 head surface after 300s 

 

Figure 12



 

Fig. 13. Cylinder 1 head temperatures obtained with the old plug 

 

Figure 13



 

Fig. 14. Cylinder 1 head temperatures obtained with the new plug 

 

Figure 14


