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Let m be an �2-valued (countably additive) vector measure and consider the space L2(m) of
square integrable functions with respect to m. The integral with respect to m allows to define
several notions of orthogonal sequence in these spaces. In this paper, we center our attention in
the existence of strongly m-orthonormal sequences. Combining the use of the Kadec-Pelczyński
dichotomy in the domain space and the Bessaga-Pelczyński principle in the range space, we
construct a two-sided disjointification method that allows to prove several structure theorems
for the spaces L1(m) and L2(m). Under certain requirements, our main result establishes that a
normalized sequence in L2(m) with a weakly null sequence of integrals has a subsequence that
is strongly m-orthonormal in L2(m∗), where m∗ is another �2-valued vector measure that satisfies
L2(m) =L2(m∗). As an application of our technique, we give a complete characterization of when a
space of integrable functions with respect to an �2-valued positive vector measure contains a lattice
copy of �2.

1. Introduction

In recent years, vector measure integration has been shown to be a good framework for
the analysis of the properties of Banach function spaces and the operators defined on
them. In particular, it is a powerful tool for representing Banach function spaces providing
an additional integration structure. For instance, every 2-convex order continuous Banach
function space with weak unit can be written as a space L2(m) of integrable functions with
respect to a suitable vector measure m ([1, Th. 2.4]; see also [2, Ch.3] for more information).
As in the case of the Hilbert spaces of square integrable functions, sequences in L2(m) that
satisfy some orthogonality properties with respect to the vector valued integral become useful
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both for studying the geometry of the space [3–5] and for applications, mainly in the context
of the function approximation [3, 6, 7].

In contrast to the scalar case, several notions of m-orthogonality are possible in the
case of an �2-valued (countably additive) vector measure m. A sequence {fi}∞i=1 in L2(m) is
said to be strongly m-orthonormal if the integral of the product of two different functions is 0
and the integral of each f2

i is ei, where {ei}∞i=1 is an orthonormal sequence in �2. In this paper,
we center our attention in this strong version of m-orthogonal sequence, giving a complete
characterization of the spaces L2(m) in which such sequences exist; actually, we will show
that this fact is closely connected to the existence of lattice copies of �2 in the corresponding
space L1(m) that is preserved by the integration map. In order to do this, we develop a sort
of two-sided Kadec-Pelczyński disjointification technique. Roughly speaking, this procedure
allows to produce sequences of normalized functions in L2(m)—or L1(m)—which are almost
disjoint and have integrals that are almost orthogonal in �2: after an isomorphic change
of vector measure, we obtain our results both for the existence of strongly m-orthogonal
sequences in L2(m) and the existence of lattice copies of �2 in L1(m).

The paper is organized as follows. After the preliminary Section 2, we analyze in
Section 3 the existence of strongly orthonormal sequences in L2(m), and we show that it is a
genuine vector valued phenomenon, in the sense that they do not exist for scalar measures
and in the case of their natural extensions, vector measures with compact integration maps.
Actually, later on we prove that they do not exist for �2-valued measures with disjointly
strictly singular integration maps. In the positive, we show in Theorem 3.7 that under
reasonable requirements, given an m-orthonormal sequence {fi}∞i=1 in L2(m), it is possible
to construct another vector measure m∗ such that

(1) {fi}∞i=1 is a strongly m∗-orthonormal sequence in L2(m),

(2) L2(m) = L2(m∗).

Combining with the Kadec-Pelczyński dichotomy, the requirement on the sequence of
being m-strongly orthogonal can be relaxed to being weakly null (Corollary 3.9), obtaining
in this case a sequence of functions satisfying (1) and (2) that approximates a subsequence
of the original one. Some examples and direct consequences of this result are also given.
Finally, Section 4 is devoted to show some applications in the context of the structure theory of
Banach function spaces, focusing our attention in Banach function lattices that are represented
as spaces of square integrable functions with respect to an �2-valued vector measure and are
not Hilbert spaces. For the case of positive measures, we show that the existence of strongly
m-orthonormal sequences is equivalent of the existence of lattice copies of �4 in L2(m) and
lattice copies of �2 in L1(m) (Proposition 4.3 and Theorem 4.5). The translation of these results
for the space L1(m) gives the following result on its structure that can also be written in terms
of the integration map (Theorem 4.7): the space L1(m) contains a normalized weakly null
sequence if and only if it has a reflexive sublattice if and only if it contains a lattice copy of �2.

2. Preliminaries

In this section, we introduce several definitions and comments regarding the spaces L2(m).
We refer to [8] for definitions and basic results on vector measures. Let X be a Banach space.
We will denote by BX the unit ball of X, that is BX := {x ∈ X : ‖x‖X ≤ 1}. X′ will be the
topological dual of X. Let Σ be a σ-algebra on a nonempty set Ω. Throughout the paper m :
Σ → Xwill be a countably additive vector measure. The semivariation ofm is the nonnegative



Journal of Function Spaces and Applications 3

function ‖m‖ whose value on a set A ∈ Σ is given by ‖m‖(A) := sup{|〈m, x′〉|(A) : x′ ∈ BX′ }.
The variation |m| of m on a measurable set A is given by |m|(A) := sup

∑
B∈Π ‖m(B)‖ for

A ∈ Σ, where the supremum is computed over all finite measurable partitions Π of A. The
variation |m| is a monotone countably additive function on Σ—a positive scalar measure—,
while the semivariation ‖m‖ is a monotone subadditive function on Σ, and for eachA ∈ Σwe
have that ‖m‖(A) ≤ |m|(A).

For each element x′ ∈ X′, the formula 〈m, x′〉(A) := 〈m(A), x′〉, A ∈ Σ, defines
a (countably additive) scalar measure. As usual, we say that a sequence of Σ-measurable
functions converges |〈m, x′〉|-almost everywhere if it converges pointwise in a setA ∈ Σ such
that |〈m, x′〉|(Ω \A) = 0. A sequence converges m-almost everywhere if it converges in a set
A that satisfies that the semivariation of m in Ω \A is 0.

Let μ be a positive scalar measure. The measurem is absolutely continuouswith respect
to μ if limμ(A)→ 0m(A) = 0; in this case we writem � μ and we say that μ is a control measure
for m. Countably additive vector measures always have control measures. It is known that
there exists always an element x′ ∈ X′ such thatm � |〈m, x′〉|. We call such a scalar measure a
Rybakov measure form (see [8, Ch.IX,2] ). If |〈m, x′〉| is a Rybakovmeasure form, a sequence of
Σ-measurable functions converges m-almost everywhere if and only if it converges |〈m, x′〉|-
almost everywhere.

AΣ-measurable function f is integrable with respect tom if it is integrable with respect
to each scalar measure 〈m, x′〉, and for every A ∈ Σ there is an element

∫
A fdm ∈ X such that

〈∫A fdm, x′〉 =
∫
A fd〈m, x′〉 for every x′ ∈ X′. The set of all the (classes ofm—a.e. equal)m—

integrable functions L1(m) defines an order continuous Banach function space with weak
unit χΩ—in the sense of [9, p.28]—over any Rybakov measure form that is endowed with the
norm

∥
∥f

∥
∥
L1(m) := sup

x′∈BX′

∫

Ω

∣
∣f
∣
∣d
∣
∣
〈
m, x′〉∣∣, f ∈ L1(m). (2.1)

The reader can find the definitions and fundamental results concerning the space L1(m) in
[2, 10–12].

The spaces Lp(m) are defined extending the definition above in a natural manner [1,
2, 13]. They are p-convex order continuous Banach function spaces with weak unit χΩ over
any Rybakov measure, with the norm

∥
∥f

∥
∥
Lp(m) :=

∥
∥
∣
∣f
∣
∣p
∥
∥1/p
L1(m), f ∈ Lp(m). (2.2)

It is also known that if 1/p + 1/q = 1, f1 ∈ Lp(m) and f2 ∈ Lq(m), then the pointwise
product f1 · f2 belongs to L1(m) (see for instance [2, Ch.3]). We will consider the integration
operator Im : L1(m) → X associated to the vector measure m, that is defined by Im(f) :=∫
Ω fdm, f ∈ L1(m). The properties of the integrationmap have been largely studied in several
recent papers (see [2, 14–17] and the references therein). If i, j are indexes of a set I, we write
δi,j for the Kronecker delta as usual. A sequence {fi}∞i=1 in L2(m) is called m-orthogonal if
‖ ∫Ω fifj dm‖ = δi,jki for positive constants ki. If ‖fi‖L2(m) = 1 for all i ∈ N, it is called m-
orthonormal. The properties of these sequences have been recently analyzed in a series of
papers, and some applications have been already developed (see [3–7, 18]). In this paper, we
deal with the following more restrictive version of orthogonality for �2-valued measures.
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Definition 2.1. Let m : Σ → �2 be a vector measure. We say that {fi}∞i=1 ⊂ L2(m) is a strongly
m-orthogonal sequence if

∫
Ω fifjdm = δi,jeiki for an orthonormal sequence {ei}∞i=1 in �2 and for

ki > 0. If ki = 1 for every i ∈ N, we say that it is a strongly m-orthonormal sequence.

We need some elements on Banach-lattice-valued vector measures; in particular, on
�2-valued measures when the order in �2 is considered. If X is a Banach lattice, we say that a
vector measurem : Σ → X is positive ifm(A) ≥ 0 for allA ∈ Σ. Note that ifm is positive and
x′ is a positive element of the Banach lattice X′, then the measure 〈m, x′〉 coincides with its
variation. We refer to [2, 9, 19] for general questions concerning Banach lattices and Banach
function spaces. An operator between Banach lattices is called strictly singular if no restriction
to an infinite dimensional subspace give an isomorphism, and �2-singular if this happens for
subspaces isomorphic to �2. It is called disjointly strictly singular if no restriction to the closed
linear span of a disjoint sequence is an isomorphism.

We use standard Banach spaces notation. A sequence {xn}∞n=1 in a Banach space X is
called a Schauder basis ofX (or simply a basis) if for every x ∈ X there exists a unique sequence
of scalars {αn}∞n=1 such that x = limn→∞

∑n
k=1 αkxk. A sequence {xn}∞n=1 which is a Schauder

basis of its closed span is called a basic sequence. Let {xn}∞n=1 and {yn}∞n=1 be two basis for the
Banach spaces X and Y , respectively. Then {xn}∞n=1 and {yn}∞n=1 are equivalent if and only if
there is an isomorphism between X and Y that carries each xn to yn.

Let {xi}∞i=1 be a basic sequence of a Banach space X and take two sequences of positive
integers {pi}∞i=1 and {qi}∞i=1 satisfying that pi < qi < pi+1 for every i ∈ N. A block basic sequence
{yi}∞i=1 associated to {xi}∞i=1 is a sequence of vectors of X defined as finite linear combinations
as yi =

∑qi
k=pi

αi,kxk, where αi,k are real numbers. We refer to [20, Ch.V] for the definition of
block basic sequence and to [9, 20] for general questions concerning Schauder basis.

3. Strongly m-Orthogonal Sequences in L2(m)

This section is devoted to show how to construct stronglym-orthonormal sequences in L2(m).
Let us start with an example of the kind of sequences that we are interested in.

Example 3.1. Let ([0,∞),Σ, μ) be Lebesgue measure space (Figure 1). Let rk(x) :=
sign{sin(2k−1x)} be the Rademacher function of period 2π defined at the interval Ek =
[2(k − 1)π, 2kπ], k ∈ N. Consider the vector measure m : Σ → �2 given by m(A) :=
∑∞

k=1(−1/2k)(
∫
A∩Ek

rkdμ)ek ∈ �2, A ∈ Σ.
Note that if f ∈ L2(m) then

∫
[0,∞) fdm = ((−1/2k) ∫Ek

frkdμ)k ∈ �2. Consider the se-
quence of functions

f1(x) = sin(x) · χ[π,2π](x)

f2(x) = sin(2x) · (χ[0,2π](x) + χ[(7/2)π,4π](x)
)

f3(x) = sin(4x) · (χ[0,4π](x) + χ[(23/4)π,6π](x)
)

...

fn(x) = sin
(
2n−1x

)
· (χ[0,2(n−1)π](x) + χ[(2n−2/2n)π,2nπ](x)

)
, n ≥ 2.

(3.1)
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Figure 1: Functions f1(x), f2(x), and f3(x) in Example 3.1.

This sequence can be used to define a strongly m-orthogonal sequence, since

〈∫

[0,∞)
f2
ndm, en

〉

= − 1
2n

∫

En

f2
nrndμ =

π

22n
,

〈∫

[0,∞)
f2
ndm, ek

〉

= − 1
2k

∫

Ek

f2
nrkdμ = 0, ∀k /=n,

〈∫

[0,∞)
fnfmdm, ek

〉

= − 1
2k

∫

Ek

fnfmrkdμ = 0, for n/=m and ∀k.

(3.2)

If we define the functions of the sequence {Fn}∞n=1 by Fn(x) := (2n/
√
π)fn(x), we get

∫

[0,∞)
F2
ndm = en, ∀n ∈ N

∫

[0,∞)
FnFkdm = 0, ∀n, k ∈ N, n /= k. (3.3)

The starting point of our analysis is the Bessaga-Pelczyński selection principle. It
establishes that if {xk}∞k=1 is a basis of the Banach space X and {x∗

k
}∞k=1 is the sequence of

coefficient functionals, if we take a normalized sequence {yn}∞n=1 such that limn〈yn, x
∗
k〉 = 0,

then {yn}∞n=1 admits a basic subsequence that is equivalent to a block basic sequence of
{xn}∞n=1 (see for instance Theorem 3 in [20, 21], Ch.V). We adapt this result for sequences
of square integrable functions {fn}∞n=1 in order to identify when the sequence of integrals
{∫Ω f2

ndm}∞
n=1 ⊂ �2 is a basic sequence in �2. The following result is a direct consequence of the

principle mentioned above. Notice that the first requirement in Proposition 3.2 is obviously
satisfied in the case ofm-orthonormal sequences. The second condition constitutes the key of
the problem.

Proposition 3.2. Let m : Σ → �2 be a vector measure, and consider the canonical basis {ek}∞k=1 of
�2. Let {fn}∞n=1 be a sequence in L2(m). If there is an ε > 0 such that the sequence {∫Ω f2

ndm}∞
n=1

satisfies

(1) infn‖
∫
Ω f2

ndm‖
�2

= ε > 0,

(2) limn〈
∫
Ω f2

ndm, ek〉 = 0, ∀k ∈ N,

then {∫Ω f2
ndm}∞

n=1 has a subsequence which is a basic sequence. Moreover, it is equivalent to a block
basic sequence of {ek}∞k=1.
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Let us highlight with an example the geometrical meaning of the requirements above.
This is, in a sense, the canonical situation involving disjointness.

Example 3.3 ([5, Ex.10]). Let (Ω,Σ, μ) be a probability measure space. Let us consider the
following vector measure m : Σ → �2,

m(A) :=
∞∑

i=1

μ(A ∩Ai)ei ∈ �2, A ∈ Σ, (3.4)

where {Ai}∞i=1 is a disjoint measurable partition of Ω, with μ(Ai)/= 0 for all i ∈ N. Notice that∫
Ω f2dm =

∑∞
i=1(

∫
Ai
f2dμ)ei ∈ �2 for all f ∈ L2(m). Consider a sequence of norm one functions

{fn}∞n=1 in L2(m) such that fn := fnχAn for all n. For every k ∈ N, the following equalities hold:

lim
n

〈∫

Ω
f2
ndm, ek

〉

= lim
n

〈 ∞∑

i=1

(∫

Ai

f2
ndμ

)

ei, ek

〉

= lim
n

∫

Ak

f2
ndμ = 0,

∥
∥
∥
∥

∫

Ω
f2
ndm

∥
∥
∥
∥
�2

= 1 ∀n ∈ N.

(3.5)

Therefore, condition (2.2) of Proposition 3.2 is fulfilled in this example: the role of dis-
jointness is clear.

In what follows, we show that if the integration operator is compact then there are
no strongly m-orthonormal sequences. In particular, this shows that the existence of such
sequences is a pure vector measure phenomenon, since the integration map is obviously
compact when the measure is scalar. Compactness of the integration map is nowadays well
characterized (see [2, Ch.3] and the references therein); it is a strong property, in the sense
that it implies that the space L1(m) is lattice isomorphic to the L1 space of the variation of
m, that is a scalar measure (see [2, Prop.3.48]). We need the next formal requirement for the
elements of the sequence {fn}∞n=1. We say that a function f ∈ L2(m) is normed by the integral if
‖f‖L2(m) = ‖ ∫Ω f2 dm‖1/2. This happens for instance when the vector measure m is positive
(see [22] or [2, Lemma 3.13]), since in this case the norm can be computed using the formula
‖f‖L1(m) = ‖ ∫Ω |f |dm‖ for all f ∈ L1(m). We impose this requirement for the aim of clarity;
some of the results could be adapted using a convenient renorming process in order to avoid
it.

Remark 3.4. Let m : Σ → �2 be a countably additive vector measure. If there exists a strongly
m-orthonormal sequence in L2(m) which elements are normed by the integrals, then the
integration operator Im : L1(m) → �2 is not compact. To see this, let {fi}∞i=1 ⊂ L2(m) be
a strongly m-orthonormal sequence in L2(m) and consider a orthonormal sequence {ei}∞i=1.
Then

∫
Ω fifj dm = δi,jei, an thus

∫

Ω
f2
i dm = ei = Im

(
f2
i

)
. (3.6)

Therefore {f2
i }

∞
i=1 ⊂ BL1(m), and so the sequence {Im(f2

i )}
∞
i=1 that satisfies that {Im(f2

i )}
∞
i=1 ⊂

Im(BL1(m)) ⊂ Im(BL1(m)) does not admit any convergent subsequence. It follows that Im(BL1(m))
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is not compact and so, Im(BL1(m)) is not relatively compact. This allows to conclude that Im
is not compact.

Theorem 3.7 below gives a necessary condition—and, in a sense, also a sufficient
condition—for the existence of strongly orthonormal sequences in a space of functions
L2(m) starting from a given m-orthonormal sequence. The existence of such m-orthonormal
sequences is always assured: just consider a sequence of normalized disjoint functions
in L2(m). The following result is an application of the Kadec-Pelczyński disjointification
procedure for order continuous Banach function spaces—also called the Kadec-Pelczyński
dichotomy, see Theorem 4.1 in [23, 24]—, in the following version, that can be found in [25]
(see the comments after Proposition 1.1). Let X(μ) be an order continuous Banach function space
over a finite measure μwith a weak unit (this impliesX(μ) ↪→ L1(μ)). Consider a normalized sequence
{xn}∞n=1 in X(μ). Then

(1) either {‖xn‖L1(μ)}∞n=1 is bounded away from zero,

(2) or there exists a subsequence {xnk}∞k=1 and a disjoint sequence {zk}∞k=1 in X(μ) such that
‖zk − xnk‖→ k 0.

Recall that the space L2(m) is an order continuous Banach function space over any
Rybakov (finite) measure μ = |〈m, x′

0〉| for m.

Proposition 3.5. Let {gn}∞n=1 be a normalized sequence in L2(m). Suppose that there exists a Rybakov
measure μ = |〈m, x′

0〉| for m such that {‖gn‖L1(μ)}∞n=1 is not bounded away from zero. Then there
are a subsequence {gnk}∞k=1 of {gn}∞n=1 and an m-orthonormal sequence {fk}∞k=1 such that ‖gnk −
fk‖L2(m) → k 0.

Proof. By the criterion given above, there is a subsequence {gnk}∞k=1 of {gn}∞n=1 and a disjoint
sequence {f ′

k}∞k=1 such that ‖gnk−f ′
k
‖L2(m) → k 0. Consider the sequence given by the functions

fk := f ′
k
/‖f ′

k
‖. Then ‖gnk − fk‖L2(m) → k 0. Since

∫
Ω fkfjdm = 0 for every k /= j due to the fact

that they are disjoint, we obtain the result.

Although the existence of a strongly m-orthonormal subsequence of an m-orthogonal
sequence cannot be assured in general, we show in what follows that under the adequate
requirements it is possible to find a vector measure m∗ satisfying that L2(m) = L2(m∗) and
with respect to which there is a subsequence that is strongly m∗-orthonormal. We use the
following lemma, which proof is elementary (see Lemma 3.27 in [2]).

Lemma 3.6. Let m : Σ → �2 be a vector measure. Let ϕ : �2 → H be an isomorphism, where H is
a separable Hilbert space, and consider the vector measure m∗ = ϕ ◦ m. Then the spaces L2(m) and
L2(m∗) are isomorphic, and for every f ∈ L2(m),

∫
Ω f2dm∗ = ϕ(

∫
Ω f2dm).

Theorem 3.7. Let us consider a vector measurem : Σ → �2 and anm-orthonormal sequence {fn}∞n=1
of functions in L2(m) that are normed by the integrals. Let {en}∞n=1 be the canonical basis of �2. If
limn〈

∫
Ω f2

ndm, ek〉 = 0 for every k ∈ N, then there exists a subsequence {fnk}∞k=1 of {fn}∞n=1 and a
vector measurem∗ : Σ → �2 such that {fnk}∞k=1 is stronglym∗-orthonormal.

Moreover, m∗ can be chosen to be as m∗ = φ ◦m for some Banach space isomorphism φ from
�2 onto �2, and so L2(m) = L2(m∗).

Proof. Consider an m-orthonormal sequence {fn}∞n=1 in L2(m) and the sequence of integrals
{∫Ω f2

ndm}∞
n=1. As an application of Proposition 3.2, we get a subsequence {∫Ω f2

nk
dm}∞

k=1
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that is equivalent to a block basic sequence {e′nk
}∞k=1 of the canonical basis of �2. Recall that

according to the notation given in Section 2, αi,j are the constants that appear in the definition
of the block basic sequence. Associated to this sequence, there is an isomorphism ϕ

A := span
(
e′nk

)�2 ϕ−→ B := span
(∫

Ω
f2
nk
dm

)�2

(3.7)

such that ϕ(e′nk
) :=

∫
Ω f2

nk
dm, k ∈ N.

We can suppose without loss of generality that the elements of the sequence {e′nk
}∞k=1

have norm one. To see this, it is enough to consider the following inequalities. First note that
there are positive constants Q and K such that for every n ∈ N, Q = Q‖ ∫Ω f2

nk
dm‖ ≤ ‖e′nk

‖ ≤
K‖ ∫Ω f2

nk
dm‖ = K as a consequence of the existence of the isomorphism ϕ. Let {λi}∞i=1 be a

sequence of real numbers. Then

∥
∥
∥
∥
∥

∞∑

i=1

λi
e′i∥

∥e′i
∥
∥

∥
∥
∥
∥
∥

2

2

=
∞∑

i=1

|λi|2
(∑qi

j=pi

∣
∣αi,j

∣
∣2
)

∥
∥e′i

∥
∥2

=
∞∑

i=1

qi∑

j=pi

|λi|2
∣
∣αi,j

∣
∣2

∥
∥e′i

∥
∥2

. (3.8)

The existence of an upper and a lower bound for the real numbers ‖e′i‖ given above provides
the equivalence between this quantity and ‖∑∞

i=1 λie
′
i‖22 for each sequence of real numbers

{λi}∞i=1.
Since each closed subspace of a Hilbert space is complemented, there is a subspace Bc

such that �2 = B ⊕2 B
c isometrically, where this direct sum space is considered as a Hilbert

space (with the adequate Hilbert space norm). We write PB and PBc for the corresponding

projections. Let us consider the linear map φ := ϕ−1 ⊕ Id : B ⊕2 B
c φ→ A⊕2 B

c, where Id : Bc →
Bc is the identity map.

Note that H := A⊕2 B
c is a Hilbert space with the scalar product

〈
x + y, x′ + y′〉

H =
〈
x, x′〉

H +
〈
y, y′〉

H, x + y, x′ + y′ ∈ A⊕2 B
c, (3.9)

that can be identified with �2. Obviously, φ is an isomorphism. Let us consider now the vector

measure m∗ := φ ◦m : Σ m→ �2
φ→ A⊕2 B

c. By Lemma 3.6, L2(m) = L2(φ ◦m) = L2(m∗). Let
us show that {fnk}∞k=1 is a strongly m∗-orthonormal sequence. We consider the orthonormal
sequence {(e′nk

, 0)}∞k=1 in H. The first condition in the definition of strongly orthonormal
sequence is fulfilled, since

∫

Ω
f2
nk
dm∗ =

∫

Ω
f2
nk
d
(
φ ◦m)

= φ

(

PB

(∫

Ω
f2
nk
dm

)

, PBc

(∫

Ω
f2
nk
dm

))

=
(

ϕ−1
(∫

Ω
f2
nk
dm

)

, 0
)

=
(
e′nk

, 0
)
,

(3.10)

for every k ∈ N. The second one is given by the following calculations. For k /= l,

∥
∥
∥
∥

∫

Ω
fnkfnldm

∗
∥
∥
∥
∥ =

∥
∥
∥
∥

∫

Ω
fnkfnld

(
φ ◦m)

∥
∥
∥
∥ =

∥
∥
∥
∥φ

(∫

Ω
fnkfnldm

)∥
∥
∥
∥ =

∥
∥φ(0)

∥
∥ = 0, (3.11)
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since φ is continuous and {fnk}∞k=1 is anm-orthonormal sequence. Thus we get
∫
Ω fnkfnldm

∗ =
0. This proves the theorem.

Remark 3.8. In a certain sense, the converse of Theorem 3.7 also holds. Take as the vector
measure m∗ the measure m itself with values in �2 and consider the canonical basis {en}∞n=1.
Clearly, every stronglym-orthonormal sequence ism-orthonormal and satisfies the condition
limn〈

∫
Ω f2

ndm
∗, ek〉 = 0, since

〈∫

Ω
f2
ndm

∗, ek

〉

= 〈en, ek〉 = 0, k /=n. (3.12)

Corollary 3.9. Let m : Σ → �2 be a countably additive vector measure. Let {gn}∞n=1 be a
normalized sequence of functions in L2(m) that are normed by the integrals. Suppose that there exists
a Rybakov measure μ = |〈m, x′

0〉| for m such that {‖gn‖L1(μ)}∞n=1 is not bounded away from zero. If
limn〈

∫
Ω g2

ndm, ek〉 = 0 for every k ∈ N, then there is a (disjoint) sequence {fk}∞k=1 such that
(1) limk‖gnk − fk‖L2(m) = 0 for a given subsequence {gnk}∞k=1 of {gn}∞n=1, and
(2) it is strongly m∗-orthonormal for a certain Hilbert space valued vector measure m∗ defined

as in Theorem 3.7 that satisfies that L2(m) = L2(m∗).

This is a direct consequence of Proposition 3.5 and Theorem 3.7. For the proof, just
take into account the continuity of the integration map and the fact that the elements of the
sequence {gn}∞n=1 are normed by the integrals.

4. Applications: Copies of �2 in L1(m) That Are Preserved by
the Integration Map

One of the consequences of the results of the previous section is that the existence of strongly
m-orthonormal sequences in L2(m) is closely related to the existence of lattice copies of �2 in
L1(m). In this section, we show how to apply our arguments for finding some information on
the structure of the spaces L1(m) and the properties of the associated integration map.

Our motivation has its roots in the general problem of finding subspaces of Banach
function spaces that are isomorphic to �2. It is well known that in general these copies
are related to weakly null normalized sequences; the arguments that prove this relation
go back to the Kadec-Pelczyński dichotomy and have been applied largely in the study
of strictly singular embeddings between Banach function spaces [25, 26]. In some relevant
classes of Banach function spaces—Lp-spaces, Lorentz spaces, Orlicz spaces, and general
rearrangement invariant (r.i.) spaces—these copies are related to subspaces generated by
Rademacher-type sequences (see [27–30] and the references therein). For instance, Corollary
2 in [27] states that for a r.i. Banach function space E on [0, 1], if the norms on E and L1

are equivalent on some infinite dimensional subspace of E, then the Rademacher functions
span a copy of �2 in E. However, our construction generates copies of �2 that are essentially
different. Actually, they are defined by positive or even disjoint functions, and so the copies of
�2 that our results produce allow to conclude that if there is a normalized sequence of positive
functions with a weakly null sequence of integrals, the integration map is neither disjointly
strictly singular nor �2-singular.

On the other hand, it is well known that strongly orthonormal sequences—that are
called λ-orthonormal systems in Definition 2 of [5]—define isometric copies of �4 in spaces
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L2(m) of a positive vector measure m (see Propositions 8 and 11 in [5]). In particular, this
makes clear that the existence of these sequences imply that L2(m) is not a Hilbert space, and
so L1(m) is not an L1-space. However, there is a big class of Banach function spaces that can
be represented as L1(m) of an �2-valued positive vector measurem (see for instance Example
10 in [5] or Example 8 in [4]). The L1(m)-spaces associated to such vector measures are
sometimes called �-sums of L1-spaces. In Section 4 of [31], a first attempt to study 2-convex
subspaces—the natural extension of �2-copies in this setting—of �-sums of L1-spaces was
made. Also, a first analysis of the question of when L1(m) is a Hilbert space—based on the
behavior of specific sequences too—was made in [11, Section 4]. In what follows, we provide
more information on the existence of copies of �2 in spaces L1(m) of a positive vectormeasure,
and the closely related problem of the existence of �4 in L2(m). After that, some contributions
to the analysis to the study of strictly singular integration maps are given. Recently, a new
considerable effort has been made in order to find the links between the belonging of the
integration map Im to a particular class of operators and the structure properties of the space
L1(m). For integration maps belonging to relevant operator ideals, this has been done in
[16, 17, 32] (see also [2, Ch.5] and the references therein). For geometric and order properties
of the integration map—mainly concavity and positive p-summing type properties—, we
refer to [33, 34] and [2, Ch.6].

For the aim of clarity, in this section we deal with positive vector measures, that—as
we said in the previous section—satisfy that all the elements of the spaces L2(m) are normed
by the integrals. In this case, it can be shown that there is an easy characterization of strongly
m-orthonormal sequences, which simplifies the arguments.

Remark 4.1. Suppose that a vector measure satisfies that the set P := {x′ ∈ �2 : 〈m, x′〉 ≥
0} separates the points of �2 and assume that for a given sequence {fn}∞n=1, 〈

∫
Ω f2

ndm, x′〉 ·
〈∫Ω f2

k
dm, x′〉 = 0 for every n, k ∈ N such that n/= k and x′ ∈ P . Then

∫
Ω fnfkdm = 0 for every

n/= k. This is a direct consequence of Hölder’s inequality and the integrability with respect
to m of all the functions involved. For the particular case of positive vector measures, the
standard basis {en}∞n=1 of �2 plays the role of P ; this means that the requirement

∫
Ω f2

ndm = en
for all n automatically implies that {fn}∞n=1 is a strongly m-orthonormal sequence.

Lemma 4.2. Let m : Σ → �2 be a positive vector measure, and suppose that the bounded sequence
{gn}∞n=1 in L2(m) satisfies that limn〈

∫
Ω g2

ndm, ek〉 = 0 for all k ∈ N. Then there is a Rybakov measure
μ for m such that limn‖gn‖L1(μ) = 0.

Proof. Take for instance the sequence x′
0 = {(1/2)n/2}∞n=1 ∈ �2. Sincem is positive, the measure

μ := 〈m, x′
0〉 is positive and defines a Rybakov measure form. Since 〈∫Ω g2

ndm, x′
0〉 = ‖gn‖2L2(μ)

for all n ∈ N and the requirement on {∫Ω g2
ndm}∞n=1 imply that it is weakly null, we obtain by

Hölder’s inequality that limn‖gn‖L1(μ) ≤ limn‖gn‖L2(μ)‖m‖1/2 = 0.

Proposition 4.3. Let m : Σ → �2 be a positive (countably additive) vector measure. Let {gn}∞n=1
be a normalized sequence in L2(m) such that for every k ∈ N, limn〈

∫
Ω g2

ndm, ek〉 = 0. Then L2(m)
contains a lattice copy of �4. In particular, there is a subsequence {gnk}∞k=1 of {gn}∞n=1 that is equivalent
to the unit vector basis of �4.

Proof. By Lemma 4.2, we can use Corollary 3.9 to produce a disjoint sequence {fk}∞k=1 in L2(m)
that approximates a subsequence {gnk}∞k=1 of {gn}∞n=1 and is stronglym∗-orthogonal. The same
computations that can be found in the proof of Proposition 8 in [5] show that for finite sums
∑N

k=1 αkfk, the norm in L2(m) is equivalent to the norm of {αk}Nk=1 in �4. Consequently, the
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closure of these finite sums in L2(m) provides a copy of �4. The disjointness of {fk}∞k=1 implies
that in fact it is a lattice copy. Note also that {fk}∞k=1 is equivalent to {gnk}∞k=1 and so to the unit
vector basis of �4.

As a direct consequence, we obtain that for a positive vector measure m, the existence
of a normalized sequence of functions such that the sequence of square integrals is weakly
null implies that L2(m) cannot be a Hilbert space. On the other hand, if the integration map is
compact, then L1(m) = L1(|m|) isomorphically (see Proposition 3.48 in [2]), and thus L2(m)
is (isomorphic to) a Hilbert space. Notice first the following obvious consequence of this
fact: L1(m) is isomorphic to an L1(μ)-space of a finite measure μ if and only if there is a positive �2-
valued vector vector measurem0 such that L1(m) = L1(m0) such that the integration map is compact;
the converse statement is proved by considering the vector measure n(A) := μ(A)e1 ∈ �2,
A ∈ Σ. However, as the next example shows, there are spaces L2(m) for positive �2-valued
vector measures with noncompact integration map that are Hilbert spaces. We will find in
Corollary 4.6 that this conclusion—L1(m) not being an L1-space, and so L2(m) not to be a
Hilbert space—can be extended to the case of strictly singular integration maps.

Example 4.4. (1) An �2-valued measure such that L1(m) is a Hilbert space and the integration map
is not compact. Consider the Hilbert space L2[0, 1] and a orthonormal basis S for it. Consider
the associated isomorphism φS : L2[0, 1] → �2 that carries each function to the 2-summable
sequence of its fourier coefficients. Take the vector measure mS : Σ → �2 given by mS(A) :=
φS(χA) for each Lebesgue measurable set A ∈ Σ. Then L1(mS) = L2[0, 1], although ImS is in
fact an isomorphism.

(2) A positive �2-valued measure with noncompact integration map such that L1(m) is a
Hilbert space. Consider a vector measurem as in Example 3.3 and define the positive measure
n : Σ → �2 by n(A) := μ(A)e1 +m(A), A ∈ Σ. A direct computation shows that the norm in
L1(n) is equivalent to the one in L1(μ). Then L2(n) = L2(μ) isomorphically, and In : Σ → �2

is clearly noncompact.

Next result shows the consequences on the structure of L1(m) of our arguments about
the existence of strongly orthonormal sequences in L2(m).

Theorem 4.5. Let m : Σ → �2 be a positive (countably additive) vector measure. Let {gn}∞n=1 be a
normalized sequence in L2(m) such that for every k ∈ N, limn〈

∫
Ω g2

ndm, ek〉 = 0 for all k ∈ N. Then
there is a subsequence {gnk}∞k=1 such that {g2

nk
}∞k=1 generates an isomorphic copy of �2 in L1(m) that

is preserved by the integration map. Moreover, there is a normalized disjoint sequence {fk}∞k=1 that is
equivalent to the previous one and {f2

k}∞k=1 gives a lattice copy of �2 in L1(m) that is preserved by Im∗ .

Proof. By Corollary 3.9 and Lemma 4.2, there is a (normalized) disjoint sequence {fk}∞k=1 in
L2(m) that is equivalent to a subsequence {gnk}∞k=1 of {gn}∞n=1. Let us prove directly that
{g2

nk
}∞k=1 generates an isomorphic copy of �2 in L1(m). Let m∗ = φ ◦ m the vector measure

given in Corollary 3.9 and let K be the norm of φ−1. Since limk‖gnk − fk‖L2(m) = 0 for every
ε > 0 there is a subsequence of the one above (that we denote as the previous one) that
satisfies that

(
n∑

k=1

∥
∥
∥
∥

∫

Ω
|gnk − fk|2dm

∥
∥
∥
∥

)1/2

<
ε

2
. (4.1)
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Fix an ε > 0. We have that, by Hölder inequality,

(
n∑

k=1

∥
∥
∥
∥

∫

Ω

∣
∣
∣g2

nk
− f2

k

∣
∣
∣dm

∥
∥
∥
∥

2

�2

)1/2

=

(
n∑

k=1

∥
∥
∥
∥

∫

Ω

∣
∣gnk − fk

∣
∣ · ∣∣gnk + fk

∣
∣dm

∥
∥
∥
∥

2

�2

)1/2

≤
(

n∑

k=1

∥
∥
∥
∥

∫

Ω

∣
∣gnk − fk

∣
∣2dm

∥
∥
∥
∥ ·

∥
∥
∥
∥

∫

Ω

∣
∣gnk + fk

∣
∣2dm

∥
∥
∥
∥

)1/2

≤ 2

(
n∑

k=1

∥
∥
∥
∥

∫

Ω

∣
∣gnk − fk

∣
∣2dm

∥
∥
∥
∥

)1/2

< ε.

(4.2)

This means that
∥
∥
∥
∥
∥

∫

Ω

∣
∣
∣
∣
∣

n∑

k=1

αkg
2
nk

∣
∣
∣
∣
∣
dm

∥
∥
∥
∥
∥
�2

≤
∥
∥
∥
∥
∥

∫

Ω

∣
∣
∣
∣
∣

n∑

k=1

αk

(
g2
nk

− f2
k

)
∣
∣
∣
∣
∣
dm

∥
∥
∥
∥
∥
�2

+

∥
∥
∥
∥
∥

∫

Ω

n∑

k=1

|αk|f2
kdm

∥
∥
∥
∥
∥
�2

≤
(

n∑

k=1

α2
k

)1/2

ε +K

∥
∥
∥
∥
∥

∫

Ω

n∑

k=1

|αk|f2
kdm

∗
∥
∥
∥
∥
∥
�2

≤ (ε +K)

(
n∑

k=1

α2
k

)1/2

.

(4.3)

Similar computations give the converse inequality. The construction of m∗ and the disjoint-
ness of the functions of the sequence {f2

k
}∞k=1 give the last statement.

Corollary 4.6. Let m : Σ → �2 be a positive (countably additive) vector measure. The following
assertions are equivalent.

(1) There is a normalized sequence in L2(m) satisfying that limn〈
∫
Ω g2

ndm, ek〉 = 0 for all the
elements of the canonical basis {ek}∞k=1 of �2.

(2) There is an �2-valued vector measurem∗ = φ◦m—φ an isomorphism—such that L2(m) =
L2(m∗) and there is a disjoint sequence in L2(m) that is stronglym∗-orthonormal.

(3) There is a subspace S ⊆ L1(m) that is fixed by the integration map Im which satisfies that
there are positive functions hn ∈ S such that {∫Ω hndm}∞n=1 is an orthonormal basis for
Im(S).

(4) There is an �2-valued vector measurem∗ defined asm∗ = φ◦m—φ an isomorphism—such
that L1(m) = L1(m∗) and a subspace S of L1(m) such that the restriction of Im∗ to S is a
lattice isomorphism in �2.

Proof. (1) ⇒ (2) is a direct consequence of Theorem 4.5. For (2) ⇒ (3), just notice that the
strong m∗-orthogonality of a disjoint sequence {gn}∞n=1 implies that {g2

n}∞n=1 gives a lattice
copy of �2 preserved by the integration map Im∗ . Since φ−1 ◦ m∗ = m, we obtain that
{φ−1(

∫
Ω g2

ndm
∗)}∞n=1 = {∫Ω g2

ndm}∞n=1 is a basis for �2.
(3) ⇒ (1). There is a bounded sequence {hn}∞=1 in L1(m) such that

∫
Ω hndm = an, where

an is a orthonormal basis of closure of the subspace A := span{∫Ω hndm : n ∈ N}, and an
isomorphism φ fromA to �2 such that φ(

∫
Ω hndm) = en. By composing with φ the integration

map, the copy of �2 that is fixed by Im can be considered in such a way that φ(
∫
Ω g2

ndm) = en.
Consequently, limn〈φ(

∫
Ω hndm), ek〉 = 0 for all k ∈ N, and so limn〈ek,

∫
Ω hndm〉 = 0 for all

k ∈ N. It is enough to take gn = h1/2
n .

(3) ⇒ (4) is obvious.
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(4) ⇒ (1). Take the normalized sequence of positive functions {hn}∞n=1 in S such that
{∫Ω hndφ ◦m}∞n=1 is equivalent to the standard basis of �2, and define gn := h1/2

n . The weak to
weak continuity of φ gives the result.

We have shown that the existence of lattice copies of �4 in L2(m) is directly connected
with the existence of lattice copies of �2 in L1(m). Thus, and summarizing the results in this
section, we finish the paper with a complete characterization of this property for L1(m) of a
positive �2-valued vector measure m.

Theorem 4.7. The following assertions for a positive vector measurem : Σ → �2 are equivalent.

(1) L1(m) contains a lattice copy of �2.

(2) L1(m) has a reflexive infinite dimensional sublattice.

(3) L1(m) has a relatively weakly compact normalized sequence of disjoint functions.

(4) L1(m) contains a weakly null normalized sequence.

(5) There is a vector measure m∗ defined by m∗ = φ ◦m such that integration map Im∗ fixes a
copy of �2.

(6) There is a vector measurem∗ defined as m∗ = φ ◦m that is not disjointly strictly singular.

Proof. (1) ⇒ (2) ⇒ (3) are obvious. For (3) ⇒ (4), just take into account that disjoint
normalized sequences in weakly compact sets of Banach lattices are weakly null (see for
instance the proof of Proposition 3.6.7 in [19]).

(4) ⇒ (5). Take aweakly null normalized sequence {gj}nj=1 in L1(m). By (the arguments
used in) Lemma 4.2 we can find a Rybakov measure μ form such that ‖gj‖L1(μ) → 0. Nowwe
use the same arguments that lead to Theorem 3.7 and Corollary 3.9; by the Kadec-Pelczyński
dichotomy, there exists a subsequence {gjl}∞l=1 of {gj}∞j=1 and a disjoint sequence {zl}∞l=1 in
the unit sphere of L1(m) such that liml‖gjl − zl‖ = 0. Notice that {zl}∞l=1 also converges
weakly to 0, so by taking a subsequence and after restricting the supports of the functions
zl and renorming if necessary, we obtain a normalized weakly null positive disjoint sequence
{vk}∞k=1. This gives the copy of �2 that is fixed by the integration map associated to a vector
measure m∗ = φ ◦m satisfying L1(m) = L1(m∗) by Im(vk) = ek for the canonical basis {ek}∞k=1
of �2. Finally, (5) ⇒ (6) and (6) ⇒ (1) are evident.
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vol. 180, Birkhäuser, Basel, Switzerland, 2008.

[3] L. M. Garcı́a-Raffi, D. Ginestar, and E. A. Sánchez-Pérez, “Integration with respect to a vector measure
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