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Abstract

In this paper we show a new method for calculating the nucleolus by solving

a unique minimization linear program with O(4n) constraints whose coeffi-

cients belong to {−1, 0, 1}. We discuss the need of having all these constraints

and empirically prove that they can be reduced to O(kmax2
n), where kmax is

a positive integer comparable with the number of players. A computational

experience shows the applicability of our method over (pseudo)random trans-

ferable utility cooperative games with up to 18 players.

Keywords: Cooperative games, Nucleolus, Order median problem.

1. Introduction

This paper presents new advances on computing the nucleolus of a coop-

erative game with side payments as defined by Schmeidler [19]. Kohlberg [7]

proved that the nucleolus can be found by solving a unique linear program of

extremely large size with O(2n!) constraints. Owen [14] showed how this pro-

gram can be reduced to a more tractable size of O(4n) constraints, although

the constraint coefficients are very large. On the other hand, Maschler, Pe-
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leg and Shapley [11] gave another method for finding the nucleolus by giving

a constructive definition of the lexicographic center of a cooperative game

and showing the equivalence between this concept and the nucleolus. In

their approach they have to solve a sequence of O(4n) minimization linear

programs with constraint coefficients in {−1, 0, 1}. This approach was im-

proved by Sankaran [18] who gave a method for computing the nucleolus

solving a sequence of only O(2n) minimization linear programs with con-

straint coefficients in {−1, 0, 1}. Hallefjord et al. [6] considered games whose

characteristic function is given from mathematical programming problems,

and calculated the nucleolus of such games. For this aim, only those coali-

tions whose characteristic function is required for calculating the nucleolus

are considered. Later Potters et al. [17] described a fast algorithm to find

the nucleolus of any game with non-empty imputation set. This algorithm

is based on solving a prolonged simplex algorithm. It requires solving n− 1

linear programs with at most 2n + n − 1 rows and 2n − 1 columns. Since

then, one can find some improvements on the computation of the nucleolus

in particular classes of games, but not much has been done on the general

case. In this regard, it is worth underlying the paper by Leng and Parlar [10],

which develops an algebraic method for finding the nucleolus of any 3-player

game with non-empty core. This method is based on a division of different

cases depending on the values of the characteristic function.

Despite its computational complexity, the nucleolus has proven very effec-

tive in real cost allocation problems. One of the most well-known applications

of the nucleolus are the bankruptcy problems, where it was proven by Au-

mann and Maschler to coincide with the talmudic rule, see [1]. More recent
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applications are, for instance: Lemaire [9] applies (among other allocation

rules) the nucleolus for allocating costs in insurance companies; Songhuai et

al. [20] apply the nucleolus for power losses allocation in electrical markets,

which is accepted as it satisfies open, equal, and impartial principles; Le Bre-

ton et al. [8] use the nucleolus and the Shapley value for the production and

finance of public projects.

In this paper, we show an alternative method for computing the nucle-

olus of an n-person cooperative game by solving one unique minimization

linear program with O(4n) constraints whose coefficients are in {−1, 0, 1}.

Although the complexity of the new problem is similar to Owen’s one (see

[14]), the advantage of the new proposal is that all constraint coefficients are

in {−1, 0, 1}, whereas in Owen’s formulation some coefficients are extremely

large. Besides, we propose a solution method that avoids the problem of hav-

ing too small constants and significantly reduces the number of constraints.

Thus, our formulation gives a computationally more stable method. This

special form of the program has proven to be specially suitable for other op-

timization problems, like the convex order median location problem (see the

book by Nickel and Puerto [12]). Recent applications of such problems can

be found in Blanco et al. [3] and Espejo et al. [4].

The rest of the paper is structured as follows. Section 2 gives some needed

preliminary concepts. In Section 3 we formulate the nucleolus as the solution

to a unique LP problem whose resolution is discussed in Section 4. Section 5

illustrates our procedure, which is tested via some experiments in Section 6.
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2. Background

Cooperative game theory studies decision processes that involve several

agents (players) which are allowed to cooperate. This branch of applied

mathematics is attracting more and more attention to the scientific commu-

nity. A proof of that are the ten Nobel prize laureates in Economic Sciences

related with game theory (the last two in 2012).

Given the set of players N = {1, . . . , n}, a coalition of N is any subset

S ⊂ N . The set of all possible coalitions of N shall be denoted by 2N . We

define the characteristic function as the map

v : 2N −→ R

S −→ v(S),
(1)

where v(S) represents the maximum profit that the coalition S can make

by acting on its own, without taking into account what the other players in

N \ S can do. So, v(N) is the best payoff that the coalition formed by all

players can obtain. This coalition, N , is called the grand coalition. We set

v(∅) = 0.

Therefore, a cooperative game can be represented by Γ = (N, v) where

N is its set of players {1, 2, ..., n} and v is its characteristic function.

One problem faced by cooperative game theory is that of allocating the

benefit obtained by the grand coalition among the players. One such alloca-

tion is the nucleolus, introduced by Schmeidler in [19]. For the definition of

the nucleolus, the concept of excess vector is needed. The vector of excesses

of an allocation x ∈ R
n is the vector θ(x) ∈ R

2n−1 defined as:

θ(x) = (e(S, x)), with e(S, x) = v(S)−
∑

i∈S

xi ∀ S ⊂ N, S 6= ∅. (2)
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The nucleolus is the unique vector that lexicographically minimizes the non-

increasing sorted vector of excesses.

Allocations x such that e(S, x) = 0 if S = N and e(S, x) ≤ 0 for any

other coalition S, are known as core allocations. If the core of a game is

nonempty, its nucleolus is a core allocation. Although core allocations have

been widely used in the literature for the fairness conditions they satisfy (all

coalitions receive at least the value of their characteristic function), there are

some recent papers that discuss about some drawbacks of core allocations

and go beyond this set (e.g. see Perea et al. [16] or Audy et al. [2].)

In what follows we restrict ourselves to the nucleolus of a cooperative

game defined on the set of pre-imputations, namely the set

I = {x ∈ R
N :

n∑

i=1

xi = v(N)}. (3)

Note that e(N, x) = e(∅, x) = 0 for all x ∈ I, and we therefore consider only

2n − 2 coalitions (all S ∈ 2N − {∅, N}.) Needless to say that the results

obtained in this paper clearly extend to any polytope.

The following 3-player example illustrates these concepts.

Example 2.1. Consider the following characteristic function:

v({i}) = v({1, 3}) = 0, v({1, 2}) = 3, v({2, 3}) = 1, v(N) = 4,

and the following two pre-imputations:

x = (2.5, 1, 0.5), y = (1.5, 2, 0.5).

Their excess vectors (sorted in a non-increasing way) are:

θ(x) = (−0.5,−0.5,−0.5,−1,−2.5,−3).
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θ(y) = (−0.5,−0.5,−1.5,−1.5,−2,−2).

Therefore, θ(y) <L θ(x) (where <L means lexicographically smaller). Actu-

ally, it can be proven that y is the nucleolus of this game.

For the sake of readability, we embed the problem in R
2n−2×R

n, a space of

large dimension where the first 2n−2 coordinates correspond to the excesses

(where we assume an ordering on the subsets of N which is arbitrary but

fixed) and the remaining n to players’ allocations. In this space, we deal with

the polytope

P = {(θ, x) ∈ R
2n−2 × R

n : θS ≥ v(S)−
∑

i∈S

xi, S ⊂ N and
n∑

i=1

xi = v(N)}.

This way we shall simultaneously identify the nucleolus (x∗) and its excesses

(θ∗).

Let (θ(1), ..., θ(2n−2)) be the vector obtained by sorting θ in non-increasing

order, i.e., θ(1) ≥ θ(2) ≥ ... ≥ θ(2n−2). In [13] it is proved that, if λ1, ..., λ2n−1

are constants sorted in nondecreasing order with λ2n−1 = 0, then
∑2n−2

i=1 λiθ(i)

can be represented as the solution value of the following linear programming

problem:

min
∑2n−2

k=1 (λk − λk+1)(ktk +
∑2n−2

i=1 di,k)

s.t. di,k ≥ θi − tk ∀ i, k = 1, ..., 2n − 2,

di,k ≥ 0.

(4)

In the following section we will prove that, for a convenient choice of the con-

stants λ, a modification of problem (4) gives the nucleolus of any cooperative

game.
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3. The main result

Theorem 3.1. Given a cooperative TU-game (N, v), its nucleolus is the

unique solution to the following minimization linear program with O(4n) vari-

ables and constraints whose coefficients are in {−1, 0, 1}:

min
∑2n−2

k=1 (λk − λk+1)(ktk +
∑2n−2

i=1 dik)

s.t. dik ≥ θi − tk ∀ i, k,

dik ≥ 0 ∀ i, k

(θ, x) ∈ P,

(5)

with λk = δk−1, k = 1, ..., 2n − 2, λ2n−1 = 0 and a convenient choice of δ.

Proof. The nucleolus (θ∗, x∗) corresponds to the lexicographical minimiza-

tion of the non-increasingly sorted vectors of excesses. Therefore, there ex-

ists a permutation σ(θ∗), of (1, . . . , 2n − 2), that sorts the elements of the

θ-variables such that (θ∗, x∗) is the lexicographical minimum with respect to

the θ-variables (excesses).

First of all, it is a folklore result that on compact domains lexicographical

minimization is equivalent to linear programming. This can be traced back

(at least for finite sets) in [5, p.70] and one explicit proof can be found in the

CEnter Discussion Paper No. 20006-89 by S. Tijs. In any case and for the

sake of completeness, we prove that after sorting the θ-variables according

with the permutation σ(θ∗), the nucleolus (θ∗, x∗) is the unique minimum of

the linear function (1, δ, δ2, . . . , δ2
n−3, 0, n. . ., 0)(θ, x)t on Pσ(θ∗), the polytope

that results from P after reordering the first 2n − 2 coordinates according

with the permutation σ(θ∗), for some δ < 1.
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Take z ∈ ext(Pσ(θ∗))−{(θ∗, x∗)}, where ext(Q) denotes the set of extreme

points of the set Q. Denote by z≥ = (z(1), ..., z(2n−2), x) the vector obtained

from z after sorting its 2n−2 first components in non-increasing order. Due to

the uniqueness of the nucleolus, we know that there exists r ∈ {1, 2, . . . , 2n−

2} such that θ∗k = z(k) for k < r and θ∗r < z(r). Thus, for any δ > 0 we have

that

(1, δ, δ2, . . . , δ2
n−3, 0, n. . ., 0)[z≥ − (θ∗, x∗)t]

= δr−1(z(r) − θ∗r) +
∑2n−2

k=r+1 δ
k−1(zk − θ∗k)

= δr−1[(z(r) − θ∗r) +
∑2n−2

k=r+1 δ
k−r(zk − θ∗k)]

= δr−1K(δ).

(6)

Note that limδ→0K(δ) = (z(r)−θ∗r) > 0. Therefore, there exists δ∗ so that

K(δ) > 0 ∀ δ < δ∗. Hence, the scalar product in (6) is positive, at least, for

any δ < δ∗.

Hence, for all δ < δ∗ one has that

(1, δ, δ2, . . . , δ2
n−3, 0, n. . ., 0)[z≥ − (θ∗, x∗)t] > 0 ∀ z ∈ ext(Pσ(θ∗)) \ {(θ

∗, x∗)}.

(7)

However, for z = (θ∗, x∗)t, it attains the null value. Thus,

(θ∗, x∗) = argmin{(1, δ, δ2, . . . , δ2
n−3, 0, n. . ., 0)(θ, x)t : (θ, x) ∈ ext(Pσ(θ∗))}

∀ δ < δ∗.

(8)

Thus, once the permutation that gives the lexicographic ordering in the

optimum is known, finding the nucleolus reduces to solving a linear program.

Nevertheless, in order to apply the above argument we need to prove that
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the problem that gives the lex-minimum, namely

min
∑2n−2

i=1 δi−1θ(i)

s.t. θ(1) ≥ θ(2) ≥ . . . ≥ θ(2n−3)

(θ, x) ∈ P

(9)

can be written as a linear programming problem. This formulation is doable

using the result in [13], see problem (4). Consider linear programming prob-

lem (5). The objective function and the first group of constraints represent

the ordered weighted sum of the values
∑2n−2

k=1 λkθ(k), where θ(1) ≥ θ(2) ≥

. . . ≥ θ(2n−2). Notice that this formulation results from the reformulation of

the ordered median problem that appears in [13, Section 3] (see also [12]). It

is clearly applicable here because we consider the convex case of the weighted

ordered average, i.e δ0 ≥ δ1 ≥ . . . ≥ δ2
n−3 ≥ 0. This formulation, together

with the fact that for the permutation σ(θ∗), (θ∗, x∗) is the unique mini-

mum of (1, δ, δ2, . . . , δ2
n−3, 0 n. . . 0)(θ, x)t on Pσ(θ∗), proves that computing

the nucleolus of an n-person cooperative game is equivalent to solving the

continuous linear program (5), which has O(4n) variables, O(4n) constraints

with coefficients in {−1, 0, 1}.

The uniqueness in the solution to (5) comes from the fact that, on compact

and convex domains, the nucleolus is unique (see for instance [19] or [7]).

Because we are dealing with allocations in the compact and convex set I, see

(3), this uniqueness result follows. �

The reader may have noted that a key aspect in the previous proof is the

calculus of δ∗. The following lemma gives an explicit estimate of an upper

bound for such a constant.

Lemma 3.1. Let β = min{(z(r) − z′(r)) : z, z′ ∈ ext(P ), r ∈ {1, ..., 2n −
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2} so that z(k) = z′(k) ∀ k < r, z(r) > z′(r)}, and let δ∗ = β
2v(N)+β

. Then, for

all δ < δ∗ we have that K(δ) > 0.

Proof. Let θ∗ be the excesses produced by the nucleolus x∗ sorted in

a non-increasing way. Take z ∈ ext(P ) \ {θ∗, x∗} in the conditions of the

lemma, and let r ∈ {1, 2, . . . , 2n − 2} be such that θ∗k = z(k) for k < r and

θ∗r < z(r). It is clear that (z(r) − θ∗r) ≥ β. Thus, if δ < δ∗, we also have that

δ <
z(r)−θ∗r

2v(N)+(z(r)−θ∗r)
, because function f(y) = y/(a+ y) is monotone increasing

for all y 6= a if a > 0. Therefore the following inequalities hold:

δ <
(z(r) − θ∗r)/2v(N)

1 + (z(r) − θ∗r)/2v(N)
⇒ δ + δ

(z(r) − θ∗r)

2v(N)
<

(z(r) − θ∗r)

2v(N)
,

which implies that
δ

1− δ
<

(z(r) − θ∗r)

2v(N)
.

Since δ < δ∗ < 1, the last inequality implies

∞∑

k=2

δk−1 <
(z(r) − θ∗r)

2v(N)
⇒

2n−2∑

k=r+1

δk−1 <
(z(r) − θ∗r)

2v(N)
⇒

2n−2∑

k=r+1

δk−12v(N) < (z(r) − θ∗r) ⇒
2n−2∑

k=r+1

δk−1(v(N)− (−v(N))) < (z(r) − θ∗r).

Now, since the excesses are within [−v(N), v(N)], it follows that θ∗k < v(N)

and z(k) > −v(N). Therefore

2n−2∑

k=r+1

δk−1(θ∗k − z(k)) < (z(r) − θ∗r) ⇒ (z(r) − θ∗r) +

2n−2∑

k=r+1

δk−1(z(k) − θ∗k) > 0.

�

We note that calculating this upper bound may be a difficult task depend-

ing on the structure of the polytope P . In our computational experiments

we have taken δ = 0.1 with satisfactory results.
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4. Computational aspects

We have proven in Theorem 3.1 that the nucleolus can be solved by means

of the following LP problem:

min
∑2n−2

k=1 (λk − λk+1)(ktk +
∑2n−2

i=1 di,k)

s.t. di,k ≥ θi − tk ∀ i, k = 1, ..., 2n − 2,

θi = v(Si)−
∑

j∈Si
xj , ∀ i = 1, ..., 2n − 2,

∑n
j=1 xj = v(N)

di,k ≥ 0

(10)

with λk = δk−1, k = 1, ..., 2n − 2 and λ2n−1 = 0.

Although our approach proves that the nucleolus is computable by this

single LP problem, this method may be affected by current implementation

of LP solvers due to actual precision in representing primitives (scalars).

A problem of this formulation is that, due to the small magnitude of

constants δk, they may be considered as zero by computers when k is “large”.

In order to solve this drawback, we propose the following iterative process.

Assume the maximum k so that δk can be ensured strictly positive by

computer precision is kmax − 1. Therefore, we set λk = 0 ∀ k > kmax. With

these new values, the objective function in (10) becomes

kmax∑

k=1

(λk − λk+1)(ktk +
2n−2∑

i=1

di,k). (11)

Note that, after this adaptation, variables tk, dik do not appear in this ob-

jective function for all k > kmax, and therefore the first set of constraints of

problem (10) can be reduced to

di,k ≥ θi − tk ∀ i = 1, ..., 2n − 2, k = 1, ..., kmax, (12)
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which consists of O(kmax2
n) constraints instead of O(4n). The reader may

observe that the solution to this problem lexicographically minimizes the

kmax largest excesses. If the solution to this problem gives the nucleolus, we

stop. Otherwise, we let Tk = (kt1k +
∑2n−2

i=1 d1i,k) for k = 1, ...kmax, where t1

and d1 are the values of variables t and d in the optimal solution. Tk is the

sum of the kth largest excesses (see [13], Lemma 1). If this problem does

not yield the nucleolus, in a following iteration we fix the values of the kmax

largest excesses to be equal to those calculated before, and lexicographically

minimize the kmax + 1, ..., 2kmax largest excesses.

Therefore the objective function becomes

2kmax∑

k=kmax+1

(λk−kmax
− λk+1−kmax

)(ktk +

2n−2∑

i=1

di,k). (13)

The first set of constraints reduces to

di,k ≥ θi − tk ∀ i = 1, ..., 2n − 2, k = 1, ..., 2kmax. (14)

And we now add this new set of constraints:

ktk +

2n−2∑

i=1

di,k = Tk, k = 1, ..., kmax, (15)

which aim at fixing the kmax largest excesses. If this procedure does not give

the nucleolus, we store Tk = (kt2k +
∑2n−2

i=1 d2i,k) for k = kmax + 1, ..., 2kmax,

where t2 and d2 are the optimal values of variables t and d in this second

problem.

Therefore, in this iterative process, the m-th iteration solves the following
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linear programming problem:

min
∑mkmax

k=(m−1)kmax+1(λk−(m−1)kmax
− λk+1−(m−1)kmax

)(ktk +
∑2n−2

i=1 di,k)

s.t. di,k ≥ θi − tk ∀ i = 1, ..., 2n − 2, k = 1, ..., mkmax,

θi = v(Si)−
∑

j∈Si
xj , ∀ i = 1, ..., 2n − 2,

∑n
j=1 xj = v(N),

(ktk +
∑2n−2

i=1 di,k) = Tk, k = 1, ..., (m− 1)kmax,

di,k ≥ 0.

(16)

Note that problem (16) lexicographically minimizes the (m−1)kmax+1, ..., mkmax

largest excesses, while the first (m− 1)kmax are fixed to the values found in

previous iterations. This way we guarantee that the mkmax largest excesses

are lexicographically minimized.

This process should stop when, among the excesses that have been lexico-

graphically minimized, there is a value that is unique, see [15] page 331–332.

The solution to the last LP problem would give the nucleolus of the game.

A pseudocode of this process is given in Algorithm 1.

We would like to emphasize that the above iterative approach is not the-

oretically necessary since our approach obtains the nucleolus by solving a

unique LP problem. Nevertheless we have tested that in actual computa-

tional experiments this algorithm helps to avoid problems with tolerance of

current LP solvers and speeds our process up.
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Data: A TU-game (N, v)

Set STOP := False and m = 1;

while STOP = False do

Solve (16);

if there is a unique value among the mKmax first excesses then

STOP = True;

else

Tk := ktk +
∑2n−2

i=1 di,k, ∀ k = 1, ..., mKmax ;

m → m+ 1 ;

end

end

Result: (x∗, θ∗), the nucleolus of (N, v) and its excesses.

Algorithm 1: Iterative process to solve problem (5).

5. Illustrative example

In this section we show the applicability of our approach by calculating

the nucleolus of a 14-player game. The ordering of the coalitions Sk, k =

1, ..., 214 = 16384, is such that k = 1 +
∑

j∈Sk
2j−1, with S1 = ∅.

The characteristic function of each coalition Sk is calculated as v(Sk) = 0

if ∃ j = 1, ..., n : 2j−1 + 1 = k or k = 1, v(S2n) = 1, and v(Sk) =

1
(n(n+1)/2)

∑
j∈Sk

(j −mod(k, j)) otherwise. Function mod(k, j) yields the re-

mainder when dividing k by j. Adding this function in the definition of the

characteristic function gives a pseudorandom aspect to these games, although

they can be replicated easily. Note that v(∅) = v({j}) = 0 ∀ j and v(N) = 1.

Note as well that v(S) ∈ (0, 1) for any other coalition S.
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5.1. Solution in one step

Our procedure, taking kmax = 20 and δ = 0.1, obtained the following

allocation:

x1 = 0.032074, x2 = 0.017313, x3 = 0.038355, x4 = 0.032074, x5 = 0.054903,

x6 = 0.054392, x7 = 0.059653, x8 = 0.076455, x9 = 0.085445, x10 = 0.091726,

x11 = 0.098008, x12 = 0.106997, x13 = 0.123545, x14 = 0.129061.

The largest excess is −0.009500. We emphasize that the 16th excess is

the unique excess whose value is −0.010776, meaning that both the previous

and the following excesses are different. Therefore, there is no other alloca-

tion x′ that yields the same excesses. Because of that we can confirm that

the given allocation is the nucleolus. If we did not have such unique value

within the first 20 excesses, we would have needed to solve the problem again

calculating any other number of excesses strictly greater than 20 (as detailed

in Algorithm 1, where we calculated the first 2×20 excesses). The algorithm

would stop when at least one of the first largest excesses yields a unique

value.

The running time was 34 seconds. This example was solved on a Packard

Bell computer, with Intel(R) Core(TM) i7 2.80 GHz processor, 6 GB of

RAM memory, running on Windows 7 (64 bits). The rest of experiments

were solved in the same computer.

5.2. Solution in two steps

It may happen that the allocation obtained is not guaranteed to be the

nucleolus, because none of the kmax largest excesses yields a unique value.

For instance, consider kmax = 10. Our iterative process would run as follows:
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1. m = 1. The solution obtained is the same as the one before. The differ-

ence is that now we can only guarantee that the 10 largest excesses are

lexicographically minimum. Note that among the 10 largest excesses

(which are the same as before) there is not a unique value, and there-

fore we cannot guarantee that the obtained solution is the nucleolus.

This first iteration took 31 seconds. In this case, we would proceed to

the next iteration, imposing the values Tk for the 10 largest excesses.

2. m = 2. We now solve the problem for this value ofm. The new solution

is the same as before. Now, since we can guarantee that the first 20

excesses are lexicographically minimum, we can therefore guarantee

that the solution obtained is the nucleolus, and we stop the process.

This second iteration took 79 seconds.

6. Computational results

In this section we show some characteristics observed when calculating

the nucleoli of the family of games defined in Section 5 for number of players

n = 10, ..., 18. Table 1 shows the obtained results for the different values

of n. More specifically, the columns refer to the kmax used, the first sorted

excess whose value is unique, the constant δ used, and the computational

time needed to solve the corresponding problems. The nucleoli for these

games are shown in the appendix. All our codes are written in GAMS 23.0.6

using CPLEX 11.2.1 and are available upon request.

We first note that the constant δ could be fixed to 0.1 in all cases. We also

noted that the first unique value was always among the 20 largest excesses,

except for n = 18, although we can observe an increase in such value with n.
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n kmax First unique δ Time Iter

10 20 13 0.1 0.62 1

11 20 13 0.1 1.06 1

12 20 14 0.1 2.80 1

13 20 16 0.1 10.44 1

14 20 16 0.1 34.80 1

15 20 16 0.1 117.10 1

16 20 20 0.1 432.93 1

17 20 19 0.1 1666.70 1

18 10 20 0.1 6490.00 + 6456.41 + 13054.40 3

Table 1: Results. Columns mean: number of players, maximum power of δ, first unique

excess, value of δ, computation time (in seconds), and number of iterations needed with

the considered parameters. See the obtained nucleoli for each game in the Appendix.
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As a matter of fact, fitting these data to the linear function

k∗ = 0.9881n+ 2.5357, (17)

where k∗ denotes the first excess that yields a unique value, has a linear

coefficient of determination R2 = 0.8748, and we therefore could consider a

linear increase in this value with respect to n. Finally, we note that when

fitting the computational time vs. n via the exponential function

T ime = 3× 10−6e1.1636n, (18)

the coefficient of determination is R2 = 0.9915. Therefore assuming a (logi-

cal) exponential increase in computational time with n seems reasonable.

Finally, for n = 18 we considered kmax = 10 in order to reduce the number

of constraints, due to memory problems in the computer used. Note that in

this case we needed three iterations.

7. Conclusions

In this paper we have presented a procedure to calculate the nucleolus of

any benefit game, without restrictions of non-emptiness in imputation set,

core set, etc. The approach consists of solving a unique linear programming

problem. Since the formulation of this problem involves a constant smaller

than one powered to large exponents, one could find some troubles when

solving it because some of these powers might be considered zero by comput-

ers’ precision. In order to avoid this problem, we have proposed an iterative

method that stops when the obtained solution is guaranteed to be the nucle-

olus. Such condition is met when, among the largest excesses that have been

lexicographically minimized, at least one of them is unique.
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In order to illustrate our method, we have detailed the calculation of a

14-player game’s nucleolus. The applicability of our method has been shown

by calculating the nucleoli of games with number of players ranging from 10

to 18. The characteristic function of such games is deterministic and has

been given implicitly, and therefore these experiments could be replicated by

other researches working on the nucleolus or other allocations for TU games.
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