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Materials Technology Institute (ITM), Polytechnic University of Valencia, Plaza 

Ferrandiz y Carbonell s/n,03801, Alcoy (Alicante), Spain 

Abstract 

Despite polypropylene is one of the most used commodity plastics, its adhesion 

properties are remarkably restricted by its non-polar nature which leads to low wetting 

properties and, consequently, poor adhesion behavior. We report the use of ultraviolet 

photografting process of methyl methacrylate (MMA) monomer as an efficient chemical 

treatment for surface activation of polypropylene. Contact angle measurements are used 

for evaluating changes in polypropylene wetting properties together with surface free 

energy calculations. Chemical changes are showed in terms of the exposure time to UV 

radiation. Scanning electron microscopy (SEM) has been used to evaluate topography 

changes in a qualitative way; atomic force microscopy (AFF) has been used for a 

quantitative evaluation of surface changes in terms of roughness. The use of Fourier 

transformed infrared spectroscopy (FTIR) has revealed the nature of the chemical 

changes induced by the photografting process of MMA. 

Keywords: photopolymerization, poly(propylene) (PP), surface modification, 

functionalization of polymers. 
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1. Introduction.

Polypropylene is one of the most used commodity plastics as a consequence of a 

good balance between properties (mechanical, thermal, chemical, processing, etc.) and 

cost.  From a chemical point of view, it shows high inertness due to its non-polar nature 

and this leads to a hydrophobic polymer characterized by very low wetting properties. 

This fact is mainly responsible for problems in adhesion, painting, coating, etc. So that, 

the use of polypropylene in these applications requires a surface pre-treatment in order 

to improve its intrinsically low wetting properties. This can be achieved by insertion of 

polar groups and promoting changes in surface topography. 

It is possible to modify the bulk properties of polymers by blending with 

different polymers or using reactive extrusion processes with the aid of compatibilizing 

agents. Blends of polypropylene with polar polymers such as ethylene-acrylic acid are 

useful to obtain a remarkable increase in hydrophilic behavior and this contributes to 

improve adhesion properties.[1] Nevertheless, surface modifications are preferable for 

surface adhesion. There are several chemical and physical processes for surface 

modification. Physical processes as plasma technologies [2-4] (corona, low pressure, 

atmospheric plasma, etc.) are very useful to achieve good functionalization levels 

together with interesting changes in surface roughness, but it is important to remark that 

these techniques are still expensive. On other hand, chemical processes are 

characterized by easy implementation and low cost and the overall effects are similar to 

those obtained with plasma processes. Some of these chemical processes are based on 

the use of strong acids or alkalis to promote surface activation and/or changes in surface 

roughness. In addition to the use of these aggressive chemicals, it is possible to achieve 

surface activation of a wide variety of monomers by interlocking of polar groups on 

polypropylene chains and this fact, will also promote changes in surface roughness. 
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This can be carried out by using a UV induced grafting process [5-8]. This requires the 

use of a base monomer, such as acrylic, which can be activated by UV radiation in the 

presence of a free radical photoinitiator which decomposes rapidly [9]. The action of 

UV light leads the photoinitiator to an excited state which needs hydrogen to form 

stable free radicals (Scheme 1). 

Scheme 1 

Then hydrogen abstraction from the topmost layers of the polymer occurs thus 

leading to formation of interlock points in which, monomer can be chemically bonded 

by addition processes. These free radicals derived from photoinitiator and polymer 

chains at the topmost surface layers can react with the acrylic monomer to form typical 

species of an addition process as indicated in Scheme 2 so that, new radicals are formed. 

Addition processes continue until termination occurs. After termination, some 

macroradical are chemically grafted to the topmost layers of the polymer surface and 

also, some non-grafted olygomers can be obtained (Scheme 3). These olygomers must 

be removed by cleaning surfaces after the UV grafting process. 

Scheme 2 

Scheme 3 

In a typical photografting process, the monomer is dissolved in a carrier solvent 

such as acetone, benzene, chloroform, methanol, etc. together with the appropriate 

amount of the photoinitiator. Some authors have used these processes to modify 

filtration properties on analytical membranes. [10-14]. Other research works have 
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focused on the use of UV photografting processes as coating for electrolytic copper. 

[15] Photografting processes with different base monomers have been successfully used 

to improve hydrophilic nature of electroactive polymers such as polyaniline and in some 

cases, self-protonated surfaces are obtained thus having a positive effect on surface 

conductivity.[16] 

The photografting process can be carried out in a single stage or in a double step 

process [7, 17]. The use of a single stage process is preferable since it lowers the 

working time which is a key factor for industrial applications.  In this, the polymer 

surface is exposed to UV radiation in the presence of a solution containing both 

monomer and photoinitiator. The use of different photoinitiators such as benzophenone 

(BP) [18], methylbenzoylformate (MBF), xanthone, etc. has been reported with 

excellent results since all of them show absorption peaks in the UV range. With respect 

to solvent, it is important to remark that it must be appropriately selected to ensure good 

solubility of both the photoinitiator and the monomer. The most commonly used 

solvents are acetone, methanol, chloroform, carbon tetrachloride, cyclohexane, 

cyclohexanone, ethyl acetate, tetrahydrofuran, etc. and mixtures, depending on the 

monomer and/or the photoinitiator. [19, 20] Some results about the optimum 

photoinitiator/monomer ratio with several solvents have been reported and they have 

great influence on final grafting of the monomer on the polymer surface. 

Regarding the use of monomers, a wide variety of compounds have been used 

by different authors with different purposes. Some monomers such as polyacrylamide 

(PAAm) [21], polyacrylic acid (PAA) [21], vinyl acetate (VAc) [22-24], etc. are used to 

improve and/or control wettability on chemically inert polymers for improved adhesion, 

as we have reported in our previous works with acrylic acid (AA) [25] and methyl 

methacrylate [25]. Trimethylolpropane triacrylate has been used to provide good 
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thermal degradation resistance [26] and 1,6-hexanediol diacrylate to enhance 

mechanical and physical properties of jute fibers [27]. Different acrylic monomers have 

been used to improve interface phenomena between the polymeric matrix and 

reinforcements in composite materials.[28, 29] The use of other hydrophobic monomers 

can lead to super-hydrophobic properties for self-cleaning materials. For example, 

polyacrylic acid (PAA) can be grafted onto Nylon-6 fibers to form PAA hydrogels 

which are useful to avoid seaweeds’ adhesion on fishnets. [30] Some works have 

reported the usefulness of polyvinylpyrrolidone-iodine to provide antibacterial 

properties on polymer substrates [31]; different kinetic studies on grafting isobornyl 

acrylate have been carried out as this monomer is suitable as coating for digital HD-

DVD  [32, 33]. 

In this work we have used a one-step UV photopolymerization process of methyl 

methacrylate (MMA) monomer in presence on benzophenone (BP) as photoinitiator on 

an acetone solution to increase the low intrinsic wettability of polypropylene sheets in 

order to provide good wetting properties for different technological processes such as 

adhesive bonding, painting, etc.  The influence of the exposure time to UV radiation has 

been evaluated and the overall changes in surface wettability have been studied by 

contact angle measurements and subsequent free energy calculation. A qualitative 

analysis of surface changes has been carried by using scanning electron microscopy 

(SEM) and quantitative information has been determined by using atomic force 

microscopy (AFM). Chemical changes derived from the surface pre-treatment have 

been followed by FTIR-ATR. 

2.- Experimental 
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2.1.- Materials. 

Photografting process was carried out on a polypropylene commercial grade 

ISPLEN ® PB 180 G2M provided by Repsol YPF (Repsol, Madrid, Spain). This is a 

heterophase copolymer with high fluency which is appropriate for injection molding 

with a flow rate of 20 g/10 min and a density of 0.905 g/cm
3
. Sheets sizing 160x60x2.2

mm
3
 were injection molded at a temperature of 230 ºC with a Mateu&Sole, model

Meteor 270/75 (Mateu&Sole, S.A., Barcelona, Spain). After injection molding, samples 

sizing 10x10 mm
2
 were cut with a hydraulic press Melchor Gabilondo, model KCK-

15A (Melchor Gabilondo S.A., Vizcaya, Spain). These samples were washed in double 

distilled water to remove impurities and then they were stored in a vacuum desiccator. 

As a base monomer for surface modification, stabilized methyl methacrylate 

(MMA) monomer with a purity of 99% was used (Acros Organics, Geel, Belgium). The 

selected photoinitiator was benzophenone (BP) supplied by Scharlau Chemie S.A. 

(Scharlab S.L., Barcelona, Spain). Both monomer and photoinitiator were dissolved in 

laboratory grade acetone (Aurelio Crespo Sospedra, C.B. Alfafar, Valencia, Spain) to 

obtain the base solution for UV photografting process with a MMA:acetone volume 

ratio of 1:4. After this, 5 weight % of benzophenone was added. 

2.2.- Photopolymerization process. 

A pressure mercury lamp (1000 W and 350 nm by wavenumber) mounted on a 

UVASPOT 1000RF2 supplied by Honle UV Technology (Honle Spain, S.A., 

Barcelona, Spain) was used for surface modification. 

In a first step samples sizing 10x10 mm
2
 are placed in a Petri dish and fully

covered by the solution containing MMA monomer and benzophenone. Then the Petri 

dish is covered with a glass lid to guarantee invariable atmosphere conditions avoiding 
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gas emanation. After this, the Petri dish was placed on aluminium rack which is located 

at a fixed distance of 25 cm below the mercury lamp. The exposure time to UV 

radiation was varied between 30 up to 240 s and after exposure to UV radiation samples 

were washed with distilled water to remove non-grafted monomer, olygomers and 

volatiles and, finally, dried at room temperature in a vacuum desiccator. 

2.3.- Wettability characterization and surface free energy calculation. 

Contact angle measurements were carried out with a EasyDrop Standard 

goniometer model FM140 (KRÜSS GmbH, Hamburg, Deutschland) which is equipped 

with a video capture kit and analysis software (Drop Shape Analysis SW21; DSA1). 

Four different test liquids were used as test liquids: diiodomethane (stabilized, >99% 

purity) supplied by Acros Organics (Acros Organics, Geel, Belgium), formamide 

(reagent grade ACS), and glycerol (> 99% purity) supplied by Scharlau Chemie S.A. 

(Scharlab S.L., Barcelona, Spain) and double distilled water. At least ten measurements 

were carried out for each sample and average values were calculated. The maximum 

error did not exceed 3%. Surface free energy values were calculated using the Owens-

Wendt method which takes into account the dispersive (non-polar) and polar 

contribution to the total surface free energy value.[25] 

2.4.- Surface morphology. 

Surface morphology of low density polyethylene sheets pre-treated with UV 

photografting process were evaluated with a scanning electron microscope SEM, 

supplied by FEI, model PHENOM (FEI Company, Eindhoven, The Netherlands), with 

an accelerating voltage of 5KV. Samples were covered with a gold–palladium alloy in a 

Sputter Coater EMITECH mod. SC7620 (Quorum Technologies Ltd, East Sussex, UK). 
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Micro-scale roughness study was carried out with a portable surface roughness 

tester Surftest SJ–301 (Mitutoyo, Hampshire, United Kingdom) with a profile filter c 

of 0.8 mm and average roughness (Ra) and height of average roughness (Rz) were 

calculated for a total length of 3.2 mm. 

Surface topography changes were evaluated with atomic force microscopy 

(AFM) using a Multimode AFM microscope with a Nanoscope IIIa ADCS controller 

(Veeco Metrology Group, Cambridge, UK). A monolithic silicon cantilever Nano 

World Point-robe
®
 (NCH) with a force constant of 42 N m

-1
 and a resonance frequency

of 320 Hz was used to work on the tapping mode. 

2.5.- Characterization of chemical changes. 

Chemical changes produced by the surface pre-treatment by 

photopolymerization were studied using Fourier transformed infrared spectroscopy 

(FTIR) with attenuated total reflectance (ATR) accessory. The FTIR spectrometer was a 

Perkin Elmer, mod FTIR Spectrum BX (PerkinElmer España, S.L., Madrid, Spain) and 

the ATR accessory model was MIRacle supplied by Pike Technologies (PIKE 

Technologies, Inc. , Madison , USA). Samples were directly placed in the ATR 

accessory and 10 scans were performed in the 4000 – 800 cm
-1

 wavenumber range with

a resolution of 2 cm
-1

.

3.- Results and discussion. 

3.1.- Characterization of wettability and chemical changes. 

Surface changes due to methyl methacrylate photopolymerization were followed 

by contact angle measurements with different test liquids. Figure 1 shows a plot 
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evolution of the static contact angle of polypropylene using different test liquids in 

terms of the exposure time to UV radiation in presence of the monomer solution and 

photoinitiator.  We can observe a remarkable decrease in contact angle values for all the 

test liquids. In the case of water a test liquid, the initial contact angle of untreated 

polypropylene is about 100º. We can see that this contact angle is considerably reduced 

up to values of about 47º for an exposure time of 90 s. As the exposure time increases 

over 90 s, the contact angle follows similar tendency but more slightly up to values 

close to 40º for exposure times of about 210 s. Similar tendency can be seen with the 

other three test liquids. Regarding glycerol as test liquid, an initial decrease in contact 

angle values is detected for exposure times of 90 s and once reached this time, the 

decrease in contact angle is less pronounced. With respect to the use of diiodomethane 

as test liquid, the initial contact angle, located at 54º, is rapidly decreased up to values 

of 37º for an exposure time of 30 s and after this, a slight decrease up to values of 30º 

for exposure times in the 120- 180 s range is observed. Finally, the initial contact angle 

of formamide, located at 71.4º is remarkably decreased up to values of about 47º for an 

exposure time of 30 s and a slight decreasing tendency is observe with increasing times. 

It is important to remark that the surface pre-treatment with MMA does not lead to total 

wettability (in the exposure time range evaluated in this research work), since contact 

angles for all liquids remain at values higher that 0º, but a great decrease is obtained for 

the four test liquids as observed in Figure 1 and this would have a positive effect on 

wetting properties of polypropylene substrates. 

Figure 1 
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As we have described previously, the use of four different test liquids allows the 

use of the Owens-Wendt method to estimate changes in the solid surface energy values. 

Furthermore, the use of this method allows estimating the polar (S
p
) and dispersive

(S
d
) contributions to total surface energy (S) as it can be observed in Table 1. As we

can see, untreated polypropylene is characterized by a relatively low surface energy 

value of about 31.5 mJ m
-2

, with a low polar contribution (3.1 mJ m
-2

) as a consequence

of its non-polar nature. For short exposure times to UV radiation in presence of MMA 

monomer and initiator solution in acetone (30 s) we can see a remarkable increase in 

surface energy up to values of 42.2 mJ m
-2

, with a slight increase in the polar

contribution. As the exposure times increases, we observe a noticeable increase in the 

polar contribution (from 3.1 mJ m
-2

 for the untreated polypropylene up to values in the

24 – 26 mJ m
-2

 range for exposure times longer than 150 s). Regarding the dispersive

contribution, it is important to remark that it remains with values in the 26 – 30 mJ m
-2

range for almost all the exposure times. These results are representative for a 

functionalization process of the polypropylene surface by insertion of polar groups 

derived from methyl methacrylate (MMA) monomers which are chemically bonded to 

polypropylene surface during the photopolymerization process. The total surface energy 

of polypropylene is increased from 31.5 mJ m
-2

 which is representative for low wetting

properties, up to values around 52 – 56 mJ m
-2

 (for exposure times in the 150 – 210 s)

which are interesting values for wetting processes such as adhesion bonding. 

Table 1 

FTIR is a useful technique to evaluate chemical changes in the topmost layers as 

a consequence of methyl methacrylate photografting on polypropylene surface. As we 
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have described previously, presence of an initiator and subsequent exposure to UV 

radiation, leads to formation of interlock points in which, activated MMA monomers 

can be chemically bonded to polypropylene chains; so that, the grafted monomer is not 

lost after washing. 

Figure 2 

Figure 2 shows a comparative plot of the FTIR-ATR spectra for different 

polypropylene surfaces subjected to different exposure times to MMA photografting. As 

we can observe, treated samples show presence of different peaks and bands that do not 

appear in the untreated polypropylene surface. These peaks are directly related to 

presence of interlocked methyl methacrylate monomers on top most layers. Presence of 

-C=O species can be detected in the pre-treated samples as different typical absorption 

peaks can be seen at 1649 cm
-1

 and 1729 cm
-1

. In addition, presence of ester groups is

evident from the presence of different absorption peaks located at 1274 cm
-1

, 636 cm
-1

and 1195 cm
-1

, the last one corresponding to the O-CH3 group. Furthermore, the

appearance of different peaks in the untreated polypropylene surface changes as the 

exposure time to MMA photografting increases and this is related to surface chemical 

changes due to chemical bonding of MMA monomers onto polypropylene surface. 

Thus, the peak located at 1439 cm
-1

, which corresponds to CH3 changes in a remarkable

way due to anchorage or MMA groups. [34] 

3.2.- Characterization of surface morphology. 

To analyze the surface changes of polypropylene samples treated with UV 

photografting process of methyl methacrylate, scanning electron microscopy (SEM) 
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was used. Figure 3 shows the microphographs of polypropylene with different exposure 

times to UV radiation in presence of MMA monomer together with the corresponding 

water contact angle photograph. 

Figure 3 

The microphotograph for the untreated PP (Figure 3a) is characterized by a very 

smooth surface, free of any roughness; thus the initial water contact angle is high, 

around 87.3º. As the exposure time to UV photografting increases, we observe 

remarkable changes in surface topography. So that, polypropylene subjected to UV 

photopolymerization process with an exposure time of 180 s (Fig. 3d) presents a very 

rough surface, with large differences in height between the peaks and valleys. This 

roughness is closely related to the increase in surface energy produced as a result of the 

deposition of a chemically bonded functionalized layer. SEM microphotographs with 

different exposure times (60 and 120 s; Figure 3b and 3c respectively) are also shown. 

In these cases, there is also a rough surface, but not as much as in the case of 180 s. We 

observe rough surfaces but differences in height between peaks and valley seem to be 

lower. Also we can observe the importance of surface changes in overall wettability of 

polypropylene substrates as the water contact angle decreases with rougher surfaces 

together with presence of functionalized species chemically bonded to the top most 

layers. 

In addition to this, a micro-roughness study has been done to evaluate changes in 

roughness values as a consequence of the UV photografting process. Fig. 4 shows a 

comparative plot of the roughness profiles obtained for untreated polypropylene and 

polypropylene surfaces with different exposure times to UV photografting process. We 
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can observe in a clear way the tendency as the roughness is more pronounced for long 

exposure times to UV photografting process. These roughness profiles are in accordance 

with previous results regarding surface characterization by SEM techniques and changes 

in wetting properties as the main mechanisms responsible for the wettability 

improvement are surface functionalization by insertion of polar groups (derived from 

methyl methacrylate monomers) and changes in topography due to formation of a 

heterogeneous polymer layer in polypropylene surface. In addition to this qualitative 

information, Table 2 summarizes the main parameters regarding surface roughness for 

untreated and UV photografted polypropylene. The initial average roughness (Ra) of 

untreated polypropylene is about 0.11 m and this value increases as the exposure time 

to UV photografting process increases and higher values of Ra are obtained for 

exposure times of 240 s (Ra values of about 0.53 m). In a similar way, the Rz values, 

representative for the height of the average roughness values, we observe an increasing 

tendency. So that, the initial Rz value for untreated polypropylene is close to 0.89 m 

and this increases up to 3.36 m for polypropylene surfaces with an exposure time to 

UV photografting process of 240 s. 

 

Figure 4 

 

Table 2 

 

As we have described before, the information provided by SEM analysis is and a 

complementary roughness study is useful to evaluate changes in topography due to the 

UV photografting process. In fact, the previous roughness study has revealed important 

changes in the micro-scale range. Nevertheless, due to the nature of the UV 
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photografting process, it is interesting to obtain qualitative and quantitative information 

about surface topography and this information can be obtained by using atomic force 

microscopy (AFM). Figure 5 shows 3D representation of surface topography (20x20 

m
2
) for untreated PP surface (Figure 5a) and PP surface with different exposure times 

to UV photografting process in the 60-240 s range. The information obtained by AFM is 

similar to that obtained with the roughness study but a nano-scale range due to the 

sensitiveness of AFM in this measurement range. The AFM 3D representation of the 

untreated sample (Figure 5a), is characterized by very smooth surface. The Rrms value 

for this surface is about 50 nm. We can observe that as the exposure time to UV 

photografting process increases, the overall roughness topography of PP surface also 

increases. For higher exposure times, around 240 seconds, the height difference between 

peaks and valleys is very pronounced. 

 

Figure 5 

 

 The three-dimensional topography representation of untreated PP is very smooth 

if compared to the topography of PP with different exposure times to UV photografting. 

We can also observe the influence of the exposure time to UV in the overall topography 

representation. The longer is the exposure time, the rougher is the topography of the 

treated polypropylene surface. Tab. 3 shows the values of root mean squared roughness 

values (Rrms) and maximum of all micrographs analyzed. 

 

Table 3 
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 Roughness values for 0-second exposure correspond to those in the untreated 

sample. The roughness values, both mean and maximum, show an upward trend with 

increasing exposure time. The Rrms roughness value for untreated polypropylene is 

about 26.59 nm, while PP surface with an exposure time of 240 s to UV photografting is 

close to 310.11 nm and this represents a remarkable increase in surface roughness. Thse 

results are in accordance with previous results obtained in the micro-scale roughness 

study and overall wetting changes.  

 

4. Conclusions. 

UV photografting of  methyl methacrylate (MMA) monomer is an efficient 

technique to improve the low intrinsic wetting properties of polypropylene substrates. 

The increase in wettability is evident from the observation of the evolution of contact 

angles with different text liquids. In accordance with this, the total free surface energy 

increases from 31.5 mJ m
-2

 for untreated polypropylene up to values around 57.5 mJ m
-2

 

for polypropylene substrates with an exposure time to UV photografting of 240 s. It is 

important to remark that substantial changes are detected in the polar component of the 

total surface free energy which changes from 3.0 mJ m
-2

 for untreated polypropylene up 

to 26 mJ m
-2

 for exposure times in the 210-240 s range. The FTIR study has revealed 

presence of polar groups derived methyl methacrylate monomers which have been 

chemically bonded in the top most layers of polypropylene substrates and this is 

responsible for an increase in surface functionalization. On other hand, the SEM 

analysis has revealed qualitative changes in surface topography as the exposure time to 

UV photografting process increases. These changes have been quantified at a micro- 

and a nano-scale range by using conventional roughness study and AFM respectively. 

In both cases, a marked increasing tendency of average roughness values is obtained 
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thus indicating that the improvement of polypropylene wetting properties is achieved by 

functionalization and changes in surface topography. 
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Table captions 

Table 1.- Variation of total surface free energy (s) and its polar (s
p
) and dispersive

(s
d
) contribution of polypropylene surface in terms of the exposure time to methyl

methacrylate UV photografting. 

Table 2.- Variation of average roughness (Ra) and height of average roughness (Rz) in 

terms of the exposure time to methyl methacrylate UV photografting. 

Table 3.- Variation of root mean squared roughness (Rrms) and max Z heigh obtained 

by AFM analysis in terms of the exposure time to methyl methacrylate UV 

photografting. 
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Figure legends 

Scheme 1.- Formation of free radicals on benzophenone photoinitiator by UV radiation 

followed by hydrogen abstraction on polymer chain. 

Scheme 2.- Reaction of free radicals derived from photoinitiator and polymer chain 

with acrylic monomer by addition processes. 

Scheme 3.- Termination stage of the photopolymerization process of polymer substrate 

in presence of photoinitiator and acrylic monomer. 

Figure 1.- Evolution of the static contact angle in terms of the exposure time to methyl 

methacrylate UV photografting for different test liquids. 

Figure 2.- FTIR-ATR spectra of polypropylene surface with different exposure times to 

methyl methacrylate UV photografting. 

Figure 3.- SEM microphotographs (400x) and corresponding water contac angle photos 

for different exposure times to methyl methacrylate UV photografting, a) 0 s, b) 60 s, c) 

120 s and d) 180 s. 

Figure 4.- Comparative plot of the roughness profiles of polypropylene surfaces with 

different exposure times to methyl methacrylate UV photografting. 

Figure 5.- Topographyc 3D-AFM graphs of polypropylene surface with different 

exposure times to methyl methacrylate UV photografting. 
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Table 1.- 

Exposure time [s] S [mJ m
-2

] S
p
 [mJ m

-2
] S

d
 [mJ m

-2
]

0 31.4 3.0 28.4 

30 42.2 5.5 36.6 

60 43.4 10.4 33.0 

90 48.7 23.0 25.7 

120 49.9 22.2 27.7 

150 51.2 23.9 27.2 

180 53.6 24.3 29.3 

210 55.6 25.6 30.0 

240 57.5 26.2 31.3 
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Table 2.- 

Exposure time [s] Ra [m] Rz [m] 

0 0.11 0.89 

60 0.17 1.37 

120 0.31 2.98 

180 0.41 2.63 

240 0.53 3.36 
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Table 3.- 

Exposure time [s] Rms [nm] Rmax [nm] 

0 26.6 155.0 

60 99.3 669.6 

120 179.1 1150.0 

180 265.9 1380.1 

240 310.1 1409.1 
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