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Abstract. Rus [Cyclic representations and fixed points, Ann. T. Popoviciu.
Sem. Funct. Eq. Approx. Convexity 3 (2005), 171-178] introduced the concept
of cyclic contraction mapping. Păcurar and Rus [Fixed point theory for cyclic
φ- contractions, Nonlinear Anal. 72 (2010), 1181-1187] proved some fixed point
results for cyclic φ- contraction mappings on a metric space. Karapinar [Fixed
point theory for cyclic weak φ- contraction, Appl. Math. Lett. 24 (2011),
822-825 ] obtained a unique fixed point of cyclic weak φ- contraction mappings
and studied well-posedness problem for such mappings. On the other hand,
Matthews [15] introduced the concept of a partial metric as a part of the study
of denotational semantics of dataflow networks. He gave a modified version of
the Banach contraction principle, more suitable in this context. In this paper,
we initiate the study of fixed points of generalized cyclic contraction in the
framework of partial metric spaces. We also present some examples to validate
our results.

Keywords: Partial metric space, fixed point, cyclic contraction

1 Introduction and preliminaries

The study of fixed points of mappings satisfying cyclic contractive conditions
has been at the center of vigorous research activity in the last years. In fact, in
2010, Păcurar and Rus [18] proved fixed point results for cyclic φ−contractions.
Karapinar [11] proved fixed point results for cyclic weak φ−contraction. Re-
cently, Karpagam and Agrawal [13] obtained best proximity point theorems for
cyclic orbital Meir–Keeler contraction maps ( see also, [14], [16], [19] ).

On the other had, partial metric space is a generalized metric space in which
each object does not necessarily have to have a zero distance from itself [15].
A motivation behind introducing the concept of a partial metric was to obtain
appropriate mathematical models in the theory of computation [10, 15, 22, 23,
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25, etc]. Altun and Simsek [3], Oltra and Valero [17] and Valero [24] established
some further generalizations of the results in [15], and Romaguera [20] proved
a Caristi type fixed point theorem on partial metric spaces. Further results in
this direction were proved in [4, 1, 5, 8, 7, 12].

The aim of this paper is to study fixed point results for mappings satisfying
generalized cyclic contractive conditions in the setup of partial metric spaces.

In the sequel the letters R, R+ and N will denote the set of all real num-
bers, the set of all nonnegative real numbers and the set of all positive integer
numbers, respectively.

Consistent with [3] and [15], the following definitions and results will be
needed in the sequel.

Definition 1.1. Let X be a nonempty set. A function p : X ×X → R+ is
said to be a partial metric on X if for any x, y, z ∈ X, the following conditions
hold true:

(P1) p(x, x) = p(y, y) = p(x, y) if and only if x = y;

(P2) p(x, x) ≤ p(x, y);

(P3) p(x, y) = p(y, x);

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is then called a partial metric space.
If p(x, y) = 0, then (P1) and (P2) imply that x = y. But the converse does not
hold always.

A trivial example of a partial metric space is the pair (R+, p) , where p :
R+ × R+ → R+ is defined as p(x, y) = max{x, y}.

Example 1.2. [15] If X = {[a, b] : a, b ∈ R, a ≤ b}, then p([a, b], [c, d]) =
max{b, d} −min{a, c} defines a partial metric p on X.

For some more examples of partial metric spaces, we refer to [3, 8, 20, 23].

Each partial metric p on X generates a T0 topology τp on X which has as a
base the family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈
X : p(x, y) < p(x, x) + ε},for all x ∈ X and ε > 0.

Observe (see [15, p. 187]) that a sequence {xn} in a partial metric space
(X, p) converges to a point x ∈ X, with respect to τp, if and only if p(x, x) =
limn→∞ p(x, xn).

If p is a partial metric on X, then the function pS : X ×X → R+ given by
pS(x, y) = 2p(x, y)− p(x, x)− p(y, y), defines a metric on X.

Furthermore, a sequence {xn} converges in (X, pS) to a point x ∈ X if and
only if

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x). (1.1)

Definition 1.3. [15] Let (X, p) be a partial metric space.
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(a) A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞

p(xn, xm)

exists and is finite.

(b) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges
with respect to τp to a point x ∈ X such that lim

n→∞
p(x, xn) = p(x, x). In

this case, we say that the partial metric p is complete.

Lemma 1.4. [3, 15] Let (X, p) be a partial metric space. Then:

(a) A sequence {xn} in X is a Cauchy sequence in (X, p) if and only if it is a
Cauchy sequence in metric space (X, pS).

(b) A partial metric space (X, p) is complete if and only if the metric space
(X, pS) is complete.

Definition 1.5. [18] Let X be a non-empty set and f : X → X an operator.
By definition, X = ∪m

i=1Xi is a cyclic representation of X with respect to f if

(a) Xi, i = 1, ...,m are non-empty sets;

(b) f(X1) ⊂ X2, ..., f(Xm−1) ⊂ Xm, f(Xm) ⊂ X1.

2 Fixed point results

In this section, we obtain several fixed point results for self maps satisfying cer-
tain generalized cyclic contractions defined on a complete partial metric space.

In the proof of our first result we shall use the following version of the
celebrated Boyd and Wong fixed point theorem [6].

Theorem 2.1. [4, 21] Let (X, p) be a complete partial metric space and let
f : X → X be a mapping such that

p(fx, fy) ≤ φ(max{p(x, y), p(fx, x), p(y, fy),
p(x, fy) + p(y, fx)

2
}),

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a continuous function such that
φ(t) < t for all t > 0. Then f has a unique fixed point.

Remark 2.2. Theorem 2.1 was initially established by Altun et al. in [4] (see
also [2]) for the case that φ is a nondecreasing continuous function with φ(t) < t
for all t > 0. The version presented here was established by Romaguera in a
more general form [21].

Theorem 2.3. Let (X, p) be a complete partial metric space, A1, A2, ..., Am, m
nonempty closed subsets of (X, pS) and Y = ∪m

i=1Ai. Suppose that f : Y → Y
is a mapping such that

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to f , and
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(2) there exists a continuous function φ : [0,∞) → [0,∞) such that φ(t) < t
for each t > 0, satisfying

p(fx, fy) ≤ φ(M(x, y)), (2.1)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1, and

M(x, y) = max{p(x, y), p(fx, x), p(y, fy),
p(x, fy) + p(y, fx)

2
},

for any x, y ∈ Y . Then, f has a unique fixed point z ∈ Y. Moreover
z ∈ ∩m

i=1Ai.

Proof. Let x0 be an arbitrary point of Y = ∪n
i=1Ai. Then there exists some

i0 such that x0 ∈ Ai0 . Now f(Ai0) ⊆ Ai0+1 implies that fx0 ∈ Ai0+1. Thus
there exists x1 in Ai0+1 such that fx0 = x1. Similarly, fxn = xn+1, where
xn ∈ Ain . Hence for n ≥ 0, there exists in ∈ {1, 2, ...,m} such that xn ∈ Ain

and xn+1 ∈ Ain+1 . In case, xn0 = xn0+1 for some n0 = 0, 1, 2, ..., then it is clear
that xn0 is a fixed point of f . Now assume that xn 6= xn+1 for all n. Then, by
(2.1), we have

p(xn+1, xn+2) = p(fxn, fxn+1) ≤ φ(M(xn, xn+1)),

where

M(xn, xn+1) = max{p(xn, xn+1), p(fxn, xn), p(xn+1, fxn+1),
1
2
[p(xn, fxn+1) + p(xn+1, fxn)]}

= max{p(xn, xn+1), p(xn+1, xn), p(xn+1, xn+2),
1
2
[p(xn, xn+2) + p(xn+1, xn+1)]}

≤ max{p(xn, xn+1), p(xn+1, xn+2),
1
2
[p(xn, xn+1) + p(xn+1, xn+2)]}

= max{p(xn, xn+1), p(xn+1, xn+2)}.

So M(xn, xn+1) = max{p(xn, xn+1), p(xn+1, xn+2).
Suppose that max{p(xk, xk+1), p(xk+1, xk+2)} = p(xk+1, xk+2) for some k ∈

N. Then M(xk, xk+1) = p(xk+1, xk+2), so p(xk+1, xk+2) ≤ φ(p(xk+1, xk+2)) <
p(xk+1, xk+2), a contradiction. Hence

M(xn, xn+1) = p(xn, xn+1),

and thus
p(xn+1, xn+2) ≤ φ(p(xn, xn+1)) < p(xn, xn+1), (2.2)

for all n ∈ N. Therefore, the (decreasing) sequence of positive real numbers
{p(xn, xn+1)} converges to a c ≥ 0. Then from (2.2) and the condition that φ
is upper semicontinuous from the right , we obtain

c = lim
n→∞

φ(p(xn, xn+1)) ≤ φ(c).
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Hence c = 0 and thus lim
n→∞

p(xn, xn+1) = 0.

Consequently, for any subsequence {xnk
} of {xn}, one has limk→∞ p(xnk

, xnk+1) =
0, and by condition (P4) in Definition 1.1, limk→∞ p(xnk

, xnk+i) = 0 for any
i ∈ N.

The above fact will be used in the rest of the proof without explicit mention.
Now we shall prove that the sequence {xn} is a Cauchy sequence in (Y, p).

In fact, since the sequence {xn} can be decomposed in m subsequences {x(i)
n },

i = 1, ...,m, where x
(i)
n ∈ Ai, for each n ∈ N, i it will be enough to prove that

each subsequence {x(i)
n } i = 1, ...,m, is a Cauchy sequence in (Y, p).

In order to simplify the argument we suppose, without loss of generality,
that x0 ∈ Am, so xm ∈ Am, and we shall prove that limj,l→∞ p(x(m)

j , x
(m)
l ) = 0,

i.e., limj,l→∞ p(xm·j , xm·l) = 0.

Assume the contrary. Then there exists ε > 0 and sequences {jk}, {lk}, in N,
with lk > jk ≥ k, and such that p(xm·jk

, xm·lk) ≥ ε and p(xm·jk
, xm·(lk−1)) < ε

for all k ∈ N.
Now, for each k ∈ N we have

ε ≤ p(xm·jk
, xm·lk) ≤ p(xm·jk

, xm·(lk−1)) + p(xm·(lk−1), xm·lk)
< ε + p(xm·(lk−1), xm·lk),

so
lim

k→∞
p(xm·jk

, xm·lk) = ε.

Hence
lim

k→∞
φ(p(xm·jk

, xm·lk)) = φ(ε) < ε.

Next we show that there is a subsequence of {M(xm·jk
, xm·lk−1)} that converges

to some α ∈ [ε/2, ε].
Indeed, for each δ ∈ (0, ε) there exists kδ ∈ N such that for each k ≥ kδ,

p(xm·jk
, xm·jk+1) < δ, p(xm·lk−m, xm·lk−1) < δ and p(xm·lk−1, xm·lk) <

δ.

Moreover, since p(xnk
, xmk−1) < ε, we deduce that

p(xm·jk
, xm·lk) ≤ p(xm·jk

, xm·lk−m) + p(xm·lk−m, xm·lk−1) + p((xm·lk−1, xm·lk)
< ε + 2δ,

and

p(xm·jk+1, xm·lk−1) ≤ p(xm·jk+1, xm·jk
) + p(xm·jk

, xm·lk−m) + p(xm·lk−m, xm·lk−1)
< 2δ + ε,
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for all k ≥ kδ. Therefore

ε

2
≤ p(xm·jk

, xm·lk)
2

≤ M(xm·jk
, xm·lk−1)

= max{p(xm·jk
, xm·lk−1), p(xm·jk+1, xm·jk

), p(xm·lk−1, xm·lk),
p(xm·jk

, xm·lk) + p(xm·jk+1, xm·lk−1)
2

}

< max{ε + δ, δ, δ, ε + 2δ} = ε + 2δ,

for all k ≥ kδ. Hence, the sequence {M(xm·jk
, xm·lk−1)} has a subsequence

{M(xm·jkh
, xm·lkh

−1)} which converges to a real number α ∈ [ε/2, ε], so

lim
h→∞

φ(M(xm·jkh
, xm·lkh

−1)) = φ(α) < α ≤ ε.

Choose δ ∈ (φ(α), α). Then, there is hδ ∈ N such that p(xm·jkh
, xm·jkh

+1) <
δ − φ(α) for all h ≥ hδ, and thus

p(xm·jkh
, xm·lkh

) ≤ p(xm·jkh
, xm·jkh

+1) + p(xm·jkh
+1, xm·lkh

)
< δ − φ(α) + φ(M(xm·jkh

, xm·lkh
−1)) < α,

for some h ≥ hδ, which contradicts that p(xm·jk
, xm·lk) ≥ ε for all k ∈ N.

We conclude that limj,k→∞ p(xm·j , xm·k) = 0, i.e., {x(m)
n } is a Cauchy se-

quence in (Y, p), and thus in the metric space (Y, pS) by Lemma 1.4. Similarly,
we can prove that {x(i)

n } is a Cauchy sequence in (Y, p), for i = 1, ...,m− 1, and
consequently {xn} is a Cauchy sequence in (Y, p), so in (Y, pS).

Since Y is closed in (X, ps), then (Y, pS) is also complete. Thus, there exists
y0 ∈ Y such that xn → y0 in (Y, pS); equivalently

p(y0, y0) = lim
n→∞

p(y0, xn) = lim
n,m→∞

p(xn, xm) = 0. (2.3)

Notice that the iterative sequence {xn} has an infinite number of terms in Ai for
each i = 1, ...,m. Hence, in each Ai, i = 1, ...,m, we can construct a subsequence
of {xn} that converges to y. Regarding that each Ai, i = 1, ...,m, is closed, we
conclude that y0 ∈ ∩m

i=1Ai and thus ∩m
i=1Ai 6= ∅.

For simplicity, set Z = ∩m
i=1Ai. Clearly, Z is also closed and so (Z, p) is

complete. Consider the restriction of f on Z, that is, f |Z : Z → Z (note
that f |Z is a self mapping of Z by Definition 1.5 (b)). Then, f |Z satisfies the
assumptions of Theorem 2.1 and thus f |Z has a unique fixed point in Z (says
z).

Finally, suppose that there exists u ∈ Y with fu = u and u 6= z. Then

p(u, z) = p(fu, fz) ≤ φ(M(u, z)), (2.4)

6



where

M(u, z) = max{p(u, z), p(u, fu), p(z, fz),
1
2
(p(u, fz) + p(fu, z))}

= max{p(u, z), p(u, u), p(z, z),
1
2
(p(u, z) + p(u, z))}

= p(u, z),

so that
p(u, z) ≤ φ(p(u, z)),

which is a contradiction. Thus, z is the unique fixed point of f. �

Remark 2.4. Note that the proof of Theorem 2.3 shows that for any initial
value x ∈ Y we obtain an y ∈ Z such that fnx → y in (Y, pS). So, by Theorem
2.1, f |Z has a unique fixed point z, which is, in fact, the unique fixed point of
f. Hence z is the unique fixed point for any initial starting point x ∈ Y.

If we take φ(t) = kt for k ∈ [0, 1) in Theorem 2.3, we have the following
corollary.

Corollary 2.5. Let (X, p) be a complete partial metric space, A1, A2, ..., Am,
m nonempty closed subsets of (X, pS) and Y = ∪m

i=1Ai. Suppose that f : Y → Y
is a mapping such that

(1) ∪m
i=1Ai is a cyclic representation of Y with respect to f , and

(2)
p(fx, fy) ≤ kM(x, y), (2.5)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1, and

M(x, y) = max{p(x, y), p(fx, x), p(y, fy),
p(x, fy) + p(y, fx)

2
},

for any x, y ∈ Y . Then, f has a unique fixed point z ∈ Y. Moreover
z ∈ ∩m

i=1Ai.

To prove our next result we need the following theorem due to Altun et al.
[4].

Theorem 2.6. [4] Let (X, p) be a complete partial metric space and let
f : X → X be a mapping such that

p(fx, fy) ≤ a1p(x, y) + a2p(fx, x) + a3p(fy, y) + a4p(fx, y) + a5p(fy, x),

for all x, y ∈ X, where ai ≥ 0 for i = 1, 2, .., 5, such that if a4 ≥ a5, then
a1 + a2 + a3 + a4 + a5 < 1, and if a4 < a5, then a1 + a2 + a3 + a4 + 2a5 < 1.
Then f has a unique fixed point.
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Theorem 2.7. Let (X, p) be a complete partial metric space, A1, A2, ..., Am, m
non-empty closed subsets of (X, pS) and Y = ∪m

i=1Ai. Suppose that f : Y → Y
is a mapping such that ∪m

i=1Ai, is a cyclic representation of Y with respect to
f , and

p(fx, fy) ≤ a1p(x, y)+ a2p(fx, x)+ a3p(fy, y)+ a4p(fx, y)+ a5p(fy, x), (2.6)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1 and ai ≥ 0 for
i = 1, 2, .., 5, such that if a4 ≥ a5, then a1 +a2 +a3 +a4 +a5 < 1, and if a4 < a5,
then a1 + a2 + a3 + a4 + 2a5 < 1. Then, f has a unique fixed point z ∈ Y.
Moreover z ∈ ∩m

i=1Ai.

Proof. Let x0 be an arbitrary point of Y = ∪n
i=1Ai. Following similar argu-

ments to those given in the proof of Theorem 2.3, we construct a sequence {xn},
where fxn = xn+1, xn ∈ Ain

and xn+1 ∈ Ain+1 , for some in ∈ {1, 2, ...,m},
n ∈ N .

If xn0 = xn0+1 for some n0 = 0, 1, 2, ..., then it is clear that xn0 is a fixed
point of f .

Now, by taking p(xn, xn+1) > 0 for all n ∈ N, consider

p(xn+1, xn+2) = p(fxn, fxn+1)
≤ a1p(xn, xn+1) + a2p(fxn, xn) + a3p(fxn+1, xn+1)

+a4p(fxn, xn+1) + a5p(fxn+1, xn)
= a1p(xn, xn+1) + a2p(xn+1, xn) + a3p(xn+2, xn+1)

+a4p(xn+1, xn+1) + a5p(xn+2, xn)
≤ (a1 + a2 + a5)p(xn, xn+1) + (a3 + a5)p(xn+1, xn+2)

+(a4 − a5)p(xn+1, xn+1).

If a4 < a5, then from (a4 − a5)p(xn+1, xn+1) ≤ a4p(xn, xn+1), it immediately
follows

p(xn+1, xn+2) ≤ λ1p(xn, xn+1), (2.7)

where λ1 = (a1 + a2 + a4 + a5)/(1− a3 − a5).
If a4 ≥ a5, then from (a4 − a5)p(xn+1, xn+1) ≤ (a4 − a5)p(xn, xn+1), it

immediately follows

p(xn+1, xn+2) ≤ λ2p(xn, xn+1), (2.8)

where λ2 = (a1 + a2 + a4)/(1− a3 − a5).
From both cases,

p(xn+1, xn+2) ≤ λp(xn, xn+1), (2.9)

where λ = λ1 if a4 < a5, and λ = λ2 if a4 ≥ a5. (Obviously, 0 ≤ λ < 1).
Similarly it can be show that

p(xn, xn+1) ≤ λp(xn−1, xn−2).
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Thus for all n ∈ N, by repetition of the above process n times, we have

p(xn, xn+1) ≤ λp(xn−1, xn)
≤ ... ≤ λnp(x0, x1).

Therefore, for m,n ∈ N with m > n, we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + ... + p(xm−1, xm)
≤ (λn + λn+1 + ... + λm−1)p(x0, x1),

which implies that lim
n,m→∞

p(xn, xm) = 0. So {xn} is a Cauchy sequence in (Y, p).

By Lemma 1.4, there exists y0 ∈ Y such that lim
n→∞

pS(y0, xn) = 0, equivalently

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(y0, xn) = p(y0, y0) = 0.

The same argument that we have in Theorem 2.3, shows that y0 ∈ ∩m
i=1Ai and

thus ∩m
i=1Ai 6= ∅.

For simplicity, set Z = ∩m
i=1Ai. Clearly, Z is also closed in (X, pS), so (Z, p)

is complete. Consider the restriction of f on Z, that is, f |Z : Z → Z which
obviously satisfies the assumptions of Theorem 2.6 and thus f |Z has a unique
fixed point in Z (says z).

Finally, suppose that there exists u ∈ Y with fu = u and u 6= z. Then from
(2.6), we have

p(u, z) = p(fu, fz)
≤ a1p(u, z) + a2p(fu, u) + a3p(fz, z) + a4p(fu, z) + a5p(fz, u)
= a1p(u, z) + a2p(u, u) + a3p(z, z) + a4p(u, z) + a5p(u, z)
≤ (a1 + a2 + a3 + a4 + a5)p(u, z),

which is a contradiction. Thus, z is the unique fixed point of f.
Note that, as in Theorem 2.3 (compare Remark 2.4), z is the unique fixed

point for any initial starting point x ∈ Y.�

Corollary 2.8. Let (X, p) be a complete partial metric space, A1, A2, ..., Am,
m non-empty closed subsets of (X, pS) and Y = ∪m

i=1Ai. Suppose that f : Y →
Y is a mapping such that ∪m

i=1Ai, is a cyclic representation of Y with respect
to f , and

p(fx, fy) ≤ αp(x, y) + β[p(fx, x) + p(fy, y)] + γ[p(fx, y) + p(fy, x)] (2.10)

for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m, where Am+1 = A1 and α, β, γ ≥ 0 and
α + 2β + 2γ < 1. Then, f has a unique fixed point z ∈ Y. Moreoverz ∈ ∩m

i=1Ai.

We finish the paper with two examples that illustrate and validate Theorems
2.3 and 2.7, respectively.
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Example 2.9. Let (X, p) be the partial metric space of Example 1.2.
It is well known that (X, p) is complete. In fact, observe that for each

[a, b], [c, d] ∈ X one has

pS([a, b], [c, d]) = 2(max{b, d} −min{a, c})− (b− a)− (d− c),

so, for a Cauchy sequence {[an, bn]} in (X, ps), it easily follows that both
{an} and {bn} are Cauchy sequences in R for the Euclidean metric. Then
limn→∞ pS([an, bn], [a, b]) = 0, where a = limn→∞ an and b = limn→∞ bn in R.

Suppose A1 = {an : n ∈ N} ∪ {{1}}, where an = [1− 2−n, 1] for all n ∈ N,
A2 = {bn : n ∈ N} ∪ {{1}}, where bn = [1, 1 + 2n] for all n ∈ N, A3 = A1, and
Y = A1 ∪A2.

Now define f : Y → Y by f{1} = fbn = {1} and fan = bn for all n ∈ N.
Since pS({1}, an) = 3·2−n, we deduce that limn→∞ pS({1}, an) = 0, and thus

A1 is closed in (X, pS). On the other hand, pS({1}, bn) = 2n and pS(bn, bk) =∣∣2n − 2k
∣∣ for all n, k ∈ N, so A2 is closed in (X, pS). Moreover f(Ai) ⊂ Ai+1 for

i = 1, 2, so that A1 ∪A2 is a cyclic representation of Y with respect to f.
Define Φ : [0,∞) → [0,∞) by Φ(t) = 4t/5 whenever t ∈ [0, 5/2), and

Φ(t) =
22n+1

22n+1 − 1
t− 3 · 2n

22n+1 − 1
,

whenever t ∈ [2n + 2−n, 2n+1 + 2−(n+1)), n ∈ N.
An easy computation shows that Φ is continuous on [0,∞) and Φ(t) < t for

all t > 0. (In fact, the graph of the restriction of Φ to [2n +2−n, 2n+1 +2−(n+1)]
is the straight line segment with origin at (2n + 2−n, 2n) and end at (2n+1 +
2−(n+1), 2n+1).)

Next we show that contraction (2.1) is verified. Indeed, we have

p(fan, f{1}) = p(bn, 1) = 2n = Φ(2n + 2−n)
= Φ(p(bn, an)) = Φ(p(fan, an)) = Φ(M(an, {1})),

for all n ∈ N , and thus

p(fan, fbk) = p(bn, {1}) = 2n = Φ(p(fan, an)) ≤ Φ(M(an, bk)),

for all n, k ∈ N.
Moreover p(fbn, f{1}) = 0 for all n ∈ N, so the conditions of Theorem 2.3

are satisfied.
Observe that {1} is the unique fixed point of X. However f is not continu-

ous at {1} for τpS because limn→∞ pS(an, {1}) = 0 but pS(fan, f{1}) = 2n

for all n ∈ N. In fact, f is not continuous at {1} neither for τp because
limn→∞ p(an, {1}) = limn→∞ 2−n = 0 = p({1}, {1}) but p(fan, f{1}) = 2n

for all n ∈ N.

Example 2.10. Let X = [0, 2]. Let p : X ×X → R+ defined by p(x, y) =
|x− y| if x, y ∈ [0, 1), and p(x, y) = max{x, y} otherwise. It is easily seen that
(X, p) is a complete partial metric space.
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Suppose A1 = [0, 1/2], A2 = [1/2, 1], A3 = A1, and Y = A1 ∪A2 = [0, 1].
Now define f : Y → Y by fx = 1/2 if x ∈ [0, 1) and f1 = 0.
Clearly, A1 and A2 are closed subsets of (X, pS). Moreover f(Ai) ⊂ Ai+1 for

i = 1, 2, so that A1 ∪A2 is a cyclic representation of Y with respect to f .
Next we show that contraction (2.6) is verified for ai = 1/6 for i = 1, ..., 5.

We shall distinguish the following cases.

(1) If x ∈ A1, y ∈ A2, then for x ∈ [0, 1/2] and y ∈ [1/2, 1), we deduce

p(fx, fy) = p(
1
2
,
1
2
) = 0,

and when x ∈ [0, 1/2] and y = 1, we deduce

p(fx, fy) = p(
1
2
, 0) =

1
2

<
1
6

+
1
6
(
1
2
− x) +

1
6

+
1
6

+
x

6
= a1p(x, y) + a2p(fx, x) + a3p(fy, y) + a4p(fx, y) + a5p(fy, x).

(2) If x ∈ A2, y ∈ A1, then for x ∈ [1/2, 1), y ∈ [0, 1/2], we deduce

p(fx, fy) = p(
1
2
,
1
2
) = 0,

and when x = 1 and y ∈ [0, 1/2], we deduce

p(fx, fy) = p(0,
1
2
) =

1
2

<
1
6

+
1
6

+
1
6
(
1
2
− y) +

y

6
+

1
6

= a1p(x, y) + a2p(fx, x) + a3p(fy, y) + a4p(fx, y) + a5p(fy, x).

Hence f verifies contaction (2.6), so the conditions of Theorem 2.7 are sat-
isfied. Moreover, 1/2 is the unique fixed point of f, and f is not continuous for
τpS at 1.
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