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Abstract

We obtain two fixed point theorems for complete partial metric
space that, by one hand, clarify and improve some results that have
been recently published in Topology and its Applications, and, on
the other hand, generalize in several directions the celebrated Boyd
and Wong fixed point theorem and Matkowski fixed point theorem,
respectively.

MSC: 54H25, 47H10, 54E50.

Keywords: Fixed point; Generalized contraction; Complete partial
metric space.

1 Introduction and preliminaries

In [2, Theorem 1], Altun, Sola and Simsek established the following fixed
point theorem for complete partial metric spaces.

Theorem 1 ([2]). Let (X, p) be a complete partial metric space and let
f : X → X be a map such that

p(fx, fy) ≤ φ

(
max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(y, fx)]

})
,
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for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a continuous nondecreasing
function such that φ(t) < t for all t > 0. Then f has a unique fixed point.

In [1], Altun and Sadarangani observed that the proof of Theorem 1 was
wrong (in fact, the error occurs on page 2781, line 11, as the authors noted)
and then they proved the following modification of it.

Theorem 2 ([1]). Let (X, p) be a complete partial metric space and let
f : X → X be a map such that

p(fx, fy) ≤ φ

(
max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(y, fx)]

})
,

for all x, y ∈ X, where φ : [0,∞)→ [0,∞) is a nondecreasing function such
that the series

∑∞
n=0 φ

n(t) converges for all t > 0 (φn denotes the n-th iterate
of φ). Then f has a unique fixed point.

In this paper we show that, regardless, Theorem 1 above is true; in fact,
we prove a more general result by replacing the condition that φ is continuous
and nondecreasing by the condition that it is upper semicontinuous from the
right, obtaining, in this way, a result that generalizes in several directions
the celebrated Boyd-Wong fixed point theorem [3].

Furthermore, we modify Theorem 2 by replacing the condition that the
series

∑∞
n=0 φ

n(t) converges for all t > 0 by simply that limn→∞ φ
n(t) = 0 for

all t > 0, obtaining, in this way, a result that generalizes in several directions
the celebrated Matkowski fixed point theorem [6].

In the sequel the letters N and ω will denote the set of all positive integer
numbers and the set of all nonnegative integer numbers, respectively.

Let us recall that partial metric spaces were introduced by Matthews ([5])
to the study of denotational semantics of dataflow networks. In fact, (com-
plete) partial metric spaces constitute a suitable framework to model several
distinguished examples of the theory of computation and also to model metric
spaces via domain theory (see, for instance, [4, 5, 8, 9, 10, 11]).

Following [5], a partial metric on a set X is a function p : X×X → [0,∞)
such that for all x, y, z ∈ X :

(i) x = y ⇔ p(x, x) = p(x, y) = p(y, y); (ii) p(x, x) ≤ p(x, y); (iii)
p(x, y) = p(y, x); (iv) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Observe that if p(x, y) = 0 then x = y.
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A partial metric space is a pair (X, p) such that X is a set and p is a
partial metric on X.

In the rest of this section we recall some properties of partial metric spaces
which will be useful later on.

Each partial metric p on X induces a T0 topology τp on X which has as
a base the family of open balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) =
{y ∈ X : p(x, y) < ε+ p(x, x)} for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X×X → [0,∞) given
by ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), is a metric on X.

Furthermore, a sequence (xn)n∈N in a partial metric space (X, p) con-
verges, with respect to τps , to a point x ∈ X if and only if

limn,m→∞ p(xn, xm) = limn→∞ p(xn, x) = p(x, x).

According to [5], a sequence (xn)n∈N in a partial metric space (X, p) is
called a Cauchy sequence if there exists (and is finite) limn,m→∞ p(xn, xm),
and (X, p) is called complete if every Cauchy sequence (xn)n∈N converges,
with respect to τp, to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

Example 1. Let X = [0,∞) and let p : X × X → [0,∞) given by
p(x, y) = max{x, y} for all x, y ∈ X. It is well known and easy to see that
(X, p) is a complete partial metric space. In fact, ps is the Euclidean metric
on X.

Finally, the following crucial facts are shown in [5]:

(a) A sequence in a partial metric space (X, p) is a Cauchy sequence if
and only if it is a Cauchy sequence in the metric space (X, ps).

(b) A partial metric space (X, p) is complete if and only if (X, ps) is
complete.

2 The results

In order to simplify the notation, given a partial metric space (X, p) and
f : X → X a map, we define

Pf (x, y) := max

{
p(x, y), p(x, fx), p(y, fy),

1

2
[p(x, fy) + p(y, fx)]

}
,

for all x, y ∈ X.
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Lemma 1. Let (X, p) be a partial metric space and let f : X → X be a
map. Then, for each x ∈ X, we have

Pf (x, fx) = max{p(x, fx), p(fx, f 2x)}.

Proof. Let x ∈ X. Then

max{p(x, fx), p(fx, f 2x)} ≤ Pf (x, fx)

= max{p(x, fx), p(fx, f 2x),
1

2

[
p(x, f 2x) + p(fx, fx)

]
}

≤ max{p(x, fx), p(fx, f 2x),
1

2

[
p(x, fx) + p(fx, f 2x)

]
}

= max{p(x, fx), p(fx, f 2x)}.

The proof is complete. �

Lemma 2. Let (X, p) be a partial metric space and let f : X → X be a
map such that

p(fx, fy) ≤ φ(Pf (x, y)),

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a function such that φ(t) < t
for all t > 0. If x ∈ X satisfies that fnx 6= fn+1x for all n ∈ ω, then the
following hold:

(a) Pf (fnx, fn+1x) = p(fnx, fn+1x ) for all n ∈ ω.
(b) p(fnx, fn+1x) ≤ φ(p(fn−1x, fnx)) < p(fn−1x, fnx) for all n ∈ N.

Proof. (a) Let x ∈ X be such that fnx 6= fn+1x for all n ∈ ω. Then
p(fnx, fn+1x) > 0 for all n ∈ ω. By Lemma 1,

Pf (fnx, fn+1x) = max{p(fnx, fn+1x), p(fn+1x, fn+2x)}.

Since

p(fn+1x, fn+2x) ≤ φ(Pf (fnx, fn+1x)) < Pf (fnx, fn+1x),

it follows that Pf (fnx, fn+1x) = p(fnx, fn+1x) for all n ∈ ω.

(b) Taking into account (a), we deduce that

p(fnx, fn+1x) ≤ φ(Pf (fn−1x, fnx)) = φ(p(fn−1x, fnx)) < p(fn−1x, fnx),
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for all n ∈ N. �

Let us recall that a function φ : [0,∞)→ [0,∞) is upper semicontinuous
from the right provided that for each t ≥ 0 and each sequence (tn)n∈N such
that tn ≥ t and limn→∞ tn = t, it follows that lim supn→∞ φ(tn) ≤ φ(t).

Theorem 3. Let (X, p) be a complete partial metric space and let f :
X → X be a map such that

p(fx, fy) ≤ φ(Pf (x, y)),

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a upper semicontinuous from
the right function such that φ(t) < t for all t > 0. Then f has a unique fixed
point z ∈ X. Moreover p(z, z) = 0.

Proof. Let x ∈ X. If there is n ∈ ω such that fnx = fn+1x, then fnx is a
fixed point of f and uniqueness of fnx follows as in the last part of the proof
below.

Hence, we shall assume that fnx 6= fn+1x for all n ∈ ω. Put x0 = x
and construct the sequence (xn)n∈ω where xn = fnx0 for all n ∈ ω. Thus
xn+1 = fxn and p(xn, xn+1) > 0 for all n ∈ ω.

By Lemma 2 (b), there is c ≥ 0 such that

lim
n→∞

p(xn, xn+1) = lim
n→∞

φ(p(xn, xn+1)) = c.

If c > 0, we have

c = lim sup
n→∞

φ(p(xn, xn+1)) ≤ φ(c) < c,

a contradiction. So limn→∞ p(xn, xn+1) = 0.

Next we show that limn,m→∞ p(xn, xm) = 0.

This will be done by adapting a technique of Boyd and Wong [3, Theorem
1]. Indeed, assume the contrary. Then there exist ε > 0 and sequences
(nk)k∈N, (mk)k∈N in N, with mk > nk ≥ k, and such that p(xnk

, xmk
) ≥ ε for

all k ∈ N.
From the fact that limn→∞ p(xn, xn+1) = 0 we can suppose, without loss

of generality, that p(xnk
, xmk−1) < ε.
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For each k ∈ N we have

ε ≤ p(xnk
, xmk

) ≤ p(xnk
, xmk−1) + p(xmk−1, xmk

) < ε+ p(xmk−1, xmk
),

and, hence, limk→∞ p(xnk
, xmk

) = ε.

Now let k0 ∈ N such that p(xnk+1, xnk
) < ε and p(xmk+1, xmk

) < ε for all
k ≥ k0. Then

p(xnk
, xmk

) ≤ Pf (xnk
, xmk

)

≤ p(xnk
, xmk

) +
1

2
(p(xmk

, xmk+1) + p(xnk+1, xnk
)),

for all k ≥ k0. So limk→∞ Pf (xnk
, xmk

) = ε.

Since Pf (xnk
, xmk

) ≥ ε for all k ∈ N, and φ is upper semicontinuous from
the right, we deduce that

lim sup
k→∞

φ(Pf (xnk
, xmk

)) ≤ φ(ε).

On the other hand, for each k ∈ N we have

ε ≤ p(xnk
, xmk

) ≤ p(xnk
, xnk+1) + p(xnk+1, xmk+1) + p(xmk+1, xmk

)

≤ p(xnk
, xnk+1) + φ(Pf (xnk

, xmk
)) + p(xmk+1, xmk

),

so
ε ≤ lim sup

k→∞
φ(Pf (xnk

, xmk
)) ≤ φ(ε),

a contradiction because φ(ε) < ε.
Consequently limn,m→∞ p(xn, xm) = 0, and, thus, (xn)n∈ω is a Cauchy

sequence in the complete partial metric space (X, p). Hence, there is z ∈ X
such that

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(z, xn) = p(z, z) = 0.

We show that z is a fixed point of f.
To this end we first note that limn→∞ Pf (z, xn) ≤ p(z, fz).

Moreover, since p(z, fz) ≤ Pf (z, xn) for all n ∈ ω, we deduce that

p(z, fz) = lim
n→∞

Pf (z, xn),

so
lim sup

n→∞
φ(Pf (z, xn)) ≤ φ(p(z, fz)).
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On the other hand, since for each n ∈ ω,

p(z, fz) ≤ p(z, xn) + p(xn, fz),

it follows that

p(z, fz) ≤ lim sup
n→∞

(p(z, xn) + p(xn, fz)) = lim sup
n→∞

p(xn, fz)

≤ lim sup
n→∞

φ(Pf (xn−1, z)) ≤ φ(p(z, fz)).

Therefore p(z, fz) = 0 and thus z = fz.
Finally, let u ∈ X such that fu = u. Then,

p(u, z) = p(fu, fz) ≤ φ(Pf (u, z)) = φ((p(u, z)).

Hence p(u, z) = 0, i.e., u = z. This concludes the proof. �

Corollary 1. Let (X, p) be a complete partial metric space and let f :
X → X be a map such that

p(fx, fy) ≤ φ(p(x, y)),

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a upper semicontinuous from
the right function such that φ(t) < t for all t > 0. Then f has a unique fixed
point z ∈ X. Moreover p(z, z) = 0.

Corollary 2 (Boyd and Wong [3]). Let (X, d) be a complete metric space
and let f : X → X be a map such that

d(fx, fy) ≤ φ(d(x, y)),

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a upper semicontinuous from
the right function such that φ(t) < t for all t > 0. Then f has a unique fixed
point .

The following is a typical instance where Theorem 1 (and also Corollary
1) can be applied but Theorem 2 not.
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Example 2. Let (X, p) be the complete partial metric space of Example
1, and let f : X → X given by fx = x/2 for all x ∈ X.

Now let φ : [0,∞)→ [0,∞) defined by

φ(0) = 0,

φ(t) =
nt

n+ 2
+

1

(n+ 1)(n+ 2)
if t ∈ [

1

n+ 1
,

1

n
), n ∈ N, and

φ(t) =
t

2
if t ≥ 1.

It is routine to check that φ is continuous on [0,∞) with t/2 < φ(t) < t for
all t > 0. Hence φ satisfies the conditions of Theorem 1 and thus of Corollary
1. Note that, in fact, the graph of the restriction of φ to [1/(n + 1), 1/n],
n ∈ N, is the straight line segment with origin at (1/(n+ 1), 1/(n+ 2)) and
end at (1/n, 1/(n+ 1)).

Nevertheless, since φ(1/n) = 1/(n + 1) for all n ∈ N, and φ(t) = t/2 for
all t > 1, it follows that

∑∞
n=0 φ

n(t) =∞ for all t > 0. So φ does not satisfy
the conditions of Theorem 2.

Finally, we have p(fx, fy) = max{x/2, y/2} ≤ φ(max{x, y}) = φ(p(x, y)),
for all x, y ∈ X, and thus, all conditions of Theorem 1 (and also of Corollary
1) are satisfied.

In order to state our next theorem we shall need the following well-known
and easy, but useful, observation.

Lemma 3. ([6, 7]). Let φ : [0,∞) → [0,∞) be nondecreasing and let
t > 0. If limn→∞ φ

n(t) = 0, then φ(t) < t.

Theorem 4. Let (X, p) be a complete partial metric space and let f :
X → X be a map such that

p(fx, fy) ≤ φ(Mf (x, y)),

where Mf (x, y) = max{p(x, y), p(x, fx), p(y, fy)} for all x, y ∈ X, and φ :
[0,∞) → [0,∞) is a nondecreasing function such that limn→∞ φ

n(t) = 0 for
all t > 0. Then f has a unique fixed point z ∈ X. Moreover p(z, z) = 0.

Proof. Let x ∈ X. If there is n ∈ ω such that fnx = fn+1x, then fnx is a
fixed point of f and uniqueness of fnx follows as in the last part of the proof
below.
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Hence, we shall assume that fnx 6= fn+1x for all n ∈ ω. Put x0 = x
and construct the sequence (xn)n∈ω where xn = fnx0 for all n ∈ ω. Thus
xn+1 = fxn and p(xn, xn+1) > 0 for all n ∈ ω. By Lemma 2 (b),

p(xn, xn+1) ≤ φ(p(xn−1, xn)),

for all n ∈ ω. Then, since φ is nondecreasing, we deduce that

p(xn, xn+1) ≤ φn(p(x0, x1)),

for all n ∈ ω. Hence
lim
n→∞

p(xn, xn+1) = 0.

Now choose an arbitrary ε > 0. Since limn→∞ φ
n(ε) = 0 it follows from

Lemma 3 that φ(ε) < ε, so there is nε ∈ N such that

p(xn, xn+1) < ε− φ(ε),

for all n ≥ nε. Therefore

p(xn, xn+2) ≤ p(xn, xn+1) + p(xn+1, xn+2)

< ε− φ(ε) + φ(p(xn, xn+1))

≤ ε− φ(ε) + φ(ε) = ε,

for all n ≥ nε. So

p(xn, xn+3) ≤ p(xn, xn+1) + p(xn+1, xn+3)

< ε− φ(ε) + φ(Mf (xn, xn+2))

≤ ε− φ(ε) + φ(ε) = ε,

and following this process

p(xn, xn+k) < ε,

for all n ≥ nε and k ∈ N. Consequently

lim
n,m→∞

p(xn, xm) = 0,

and thus (xn)n∈ω is a Cauchy sequence in the complete partial metric space
(X, p). Hence there is z ∈ X such that

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(z, xn) = p(z, z) = 0.
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We show that z is a fixed point of f.
Assume the contrary. Then p(z, fz) > 0. For each n ∈ N we have

p(z, fz) ≤ p(z, xn) + p(xn, fz) ≤ p(z, xn) + φ(Mf (z, xn−1)).

From our assumption that p(z, fz) > 0, it easily follows that there is
n0 ∈ N such that Mf (z, xn−1) = p(z, fz) for all n ≥ n0 (observe that, in
particular, p(xn−1, fz) ≤ p(xn−1, z)+p(z, fz) and that limn→∞ p(xn, z) = 0).

So
p(z, fz) ≤ p(z, xn) + φ(p(z, fz)),

for all n ≥ n0.
Taking limits as n→∞, we obtain that p(z, fz) ≤ φ(p(z, fz)) < p(z, fz),

a contradiction. Consequently z = fz.
Finally, uniqueness of z follows as in Theorem 3. �

Corollary 3. Let (X, p) be a complete partial metric space and let f :
X → X be a map such that

p(fx, fy) ≤ φ(p(x, y)),

for all x, y ∈ X, where φ : [0,∞)→ [0,∞) is a nondecreasing function such
that limn→∞ φ

n(t) = 0 for all t > 0. Then f has a unique fixed point z ∈ X.
Moreover p(z, z) = 0.

Corollary 4 (Matkowski [6]). Let (X, d) be a complete metric space and
let f : X → X be a map such that

d(fx, fy) ≤ φ(d(x, y)),

for all x, y ∈ X, where φ : [0,∞)→ [0,∞) is a nondecreasing function such
that limn→∞ φ

n(t) = 0 for all t > 0. Then f has a unique fixed point z ∈ X.

Remark. Note that Theorem 4 can be also applied to Example 2, because
in this example the function φ is nondecreasing and limn→∞ φ

n(t) = 0, for all
t > 0
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