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Abstract This paper deals with the estimation of unknown signals ordzctors using
sliding observers. Particular attention is drawn to estinthe specific growth rate of mi-
croorganisms from measurement of biomass concentratioa.recent article, notions of
high-order sliding modes have been used to derive a growhataserver for batch pro-
cesses. In this paper we generalize and refine these prafymiesults. We develop a new
observer with a different error structure to cope with ottygres of processes. Also, we
show that these observers are equivalent, under coordiretsformations and time scal-
ing, to the classical super-twisting differentiator alggun, thus inheriting all its distinctive
features. The new observers family achieves convergenmaéevarying unknown signals
in finite time, and presents the best attainable estimati@m erder in the presence of noise.
Also, the observers are robust to modeling and parametertanaties since they are based
on minimal assumptions on bioprocess dynamics. In addlitiey have interesting applica-
tions in fault detection and monitoring. The observersgrenfince in batch, fed-batch and
continuous bioreactors is assessed by experimental deaet from the fermentation of
Saccharomyces Cerevisiae on glucose.

Keywords Bioreactors Bioprocess control Bioprocess observersSliding modes

1 Introduction

Biotechnological process control and monitoring repreadng challenge because of model
uncertainty, unpredictable parameter variations, scandee measurements of most repre-
sentative variables, etc. For these reasons, extendedhasteen carried out in the field of
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parameter and signal estimation in bioreactors [11, 39]a Assult, many software sensors
have been developed to estimate variables of interest fiemmeasurement of other process
variables. Basically, one may consider two main types cépiidl variables to be estimated:
reaction rates and species concentrations [1]. In thisrpapefocus on the estimation of
reaction rates and, particularly, of specific growth rafé® motivation is that control spec-
ifications are often related with the growth rate of micr@mgms, whether the objective is
to maximize biomass production or to maintain a metabokady state [19, 34, 36, 40]. In
addition, growth rate estimators provide essential intiom to monitor the development
of microorganisms.

Different methods have been developed to estimate vasalnid parameters in biopro-
cesses and the literature is very large. Some of these nwetiredbased on the Kalman
or extended Kalman filter [20, 29, 38, 39, 41]. However, theyally result in complex al-
gorithms that in general do not guarantee convergence f@jther approach consists in
using asymptotic or high-gain observers (see for instah@& 18, 24]) and the measurement
of some key variables. One of the main limitations of obserigtheir lack of robustness in
the estimation of some variables when they rely on a reaatiodel and/or the knowledge
of yield coefficients. This problem can be overcome extegdie order of the observer to
adapt some uncertain parameters (see for instance [14BnWe specific growth rate is
the variable to be estimated, very robust adaptive high-gaservers can be designed if
on-line biomass concentration measurement is availabith #Ms purpose, some on-line
biomass sensors are currently available (see for inst@8}@hd [21]). This is the approach
followed, for instance, in [2, 10, 30] where the specific gttowate is estimated from the
biomass growth dynamics without using any reaction modgthis reason, the growth rate
can be viewed as an unknown input signal to the biomass dysami

During the last decades, considerable research activitpéan devoted to design algo-
rithms for unknown input reconstruction. Furthermore, gnahthem have been originally
developed or applied to bioreactors. Some of these algositessentially consist in differ-
entiating the output measurement [31]. This approach id us¢6], where the measured
signal is filtered over a 20-minute window to reduce the ulyitey noise effects. Another
widely extended approach consists in using state obseofereasured variables, the es-
timate error being used to construct or adapt the signahagti. In some cases, a nominal
signal is supposed to be known, which is statically corekd@teproportion to the output
estimation error [5]. In other cases, the observer dynamiextended to adapt the signal
estimate dynamically [3]. In any case, since the adaptatigarithm is based on the out-
put estimate error, signal reconstruction using contisuzhservers can be achieved up to a
bounded uncertainty, which depends on the magnitude ofiginalsor/and its time deriva-
tives. Despite this theoretical limitation, these apphescoffer comprehensive solutions in
many bioreactor applications (see [3] and related papemyever, it should be taken into
account that they could introduce some stability problemdosed-loop applications.

The use of discontinuous observers appears to be an atradternative. Discontinu-
ous output error injection can be designed to induce a glidiation on the state estimation
error space, thus enforcing the observer to copy the promagsit despite disturbances
and model uncertainties. At the same time, the error is usesbine way to reconstruct
the unknown signal. Also, sliding observers generate vadsdand have interesting appli-
cations in fault detection [12]. In the authors knowleddelirsg observers for bioprocesses
based on biomass measurement appeared for the first tim8]iry3witching term added
to the continuous estimate provides finite time convergeadhe unknown signal up to a
very high frequency component. More recently, a seconeérostiding observer has been
presented, which outperforms the previous one [9]. This abserver, which shares some
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ideas with [25], differs in the structure of the discontimamutput error injection. Discon-

tinuity appears in the first derivative of the estimate rathan in the estimate itself, thus
significantly reducing chattering while the most attraefieatures of sliding mode observers
are preserved.

In this paper, we revisit this approach. We take the secaddrasliding observer men-
tioned above, which has been specifically designed to dehlttv nonlinear dynamics of
batch processes, as starting point for our last develogménbther observer based on the
same sliding mode concepts but with a different error stinects proposed to cope with
a larger set of bioprocess dynamics. We also derive some todline the observers. On
the other side, we demonstrate that these observers aralkemiunder different state and
time coordinate transformations to the classical supéstig differentiator [22, 23]. Con-
sequently, these observers inherit all the attractivaufeatof the super-twisting algorithm.
They exhibit finite time convergence to the time-varying nmkn signal, which is particu-
larly attractive property in control applications becatis=observer dynamics do not affect
closed-loop stability and performance. Also, they are velust since they use no model
of the reaction. In addition, their off-surface coordirsatee signals very sensitive to sensor
faults and unpredicted behavior.

2 Theoretical framework

Let us illustrate with a simple example the use of sliding mobservers for signal recon-
struction. Suppose that the problem is the estimation ofedig(t) from measurement of its
integral:

Z =u(t) (1)

Suppose that the absolute magnitude(®j is bounded byu(t)| < 1. Then, the follow-
ing conventional sliding mode algorithm can be used to rstantu:

z=10
N ?)
0= asign{ —z)
See that the dynamics of the erse { —zis given by
S=u(t) — a sign(s) 3)

The solution to (3) for any(t) with |u(t)| < 1 satisfies also the differential inclusfon
Se€ Y —a sign(s) 4

with Y = [—1,1]. For constantsr > 1, anyu(t) € Y is dominated by the second term in
(3). Then, the state converges in finite time to the surfad@etd bys = 0. From then on,
the discontinuous term switches at ideally infinite frequyerstablishing a sliding motion
on the surface. In sliding modgt) perfectly tracks{(t), sou{t) coincides withu(t) except
for a very high frequency error term. The input sigoé) can then be reconstructed by
filtering the discontinuous estimate. Alternatively, thigné-) function can be replaced with
a high-gain continuous function to avoid discontinuitybloth cases, just convergence to a
close vicinity can be guaranteed, even in the absence ofurezasnt noise.

1 Solutions are understood in the sense of Filippov.
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N

Fig. 1 Typical convergence trajectory of the super-twistingistidmode algorithm.

Suppose now that the time derivativeudt) is bounded byu(t)| < 1 while u(t) is not
necessarily bounded. Conventional sliding mode algosthmreconstructi(t) can still be
designed. However, more interestingly, second-ordeingjichode concepts can be alterna-
tively exploited. Among all the second-order sliding motigoathms, the super-twisting is
the most attractive one for this purpose because it provadasooth estimate without re-
quiring any further information aboui(t). The super-twisting algorithm has been proposed
in [22]:

7 =0+2B|7 — 21| sign({ — z1)
2 =asign{ —z) )
0= V4]
Note that, differing from the conventional first-order gtig mode algorithm, discontinuity
appears in the first derivativierather than om.”

Takingsé { —z1 andq Su- Z, we obtain the error dynamics

{ $=q—2B|s//? sign(s)

g=u—a sign(s) ©)

The solution to (6) for any(t) with |u(t)| < 1 satisfies also the differential inclusion

S=q- ZB‘S| 12 Slgn(S) (7)
geyY—asigns)

Whereas the discontinuous signal dominates the unknowurt e u(t), finite time

convergence te = 0 is still guaranteed thanks to the continuous, but not Lipscthird
term in (6). A typical state trajectory converging to thefaoes= 0 is plotted in Fig. 1.
Originally, stability conditions and convergence rate evderived geometrically from Fig.
1 using majorant curves (see for instance [8,22]). A Lyapuaqgproach has been proposed
for the first time in [26] and then improved in [27]. After cargence to the surface= 0,
a sliding regime is established. Once in sliding mode, tlariance conditior(s,q) = 0
holds. Then, the statg copies{(t) andu(t) is reconstructed. Nowy(f) perfectly tracks
u(t) and is continuous.

Algorithm (5) exhibits the following properties:

— convergence in finite tim&,
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— exactness, in the sense tliat U(t) vt > T in the absence of noise,
— robustness, in the sense thiteAds uniformly tau(t) asz; tends uniformly ta,

Moreover, the reconstructor features are not serioushrideaited by discrete measurement
with sufficiently small sampling period, being the estiraterror proportional to the sam-
pling time. For the proofs of these statements, the readefésred, for instance, to [22].
Also, readers unfamiliar with first- and high-order slidimpde observers may consult the
works [4,12,15-17].

3 Problem statement and main results
3.1 Bioprocess dynamics

Consider the dynamics of microorganism growth in a bior@act

Xx=(u=F(t)/vx x(0)>0 g

v=F(t) —F(t) v(0) >0 ®)
wherex is the biomass concentration,is the liquid volume in the bioreactoy is the
specific growth rate of microorganisnts,> 0 andr, > 0 are the inlet (free of biomass) and
outlet flow rates, respectively. Suppose thé measured, and thatandF (t) are known
or measured. Thus, the objective is to estimatender the assumption tha@ndv remain
strictly positive. Note that this will be always true in ptiae. Otherwise, the problem does
not make sense. On the other hand, biomass concentrationnsiéd because of the mass
balance principle.

The specific growth ratg is function of the concentration of several nutrients in the

bioreactor as well as on environmental conditions. Our @sgps to design robust observers
for u not relying on models of the reaction kinetics and nutrigmtainics, which are only
barely known in real world. That is why we treatas an external unknown input. Like in
Luenberger-like adaptive observers [3, 14, 32], an uppenrt on|j| is needed to tune the
sliding mode algorithms. Mainly, two types of upper-bousds usually considered fog|.
In continuous bioreactors, it is reasonable to use absbloteads. However, in batch and
fed-batch bioreactors, where biomass grows significanttind the process, it makes more
sense to consider a biomass-proportional boungh@rThis is corroborated in the Appendix
where expressions of these bounds for a typical reactiorehard derived.

3.2 Problem formulation

Biomass dynamics in the first line of (8) can be rewritten as
x= f(x,t) +xu(t) X(0) =% >0 9)

where the state € 0 is measuredu € O is unknown and time-varying, and function
f(x,t) = —xFi(t)/v(t) is known. Note thaf (x,t) is well-defined under the assumption that
v > 0. Hereinaftery(t) is considered an unknown input to system (9).

The bioprocess dynamics (9) is bilinearxirand p. Conventional first- and high-order
sliding mode input reconstructor algorithms are concefeedystems linear in the input. So,
a first approach consists of reconstructing the producind then divide by to obtainpu.
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However, this straightforward application of the existalgorithms is not optimum in terms
of noise. In this paper we evaluate the use of high-ordemgjichode ideas to reconstruct
u directly from (9). We consider two algorithms actually, wiideal with the bilinearity
of (9) and are applicable to growth rates with biomass-priigeal and absolute derivative
bounds.

Definition 1 Let % be the set of inputs for which a solution to (9) exists. tbe the set
of solutions to (9) for alu € 7 .

A solutionx(t) is said to be strictly positive and bounded if there existstantsx > 0
andx > 0 such thak < x(t) <xvte O*.

Definition 2 Let% ™ C % be the set of all inputs such that the solutigt) to (9) is strictly
positive and bounded. Let't € 2" be the set of all bounded and strictly positive solutions.

Definition 3 Let @+(~) be the set of inputs iz ™ with bounded time derivative. That is
— k
% (p)={neu":|p <p}

In batch processes, the growth rate derivative is propmatito biomass concentration
and accepts a biomass-proportional bound. The same mayinded-batch processes when
substrate is supplied in proportion to biomass (see the Agige Obviously, for bounded

solutions, an absolute bound also exists but it may be toserwative. So, we define the
following set of input signals:

Definition 4 Let @:(J be the set of inputs 7 state-proportional bounded time
derivative. That i (p) = {u € Z ' (p) : |i1] < px/X}.

Then, the task is to estimate the unknown input % (-) or pu € Z, (-) to (9) from
measurement ofe 2.
3.3 Sliding observer for growth rates with biomass-praposlly bounded time derivative

Consider the process

: { X:f_(i,t) +xut)  x(0)=x>0 10)
He Uy (p)
Then,

2= F(x )+ (22+2BIc|2 sign(c) ) px
. X .

Oann:{ 27 %% sign(¢) (11)
¢=(pR) "t (x-2)
f=pz

is an observer for (10) that converges in finite time for dléayainsa andf. Convergence
of this observer has been already investigated in [9]. THe observer error dynamics
is transformed to a polytopic one, and LMIs were used to assests stability. Here, we
present an alternative approach to the problem. We showhthabserver is equivalent, after
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a time scale transformation, to the standard super-tvgistigorithm. Then, all the classical
results about stability and tuning of the super-twistirgpaithm can be applied [22, 27].
Fist, let us apply the coordinates transformatigx, z;), ¢ (u,zz)) with ¢ = % —2:

¢ == (¢—2BIc/? sign(c))

(12)
_BE X
b= —agsignc)
Consider now the time scale transformation0+ — O™
't
T=1(t) é/ %‘5) de. (13)
0

Note that¥ exists and is invertible for anyc 2" . Moreover, (12) is independent whfter
the time scaling (13). In fact, the observer error dynamidfié new time scale is

¢’ = ¢ —2B|c|? sign(c)
/ 14
¢':%—asign<c> oo

where’ denotes differentiation with respecttoConsidering thafu’| < p Vu € @:(p), it
follows that@;(p) c{u: U €pY,vr}, whereY = [—1,+1]. Then, any solution to (14)
for p e @;(p) satisfies also the differential inclusion

¢' = ¢ —2B|c|? sign(c) (15)
¢' € Y—asign(q)

Note that inclusion (15) is independent of the original egst{10) and ofu. Moreover, it
represents the family of sliding surface coordinate dywranof the super-twisting sliding
algorithm (see (7)). Finite-time convergence of (15) haantedready demonstrated for suit-
able gainsa andf (see for instance [22] and [27]). That is, after a finite tiniea sliding
regime is established on surfage= 0. The sliding mode invariance conditiagiit) =0, i.e.
¢(t) =0, impliesz (t) = x(t) andfi(t) = p(t) vt > TL(1%).

3.4 Sliding observer for growth rates with absolutely baohtime derivative

Consider now the process

x= f(x,t) +xu(t) x(0) =% >0
p: { . (16)
wez (p)
wherefl accepts an absolute boupdThen,
. f(xt 1.
2= <% +pzz+2p[3\a|5 S|gn(a)> 7
Oaquz: { 2= asigno) (17)

o=p tin(x/z)
p=pz
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with z1(0) > 0, is proposed as an observer for (16), wharis the estimated biomass apd
is the estimated growth rate. Furthermore, we will demarstthat this observer converges
in finite time. Note that a logarithmic law = p~1In(x/z,) is used as observer error. This
error signal is well-defined sinces strictly positive and; diverges from 0. In factg — o
andz is increasing ag; — 0". Therefore, the right hand side of the first equation in (17)
becomes positive far; > 0 small enough.

This nonlinear definition of the observer error allows uggrad smooth change of coor-
dinates, to transform (17) into the standard super-twgssiiding algorithm.

In fact, apply the coordinates transformati@n(x, z;), ¢(u, z2)) with ¢ = % -2

& =@ 2B|0]? signo)

. u .
=—-Z —asigno
Qo 0 gn(o)

(18)
Considering tha# " (p) C {1 : j1 € pY,Vt}, any solution to??) for u e 7' (p) satisfies
also the differential inclusion

g = @—2B|o|? signo) (19)
@ Y—a signo)

Inclusion (19) represents the family of sliding surface rdawate dynamics of the super-
twisting sliding mode algorithm (see (7)). This proves &riime convergence of (19) for
suitable gaingr andf [22,27]. That is, after a finite tim&, a sliding regime is established
on surfaceo = 0. The sliding mode invariance conditiar(t) = 0 impliesz(t) = x(t) and
f(t) = p(t) ve>t*

Remark 1 The sliding surface coordinatesand g not only indicate convergence of the
algorithm but also divergence caused by unexpected fagitigmate variations. Therefore,

they are effective residuals to indicate bioreactor malfioms, sensor faults or changes in
microorganism behavior (both abrupt and gradual).

Remark 2 The proposed observers can be used to estimate the kintetigtiain any reac-
tion of the form

p=r(p,t)p+g(p,t) (20)
provided analogous assumptions to the ones made here filtedul

4 Experimental results

Three experiments were carried out to assess the obseesosrpance in real world. Ex-
perimental results obtained from the fermentation of trdustrial strain Saccharomyces
Cerevisiae T73 (wild type) are presented in this sectiooc&sses in batch, continuous and
fed-batch modes were run. Biomass measurement was cautiading the sensor described
in [28]. This sensor took samples every 12 seconds and eztwariiltered value over a win-
dow of 2 minutes. These measureg)(were injected to the proposed sliding observers to
estimateu(t). As suggested above, observer (11) was used in the batcledsmhfch pro-
cesses, whereas (17) was used in the continuous one. Bathvetsshave been tuned as
a compromise between convergence and sensitivity. We lmweltx = 1.1 andf3 = 1.8
suitable for this application. Nevertheless, the key patamisp (or the producpa). Note
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that the higher the gaip, the faster the observer will converge, but the higher theeno
sensitivity will be. Also, robustness against uncertaimin max(|fi(t)|) will increase with
p, but sensitivity to faults will decrease in the same manReliminary bounds ofy:| used
to tunep were obtained following the derivations in the Appendixemhthese bounds were
finely tuned based on previous experimental data and our aperience in the process.
Alternatively, p can be continuously adapted to improve robustness withogecessarily
increasing output noise following some of the proceduresntly presented in [7,13,35,37].
For comparative purposes, we obtain anofrerstimate by numerical differentiation of
the measured signal: . .
Xm i
Hd = X v (21)
Although quite crude, this method provides an exact esératler noiseless conditions.
Obviously, because of measurement noise and the way it strowoted,uy is highly cor-
rupted with noise. Of course, the real growth rate is notlalsfe to compare with the sliding
observer outputs. Nevertheless, in the figures shown bélewealu can be guessed behind
the noisyLy.

4.1 Batch reactor

The first process was run in batch mode. The initial conditiasx(0) = 0.1g/L. Biomass
concentration and growth followed time-varying profilesieTprocess finished when the
nutrients in the bioreactor, initially in excess, were aonsd. The growth rate of microor-
ganisms was estimated with observer (11) tuned with 1.1, 8 = 1.8 andp = 0.5.

Fig. 2 shows the experimental results. Fig. 2a plots the oredsbiomass concentra-
tion ranging from 0lg/L to 3.5g/L. As it is typical in batch processes, measurement was
not reliable and highly corrupted with noise during the firsurs because of the low initial
biomass. Consequently, the growth rate estimatigvaried randomly between unaccept-
able large limits (see Fig. 2b). It is also observed in Figtt2a growth dropped abruptly
att = 14h, most probably due to the depletion of some essentiatisub. Growth stopped
att = 24h when nutrient exhausted. Fig. 2c zooms out the plogptnd shows also the
estimate provided by the observer, which was initialize@#0), f1(0)) = (0, um)). Since a
biomass-proportional bound was used, the observer owplitesl slowly at the beginning
preventing the estimate from large and infeasible deviatidfter convergence, the sliding
observer provided a smooth estimate that closely trackedehl growth rate. Of course,
there is a trade-off in the selection pfbetween noise sensitivity and convergence rate.
Fig. 2d depicts the sliding surface coordinate. It is sea tie observer took 6 hours to
converge.

4.2 Fed-batch reactor

The second fermentation was run in fed-batch mode in a hiB&dioreactor. The initial
conditions, obtained from a previous batch phase, wég= 2.6g/L andv(0) = 1L. The
inlet substrate concentration was= 20g/L. The specific growth rate of microorganisms
was reconstructed with observer (11) tuned vaite- 1.1, 3 = 1.8 andp = 0.15.

Fig. 3 shows the experimental results. Fig. 3a plots themapiial-like input flow, which
was proportional to biomass populatidi (€) = Axv). Fig. 3b depicts the biomass concen-
tration measures,, and the estimate= z; provided by the observer. During approximately
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Fig. 2 Experimental results for the batch process. (a) Measumddss concentration. (b) Estimated growth
rate using measurement differentiation. (c) Growth rateneges using measurement differentiation (out of
scale) and sliding observer. (d) Sliding surface cooréinat

one hour, between= 11.7h andt = 12.8h, the pump of the biomass sensor run unprimed,
thus leading to erroneous measures and abrupt changese@ithéir hand, the observer
provided a smooth estimate Fig. 3c displays the measured volume used to determine the
feeding law. The process was interrupted when the volumehezhd.. Fig. 3d shows the
specific growth rate estimatiqmy obtained according to (21) arnidprovided by the sliding
observer. Recall that, assuming that the biomass senséswwooperly,y represents the
real growth rate to which a large high-frequency noise digmadded. It is observed that
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Lg was very noisy and became unstable when the fault in the ls®sensor occurred. On
the contrary, the sliding observer provided a much smoakemate that converged rapidly

at the beginning of the process (the initial biomass comagah was much higher than in
the batch process) and remained stable in the presencefaidhd-urthermore, the sliding
estimate was almost insensitive to such abrupt pertunhatieanwhile, the sliding surface
coordinate was very sensitive to the sensor fault. Effetjvit is seen in Fig. 3e that the
observer diverged at= 12.8h because of the sensor fault and converged again 1 hour after
the fault was cleared. Far from being a drawback of the olsgeit¢ divergence indicated
the occurrence of the fault, an abrupt fault in this case.

4.3 Continuous reactor

The third experiment took place in a chemostat. The initaditions werex(0) ~ 11.7g/L
ands(0) ~ 0g/L. The inlet substrate concentration was= 10g/L, whereas the reactor
volume wasy = 3L. The input flowf (t) = v was piecewise constant. The initial set-point
wasp; = 0.18h™1, and a reference stefu, = 0.04h~! was applied at timé= 25h.

The growth rate of microorganisms was estimated with olesei/7), which used a
biomass-independent upper-boundioThe observer was tuned with=1.1, 3 = 1.8 and
p=0.5.

Figure 4 shows experimental data collected during the fidsh&urs of the process.
The top plot displays the piece-wise constant feeding jerofilg. 4b depicts the biomass
concentration measureg, which were used to estimage A 1-hour drift fault was induced
in the biomass sensor at~ 40h. Fig.4c displays the specific growth rate estimatjgn
obtained according to (21) and provided by the sliding observer. The drift fault in the
bioreactor caused the pulse observegdrithat did not correspond with reality. Finally, the
bottom plot depicts the observer sliding coordinateEffectively, it is seen in Fig. 4d that
the observer converged for the first time in less than 2 hden@m then on, the growth
rate estimate perfectly tracked the real growth rate witlchmiess noise thapy. At t ~
40h, the observer diverged since it was not able to track thetidraand unreal— increase
in u. This fast variation largely exceeded the admissible ra&hangep of the observer
output. Note the importance of the sliding surface coortdimato determine the observer
convergence and, therefore, the estimate reliability.tidoous observers do not provide
such information.

Comment: This sort of variation iru may also be caused by other reasons like variations
in physicochemical conditions or metabolic changes. Tiseoker may be used with the aim
of detecting these changes or to tradlt) despite them. In the latter case, the parameter
or a, can be increased to gain in robustness at the cost of higliez and lower sensitivity
against sensor faults. Alternativefy,—adaptation can be implemented as mentioned at the
beginning of this section to avoid increasing noise unnsady.

5 Conclusions

A pair of modified second-order sliding mode observers haenlevaluated for signal re-
construction in bioreactors. They have been specificalbigihed to estimate the specific
growth rate of microorganisms based on biomass measure@eeatof them has been con-
ceived for batch and fed-batch processes, whereas the atleeis more suitable in con-
tinuous process applications. Their design is not basedngnradel for the kinetics of
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Fig. 3 Experimental results for a fed-batch process. (a) Input.flly Measured and estimated biomass
concentration. (c) Measured volume. (d) Growth rate esémasing sliding observefif and measurement
differentiation {44). (€) Sliding surface coordinate.
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Fig. 4 Experimental results for a continuous process. (a) Input flb) Measured biomass concentration. (c)
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coordinate.

the reaction, which may be monotonic or not. Just an uppendb@n its time derivative is
required to tune the observer parameters.

It was shown that these observers are equivalent, after soordinate and time scale
transformations, to the so-called super-twisting slidihgprithm, thereby inheriting its at-
tractive features. In contrast with continuous observegsfect tracking after finite conver-
gence time can be achieved in the absence of noise, wheratisrofy caused by noise is
substantially reduced in comparison with conventionalisfi observers. This theoretical
property, i.e. finite time convergence, is very attractiveéal-world control applications
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since the separation principle can be applied to designreéassend controller indepen-
dently. Furthermore, an internal variable of the obserdetermines the convergence time
that can be used to decide when to close the loop. In addttiminternal variable is also
an effective residual to indicate reactor malfunction sserfiaults, etc.

The observers performance has been assessed experignbptaléans of fermentation
of Saccharomyces Cerevisiae on glucose. The results cenfitineir distinctive properties,
namely fast convergence, excellent tracking, robustnede#ectiveness in fault detection
and monitoring.

Future research will be conducted to estimate several vanging reaction rates from
the measurement of several species concentrations. Tmecmalienge is that an extra un-
known function should be incorporated to avoid too condgemdounds, implying further
modifications of the super-twisting algorithm.
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Appendix

Consider the following bioreaction model, which is typlgalsed to describe the growth of
Saccharomyces Cerevisiae on glucose:

s= yux+ "Wig g s0)>0

v (22)
_ 2 S
p=m(s) = Hmm
beings: substrate concentratioy; yield coefficient;s: substrate influent concentratidn;
feeding flow;um: maximum specific growth ratd; half saturation constant.
From (22), an expression for thedynamics is readily obtained:

2
1= drg(ss)s= (un;;mk“) (—yux+@(s(t)—m‘1(u))) (23)

From (23), upper-bounds fop| under different scenarios are derived next. These bounds
can be used to tune observers (11) and (17). In any case,libasds can be adjusted up
and down according to previous experience about the process

Batch operation mode. In batch mode K, = 0), biomass concentration and growth follow
time-varying profiles. From (23), it follows that is minimum with respect t® at k/2.
Therefore,
: 4 yu?
< =—="
O] < pox() = 527X (24)
Fed-batch operation mode. Fed-batch processes are usually fed in proportion to bismas
population & = Axv), in order to achieve growth at constant rate. The valug dfat is
compatible with a given growth rajg can be easily obtained from (22):
Ky
A= 25
s (25)

resulting in a substrate dynamics

S=—Y(H — Hr)x (26)
From (23), it then follows thafi can be bounded by

_ 3
0] < praxt) = 5= B @)

Continuous operation mode. Although closed-loop control strategies can be implengnte
chemostats are usually operated —at least during thel ipitase— in open loogH = Ry =
V). They reach their steady states when the extraction oficeamedium equals the sub-
strate flow rate. After a set-point stef; or a control reaction of the same amplituge,
evolves to its new equilibrium with bounded time derivative

2
B s @8)

This is an absolute bound independent of biomass, so thef ($@)as recommended.

()] < pe=



