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Abstract This paper deals with the estimation of unknown signals in bioreactors using
sliding observers. Particular attention is drawn to estimate the specific growth rate of mi-
croorganisms from measurement of biomass concentration. In a recent article, notions of
high-order sliding modes have been used to derive a growth rate observer for batch pro-
cesses. In this paper we generalize and refine these preliminary results. We develop a new
observer with a different error structure to cope with othertypes of processes. Also, we
show that these observers are equivalent, under coordinatetransformations and time scal-
ing, to the classical super-twisting differentiator algorithm, thus inheriting all its distinctive
features. The new observers family achieves convergence totime-varying unknown signals
in finite time, and presents the best attainable estimation error order in the presence of noise.
Also, the observers are robust to modeling and parameter uncertainties since they are based
on minimal assumptions on bioprocess dynamics. In addition, they have interesting applica-
tions in fault detection and monitoring. The observers performance in batch, fed-batch and
continuous bioreactors is assessed by experimental data obtained from the fermentation of
Saccharomyces Cerevisiae on glucose.

Keywords Bioreactors· Bioprocess control· Bioprocess observers· Sliding modes

1 Introduction

Biotechnological process control and monitoring represent a big challenge because of model
uncertainty, unpredictable parameter variations, scarceon-line measurements of most repre-
sentative variables, etc. For these reasons, extended workhas been carried out in the field of
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parameter and signal estimation in bioreactors [11, 39]. Asa result, many software sensors
have been developed to estimate variables of interest from the measurement of other process
variables. Basically, one may consider two main types of potential variables to be estimated:
reaction rates and species concentrations [1]. In this paper we focus on the estimation of
reaction rates and, particularly, of specific growth rates.The motivation is that control spec-
ifications are often related with the growth rate of microorganisms, whether the objective is
to maximize biomass production or to maintain a metabolic steady state [19, 34, 36, 40]. In
addition, growth rate estimators provide essential information to monitor the development
of microorganisms.

Different methods have been developed to estimate variables and parameters in biopro-
cesses and the literature is very large. Some of these methods are based on the Kalman
or extended Kalman filter [20, 29, 38, 39, 41]. However, they usually result in complex al-
gorithms that in general do not guarantee convergence [10].Another approach consists in
using asymptotic or high-gain observers (see for instance [1,3,18,24]) and the measurement
of some key variables. One of the main limitations of observers is their lack of robustness in
the estimation of some variables when they rely on a reactionmodel and/or the knowledge
of yield coefficients. This problem can be overcome extending the order of the observer to
adapt some uncertain parameters (see for instance [14]). When the specific growth rate is
the variable to be estimated, very robust adaptive high-gain observers can be designed if
on-line biomass concentration measurement is available. With this purpose, some on-line
biomass sensors are currently available (see for instance [28] and [21]). This is the approach
followed, for instance, in [2, 10, 30] where the specific growth rate is estimated from the
biomass growth dynamics without using any reaction model. By this reason, the growth rate
can be viewed as an unknown input signal to the biomass dynamics.

During the last decades, considerable research activity has been devoted to design algo-
rithms for unknown input reconstruction. Furthermore, many of them have been originally
developed or applied to bioreactors. Some of these algorithms essentially consist in differ-
entiating the output measurement [31]. This approach is used in [6], where the measured
signal is filtered over a 20-minute window to reduce the underlying noise effects. Another
widely extended approach consists in using state observersof measured variables, the es-
timate error being used to construct or adapt the signal estimate. In some cases, a nominal
signal is supposed to be known, which is statically corrected in proportion to the output
estimation error [5]. In other cases, the observer dynamicsis extended to adapt the signal
estimate dynamically [3]. In any case, since the adaptationalgorithm is based on the out-
put estimate error, signal reconstruction using continuous observers can be achieved up to a
bounded uncertainty, which depends on the magnitude of the signal or/and its time deriva-
tives. Despite this theoretical limitation, these approaches offer comprehensive solutions in
many bioreactor applications (see [3] and related papers).However, it should be taken into
account that they could introduce some stability problems in closed-loop applications.

The use of discontinuous observers appears to be an attractive alternative. Discontinu-
ous output error injection can be designed to induce a sliding motion on the state estimation
error space, thus enforcing the observer to copy the processoutput despite disturbances
and model uncertainties. At the same time, the error is used in some way to reconstruct
the unknown signal. Also, sliding observers generate residuals and have interesting appli-
cations in fault detection [12]. In the authors knowledge, sliding observers for bioprocesses
based on biomass measurement appeared for the first time in [33]. A switching term added
to the continuous estimate provides finite time convergenceto the unknown signal up to a
very high frequency component. More recently, a second-order sliding observer has been
presented, which outperforms the previous one [9]. This newobserver, which shares some
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ideas with [25], differs in the structure of the discontinuous output error injection. Discon-
tinuity appears in the first derivative of the estimate rather than in the estimate itself, thus
significantly reducing chattering while the most attractive features of sliding mode observers
are preserved.

In this paper, we revisit this approach. We take the second-order sliding observer men-
tioned above, which has been specifically designed to deal with the nonlinear dynamics of
batch processes, as starting point for our last developments. Another observer based on the
same sliding mode concepts but with a different error structure is proposed to cope with
a larger set of bioprocess dynamics. We also derive some tools to tune the observers. On
the other side, we demonstrate that these observers are equivalent under different state and
time coordinate transformations to the classical super-twisting differentiator [22, 23]. Con-
sequently, these observers inherit all the attractive features of the super-twisting algorithm.
They exhibit finite time convergence to the time-varying unknown signal, which is particu-
larly attractive property in control applications becausethe observer dynamics do not affect
closed-loop stability and performance. Also, they are veryrobust since they use no model
of the reaction. In addition, their off-surface coordinates are signals very sensitive to sensor
faults and unpredicted behavior.

2 Theoretical framework

Let us illustrate with a simple example the use of sliding mode observers for signal recon-
struction. Suppose that the problem is the estimation of signalu(t) from measurement of its
integralζ :

ζ̇ = u(t) (1)

Suppose that the absolute magnitude ofu(t) is bounded by|u(t)| < 1. Then, the follow-
ing conventional sliding mode algorithm can be used to reconstructu:

{

ż = û

û = α sign(ζ − z)
(2)

See that the dynamics of the errors
△
= ζ − z is given by

ṡ = u(t)−α sign(s) (3)

The solution to (3) for anyu(t) with |u(t)| < 1 satisfies also the differential inclusion1

ṡ ∈ϒ −α sign(s) (4)

with ϒ = [−1,1]. For constantsα > 1, anyu(t) ∈ ϒ is dominated by the second term in
(3). Then, the state converges in finite time to the surface defined bys = 0. From then on,
the discontinuous term switches at ideally infinite frequency, establishing a sliding motion
on the surface. In sliding modez(t) perfectly tracksζ (t), soû(t) coincides withu(t) except
for a very high frequency error term. The input signalu(t) can then be reconstructed by
filtering the discontinuous estimate. Alternatively, the sign(·) function can be replaced with
a high-gain continuous function to avoid discontinuity. Inboth cases, just convergence to a
close vicinity can be guaranteed, even in the absence of measurement noise.

1 Solutions are understood in the sense of Filippov.
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˙̃z

z̃

Fig. 1 Typical convergence trajectory of the super-twisting sliding mode algorithm.

Suppose now that the time derivative ofu(t) is bounded by|u̇(t)| ≤ 1 while u(t) is not
necessarily bounded. Conventional sliding mode algorithms to reconstructu(t) can still be
designed. However, more interestingly, second-order sliding mode concepts can be alterna-
tively exploited. Among all the second-order sliding mode algorithms, the super-twisting is
the most attractive one for this purpose because it providesa smooth estimate without re-
quiring any further information aboutu(t). The super-twisting algorithm has been proposed
in [22]:











ż1 = û+2β |ζ − z1|
1/2 sign(ζ − z1)

ż2 = α sign(ζ − z1)

û = z2

(5)

Note that, differing from the conventional first-order sliding mode algorithm, discontinuity
appears in the first derivativê̇u rather than on ˆu.

Takings
△
= ζ − z1 andq

△
= u− z2 we obtain the error dynamics

{

ṡ = q−2β |s|1/2 sign(s)

q̇ = u̇−α sign(s)
(6)

The solution to (6) for anyu(t) with |u̇(t)| < 1 satisfies also the differential inclusion
{

ṡ = q−2β |s|1/2 sign(s)

q̇ ∈ϒ −α sign(s)
(7)

Whereas the discontinuous signal dominates the unknown input rate ˙u(t), finite time
convergence tos ≡ 0 is still guaranteed thanks to the continuous, but not Lipschitz, third
term in (6). A typical state trajectory converging to the surface s = 0 is plotted in Fig. 1.
Originally, stability conditions and convergence rate were derived geometrically from Fig.
1 using majorant curves (see for instance [8,22]). A Lyapunov approach has been proposed
for the first time in [26] and then improved in [27]. After convergence to the surfaces = 0,
a sliding regime is established. Once in sliding mode, the invariance condition(s,q) = 0
holds. Then, the statez1 copiesζ (t) andu(t) is reconstructed. Now, ˆu(t) perfectly tracks
u(t) and is continuous.

Algorithm (5) exhibits the following properties:

– convergence in finite timeT ,
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– exactness, in the sense that ˆu ≡ u(t) ∀t > T in the absence of noise,
– robustness, in the sense that ˆu tends uniformly tou(t) asz1 tends uniformly toζ ,

Moreover, the reconstructor features are not seriously deteriorated by discrete measurement
with sufficiently small sampling period, being the estimation error proportional to the sam-
pling time. For the proofs of these statements, the reader isreferred, for instance, to [22].
Also, readers unfamiliar with first- and high-order slidingmode observers may consult the
works [4,12,15–17].

3 Problem statement and main results

3.1 Bioprocess dynamics

Consider the dynamics of microorganism growth in a bioreactor
{

ẋ = (µ −Fi(t)/v)x x(0) > 0

v̇ = Fi(t)−Fo(t) v(0) > 0
(8)

wherex is the biomass concentration,v is the liquid volume in the bioreactor,µ is the
specific growth rate of microorganisms,Fi ≥ 0 andFo ≥ 0 are the inlet (free of biomass) and
outlet flow rates, respectively. Suppose thatx is measured, and thatv andFi(t) are known
or measured. Thus, the objective is to estimateµ under the assumption thatx andv remain
strictly positive. Note that this will be always true in practice. Otherwise, the problem does
not make sense. On the other hand, biomass concentration is bounded because of the mass
balance principle.

The specific growth rateµ is function of the concentration of several nutrients in the
bioreactor as well as on environmental conditions. Our purpose is to design robust observers
for µ not relying on models of the reaction kinetics and nutrient dynamics, which are only
barely known in real world. That is why we treatµ as an external unknown input. Like in
Luenberger-like adaptive observers [3, 14, 32], an upper-bound on|µ̇| is needed to tune the
sliding mode algorithms. Mainly, two types of upper-boundsare usually considered for|µ̇|.
In continuous bioreactors, it is reasonable to use absolutebounds. However, in batch and
fed-batch bioreactors, where biomass grows significantly during the process, it makes more
sense to consider a biomass-proportional bound on|µ̇|. This is corroborated in the Appendix
where expressions of these bounds for a typical reaction model are derived.

3.2 Problem formulation

Biomass dynamics in the first line of (8) can be rewritten as

ẋ = f (x, t)+ xµ(t) x(0) = x0 > 0 (9)

where the statex ∈ ℜ is measured,µ ∈ ℜ is unknown and time-varying, and function
f (x, t) = −xFi(t)/v(t) is known. Note thatf (x, t) is well-defined under the assumption that
v > 0. Hereinafter,µ(t) is considered an unknown input to system (9).

The bioprocess dynamics (9) is bilinear inx andµ. Conventional first- and high-order
sliding mode input reconstructor algorithms are conceivedfor systems linear in the input. So,
a first approach consists of reconstructing the productxµ, and then divide byx to obtainµ.
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However, this straightforward application of the existingalgorithms is not optimum in terms
of noise. In this paper we evaluate the use of high-order sliding mode ideas to reconstruct
µ directly from (9). We consider two algorithms actually, which deal with the bilinearity
of (9) and are applicable to growth rates with biomass-proportional and absolute derivative
bounds.

Definition 1 Let U be the set of inputs for which a solution to (9) exists. LetX be the set
of solutions to (9) for allµ ∈ U .

A solutionx(t) is said to be strictly positive and bounded if there exist constantsx > 0
andx > 0 such thatx ≤ x(t) ≤ x ∀t ∈ ℜ+.

Definition 2 Let U + ⊂U be the set of all inputs such that the solutionx(t) to (9) is strictly
positive and bounded. LetX + ∈X be the set of all bounded and strictly positive solutions.

Definition 3 Let U
+
(·) be the set of inputs inU + with bounded time derivative. That is

U
+
(ρ) = {µ ∈ U + : |µ̇| < ρ}.

In batch processes, the growth rate derivative is proportional to biomass concentration
and accepts a biomass-proportional bound. The same may occur in fed-batch processes when
substrate is supplied in proportion to biomass (see the Appendix). Obviously, for bounded
solutions, an absolute bound also exists but it may be too conservative. So, we define the
following set of input signals:

Definition 4 Let U
+
x (·) be the set of inputs inU

+
with state-proportional bounded time

derivative. That isU
+
x (ρ) = {µ ∈ U

+
(ρ) : |µ̇| < ρ x/x}.

Then, the task is to estimate the unknown inputµ ∈ U
+
(·) or µ ∈ U

+
x (·) to (9) from

measurement ofx ∈ X +.

3.3 Sliding observer for growth rates with biomass-proportionally bounded time derivative

Consider the process

Pxρ :

{

ẋ = f (x, t)+ xµ(t) x(0) = x0 > 0

µ ∈ U
+
x (ρ)

(10)

Then,

OSM1 :































ż1 = f (x, t)+
(

z2 +2β |ς |
1
2 sign(ς )

)

ρx

ż2 = α
x
x

sign(ς )

ς = (ρx)−1(x− z1)

µ̂ = ρz2

(11)

is an observer for (10) that converges in finite time for suitable gainsα andβ . Convergence
of this observer has been already investigated in [9]. There, the observer error dynamics
is transformed to a polytopic one, and LMIs were used to assess on its stability. Here, we
present an alternative approach to the problem. We show thatthe observer is equivalent, after
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a time scale transformation, to the standard super-twisting algorithm. Then, all the classical
results about stability and tuning of the super-twisting algorithm can be applied [22,27].

Fist, let us apply the coordinates transformation(ς (x,z1),ϕ(u,z2)) with ϕ = µ
ρ − z2:











ς̇ =
x
x

(

ϕ −2β |ς |
1
2 sign(ς )

)

ϕ̇ =
µ̇
ρ
−α

x
x

sign(ς )
(12)

Consider now the time scale transformationT : ℜ+ 7→ ℜ+

τ = T(t)
△
=

∫ t

0

x(ξ )

x
dξ . (13)

Note thatT exists and is invertible for anyx ∈X +. Moreover, (12) is independent ofx after
the time scaling (13). In fact, the observer error dynamics in the new time scale is











ς ′ = ϕ −2β |ς |
1
2 sign(ς )

ϕ ′ =
µ ′

ρ
−α sign(ς )

(14)

where′ denotes differentiation with respect toτ . Considering that|µ ′| < ρ ∀µ ∈ U
+
x (ρ), it

follows thatU
+
x (ρ) ⊂ {µ : µ ′ ∈ ρϒ ,∀τ}, whereϒ = [−1,+1]. Then, any solution to (14)

for µ ∈ U
+
x (ρ) satisfies also the differential inclusion

{

ς ′ = ϕ −2β |ς |
1
2 sign(ς )

ϕ ′ ∈ϒ −α sign(ς )
(15)

Note that inclusion (15) is independent of the original system (10) and ofµ. Moreover, it
represents the family of sliding surface coordinate dynamics of the super-twisting sliding
algorithm (see (7)). Finite-time convergence of (15) has been already demonstrated for suit-
able gainsα andβ (see for instance [22] and [27]). That is, after a finite timeτ∗ a sliding
regime is established on surfaceς = 0. The sliding mode invariance conditionς (τ)≡ 0, i.e.
ς (t)≡ 0, impliesz1(t) = x(t) andµ̂(t) = µ(t) ∀t > T

−1(τ∗).

3.4 Sliding observer for growth rates with absolutely bounded time derivative

Consider now the process

Pρ :

{

ẋ = f (x, t)+ xµ(t) x(0) = x0 > 0

µ ∈ U
+
(ρ)

(16)

whereµ̇ accepts an absolute boundρ . Then,

OSM2 :































ż1 =

(

f (x, t)
x

+ρz2 +2ρβ |σ |
1
2 sign(σ )

)

z1

ż2 = α sign(σ )

σ = ρ−1 ln(x/z1)

µ̂ = ρz2

(17)
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with z1(0) > 0, is proposed as an observer for (16), wherez1 is the estimated biomass andµ̂
is the estimated growth rate. Furthermore, we will demonstrate that this observer converges
in finite time. Note that a logarithmic lawσ = ρ−1 ln(x/z1) is used as observer error. This
error signal is well-defined sincex is strictly positive andz1 diverges from 0. In fact,σ → ∞
andz2 is increasing asz1 → 0+. Therefore, the right hand side of the first equation in (17)
becomes positive forz1 > 0 small enough.

This nonlinear definition of the observer error allows us, after a smooth change of coor-
dinates, to transform (17) into the standard super-twisting sliding algorithm.

In fact, apply the coordinates transformation(σ (x,z1),φ(u,z2)) with φ = u
ρ − z2:











σ̇ = φ −2β |σ |
1
2 sign(σ )

φ̇ = −
µ̇
ρ
−α sign(σ )

(18)

Considering thatU
+
(ρ) ⊂ {µ : µ̇ ∈ ρϒ ,∀t}, any solution to (??) for u ∈ U

+
(ρ) satisfies

also the differential inclusion
{

σ̇ = φ −2β |σ |
1
2 sign(σ )

φ̇ ∈ϒ −α sign(σ )
(19)

Inclusion (19) represents the family of sliding surface coordinate dynamics of the super-
twisting sliding mode algorithm (see (7)). This proves finite-time convergence of (19) for
suitable gainsα andβ [22,27]. That is, after a finite timet∗, a sliding regime is established
on surfaceσ = 0. The sliding mode invariance conditionσ (t) ≡ 0 impliesz1(t) = x(t) and
µ̂(t) = µ(t) ∀t > t∗.

Remark 1 The sliding surface coordinatesς and σ not only indicate convergence of the
algorithm but also divergence caused by unexpected fast growth rate variations. Therefore,
they are effective residuals to indicate bioreactor malfunctions, sensor faults or changes in
microorganism behavior (both abrupt and gradual).

Remark 2 The proposed observers can be used to estimate the kinetic rate r(t) in any reac-
tion of the form

ṗ = r(p, t)p+g(p, t) (20)

provided analogous assumptions to the ones made here are fulfilled.

4 Experimental results

Three experiments were carried out to assess the observers performance in real world. Ex-
perimental results obtained from the fermentation of the industrial strain Saccharomyces
Cerevisiae T73 (wild type) are presented in this section. Processes in batch, continuous and
fed-batch modes were run. Biomass measurement was carried out using the sensor described
in [28]. This sensor took samples every 12 seconds and returned a filtered value over a win-
dow of 2 minutes. These measures (xm) were injected to the proposed sliding observers to
estimateµ(t). As suggested above, observer (11) was used in the batch and fed-batch pro-
cesses, whereas (17) was used in the continuous one. Both observers have been tuned as
a compromise between convergence and sensitivity. We have foundα = 1.1 andβ = 1.8
suitable for this application. Nevertheless, the key parameter isρ (or the productρα). Note
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that the higher the gainρ , the faster the observer will converge, but the higher the noise
sensitivity will be. Also, robustness against uncertainties in maxt(|µ̇(t)|) will increase with
ρ , but sensitivity to faults will decrease in the same manner.Preliminary bounds on|µ̇| used
to tuneρ were obtained following the derivations in the Appendix. Then, these bounds were
finely tuned based on previous experimental data and our own experience in the process.
Alternatively,ρ can be continuously adapted to improve robustness without unnecessarily
increasing output noise following some of the procedures recently presented in [7,13,35,37].

For comparative purposes, we obtain anotherµ-estimate by numerical differentiation of
the measured signal:

µd =
ẋm

xm
+

Fi

v
(21)

Although quite crude, this method provides an exact estimate under noiseless conditions.
Obviously, because of measurement noise and the way it is constructed,µd is highly cor-
rupted with noise. Of course, the real growth rate is not available to compare with the sliding
observer outputs. Nevertheless, in the figures shown below,the realµ can be guessed behind
the noisyµd .

4.1 Batch reactor

The first process was run in batch mode. The initial conditionwasx(0) = 0.1g/L. Biomass
concentration and growth followed time-varying profiles. The process finished when the
nutrients in the bioreactor, initially in excess, were consumed. The growth rate of microor-
ganisms was estimated with observer (11) tuned withα = 1.1, β = 1.8 andρ = 0.5.

Fig. 2 shows the experimental results. Fig. 2a plots the measured biomass concentra-
tion ranging from 0.1g/L to 3.5g/L. As it is typical in batch processes, measurement was
not reliable and highly corrupted with noise during the firsthours because of the low initial
biomass. Consequently, the growth rate estimationµd varied randomly between unaccept-
able large limits (see Fig. 2b). It is also observed in Fig. 2athat growth dropped abruptly
at t = 14h, most probably due to the depletion of some essential substrate. Growth stopped
at t = 24h when nutrient exhausted. Fig. 2c zooms out the plot ofµd and shows also the
estimate provided by the observer, which was initialized at((x̂(0), µ̂(0)) = (0,µm)). Since a
biomass-proportional bound was used, the observer output evolved slowly at the beginning
preventing the estimate from large and infeasible deviations. After convergence, the sliding
observer provided a smooth estimate that closely tracked the real growth rate. Of course,
there is a trade-off in the selection ofρ between noise sensitivity and convergence rate.
Fig. 2d depicts the sliding surface coordinate. It is seen that the observer took 6 hours to
converge.

4.2 Fed-batch reactor

The second fermentation was run in fed-batch mode in a biostat B5 bioreactor. The initial
conditions, obtained from a previous batch phase, werex(0) = 2.6g/L andv(0) = 1L. The
inlet substrate concentration wassi = 20g/L. The specific growth rate of microorganisms
was reconstructed with observer (11) tuned withα = 1.1, β = 1.8 andρ = 0.15.

Fig. 3 shows the experimental results. Fig. 3a plots the exponential-like input flow, which
was proportional to biomass population (Fi(t) = λxv). Fig. 3b depicts the biomass concen-
tration measuresxm, and the estimate ˆx = z1 provided by the observer. During approximately
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Fig. 2 Experimental results for the batch process. (a) Measured biomass concentration. (b) Estimated growth
rate using measurement differentiation. (c) Growth rate estimates using measurement differentiation (out of
scale) and sliding observer. (d) Sliding surface coordinate.

one hour, betweent = 11.7h andt = 12.8h, the pump of the biomass sensor run unprimed,
thus leading to erroneous measures and abrupt changes. On the other hand, the observer
provided a smooth estimate ˆx. Fig. 3c displays the measured volume used to determine the
feeding law. The process was interrupted when the volume reached 3L. Fig. 3d shows the
specific growth rate estimationµd obtained according to (21) and̂µ provided by the sliding
observer. Recall that, assuming that the biomass sensor works properly,µd represents the
real growth rate to which a large high-frequency noise signal is added. It is observed that
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µd was very noisy and became unstable when the fault in the biomass sensor occurred. On
the contrary, the sliding observer provided a much smootherestimate that converged rapidly
at the beginning of the process (the initial biomass concentration was much higher than in
the batch process) and remained stable in the presence of thefault. Furthermore, the sliding
estimate was almost insensitive to such abrupt perturbation. Meanwhile, the sliding surface
coordinate was very sensitive to the sensor fault. Effectively, it is seen in Fig. 3e that the
observer diverged att = 12.8h because of the sensor fault and converged again 1 hour after
the fault was cleared. Far from being a drawback of the observer, its divergence indicated
the occurrence of the fault, an abrupt fault in this case.

4.3 Continuous reactor

The third experiment took place in a chemostat. The initial conditions werex(0)≃ 11.7g/L
and s(0) ≃ 0g/L. The inlet substrate concentration wassi = 10g/L, whereas the reactor
volume wasv = 3L. The input flowFi(t) = µrv was piecewise constant. The initial set-point
wasµr = 0.18h−1, and a reference step∆ µr = 0.04h−1 was applied at timet = 25h.

The growth rate of microorganisms was estimated with observer (17), which used a
biomass-independent upper-bound onµ̇. The observer was tuned withα = 1.1, β = 1.8 and
ρ = 0.5.

Figure 4 shows experimental data collected during the first 54 hours of the process.
The top plot displays the piece-wise constant feeding profile. Fig. 4b depicts the biomass
concentration measuresxm, which were used to estimateµ. A 1-hour drift fault was induced
in the biomass sensor att ≃ 40h. Fig.4c displays the specific growth rate estimationµd

obtained according to (21) and̂µ provided by the sliding observer. The drift fault in the
bioreactor caused the pulse observed inµd that did not correspond with reality. Finally, the
bottom plot depicts the observer sliding coordinateσ . Effectively, it is seen in Fig. 4d that
the observer converged for the first time in less than 2 hours.From then on, the growth
rate estimate perfectly tracked the real growth rate with much less noise thanµd . At t ≃
40h, the observer diverged since it was not able to track the drastic –and unreal– increase
in µ. This fast variation largely exceeded the admissible rate of changeρ of the observer
output. Note the importance of the sliding surface coordinate σ to determine the observer
convergence and, therefore, the estimate reliability. Continuous observers do not provide
such information.

Comment: This sort of variation inµ may also be caused by other reasons like variations
in physicochemical conditions or metabolic changes. The observer may be used with the aim
of detecting these changes or to trackµ(t) despite them. In the latter case, the parameterρ ,
or α , can be increased to gain in robustness at the cost of higher noise and lower sensitivity
against sensor faults. Alternatively,ρ−adaptation can be implemented as mentioned at the
beginning of this section to avoid increasing noise unnecessarily.

5 Conclusions

A pair of modified second-order sliding mode observers have been evaluated for signal re-
construction in bioreactors. They have been specifically designed to estimate the specific
growth rate of microorganisms based on biomass measurement. One of them has been con-
ceived for batch and fed-batch processes, whereas the otherone is more suitable in con-
tinuous process applications. Their design is not based on any model for the kinetics of
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differentiation (µd ). (e) Sliding surface coordinate.
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the reaction, which may be monotonic or not. Just an upper-bound on its time derivative is
required to tune the observer parameters.

It was shown that these observers are equivalent, after somecoordinate and time scale
transformations, to the so-called super-twisting slidingalgorithm, thereby inheriting its at-
tractive features. In contrast with continuous observers,perfect tracking after finite conver-
gence time can be achieved in the absence of noise, whereas chattering caused by noise is
substantially reduced in comparison with conventional sliding observers. This theoretical
property, i.e. finite time convergence, is very attractive in real-world control applications
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since the separation principle can be applied to design observer and controller indepen-
dently. Furthermore, an internal variable of the observersdetermines the convergence time
that can be used to decide when to close the loop. In addition,this internal variable is also
an effective residual to indicate reactor malfunction, sensor faults, etc.

The observers performance has been assessed experimentally by means of fermentation
of Saccharomyces Cerevisiae on glucose. The results confirmed their distinctive properties,
namely fast convergence, excellent tracking, robustness and effectiveness in fault detection
and monitoring.

Future research will be conducted to estimate several time-varying reaction rates from
the measurement of several species concentrations. The main challenge is that an extra un-
known function should be incorporated to avoid too conservative bounds, implying further
modifications of the super-twisting algorithm.
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Appendix

Consider the following bioreaction model, which is typically used to describe the growth of
Saccharomyces Cerevisiae on glucose:











ṡ = −yµx+
Fi(t)

v
(si − s) s(0) ≥ 0

µ = m(s)
△
= µm

s
s+ k

(22)

beings: substrate concentration;y: yield coefficient;si: substrate influent concentration;Fi:
feeding flow;µm: maximum specific growth rate;k: half saturation constant.

From (22), an expression for theµ-dynamics is readily obtained:

µ̇ =
dm(s)

ds
ṡ =

(µm −µ)2

µmk

(

−yµx+
Fi(t)

v

(

si(t)−m−1(µ)
)

)

(23)

From (23), upper-bounds for|µ̇| under different scenarios are derived next. These bounds
can be used to tune observers (11) and (17). In any case, thesebounds can be adjusted up
and down according to previous experience about the process.

Batch operation mode. In batch mode (Fi = 0), biomass concentration and growth follow
time-varying profiles. From (23), it follows thaṫµ is minimum with respect tos at k/2.
Therefore,

|µ̇(t)| ≤ ρbx(t) =
4
27

yµ2
m

k
x(t) (24)

Fed-batch operation mode. Fed-batch processes are usually fed in proportion to biomass
population (Fi = λxv), in order to achieve growth at constant rate. The value ofλ that is
compatible with a given growth rateµr can be easily obtained from (22):

λ =
µry

si − s
(25)

resulting in a substrate dynamics

ṡ = −y(µ −µr)x (26)

From (23), it then follows thaṫµ can be bounded by

|µ̇(t)| ≤ ρ f bx(t) =
4
27

y(µm −µr)
3

kµm
x(t) (27)

Continuous operation mode. Although closed-loop control strategies can be implemented,
chemostats are usually operated –at least during the initial phase– in open loop (Fi = F0 =
µrv). They reach their steady states when the extraction of reaction medium equals the sub-
strate flow rate. After a set-point step∆ µr or a control reaction of the same amplitude,µ
evolves to its new equilibrium with bounded time derivative

|µ̇(t)| ≤ ρc =
(µm −µr)

2

µmk
|∆ µr|si (28)

This is an absolute bound independent of biomass, so the use of (17) is recommended.


