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RESUMEN ESPAÑOL

Mujahid Abbas

Numerosos problemas de la ingenieŕıa, ciencia de la computación, economı́a,

medicina o ciencias sociales se abordan con garant́ıas recurriendo a la con-

strucción de modelos matemáticos adecuados. Sin embargo, los métodos

y herramientas que proporciona la matemática clásica no son válidos para

atacar diversos problemas del mundo real en los que surgen dificultades

derivadas de la aparición de elementos de incerteza e imprecisión en los datos

proporcionados. En tales casos, es útil recurrir a nuevas teoŕıas matemáticas

con la teoŕıa de de la probabilidad o la de conjuntos difusos. No obstante,

estas teoŕıas adolecen de ciertas deficiencias derivadas de cuestiones relativas

a la parametrización. La teoŕıa de conjuntos imprecisos (“Soft set theory”)

proporciona suficientes herramientas en forma de parámetros para tratar la

incerteza de los datos de un modo conveniente. Aśı, la ventaja que presenta

la teoŕıa de conjuntos imprecisos respecto de la teoŕıa de probabilidad y la

teoŕıa de conjuntos difusos, es que no se maneja cantidades exactas lo que

facilita las aplicaciones a la teoŕıa de la decisión, análisis de la demanda,

ciencias de la información, matemáticas, y otras disciplinas.

En esta tesis estudiaremos diversas propiedades algebraicas y topológicas

de los conjuntos imprecisos y de los conjuntos imprecisos difusos. Como

los conjuntos difusos se pueden considerar como funciones multivaluadas,

también investigaremos la teoŕıa del punto fijo para funciones en espacios

topológicos imprecisos y otras estructuras relacionadas.

Las contribuciones que aportamos en esta tesis a dicho estudio, se resumen

a continuación:

i) Revisión de las operaciones básicas en la teoŕıa de conjuntos soft. En

particular, demostramos resultados nuevos a partir de las modifica-
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ciones propuestas, que proporcionan una dimensión nueva para explo-

rar esta teoŕıa en el futuro siguiendo distintas direcciones. Nuestro

enfoque se puede aplicar al desarrollo y modificació n de la literatura

existente sobre espacios topológicos soft.

ii) Definición de nuevas clases de funciones y demostración de la existencia

y unicidad, en su caso, de punto fijo para las mismas. De esta forma,

presentamos diversos avances en la teoŕıa de punto fijo para espacios

métricos.

iii) Inicio de una teoŕıa de punto fijo soft en el contexto de los espacios

métricos soft, obteniendo resultados que permiten enlazar la teoŕıa de

conjuntos soft con la teoŕıa de punto fijo.

iv) Este estudio tambie constituye un punto de partida para posteriores

investigaciones en la teoŕıa “fuzzy soft” de punto fijo.
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RESUMEN VALENCIANO

Mujahid Abbas

Nombrosos problemes de l’enginyeria, ciència de la computació, economia,

medicina o ciències socials s’aborden amb garanties recorrent a la construcció

de models matemàtics adients. Tanmateix, els mètodes i eines que propor-

ciona la matemàtica clàssica no són vàlids per a atacar diversos problemes

del món real en els que sorgixen dificultats derivades de l’aparició d’elements

d’incertesa i imprecisió en les dades proporcionades.

En tals casos, és útil recórrer a noves teories matemàtiques com son la teo-

ria de la probabilitat o la de conjunts difusos. No obstant això, estes teories

patixen certes deficiències derivades de qüestions relatives a la parametrització.

La teoria de conjunts imprecisos (“Soft set theory”) proporciona suficients

eines en forma de paràmetres per a tractar la incertesa de les dades d’una

manera convenient. Aix́ı, l’avantage que presenta la teoria de conjunts impre-

cisos respecte de la teoria de la probabilitat i la teoria de conjunts difusos,

és que no maneja quantitats exactes, la qual cosa facilita les aplicacions

a la teoria de la decisió, anàlisi de la demanda, ciències de la informació,

matemàtiques i atres disciplines.

En esta tesi estudiarem diverses propietats algebraiques i topològiques

dels conjunts imprecisos i dels conjunts imprecisos difusos.

Com que els conjunts difusos es poden considerar com a funcions multi-

valuades, també investigarem la teoria del punt fix per a funcions en espais

topològics imprecisos i atres estructures relacionades.

Les contribucions que aportem en esta tesi a tal estudi es resumixen a

continuació:

i) Revisió de les operacions bàsiques en la teoria de conjunts soft. En

particular, demostrem resultats nous a partir de les modificacions pro-

posades, que proporcionen una dimensió nova per a explorar esta teoria
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en el futur seguint distintes direccions. El nostre enfocament es pot

aplicar al desenrollament i modificació de la literatura existent sobre

espais topològics soft.

ii) Definició de noves classes de funcions i demostració de l’existència i

unicitat, si escau, de punt fix per a d’elles. D’esta forma, presentem

diversos avanços en la teoria de punt fix per a espais mètrics.

iii) Inici d’una teoria de punt fix soft en el context dels espais mètrics soft,

obtenint resultats que permeten enllaçar la teoria de conjunts soft amb

la teoria de punt fix.

iv) Este estudi també constituix un punt de partida per a posteriors inves-

tigacions en la teoria “fuzzy soft” de punt fix.
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RESUMEN INGLES

Mujahid Abbas

Mathematical models have extensively been used in problems related to

engineering, computer sciences, economics, social, natural and medical sci-

ences etc. It has become very common to use mathematical tools to solve,

study the behavior and different aspects of a system and its different sub-

systems. Because of various uncertainties arising in real world situations,

methods of classical mathematics may not be successfully applied to solve

them. Thus, new mathematical theories such as probability theory and fuzzy

set theory have been introduced by mathematicians and computer scientists

to handle the problems associated with the uncertainties of a model. But

there are certain deficiencies pertaining to the parametrization in fuzzy set

theory. Soft set theory aims to provide enough tools in the form of param-

eters to deal with the uncertainty in a data and to represent it in a useful

way. The distinguishing attribute of soft set theory is that unlike probabil-

ity theory and fuzzy set theory, it does not uphold a precise quantity. This

attribute has facilitated applications in decision making, demand analysis,

forecasting, information sciences, mathematics and other disciplines.

In this thesis we will discuss several algebraic and topological properties

of soft sets and fuzzy soft sets. Since soft sets can be considered as set-

valued maps, the study of fixed point theory for multivalued maps on soft

topological spaces and on other related structures will be also explored.

The contributions of the study carried out in this thesis can be summa-

rized as follows:

i) Revisit of basic operations in soft set theory and proving some new

results based on these modifications which would certainly set a new

dimension to explore this theory further and would help to extend its

limits further in different directions. Our findings can be applied to

develop and modify the existing literature on soft topological spaces

xi



ii) Defining some new classes of mappings and then proving the existence

and uniqueness of such mappings which can be viewed as a positive

contribution towards an advancement of metric fixed point theory

iii) Initiative of soft fixed point theory in framework of soft metric spaces

and proving the results lying at the intersection of soft set theory and

fixed point theory which would help in establishing a bridge between

these two flourishing areas of research.

iv) This study is also a starting point for the future research in the area of

fuzzy soft fixed point theory.
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Chapter 1

Introduction. Objectives

1.1 Background of study

Mathematical models have been used extensively in real world problems re-

lated to engineering, computer sciences, economics, social, natural and med-

ical sciences etc. Because of various uncertainties arising in real world situ-

ations, methods of classical mathematics may not be successfully applied to

solve them.

Fuzzy set theory has been evolved in mathematics as an important tool

(initiated by Zadeh [136]) to resolve the issues of uncertainty and ambi-

guity. But there are certain limitations and deficiencies pertaining to the

parametrization in fuzzy set theory.

To overcome these peculiarities, in 1999, Molodtsov [96] introduced soft

sets as a mathematical tool to handle uncertainty associated with real world

data based problems. The distinguishing attribute of soft set theory is that

unlike probability theory and fuzzy set theory, it does not uphold a pre-

cise quantity. This attribute has facilitated applications in decision making,

demand analysis, forecasting, information science, mathematics and other

disciplines [40, 41, 44, 55, 56, 89, 97, 113, 138, 141].

3



4 Chapter 1. Introduction. Objectives

A lot of activity has been shown in soft set theory (see [7, 9, 65, 66, 67, 68,

69, 81, 90, 96, 130, 131, 132, 133, 134]) since an introduction of the concept

of soft sets. Maji et al. [87] introduced some basic algebraic operations on

soft sets. They defined equality of two soft sets, subset and super set of

soft sets, complement of soft sets, null soft set and absolute soft set with

examples. Unfortunately, several basic properties in [87] do not hold true

in general, these have been pointed out and improved by Yang [133], Ali et

al. [9], and Li [83]. Ali et al. [9] defined some restricted intersection and

union, the restricted difference and complement of a soft set. Zhu et al.

[139] redefined the intersection, complement, and difference of soft sets and

investigated the algebraic properties of these operations along with a known

union operation. Their operations on soft sets inherit basic properties of

operations on classical sets. With the newly defined operations the union of

a soft set and its complement is exactly the whole universal soft set which is

not true in general with the previously defined operations. Recently Qin and

Hong [104] defined soft equality relations (lower soft equality ≈s and upper

soft equality ≈s) and proved results with already defined (see Ali et al. [9])

operations on union and intersection of soft sets.

Maji et al. [86, 87, 88] elaborated on the theory of soft sets, fuzzy soft sets

and intuitionistic fuzzy soft sets and highlighted some of their applications.

Some basic operations of fuzzy soft union and intersection and other algebraic

properties were studied by Ahmad and Kharal [6]. Babitha and Sunil [17]

and Dusmanta Kumar [35] defined soft set relations and fuzzy soft relations

and applied the theory to decision making problems. Biwas and Samanta

[32] introduced relations on intuitionistic fuzzy soft sets.

The notion of soft topology on a soft set was introduced by Cagman et.al

[23] and some basic properties of soft topological spaces were studied (see

also, [119]). Fuzzy soft topological spaces were studied by Tridiv [100] and

Mahanta [85].

Das and Samanta introduced in [29] the notion of soft real sets, soft real
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numbers and discussed their properties. They also gave applications of these

concepts in real life problems. Based on these notions, they introduced in

[28] the concept of a soft metric. They showed that soft metric space is also

a soft topological space.

A fixed point problem defined by a mapping f and a set X is a problem

to find a point x in X such that f(x) = x, that is, to find a point in domain of

a mapping f which remain invariant under the action of f. The solution set

of such a problem can be empty, a finite set, infinite set or uncountable finite

set. The points in the solution set of this problem are called fixed points of

mapping f .

In the basic real analysis by using intermediate value theorem we can

easily prove that if I = [a, b] is a closed interval of R then a continuous

self mapping f on I has at least one fixed point. Generalizing this simple

result, Brouwer proved that if B is a closed ball in Rn, then a continuous self

mapping on B has at least on fixed point. Brouwer’s fixed point theorem is

the foundation of topological branch of fixed point theory. All the known

proofs of Brouwer’s fixed point theorem are based on advanced mathematical

methods even in the simple case of R2.

One of the basic and the most widely applied fixed point theorem in

all of analysis is ”Banach ( or Banach- Cassioppoli ) Contraction principle”

due to Banach [18]. It states that if (X, d) is a complete metric space and

f : X → X satisfies

d(fx, fy) ≤ kd(x, y),

for all x, y ∈ X, with k ∈ (0, 1), then f has a unique fixed point. The

basic idea of this principle rest in the use of successive approximations

to establish the existence and uniqueness of solution of an operator equa-

tion f(x) = x, particularly it can be employed to prove the existence of

solution of differential or integral equations. Banach contraction princi-

ple [18] is a simple and powerful result with a wide range of applications,

including iterative methods for solving linear, nonlinear, differential, inte-
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gral, and difference equations. Due to its applications in mathematics

and other related disciplines (see e.g. [33, 82, 113]), Banach contraction

principle has been generalized in many directions (for details one can see

[5, 15, 16, 20, 21, 27, 60, 43, 98, 112, 106, 125, 126, 127]). Banach contrac-

tion principle lies at the heart of metric fixed point theory. Over the past

two decades the development of fixed point theory in metric spaces has at-

tracted considerable attention due to numerous applications in areas such as

variational and linear inequalities, optimization, and approximation theory.

The study of fixed points of mappings satisfying certain contractive con-

ditions has been at the center of vigorous research activity. Extensions of

Banach contraction principle have been obtained either by generalizing the

domain of the mapping or by extending the contractive condition on the

mappings [15, 20, 33, 60, 125].

Caristi’s fixed point theorem is one of the most useful among these gener-

alizations, which further has been extended and generalized by many authors

in several directions (see e.g. [4, 43, 62, 63, 76, 78, 103, 111, 137]). Wardowski

[129] introduced a new type of contraction called F−contraction and proved

a fixed point result in complete metric spaces which in turn generalizes the

Banach contraction principle

Meinardus [92] and Brosowski [22] employed fixed point theory to obtain

invariant approximation results in normed linear spaces. A number of authors

generalized their results (see [52, 57, 61, 99, 121, 122, 124] and references

therein). On the other hand, Dotson [34] extended Banach’s contraction

principle for nonexpansive mappings on star-shaped subsets of Banach spaces

and proved Brosowski-Meinardus type theorems on invariant approximations.

Khan et al. [77] generalized Dotson’s results on star shaped subsets of p-

normed spaces.

On the other hand, fixed point theory has developed rapidly in metric

spaces endowed with a partial ordering. Fixed point theorems in framework

of partially ordered metric spaces are a hybrid of two fundamental princi-
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ples: Banach contraction theorem with contractive condition for comparable

elements and selection of an initial point to generate a monotone sequence.

Indeed, these results deal with a monotone (either order-preserving or order-

reversing) mappings with some restriction such as: for some x0 ∈ X , either

x0 � T x0 or T x0 � x0, where T is a selfmap on a partially ordered metric

space. Existence fixed points in ordered metric spaces has been investigated

by Ran and Reurings [107, Theorem 2.1]. They also presented applications

of their results to linear and nonlinear equations. Subsequently, Nieto and

Rodriguez-Lopez [110] extended the results in [107, Theorem 2.1] for non-

decreasing mappings and applied to obtain a unique solution for a first order

ordinary differential equation with periodic boundary conditions. Since then,

a number of results have been proved in the framework of ordered metric

spaces (see [2, 12, 13, 26, 54, 72, 101, 116]). Contractive conditions involving

a pair of mappings are further additions to the metric fixed point theory and

its applications (see for details [8, 19, 66, 118]).

Prior to 1968 all work involving fixed points used the Banach contraction

principle. In 1968 Kannan [75] proved a fixed point theorem for a map

satisfying a contractive condition that did not require continuity at each

point. This paper was a genesis for a multitude of fixed point papers over

the next two decades (see for example, [109] for a listing and comparison

of many of these definitions). A number of these papers dealt with fixed

points for more than one map. In some cases commutativity between the

maps was required in order to obtain a common fixed point. Sessa [118]

coined the term weakly commuting. Jungck [70] generalized the notion of

weak commutativity by introducing the concept of compatible maps and then

weakly compatible maps [71]. There are examples that show that each of

these generalizations of commutativity is a proper extension of the previous

definition. Also, Jungck established necessary and sufficient conditions for

the existence of common fixed points for commuting mappings

Recently, Wardowski [128] introduced a new notion of soft elements of a



8 Chapter 1. Introduction. Objectives

soft set and established its relation with soft operations and soft objects in

soft topological space. Employing the concept of a soft elements, a notion of

soft mapping which transforms soft sets into soft sets was introduced. Using

these definitions, a fixed point theorem for soft mapping defined on a soft

compact Hausdorff topological space was proposed. This paper initiates the

study of soft mappings and soft fixed points of such mappings.

The evolution of fuzzy mathematics commenced with an introduction of

the notion of fuzzy sets by Zadeh [136] in 1965, as a new way to repre-

sent vagueness in every day life. Kramosil and Michalek [80] introduced a

notion of fuzzy metric space by using continuous t-norms, which general-

izes the concept of probabilistic metric space to fuzzy situation. Moreover

George and Veeramani [46, 47] modified the concept of a fuzzy metric space

introduced by Kramosil and Michalek (see also [38]). They obtained a Haus-

dorff topology for this kind of fuzzy metric space which has applications in

quantum particle physics, particularly in connection with both string and

ε∞ theory (see, [37] and references mentioned therein). Recently, Gregori

et al. [49] gave applications of fuzzy metrics to color image process and

used the concept of fuzzy metric to filter noisy images and in other engi-

neering problems of special interests. Fixed point theory in fuzzy metric

spaces has been studied by a number of authors. For a wide survey we refer

[39, 30, 48, 51, 84, 93, 94, 95, 108, 115, 120, 123, 140] and the references

therein.

The study of fixed point theory for multivalued maps was initiated by

Kakutani [73] for finite dimensional spaces. The development of the geo-

metric fixed point theory for multivalued maps was initiated by Nedler [98].

Using the concept of Hausdorff metric, he introduced a notion of multivalued

contraction maps and established multivalued contraction principle, which

contains the Banach contraction principle as a special case. The study of

fixed points for nonexpansive maps using the Hausdorff metric was initiated

by Markin [91]. Later, an interesting and rich fixed point theory for such
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maps was developed. The theory of multivalued maps has application in

control theory, convex optimization, differential equations and economics.

1.2 Objectives

Despite of all the work done in soft set theory so far, it is in developing stage.

New concepts are being introduced. It has received much more attention of

mathematicians working in classical set theory, which is now rapidly being

replaced by soft set theory. Soft topological spaces is a topic under consid-

eration these days. Different topological concepts have been reformulated in

soft universe and many more are yet to be done. We have seen through the

literature reviewing these topics that there are certain situations in soft set

theory that have not been covered properly. The main reason of this gap is

that basic operations have not been defined in a way to cover more general

aspect of the softness. For the past thirty years, metric fixed point theory

has been a flourishing area of research. Although a substantial numbers of

results dealing with the existence of fixed point theorems for certain map-

pings have been proved yet there are many unanswered questions regarding

the limits to which the theory may be extended.

The purpose of this work is:

• The study of basic operations first. This work has one to many di-

mensions. Mainly these are defining, generalizations and applications

aspects of basic operations in soft set theory. To highlight the shortcom-

ings in the already existing basic operations in soft set theory, intro-

duce some new basic operations including redefining and generalizing

the concepts of null soft set, soft subset, universal soft set, union, inter-

section and soft elements of a soft set reconsidered in [87, 96, 104, 139]

.
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• To study the lattice structure on the class of soft sets. This will surely

refine the bases for the existing soft topologies and will produce more

general results as compared to the existing one.

• To study some basic properties of a fuzzy soft element and fuzzy soft

mappings with the help of Cartesian product and relations on fuzzy

soft sets and then to initiate the study of fixed point in fuzzy soft set

theory.

• Applications in fuzzy soft topology in a sense to improve the work done

previously and to extend the research contribution further.

• Metric fixed point theory has not yet been intersected with soft set

theory. We will bring some sophistications in this direction as well. We

will investigate it as well with the purpose to apply soft set theory in

solving functional equations.

• The concept of a soft contraction mapping has not been considered so

far. We intend to introduce this concept to initiate the study of fixed

point in soft metric spaces and to obtain a soft contraction theorem.

• To provide a characterization of fuzzy metric completeness in the case

of continuous t-norms greater than or equal to the Lukasiewicz t-norm.

• To initiate the study of common fixed point theory introducing F− con-

traction mappings with respect to a self mapping on a complete metric

space. We intend to introduce a notion of generalized F -contraction

mappings to prove a fixed point result for generalized nonexpansive

mappings on star shaped subsets of normed linear spaces and to initi-

ate the study of invariant approximations in normed linear spaces for

such mappings.
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The organization of the thesis is as follows: This is divided into seven

chapters.

Chapter 1 describes the general background, objectives, significance and

a scope of the study. It also includes literature review, which is essential for

better understanding of present study and for future research work in this

direction.

Chapter 2 contains some new concepts which generalize existing compa-

rable notions . The notion of generalized soft equality of two soft sets is given

with related results. Moreover we give tolerance or dependence relation on

the collection of soft sets and soft lattice structure. Examples are provided

to illustrate the concepts and results obtained in this chapter.

In Chapter 3, the concept of a fuzzy soft mappings on a fuzzy soft set is

introduced and the study of fixed points of such mappings is initiated. The

focus of the exposition is on the fundamental properties of fuzzy soft elements

and also on the simplicity of arguments and proofs. Some useful properties of

fuzzy soft topological spaces are studied. Examples are provided to explain

the newly defined concepts and to illustrate the validity of the results in this

chapter.

Chapter 4 deals with the study of fixed point in soft metric spaces. The

concept of soft contraction mapping on soft metric spaces is introduced. The

central theme of this chapter is a soft contraction theorem. This chapter

provides all essential tools to study soft fixed point theory in soft metric

spaces .

Chapter 5 concentrates on a fixed point theorem for multivalued mappings

of Caristi’s type in complete fuzzy metric spaces. In particular the main

focus lies on a characterization of fuzzy metric completeness in the case of

continuous t-norms greater than or equal to the Lukasiewicz t-norm.

The aim of Chapter 6 is to present the notion of F−contractions with

respect to a self mapping on a metric space. Employing our definitions some

common fixed point results are obtained. Results and concepts presented in
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this chapter are supported with examples. As an application of these results,

periodic point results for the F−contractions in metric spaces are proved.

This chapter also includes an introduction of a generalized F -contraction

mappings which is then used to obtain a fixed point result for generalized

nonexpansive mappings on star shaped subsets of normed linear spaces. Some

theorems on invariant approximations in normed linear spaces are deduced.

Chapter 7 deals with the summary of findings, conclusion and contri-

bution to enhance the scope of several comparable existing results in the

literature. Some research problems are also proposed which could open new

avenues of research in these emerging fields of research.

Each chapter of the thesis contains a section “Introduction and prelimi-

naries” which summarizes the material needed to read the chapter indepen-

dent of others.



Chapter 2

On Generalized Soft Equality

and Soft Lattice Structure

The material of this chapter is an adaptation to the thesis of the content of the

paper by Muhajid Abbas, Basit Ali and Salvador Romaguera, “On generalized

soft equality and soft lattice structure”, which is accepted for publication in

the JCR-journal FILOMAT

13
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The definition of a soft topology is based on the concepts of basic soft set

operations and its implications. That is why, the study of soft set operations

is vital for mathematicians and computer scientist to develop the theory

of soft topological spaces. This is the basic theme of this chapter. In this

chapter, we propose some new concepts which generalize existing comparable

notions in contemporary literature on soft set theory. We introduce the

concept of generalized soft equality ( denoted as g−soft equality ) of two soft

sets and prove that the so called lower and upper soft equality of two soft sets

imply g−soft equality but converse does not hold. Moreover we give tolerance

or dependence relation on the collection of soft sets and soft lattice structure.

Examples are provided to illustrate the concepts and results obtained herein.

We redefine the concepts of null soft set and soft subset of a soft set

reconsidered in [139]. We introduce the concept of g−null soft set and g−soft

subset of a soft set and this lead us to give a new and generalized soft equality

(g−soft equality) relation ug. It is shown that g−soft equality relation ug

is more general than soft equality relations ≈s and ≈s on soft sets given in

[104]. We provide examples to show that class of g−soft equal sets with

respect to ug is a more general class.

2.1 Preliminaries

We begin with some basic definitions and concepts related to soft sets needed

in the sequel.

Let U be a given universe and E a set of parameters. Throughout this

chapter, P (U) and P ∗(U) denote the family of all subsets of U, and the family

of all nonempty subsets of U, respectively.

Definition 2.1.1 [96] If F is a set valued mapping on A ⊂ E taking values

in P (U), then a pair (F,A) is called a soft set over U.

A soft set (F,A) can be seen as a parametrized family of subsets of the

set U. For each e in A, the set F (e) in U is called e− approximate element
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of the soft set (F,A).

Moreover, in several places of this chapter a soft set (F,A) will be iden-

tified with the set {(e, F (e)) : e ∈ A}.
Definition 2.1.2 [87] A soft set (F,A) over U is said to be a null soft set

over U if F (e) = ∅ for all e ∈ A.

Definition 2.1.3 [87] Let (F,A) and (G,B) be two soft sets over a common

universe U , we say that (F,A) is a soft subset of (G,B) or (G,B) is super

soft set of (F,A), if A ⊆ B, and for all e ∈ A, F (e) = G(e). We write it as

(F,A)⊂̃(G,B).

Zhu and Wen [139] gave a the following slight modification of Definitions

2.1.1 and 2.1.2 to inherit basic classical set operations in soft set theory.

Definition 2.1.4 [139] If F is a set valued mapping on A ⊂ E taking values

in P ∗(U), then a pair (F,A) is called a soft set over U.

Definition 2.1.5 [139] A soft set (F,A) over U in the sense of [139] is said

to be a null soft set denoted by (∅, ∅) whenever A = ∅.
Maji et al. [87] gave definitions 2.1.2 and 2.1.3 which do not inherit

the property which reads as follows: ”null set is a subset of any other set”

in soft set theory (see example 2.1.6 below). Zhu and Wen [139] presented

definitions 2.1.4 and 2.1.5 to incorporate this property.

In the following example we show that a null soft set in the sense of [87]

need not be a soft subset of any other soft set. It also shows that Definitions

2.1.4 and 2.1.5 do not cover certain situations arising in soft set theory.

Example 2.1.6 Suppose that U is the set of persons given by

U = {p1, p2, p3, p4, p5, p6}

and

A = {s, i}, B = {i, r}

where s, i, r stand for susceptible, infectious and recovered persons. The

soft set (F,A) describes the specific classes of people with respect to the

set A, dependent upon their experience with respect to the disease and the
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corresponding approximations F (s) and F (i) with respect to parameter set

A, are the the sets of susceptible and infected people respectively, given as:

F (s) = ∅ = F (i).

We denote (F,A) as

(F,A) = {(s, ∅), (i, ∅)}.

The soft set (G,B) describes the specific classes of people with respect to the

set B, dependent upon their experience with respect to the disease and the

corresponding approximations G(i) and G(r) with respect to parameter set

B, are the the sets of infected and recovered people respectively, given as:

G(i) = ∅, G(r) = {p1, p2, p3}.

We denote (G,B) as

(G,B) = {(i, ∅), (r, {p1, p2, p3})}.

Here according to Maji et al. [87], (F,A) is a null soft set but clearly ac-

cording to them (F,A) is not a null soft subset of (G,B) because A * B.

That is null soft set is not a soft subset of (G,B). As we mentioned before

that Zhu and Wen [139] presented Definitions 2.1.4 and 2.1.5 to remove this

shortcoming but according to them (F,A) cannot be regarded as a soft set

as F (s) = F (i) = ∅.
Definition 2.1.7 [87] The union of two soft sets (F,A) and (G,B) over a

common universe U is denoted by (F,A)∪̃(G,B) is the soft set (H,C), where

C = A ∪B and for all e ∈ C, (H,C) is defined as

H(e) =


F (e), if e ∈ ArB

G(e), if e ∈ B r A

F (e) ∪G(e) if e ∈ A ∩B
.

Definition 2.1.8 [9] The restricted union of two soft sets (F,A) and (G,B)

over a common universe U is denoted by (F,A) ∪R (G,B) is the soft set

(H,C), where C = A ∩B and for all e ∈ C, H(e) = F (e) ∪G(e).
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Definition 2.1.9 [9] The extended intersection of two soft sets (F,A) and

(G,B) over a common universe U is denoted by (F,A) uε (G,B) is the soft

set (H,C), where C = A ∪B and for all e ∈ C, (H,C) is defined as

H(e) =


F (e), if e ∈ ArB

G(e), if e ∈ B r A

F (e) ∩G(e) if e ∈ A ∩B
.

Definition 2.1.10 [9] The restricted intersection of two soft sets (F,A) and

(G,B) over a common universe U is denoted by (F,A) e (G,B) is the soft

set (H,C), where C = A ∩B and for all e ∈ C, H(e) = F (e) ∩G(e).

Definition 2.1.11 [9] The relative complement of a soft set (F,A) over a

universe U is denoted by (F,A)r and is defined as (F,A)r = (F r, A), where

F r(e) = U − F (e) for each e ∈ A.
Ali et al. [9] gave the following De Morgan’s laws with respect to the

relative complement of a soft set in soft set theory.

Theorem 2.1.12 [9] Let (F,A) and (G,B) be two soft sets over a common

universe U such that A ∩B 6= ∅, then

(F,A) ∪R (G,B)r = (F,A)r e (G,B)r

(F,A) e (G,B)r = (F,A)r ∪R (G,B)r

holds true.

Recently Qin and Hong [104] defined soft equalities ≈s and ≈s. We call

these as lower soft equality and upper soft equality relations, respectively.

Definition 2.1.13 [104] Let (F,A) and (G,B) be two soft sets over a

common universe U . The soft set (F,A) is called lower soft equal to (G,B),

denoted by (F,A) ≈s (G,B), if F (e) = G(e) whenever e ∈ A ∩ B, F (e) = ∅
whenever e ∈ ArB and G(e) = ∅ whenever e ∈ B r A.

Definition 2.1.14 [104] Let (F,A) and (G,B) be two soft sets over a

common universe U . The soft set (F,A) is called upper soft equal to (G,B),

denoted by (F,A) ≈s (G,B), if F (e) = G(e), whenever e ∈ A∩B, F (e) = U

whenever e ∈ ArB and G(e) = U whenever e ∈ B r A.
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For more on soft equal relations ≈s and ≈s, we refer to [104].

2.2 Generalized soft equality (or g−soft equal-

ity) relation ug

In this section we present a definition of g−soft equality of two soft sets

which generalizes Definitions 2.1.13 and 2.1.14. We give the concept of a

generalized null soft denoted as g−null soft set, which unifies definitions 2.1.2

and 2.1.5. A notion of a ”g−soft subset of a soft set” is also introduced. It is

worth mentioning that the definitions presented herein preserve the classical

property of a crisp set theory that an empty set is a subset of every set.

These notions not only generalize existing comparable concepts but also fit

in the bigger set of situations.

Definition 2.2.1 A soft set (F,A) over U is said to be a g−null soft set if

either (i) A = ∅ or (ii) F (e) = ∅ for each e ∈ A whenever A 6= ∅. A g−null

soft set over U is denoted by (F∅, A).

Definition 2.2.2 A soft set (F,A) over U is called a g− universal soft set

if A = E 6= ∅ and F (e) = U for each e ∈ E. We denote universal soft set by

(FU , E).

Definition 2.2.3 Let (F,A) and (G,B) be two soft sets over a common

universe U . We say that (F,A) is a g−soft subset of (G,B) if for each

e ∈ A, there exists an e
′ ∈ B such that F (e) ⊆ G(e

′
).We denote it as

(F,A) vg (G,B).

According to Example 2.1.6, (F,A) is a g−null soft set and clearly (F,A) vg
(G,B). Hence Definitions 2.2.1 and 2.2.3 inherit the property from classical

set theory which says that null set is subset of every other non-empty set.

Example 2.2.4 Suppose that U = {s1, s2, s3, s4, s5, s6} is a set of six

students under consideration. Let s, g, and p stands for scholarship, good

CGPA (we denote good CGPA if CGPA is greater or equal to 3.00 out of
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4.00) and publications, respectively. If the sets of parameters are given as

A = {s, g}, and B = {s, g, p}.

Suppose that soft set (F,A) describes the choice of a person P-1 (say) with

respect to the parameter set A and soft set (G,B) describes the choice of

a person P-2 (say) with respect to the parameter set B. Corresponding

approximations are given as:

(F,A) = {(s, {s1, s2}), (g, {s2, s5})} and

(G,B) = {(s, {s2, s5, s4}), (g, {s3, s4}), (p, {s1, s2, s6})},

where

F (s) = {s1, s2}, (set of students holding scholarship)

F (g) = {s2, s5}, (set of students with good CGPA)

G(s) = {s2, s5, s4}, (set of students holding scholarship)

G(g) = {s3, s4}, (set of students with good CGPA)

G(p) = {s1, s2, s6}, (set of students with publications).

Clearly, (F,A) vg (G,B). That means if according to P-1, a particular stu-

dent has a certain attribute then that student also exists in the set of P-2’s

opinion with some attribute (same or different) because (F,A) vg (G,B).

Here according to P-1, students s2 and s5 have good CGPA and in P-2’s

opinion, these students hold scholarship as well.

Definition 2.2.5 Let (F,A) and (G,B) be two soft sets over a common

universe U . Then soft sets (F,A) and (G,B) are called g−soft equal if

(F,A) vg (G,B) and (G,A) vg (F,B). We denote it by (F,A) ug (G,B).

In above definition if we take A ⊆ B and e
′

= e then definition 2.2.5

reduces to definition 2.1.3.

Proposition 2.2.6 Let (F,A) and (G,B) be two soft sets over a common

universe U . If (F,A) ≈s (G,B) then (F,A) ug (G,B), that is, lower soft

equality implies g−soft equality.
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Proof. Suppose that (F,A) ≈s (G,B). Let e be an arbitrary parameter in

A. There are two possibilities: either e ∈ ArB or e ∈ A∩B. If e ∈ ArB,

this implies that F (e) = ∅. So for every e
′ ∈ B, one must have F (e) ⊂ G(e

′
)

and the result follows. Indeed, if we chose e
′ ∈ B r A ⊂ B, then G(e

′
) = ∅

and ∅ = F (e) ⊆ G(e
′
) = ∅. If e ∈ A∩B, then by lower soft equality of (F,A)

and (G,B), we get F (e) = G(e). Consequently for every e ∈ A, one may finds

an e
′ ∈ B such that F (e) ⊆ G(e

′
), that is (F,A) vg (G,B). Now we prove

that (G,B) vg (F,A). For this, let e ∈ B. In this case, either e ∈ B r A or

e ∈ A ∩ B. If e ∈ B r A, this implies that G(e) = ∅. So for every e
′ ∈ A,

one must have G(e) ⊂ F (e
′
) and the result follows. Indeed, if we chose e

′ ∈
ArB ⊂ A, then F (e

′
) = ∅ and ∅ = G(e) ⊆ F (e

′
) = ∅. If e ∈ A∩B, then by

lower soft equality of (F,A) and (G,B), we get G(e) = F (e). Consequently

for every e ∈ B, there exists an e
′ ∈ A such that G(e) ⊆ F (e

′
) which implies

that (G,B) vg (F,A). Hence we conclude that (F,A) ug (G,B).

Proposition 2.2.7 Let (F,A) and (G,B) be two soft sets over a common

universe U . If (F,A) ≈s (G,B), then (F,A) ug (G,B).

Proof. Following similar arguments to those given in Proposition 2.2.6,

the result holds.

Now we give an example to show that if (F,A) ug (G,B), then the soft

sets (F,A) and (G,B) are not necessarily lower soft equal or upper soft

equal. Moreover this example shows that Definition 2.2.5 gives rise to the

bigger class of soft subsets of a soft set.

Example 2.2.8 Suppose that U = {h1, h2, h3, h4} is a given universe and

A = {e1, e2, e3}, and B = {e1, e2, e4}is the set of parameters. Soft sets (F,A)

and (G,A) are given as:

(F,A) = {(e1, {h1, h2}), (e2, {h3, h4}), (e3, ∅)} and

(G,B) = {(e1, {h3, h4}), (e2, {h1, h2}), (e4, ∅)},
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where

F (e1) = {h1, h2}, F (e2) = {h3, h4} and F (e3) = ∅,

G(e1) = {h3, h4}, G(e2) = {h1, h2} and G(e4) = ∅.

As A 6⊆ B and F (e1) * G(e1), so by Definition 2.1.3, (F,A) is not a soft

subset of (G,A). Note that F (e1) ⊆ G(e2) and F (e2) ⊆ G(e1). Therefore we

have (F,A) vg (G,B) and (G,A) vg (F,B) which implies that (F,A) ug

(G,B). Also, F (e1) 6= G(e1) and F (e2) 6= G(e2). Therefore, neither (F,A) ≈s

(G,B) nor (F,A) ≈s (G,B) hold true. That is, generalized soft equality does

not imply lower and upper soft equality.

Proposition 2.2.9 For any soft set (F,B) over U

(F∅, A) vg (F,B) vg (FU , E).

Proof. If A = ∅, then assertion holds trivially. Let A 6= ∅, then for all

e ∈ A
F∅(e) = ∅ ⊆ F (e

′
) for all e

′ ∈ B

and for any e in B, we have

F (e) ⊆ U = FU(e
′
) for all e

′ ∈ B.

Hence

(F∅, A) vg (F,B) vg (FU , E).

2.3 Lattice structure on the soft sets

In this section, we study soft algebraic operations e,∪R, ∪̃,uε with reference

to g−soft equality relation ug .We also give a lattice structure on a class of

soft sets.

Proposition 2.3.1 Let (F,A) be any soft set over U , then

(a) (F,A) e (FU , E) ug (F,A)
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(b) (F,A) ∪R (F∅, A) ug (F,A).

Proof. If A = ∅, then (F,A) = (F∅, A) and (a) and (b) hold true. If A 6= ∅,
then (F,A) e (FU , E) = (H,A ∩E). As for each e in A ∩E(= A), we obtain

H(e) = F (e) ∩ FU(e) =F (e) ∩ U = F (e).

Therefore (a) follows. Similarly if (F,A) ∪R (F∅, A) = (K,A), then for each

e in A, we have

K(e) = F (e) ∪ F∅(e) =F (e) ∪ ∅ = F (e),

and (b) follows.

Then following theorem shows that the operation ∪̃ is idempotent, asso-

ciative and commutative with respect to the g−soft equality relation ug .

Theorem 2.3.2 If (F,A), (G,B) and (H,C) are soft sets over a common

universe U . Then

(c) (F,A)∪̃(F,A) ug (F,A),

(d) (F,A)∪̃(G,B) ug (G,B)∪̃(F,A),

(e) [(F,A)∪̃(G,B)]∪̃(H,C) ug (F,A)∪̃[(G,B)∪̃(H,C)].

Proof. (c) Let (F,A)∪̃(F,A) = (K,A), then K(e) = F (e), hence (c)

follows. It is straightforward to check (d). To prove (e), let

[(F,A)∪̃(G,B)]∪̃(H,C) = (K1, A ∪B)∪̃(H,C) = (K,D) and

(F,A)∪̃[(G,B)∪̃(H,C)] = (F,A)∪̃(L1, B ∪ C) = (L,D),

where D = (A ∪ B) ∪ C = A ∪ (B ∪ C). Let e ∈ D. Obviously e ∈ A, or

e ∈ B or e ∈ C. First suppose that e ∈ C, then the following cases arise:

(e-i) If e /∈ A and e /∈ B, that is e ∈ C r (A ∪ B), then, K(e) = H(e).

Moreover e ∈ (B ∪ C) r A implies L(e) = L1(e). As e /∈ B and e ∈ C, that

is e ∈ C rB, so L1(e) = H(e). Consequently K(e) = L(e).



2.3. Lattice structure on the soft sets 23

(e-ii) If e ∈ A and e /∈ B, then e ∈ A r B, this implies K1(e) = F (e) and

e ∈ A∪B and e ∈ C implies K(e) = K1(e)∪H(e) = F (e)∪H(e). Moreover,

if e ∈ A and e /∈ B, then e ∈ C r B, this implies L1(e) = H(e). Since e ∈ A
and e ∈ B ∪C, we obtain L(e) = F (e)∪L1(e) = F (e)∪H(e). Consequently

K(e) = L(e).

(e-iii) If e /∈ A and e ∈ B, then e ∈ B r A implies that K1(e) = G(e). If

e ∈ A ∪ B and e ∈ C, then we have K(e) = K1(e) ∪ H(e) = G(e) ∪ H(e).

Since e ∈ B∩C, this gives L1(e) = G(e)∪H(e). Further e /∈ A and e ∈ B∪C,
implies L(e) = L1(e) = G(e) ∪H(e). Consequently K(e) = L(e).

(e-vi) If e ∈ A and e ∈ B, that is, e ∈ A ∩ B, this implies K1(e) =

F (e) ∪ G(e). Also, e ∈ A ∪ B and e ∈ C implies K(e) = K1(e) ∪ H(e) =

F (e) ∪ G(e) ∪ H(e). As e ∈ B and e ∈ C, so e ∈ B ∩ C, this implies

L1(e) = G(e) ∪H(e). Since e ∈ A and e ∈ B ∪ C, we obtain L(e) = F (e) ∪
L1(e) = F (e) ∪G(e) ∪H(e). Consequently K(e) = L(e).

Following arguments similar to those given in (e-i) to (e-iv), the result

follows in each of the case when e ∈ B and e ∈ A. Since for all e ∈ D, K and

L are the same approximations, so we conclude that

[(F,A)∪̃(G,B)]∪̃(H,C) ug (F,A)∪̃[(G,B)∪̃(H,C)].

Theorem 2.3.3 Let (F,A), (G,B) and (H,C) be soft sets over a common

universe U . Then

(f) (F,A) uε (F,A) ug (F,A),

(g) (F,A) uε (G,B) ug (G,B) uε (F,A),

(h) [(F,A) uε (G,B)] uε (H,C) ug (F,A) uε [(G,B) uε (H,C)].

Proof. (f) Let (F,A) uε (F,A) = (K,A), then K(e) = F (e), hence (f)

follows. (g) is straightforward to check. To prove (h), let

[(F,A) uε (G,B)] uε (H,C) = (K1, A ∪B) uε (H,C) = (K,D) and

(F,A) uε [(G,B) uε (H,C)] = (F,A) uε (L1, B ∪ C) = (L,D),
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where D = A∪B ∪C. Let e ∈ D. Obviously e ∈ A, or e ∈ B or e ∈ Ċ. First

suppose that e ∈ Ċ, then there arise following cases:

(e-i). If e /∈ A and e /∈ B, that is e ∈ C r (A ∪ B), then, K(e) = H(e).

Moreover e ∈ (B ∪ C) r A implies L(e) = L1(e). As e /∈ B and e ∈ C, that

is e ∈ C rB, so L1(e) = H(e). Consequently K(e) = L(e).

(eii). If e ∈ A and e /∈ B, then e ∈ Ar B, this implies K1(e) = F (e) and

e ∈ A∪B and e ∈ C implies K(e) = K1(e)∩H(e) = F (e)∩H(e). Moreover,

if e ∈ A and e /∈ B, then e ∈ C r B, this implies L1(e) = H(e). Since e ∈ A
and e ∈ B ∪C, we obtain L(e) = F (e)∩L1(e) = F (e)∩H(e). Consequently

K(e) = L(e).

(e-iii). If e /∈ A and e ∈ B, then e ∈ B r A, this implies K1(e) = G(e)

and e ∈ A∪B and e ∈ C implies K(e) = K1(e)∩H(e) = G(e)∩H(e). Since

e ∈ B ∩ C, this gives L1(e) = G(e) ∩ H(e). Further e /∈ A and e ∈ B ∪ C,
implies L(e) = L1(e) = G(e) ∩H(e). Consequently K(e) = L(e).

(e-iv). If e ∈ A and e ∈ B, that is, e ∈ A ∩ B, this implies K1(e) =

F (e) ∩ G(e). Also, e ∈ A ∪ B and e ∈ C implies K(e) = K1(e) ∩ H(e) =

F (e) ∩ G(e) ∩ H(e). As e ∈ B and e ∈ C, so e ∈ B ∩ C, this implies

L1(e) = G(e) ∩H(e). Since e ∈ A and e ∈ B ∪ C, we obtain L(e) = F (e) ∩
L1(e) = F (e) ∩G(e) ∩H(e). Consequently K(e) = L(e).

Following arguments similar to those given in (e-i) to (e-iv), the result

follows in each of the case when e ∈ B and e ∈ A. Since for all e ∈ D, K and

L are the same approximations, so we conclude that

[(F,A) uε (G,B)] uε (H,C) ug (F,A) uε [(G,B) uε (H,C)].

Note that Theorem 2.3.2 and Theorem 2.3.3 hold for the operations ∪R,
and e as well.

Following is an absorption law involving operations ∪̃, e and g−soft

equality.

Theorem 2.3.4 Let (F,A), (G,B) and (H,C) be soft sets over a common

universe U . Then
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(i) [(F,A)∪̃(G,B)] e (F,A) ug (F,A).

(j) [(F,A) e (G,B)]∪̃(F,A) ug (F,A).

Proof. Suppose

[(F,A)∪̃(G,B)] e (F,A) = (H,A ∪B) e (F,A) = (K, (A ∪B) ∩A) = (K,A)

So soft sets on both sides of (i) have the same parameter set A. Let e be an

arbitrary element of A. if e /∈ B, then H(e) = F (e) = H(e)∩F (e) = K(e). If

e ∈ B, then H(e) = F (e)∪G(e) and F (e) ⊆ H(e) which further implies that

F (e) ⊆ H(e) ∩ F (e) = K(e), that is, F (e) ⊆ K(e). Hence (F,A) vg (K,A).

On the other hand

K(e) = H(e) ∩ F (e) = [F (e) ∪G(e)] ∩ F (e) = F (e) ⊆ F (e),

implies that (K,A) vg (F,A). Consequently (K,A) ug (F,A). Similarly, it

can be shown that (j) holds true.

In the following theorem, we show that ∪̃ is distributive over e.

Theorem 2.3.5 Let (F,A), (G,B) and (H,C) be soft sets over a common

universe U . Then

(F,A)∪̃[(G,B)) e (H,C)] ug [(F,A)∪̃((G,B)] e [(F,A)∪̃(H,C)].

Proof. Suppose

(F,A)∪̃[(G,B))e(H,C)] = (F,A)∪̃(K1, (B∩C)) = (K,A∪(B∩C)) = (K,D),

and

[(F,A)∪̃((G,B)] e [(F,A)∪̃(H,C)] = (L1, (A∪B)) e (L2, (A∪C)) = (L,D),

where D = A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Now for all e ∈ D, it follows

that e ∈ A or e ∈ B and e ∈ A or e ∈ Ċ. First suppose that e ∈ Ċ, then

there arise following cases:
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(k-i). If e ∈ A and e /∈ B, that is, e ∈ A r (B ∩ C), then K(e) = F (e).

Since e ∈ Ar B and e ∈ A ∩ C, so L1(e) = F (e) and L2(e) = F (e) ∪H(e).

Hence L(e) = L1(e) ∩ L2(e) = F (e). Consequently K(e) = L(e).

(k-ii). If e /∈ A and e ∈ B, that is, e ∈ (B ∩C)rA, then K(e) = K1(e) =

G(e)∩H(e). Moreover, e ∈ BrA and e ∈ C rA, implies that L1(e) = G(e)

and L2(e) = H(e). Hence L(e) = L1(e)∩L2(e) = G(e)∩H(e). Consequently

K(e) = L(e).

(k-iii). If e ∈ A and e ∈ B, then e ∈ A and e ∈ (B ∩ C) implies that

K(e) = F (e) ∪K1(e) = F (e) ∪ [G(e) ∩H(e)].

Since e ∈ A ∩ B and e ∈ A ∩ C, so L1(e) = F (e) ∪ G(e) and L2(e) =

F (e) ∪H(e). Hence

L(e) = L1(e) ∩ L2(e) = F (e) ∪ [G(e) ∩H(e)].

Consequently K(e) = L(e).

The cases (k-i to k-iii) can be discussed for e ∈ B and e ∈ A. Since for

all e ∈ A ∪ (B ∩ C), K and L are the same approximations, so we conclude

that

(F,A)∪̃[(G,B)) e (H,C)] ug [(F,A)∪̃((G,B)] e [(F,A)∪̃(H,C)].

Suppose that S(U,E) denotes the set of all soft sets over the common

universe U and the parameter set E, that is,

S(U,E) = {(F,A) : A ⊆ E and F : A→ P (U)}.

Remark 2.3.6 Let (F,A), (G,B) ∈ S(U,E). If (F,A) ug (G,B), then

(F,A) e (G,B) ug (F,A) and (F,A)∪̃(G,B) ug (G,B) do not hold true

necessarily. See the following example.

Example 2.3.7 Let U = {h1, h2} be a universe under consideration and

A = B = {e1, e2} is the set of parameters. Soft sets (F,A), (G,B) are given
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as:

(F,A) = {(e1, {h1}), (e2, {h2})} and

(G,B) = {(e1, {h2}), (e2, {h1})}

Clearly (F,A) ug (G,B). If (F,A)e(G,B) = (H,A∩B) and (F,A)∪̃(G,B) =

(K,A ∪B), then

(H,A ∩B) = {(e1, ∅), (e2, ∅)} and

(K,A ∩B) = {(e1, {h1, h2}), (e2, {h1, h2})}

Clearly (F,A) e (G,B) 6ug (F,A) and (F,A)∪̃(G,B) 6ug (G,B).

Now we define soft ordering relation, denoted by �s on S(U,E). We say

that (F,A) �s (G,B) if and only if

(F,A) e (G,B) ug (F,A) and (F,A)∪̃(G,B) ug (G,B).

Remark 2.3.8 Following example illustrates the fact that (F,A)e(G,B) ug

(F,A) does not always imply (F,A)∪̃(G,B) ug (G,B).

Example 2.3.9 Suppose that U = {h1, h2, h3, h4} and A = B = {e1, e2}.
Soft sets (F,A) and (G,A) are given as:

(F,A) = {(e1, {h3}), (e2, {h2, h3})} and

(G,B) = {(e1, {h1, h2}), (e2, {h2, h3})}

Suppose that (F,A)e (G,B) = (H,A∩B) and (F,A)∪̃(G,B) = (K,A∪B).

Note that

(H,A ∩B) = {(e1, ∅), (e2, {h2, h3})} and

(K,A ∪B) = {(e1, {h1, h2, h3}), (e2, {h2, h3})}.

Clearly (F,A) e (G,B) ug (F,A) but (F,A)∪̃(G,B) 6ug (G,B) because

K(e1) 6⊆ G(e) for any e ∈ B.
Theorem 2.3.10 (S(U,E), ∪̃,e,ug) is a distributive bounded lattice.
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Proof. From Theorems 2.3.2, 2.3.3, 2.3.4 and 2.3.5, it follows that

(S(U,E), ∪̃,e,ug) is a distributive lattice. As (F∅, ∅) and (FU , E) are lower

and upper bounds of S(U,E), respectively so S(U,E) is a bounded lattice.

Note that (S(U,E),∪R,uε,ug) is also a distributive bounded lattice. Let

A ⊆ E and

SA(U,E) = {(F,A) : F : A→ P (U)}

be the set of all soft sets with parameter set A over a universe U. Then we

have the following corollary.

Corollary 2.3.11 (SA(U,E), ∪̃,e,ug) is a sublattice of (S(U,E), ∪̃,e,ug).

Proposition 2.3.12 The soft ordering relation �s is a tolerance relation

on S(U,E) ( �s is reflexive and symmetric).

Proof. Let (F,A), (G,B) and (H,C) be arbitrary elements of S(U,E).

Note that (F,A) �s (F,A), that is, �s is reflexive. Now (F,A) �s (G,B)

implies that

(F,A) e (G,B) ug (F,A) and (F,A)∪̃(G,B) ug (G,B)

and (G,B) �s (F,A) implies that

(G,B) e (F,A) ug (G,B) and (G,B)∪̃(F,A) ug (F,A).

As e and ∪̃ are commutative so (F,A) ug (G,B), that is �s is symmetric.

Following example shows that �s is not a transitive relation.

Example 2.3.13 Suppose that U = {h1, h2, h3, h4} and A = B = {e1, e2}.
Let soft sets (F,A), (G,A), and (H,A) be given by:

(F,A) = {(e1, {h1}), (e2, {h2})}

(G,A) = {(e1, {h1, h2}), (e2, {h1, h2})} and

(H,A) = {(e1, {h3}), (e2, {h1, h2, h3})}.

Let (F,A) e (G,A) = (J,A), (F,A)∪̃(G,A) = (K,A), (G,A) e (H,A) =
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(L,A) and (G,A)∪̃(H,A) = (M,A). Note that

(J,A) = {(e1, {h1}), (e2, {h2})}

(K,A) = {(e1, {h1, h2}), (e2, {h1, h2})}

(L,A) = {(e1, ∅), (e2, {h1, h2})} and

(M,A) = {(e1, {h1, h2, h3}), (e2, {h1, h2, h3})}.

Clearly (J,A) ug (F,A) and (K,A) ug (G,A) imply that (F,A) �s (G,A).

Moreover (L,A) ug (G,A) and (M,A) ug (H,A) implies that (G,A) �s
(H,A). Suppose that (F,A)e(H,A) = (N1, A) and (F,A)∪̃(H,A) = (N2, A).

Note that

(N1, A) = {(e1, ∅), (e2, {h2})} and

(N2, A) = {(e1, {h1, h3}), (e2, {h1, h2, h3})}.

Since F (e1) 6⊆ N1(e) for any e ∈ A, therefore (F,A) 6vg (F,A) e (H,A).

This implies that (F,A) 6ug (F,A) e (H,A). Hence (F,A) �s (G,A) and

(G,A) �s (H,A) but (F,A) 6�s (H,A).

Proposition 2.3.14 ug is an equivalence relation on S(U,E).

Proof. Let (F,A), (G,B) and (H,C) be arbitrary elements of S(U,E).

Then by definition (F,A) ug (F,A), hence ug is reflexive. Also, (F,A) ug

(G,B) implies that (G,B) ug (F,A), that is ug is symmetric. Suppose that

(F,A) ug (G,B) and (G,B) ug (H,C). Note that for any e ∈ A there

exists an e
′ ∈ B such that F (e) ⊆ G(e

′
) and for e

′ ∈ B there exists e
′ ∈ C

such that G(e
′
) ⊆ H(e

′
). Hence for every e in A there is e

′
in C such that

F (e) ⊆ H(e
′
), thus (F,A) vg (H,C). Following similar arguments, we have

(H,C) vg (F,A). Hence (F,A) ug (H,C).

From Definition 2.1.11, it follows that for any soft set (F,A), ((F,A)r)r =

(F,A) holds. Also, De Morgan’s laws hold in soft set theory employing the

concept of a g−soft equality relation ug .

Theorem 2.3.15 Let (F,A), and (G,B) be soft sets over a common uni-

verse U such that A ∩B 6= ∅, then



30 Chapter 2. On generalized soft equality and soft lattice

(1) ((F,A) ∪R (G,B))r ug (F,A)r e (G,B)r.

(2) ((F,A) e (G,B))r ug (F,A)r ∪R (G,B)r.

Proof. Suppose that

(F,A) ∪R (G,B) = (H,A ∩B),

((F,A) ∪R (G,B))r = (Hr, A ∩B),

(F,A)r e (G,B)r = (K,A ∩B),

Now for e ∈ A ∩B, we have

Hr(e) = U −H(e) = U − [F (e) ∪G(e)] = (U − F (e)) ∩ (U −G(e)) = K(e).

Since for all e ∈ A ∩B, Hr and K are same approximations, so we conclude

that

((F,A) ∪R (G,B))r ug (F,A)r e (G,B)r.

Now from (1), we obtain that

((F,A)r ∪R (G,B)r)r ug ((F,A)r)r e ((G,B)r)r ug (F,A) e (G,B).

Hence

(F,A)r ∪R (G,B)r ug ((F,A) e (G,B))r.

Theorem 2.3.16 Let (F,A), and (G,B) be soft sets over a common universe

U such that A ∩B 6= ∅, then

(1) ((F,A)∪̃(G,B))r ug (F,A)r uε (G,B)r.

(2) ((F,A) uε (G,B))r ug (F,A)r∪̃(G,B)r.

Proof. Suppose that

(F,A)∪̃(G,B) = (H,A ∪B),

((F,A)∪̃(G,B))r = (Hr, A ∪B), and

(F,A)r uε (G,B)r = (K,A ∪B).
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Now for e ∈ A ∪B, if e ∈ A and e /∈ B, then Hr(e) = U −H(e) = U − F (e)

and K(e) = F r(e) = U−F (e). If e /∈ A and e ∈ B, then Hr(e) = U−H(e) =

U −G(e) and K(e) = Gr(e) = U −G(e). If e ∈ A and e ∈ B, then

Hr(e) = U −H(e) = U − [F (e) ∪G(e)] = [U − F (e)) ∩ (U −G(e)]

and

K(e) = F r(e) ∩Gr(e) = [U − F (e)) ∩ (U −G(e)].

Hence

(Hr, A ∪B) = (K,A ∪B).

As for all e ∈ A∪B, Hr and K are the same approximations, so we conclude

that

((F,A)∪̃(G,B))r ug (F,A)r uε (G,B)r.

Now from (1) we obtain

((F,A)r∪̃(G,B)r)r ug ((F,A)r)r uε ((G,B)r)r ug (F,A) uε (G,B).

Hence

(F,A)r∪̃(G,B)r ug ((F,A) uε (G,B))r.

Theorem 2.3.17 [104, Theorem 24-26] Let (F,A) and (G,B) be two soft

sets over a common universe U . Then (F,A) ≈s (G,B) if and only if

(a) (F,A)∪̃(G,B) ≈s (F,A) e (G,B),

(b) (F,A)∪̃(G,B) ≈s (F,A) uε (G,B),

(c) (F,A) ∪R (G,B) ≈s (F,A) e (G,B),

(d) (F,A) ∪R (G,B) ≈s (F,A) uε (G,B).

Theorem 2.3.17 does not hold if we replace ≈s with soft equality ug .

Following example illustrates the fact.
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Example 2.3.18 Suppose that U = {h1, h2, h3, h4} and A = {e1, e2}. Soft

sets (F,A) and (G,A) are given as:

(F,A) = {(e1, {h1, h2}), (e2, {h3, h4})} and

(G,A) = {(e1, {h3, h4}), (e2, {h1, h2})}.

Clearly F (e1) ∪ G(e1) = F (e2) ∪ G(e2) = U and F (e1) ∩ G(e1) = F (e2) ∩
G(e2) = ∅. Hence

(F,A)∪̃(G,A) 6u g(F,A) e (G,A),

(F,A)∪̃(G,A) 6u g(F,A) uε (G,A),

(F,A) ∪R (G,A) 6u g(F,A) e (G,A),

(F,A) ∪R (G,A) 6u g(F,A) uε (G,A).

Remark 2.3.19 The lower soft equality relation ≈s is a congruence relation

( [104, Theorem 28]) that is (F,A) ≈s (G,A) and (H,A) ≈s (I, A) imply that

(F,A)e (H,A) ≈s (G,A)e (I, A) and (F,A)∪̃(H,A) ≈s (G,A)∪̃(I, A), while

ug is not a congruence relation. To see it consider the following example.

Example 2.3.20 Suppose that U = {h1, h2, h3, h4} and A = {e1, e2}. Soft

sets (F,A), (G,A), (H,A) and (I, A) are given as:

(F,A) = {(e1, U), (e2, {h1, h3})},

(G,A) = {(e1, {h2, h4}), (e2, U)},

(H,A) = {(e1, {h1, h2}), (e2, {h3, h4})}, and

(I, A) = {(e1, {h3, h4}), (e2, {h1, h2})}.

Clearly (F,A) ug (G,A) and (H,A) ug (I, A). Now let (F,A) e (H,A) =

(J,A), (G,A)e(I, A) = (K,A), (F,A)∪̃(H,A) = (L,A) and (G,A)∪̃(I, A) =

(M,A). Now

(J,A) = {(e1, {h1, h2}), (e2, {h3})},

(K,A) = {(e1, {h4}), (e2, {h1, h2})},

(L,A) = {(e1, U), (e2, {h1, h3, h4})}, and

(M,A) = {(e1, {h2, h3, h4}), (e2, U)}.
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Note that (J,A) 6ug (K,A) and (L,A) 6ug (M,A). Hence (F,A) e (H,A) 6ug

(G,A)e (I, A) and (F,A)∪̃(H,A) 6ug (G,A)∪̃(I, A). Consequently ug is not

a congruence relation.
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Chapter 3

Fixed Points of Fuzzy Soft

Mappings

The material of this chapter is an adaptation to the thesis of the content of

the paper by Muhajid Abbas, Asma Khalid and Salvador Romaguera, “Fixed

points of fuzzy soft mappings”, published in the JCR-journal Applied Math-

ematics and Information Sciences 8 (2014), 2141-2147.

35
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Wardowski [128] introduced a notion of soft mappings and obtained a

fixed point result for a fixed point of a soft mapping in soft compact Hausdorff

topological spaces. He also studied the properties of soft compact topological

spaces. His main result is based on the fact that a decreasing sequence

of nonempty soft closed subsets in soft compact topological spaces has a

nonempty intersection.

Roy and Samanta [114] introduced the concept of a fuzzy soft topology

and studied some of its basic properties. Neog et al. [100], and Mahanta

and Das [85] explored the notions of fuzzy soft mappings. For the discussion

on the algebraic structure binary lattice valued fuzzy relations, we refer to

[102].

Investigation of fixed points in fuzzy soft topological spaces is an interest-

ing area of research not yet explored. In this chapter, we initiate the study

of fuzzy soft mappings and then obtain its fixed points. For this purpose

we discuss some properties of a fuzzy soft element needed to prove our main

result. A concept of fuzzy soft mapping is at the center of fixed point theory

in the setup of fuzzy soft topology. We introduce fuzzy soft mappings with

the help of Cartesian product and relations on fuzzy soft sets in fuzzy soft

topological spaces. We prove that fuzzy soft continuous mappings preserve

fuzzy soft compactness. This chapter also includes the fuzzy soft Cantor’s

intersection theorem. Finally we studied some necessary conditions for the

existence of unique fuzzy soft element which serves as a fixed point of fuzzy

soft mapping defined on a fuzzy soft compact Hausdorff topological space.

3.1 Introduction and preliminaries

Throughout this section, by U, E and P (U), we denote an initial universe, a

set of parameters, and the collection of all subsets of U , respectively.

Definition 3.1.1 [136] A fuzzy set A in U is characterized by a function

with domain as U and values in [0, 1]. The collection of all fuzzy sets in U is
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denoted by IU .

Definition 3.1.2 [136] An empty fuzzy set denoted by 0̃ is a function which

maps each x ∈ U to 0. That is, 0̃(x) = 0 for all x ∈ U. A universal fuzzy set

denoted by 1̃ is a function which maps each x ∈ U to 1. That is, 1̃(x) = 1

for all x ∈ U .

If A,B ∈ IU we write A � B whenever A(x) ≤ B(x) for each x ∈ U, and

A = B whenever A � B and B � A for all x ∈ U .

Definition 3.1.3 [136] Let A and B be two fuzzy sets. Then (a) their union

A ∪ B is defined as (A ∪ B)(x) = max{A(x), B(x)}; (b) their intersection

A ∩ B is defined as (A ∩ B)(x) = min{A(x), B(x)}, and (c) difference of B

from A is denoted by A /B and is defined by (A /B)(x) = A(x)− B(x) for

all x ∈ U .

Note that an implicit assumption B � A has been imposed to make the

operation A /B well defined.

Definition 3.1.4 [136] Then complement of a fuzzy set A is denoted by Ac

and is defined by Ac(x) = 1− A(x).

Definition 3.1.5 [96] If F is a mapping on E taking values in P (U), then a

pair (F,E)s is called a soft set over (U,E).

Definition 3.1.6 [86] Let A be a subset of E. A pair (F,A) is called a

fuzzy soft set over (U,E) if F : A → IU is a mapping from A into IU . The

collection of all fuzzy soft sets over (U,E) is denoted by F(U,E).

A fuzzy soft set (F,A) over (U,E) is said to be:

(a) null fuzzy soft set if for each e ∈ A, F (e) is a null fuzzy set 0̃ over U.

We denote it by Φ̃.

(b) absolute fuzzy soft set if for each e ∈ A,F (e) is a fuzzy universal set

1̃ over U. We denote it by Ẽ.

Definition 3.1.7 [86] For two fuzzy soft sets (F,A) and (G,B) in F(U,E),

we say that (F,A)⊆̃(G,B) if A ⊆ B and F (e) � G(e) for each e ∈ A.
Definition 3.1.8 [86] Two fuzzy soft sets (F,A) and (G,B) in F(U,E) are

equal if F ⊆̃G and G⊆̃F.
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Definition 3.1.9 [86] The difference between two fuzzy soft sets (F,E), (G,E)

in F(U,E) is a fuzzy soft set (F /̃G,E) (say) defined by (F /̃G)(e) = F (e)/G(e)

for each e ∈ E.
Definition 3.1.10 [86] The complement of a fuzzy soft set (F,E) is a fuzzy

soft set (F c̃, E) defined by F c̃(e) = 1̃ / F (e) for each e ∈ E.
Clearly F c̃ = Ẽ/̃F, Φ̃c̃ = Ẽ, and ((F )c̃)c̃ = F.

Definition 3.1.11 [6] Let (F,A) and (G,B) be two fuzzy soft sets in F(U,E)

with A∩B 6= Φ̃, then (d) their intersection (F ∩̃G,C) is a fuzzy soft set, where

C = A ∩ B and, (F ∩̃G)e = F (e) ∩ G(e) for each e ∈ C, and (e) their union

(F ∪̃G,C) is a fuzzy soft set, where C = A∪B and (F ∪̃G)e = F (e) ∪ G(e)

for each e ∈ C.

Definition 3.1.12 [114] A fuzzy soft topology τ on F ∈ F(U,A) is a collec-

tion of fuzzy soft subsets of F satisfying:

1. Φ̃, F ∈ τ ( this means that Ẽ is fuzzy soft subset of F, that is, 1̃ (e) � F (e),

that is 1 ≤ F (e)(x)

2. If F1, F2 ∈ τ then F1∩̃F2 ∈ τ .

3. If Fα ∈ τ for all α ∈ Λ, with Λ an index set, then ∪̃α∈ΛFα ∈ τ.

4. If τ is a fuzzy soft topology on F then the pair (F, τ) is called a fuzzy soft

topological space.

3.2 Fuzzy soft elements

Fuzzy soft element is defined as follows.

Definition 3.2.1 [100], [85] Let e be any element in a set A ⊆ E. A fuzzy

soft set F over A is called a fuzzy soft element if F (e′) is a null fuzzy set for

each e′ ∈ A− {e}. We denote it by (F e, A) or simply by F e

A fuzzy soft element F e is said to be in fuzzy soft set (G,B) if (F e, A)⊆̃(G,B).

That is, A ⊆ B and F e(e′) � G(e′) for each e′ ∈ A, that is, F e(e) � G(e′) for
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each e′ ∈ A. We write it as F e∈̃G. It is straightforward to check that union

of all fuzzy soft elements corresponding to each parameter e ∈ A is equal to

the approximate fuzzy soft set F (e) and therefore the collection of all such

unions, corresponding to each parameter, results in the original fuzzy soft

set (F,A).

Remark 3.2.2 Note that if F is a fuzzy soft set in F(U,E) and F e∈̃F then

F = {∪̃F e∈̃FF
e : e ∈ E}.

Example 3.2.3 Let F be the fuzzy soft set in F(U,E) defined as

F = {(e1, {
u1

0.5
,
u2

0.3
}), (e2, {

u1

0.7
,
u2

0.4
})}

Then some of the fuzzy soft elements of F are

F e1 = {(e1, {
u1

0.3
,
u2

0.1
})}, ze1 = {(e1, {

u1

0.5
,
u2

0.3
})} and

F e2 = {(e2, {
u1

0.7
,
u2

0.4
})}.

Note that F e1∪̃ze1 = {(e1, {
u1

0.5
,
u2

0.3
})} = F (e1). Similarly,

∪̃F e2 = {(e2, {
u1

0.7
,
u2

0.4
}) = F (e2).

Therefore, {∪̃F e1∈FF
e1 , ∪̃F e2F e2} = F.

Basic properties with held by fuzzy soft elements are stated in the follow-

ing proposition.

Proposition 3.2.4 Let F1, F2 be two fuzzy soft sets over (U,E) and e ∈ E
The following holds.

i) Φ̃ is an empty fuzzy soft element of every fuzzy soft set.

ii) If F is a fuzzy soft set such that F 6= Φ̃, then F contains at least one

non empty fuzzy soft element.

iii) If F e∈̃F1∪̃F2 then F e is a fuzzy soft element of F1 or F2.

iv) F e∈̃F1∩̃F2 if and only if F e is a fuzzy soft element of F1 and F2.
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v) If F e∈̃F1\̃F2 then F e is a fuzzy soft element of F1 but not necessarily

a fuzzy soft element of F2.

Proof. 1. Let e be an element of E and F a fuzzy soft set over E.

Obviously, Φ̃(e) � F (e) as Φ̃(e)(x) = 0 for each x ∈ U. Therefore Φ̃ is an

empty fuzzy soft element of every fuzzy soft set.

2. If F 6= Φ̃, then there exists at least one e∗ ∈ E such that F (e∗) 6= 0̃,

that is, there exists an x ∈ U for which F (e∗)(x) 6= 0. Let F (e∗)(x) = ε for

some ε ∈ (0, 1]. Then we define F1 such that

F1(e∗)(x) =
ε

2
and F1(e)(x) = 0 whenever e 6= e∗.

This implies that F1(e∗) � F (e∗). If e 6= e∗, then 0̃ = F1(e) � F (e). Hence

fuzzy soft set F1 is a non empty fuzzy soft element of F.

3. Let F e be a fuzzy soft element of F1∪̃F2, that is, F e∈̃(F1∪̃F2) which

implies that F e(e) � F1(e
′
) ∪ F2(e

′
) for each e

′ ∈ E . So, for each x ∈ U,

F e(e)(x) ≤ max{F1(e′)(x), F2(e′)(x)}. Now if F1(e′)(x) ≤ F2(e′)(x) then for

each e′ ∈ E, F e(e) � F2(e′). Hence F e∈̃ F2. If F2(e′)(x) ≤ F1(e′)(x) then

F e(e) � F1(e′) for each e′ ∈ E which implies that F e∈̃ F1. So, F e∈̃F1 or

F e∈̃F2. Conversely, suppose that F e∈̃F1 or F e∈̃F2. Then F e(e) � F1(e′) or

F e(e) � F2(e′) for each e′ ∈ E, that is, for all x ∈ U, F e(e)(x) ≤ F1(e′)(x) or

F e(e)(x) ≤ F2(e′)(x). Thus F e(e)(x) ≤ max{F1(e′)(x), F2(e′)(x)}. Therefore

F e∈̃F1∪̃F2.

4. Let F e∈̃(F1∩̃F2) which implies that F e(e) � F1(e′) ∩ F2(e′) for each

e′ ∈ E. So for each x ∈ U,

F e(e)(x) ≤ min{F1(e′)(x), F2(e′)(x)}.

If F1(e′)(x) ≤ F2(e′)(x) then F e(e)(x) ≤ F1(e′)(x) ≤ F2(e′)(x) implies that

F e is a fuzzy soft element of F1 and F2. Similarly if F2(e′)(x) ≤ F1(e′)(x)

then F e(e)(x) ≤ F2(e′)(x) ≤ F1(e′)(x) means that F e is a fuzzy soft element
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of F2 and F1. Conversely, suppose that F e∈̃F1 and F e∈̃F2. Then, for each

e′ ∈ E,F e(e) � F1(e′) and F e(e) � F2(e′) which implies that

F e(e)(x) ≤ min{F1(e′)(x), F2(e′)(x)}

for each x in U. Therefore, F e∈̃F1∩̃F2.

5. Let F e∈̃F1\̃F2. Then, F e(e) � F1(e′)\F2(e′) for each e′ ∈ E, that is,

F e(e)(x) ≤ F1(e′)(x)− F2(e′)(x) for each x ∈ U. Then F e(e)(x) ≤ F1(e′)(x)

but the real number F e(e)(x) is not necessarily less than F2(e′)(x) for each

x. Therefore, F e is a fuzzy soft element of F1 but F e is not necessarily a

fuzzy soft element of F2.

Example 3.2.5 Suppose that U = {u1, u2, u3} and E = {e1, e2}. Let

F,G ∈ F(U,A) be of the form

F = {(e1, {
u1

0.6
,
u2

0.8
,
u3

0.3
}, (e2, {

u1

0.4
,
u2

0.6
,
u3

0.7
})} and

G = {(e1, {
u1

0.5
,
u2

0.8
,
u3

0.3
}, (e2, {

u1

0.2
,
u2

0.4
,
u3

0.3
})}.

Note that

F ∪̃G = {(e1, {
u1

0.6
,
u2

0.8
,
u3

0.3
}, (e2, {

u1

0.4
,
u2

0.6
,
u3

0.7
})},

F ∩̃G = {(e1, {
u1

0.5
,
u2

0.8
,
u3

0.3
}, (e2, {

u1

0.2
,
u2

0.4
,
u3

0.3
})}, and

F \̃G = {(e1, {
u1

0.1
}, (e2, {

u1

0.2
,
u2

0.2
,
u3

0.4
})}.

F e1 = {(e1, { u10.4
, u2

0.1
, u3

0.3
})} is a soft fuzzy element of F. Note that F e1∈̃F ∪̃G.

Similarly, F e1∈̃F ∩̃G. Also, F e2 = {(e2, { u10.1
, u2

0.1
, u3

0.4
})} is a soft fuzzy point of

F \̃G then F e2∈̃F but F e2 is not a fuzzy soft element of G.

Proposition 3.2.6 Let F1, F2 be two fuzzy soft sets over E. Then F1⊆̃F2

if and only if F e∈̃F1 implies that F e∈̃F2.

Proof. Let F1⊆̃F2 then F1(e) � F2(e) for each e ∈ E, that is F1(e)(x) ≤
F2(e)(x) for each x ∈ U . Suppose that F e∈̃F1. That is, for each e′ ∈ E,

F e(e) � F1(e′) and hence F e(e) � F2(e′) for each e′ ∈ E. Therefore, F e∈̃F2.
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Conversely, suppose that every fuzzy soft element F e in F1 is also a fuzzy soft

element of F2. Let F
e

1 to be the largest fuzzy soft element of F1 for each e ∈ E
then F

e

1∈̃F2. Let ε ∈ (0, 1] and F
e

1(e)(x) + ε be such that F
e

1(e)(x) + ε ≤
F2(e′)(x) for each x ∈ U. That is, F

e

1(e)(x) ≤ F2(e′)(x) for each e′ ∈ E.

Therefore, F1⊆̃F2.

Definition 3.2.7 [85] A fuzzy soft topological space (F, τ) is said to be a

fuzzy soft Hausdorff space if for distinct fuzzy soft elements F e, F e′ of F,

there exists disjoint fuzzy soft open sets (F1, A) and (F2, A) such that F e∈̃F1

and F e′∈̃F2.

Proposition 3.2.8 Let (F, τ) be a fuzzy soft topological space. A fuzzy

soft set V ⊆̃F is fuzzy soft open if and only if for each F e∈̃V there exists a

fuzzy soft set W ∈̃τ such that F e∈̃W ⊆̃V.
Proof. Let V ∈ τ. Then clearly for each F e∈̃V we have F e∈̃V ⊆̃V. Let V ⊆̃F
be such that for each F e∈̃V there exists a fuzzy soft open set WF e such that

F e∈̃WF e⊆̃V which means that F e(e) � WF e(e′) � V (e′) for each e′ ∈ E.

By Remark 3.2.2, for each e ∈ E, V (e) = ∪̃{F e : F e∈̃V }⊆̃ ∪̃WF e(e)⊆̃V (e).

Therefore, V = {∪̃WF e : e ∈ E} ∈ τ.

3.3 Fuzzy soft mappings

In this section, a concept of fuzzy soft mapping is introduced. Relevant

definitions are formulated and some properties of fuzzy soft mappings are

studied.

Definition 3.3.1 [10] The Cartesian product of two fuzzy soft sets (F,A)

and (G,B) is defined as a fuzzy soft set (H,C) = (F,A)×̂(G,B), where

C = A×B and H : C → F(U,E) is defined by

H(e, e′) = F (e)×̃G(e′)

for all (e, e′) ∈ C, where F (e)×̃G(e′) = { x

min{F (e′)(x), G(e′)(x)
: x ∈ U}.
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Example 3.3.2 Let U = {u1, u2} and A = {e1, e2, e3}. Define fuzzy soft

sets F1 and F2 as follows:

(F1, A) = {(e1, {
u1

0.6
,
u2

0.5
}), (e2, {

u1

0.3
,
u2

0.5
}), (e3, {

u1

0.2
,
u2

0.7
})} and

(F2, A) = {(e1, {
u1

0.3
,
u2

0.4
}), (e2, {

u1

0.6
,
u2

0.7
}), (e3, {

u1

0.5
,
u2

0.4
})}.

Then (F1, A)×̂(F2, A) = (H,C) where C = A× A and H is given by

H(e1, e1) = F1(e1)×̃F2(e1) = { u1

0.3
,
u2

0.4
},

H(e1, e2) = F1(e1)×̃F2(e2) = { u1

0.6
,
u2

0.5
},

H(e1, e3) = F1(e1)×̃F2(e3) = { u1

0.5
,
u2

0.4
},

H(e2, e1) = F1(e2)×̃F2(e1) = { u1

0.3
,
u2

0.4
},

H(e2, e2) = F1(e2)×̃F2(e2) = { u1

0.3
,
u2

0.5
},

H(e2, e3) = F1(e2)×̃F2(e3) = { u1

0.3
,
0.4

u2

},

H(e3, e1) = F1(e1)×̃F2(e1) = { u1

0.2
,
u2

0.4
},

H(e3, e2) = F1(e1)×̃F2(e1) = { u1

0.2
,
u2

0.7
},

H(e3, e3) = F1(e1)×̃F2(e1) = { u1

0.2
,
u2

0.4
}.

Definition 3.3.3 Let (F1, A), (F2, A) be fuzzy soft sets in F(U,E). A fuzzy

soft set R is called a fuzzy soft relation from F1 to F2 if R = (G,D) where

D ⊆ C and G = H on D.

Example 3.3.4 Let F1, F2 be as given in Example 3.3.2. Then

R = {F1(e1)×̃F2(e2), F1(e2)×̃F2(e3), F1(e3)×̃F2(e3)}

is a fuzzy soft relation from F1 to F2 which itself is a fuzzy soft set with

{(e1, e1), (e2, e3), (e3, e3)} as a set of parameters. By F1RF2,we mean that

F1(e1)×̃F2(e2) ∈ R.
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We now introduce a fuzzy soft mapping.

Definition 3.3.5 Let F,G be fuzzy soft sets in F(U,E). A fuzzy soft

relation T from F to G is called a fuzzy soft mapping from F to G denoted

by T : F → G if the following conditions are satisfied.

C1 for each fuzzy soft element F e∈̃F, there exists only one fuzzy soft element

Ge∈̃G such that F eTGe which will be denoted as T (F e) = Ge.

C2 for each fuzzy soft empty element F e∈̃F, T (F e) is a empty fuzzy soft

element of G.

Definition 3.3.6 Let F,G be fuzzy soft sets in F(U,E) and T : F → G a

fuzzy soft mapping. The image of X⊆̃F under soft fuzzy mapping T is the

fuzzy soft set T (X) defined by

T (X) = {∪̃F e∈̃X T (F e) : e ∈ E}.

It is clear that T (Φ̃) = Φ̃ for each fuzzy soft mapping T.

Definition 3.3.7 Let F,G ∈ F(U,A) and T : F → G a soft fuzzy mapping.

The inverse image of Y ⊆̃G under fuzzy soft mapping T is the fuzzy soft set

denoted by T−1(Y ) and defined as:

T−1(Y ) = {{∪̃F e∈̃FF
e : e ∈ E } : T (F e)∈̃Y for each e ∈ E}.

Example 3.3.8 Let F and G be defined as:

F = {(e1, {
u1

0.6
,
u2

0.4
}), (e2, {

u1

0.3
,
u2

0.7
})} and

G = {(e1, {
u1

0.2
,
u2

0.6
}), (e2, {

u1

0.7
,
u2

0.8
})}.

Define T as T (F e) = Ĝe for each e ∈ E, where Ĝe is the largest fuzzy soft

element corresponding to each parameter e ∈ E, that is, if Ge is any fuzzy

soft element in G then Ge⊆̃Ĝe. So, T (F e1) = Ĝe1 = { u1

0.2
,
u2

0.6
} for all F e1∈̃F
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and T (F e2) = Ĝe2 = { u1

0.7
,
u2

0.8
} for all F e2∈̃F. Moreover,

T (F ) = {∪F e∈̃XT (F e) : e ∈ E} = {{∪F e1 ∈̃XT (F e1)}, {∪F e2 ∈̃XT (F e2)}}

= {Ĝe1 , Ĝe2} = G.

Proposition 3.3.9 Let F,G∈ F(U,E),(X,E),(X1, E), (X2, E) ⊆̃(F,E), and

(Y,E), (Y1, E), (Y2, E)⊆̃(G,E). Let T : F → G be a fuzzy soft mapping.

Then following hold.

i. X1⊆̃X2 ⇒ T (X1)⊆̃T (X2),

ii. Y1⊆̃Y2 ⇒ T−1(Y1)⊆̃T−1(Y2),

iii. X⊆̃T−1(T (X)),

iv. T (T−1(Y ))⊆̃Y,

v. T (X1∪̃X2) = T (X1)∪̃T (X2),

vi. T (X1∩̃X2) = T (X1)∩̃T (X2),

vii. T−1(Y1∪̃Y2) = T−1(Y1)∪̃T−1(Y2), and

Viii T−1(Y1∩̃Y2) = T−1(Y1)∩̃T−1(Y2).

Proof. i. Let F e be an arbitrary fuzzy soft element in T (X1) then there

exists a fuzzy soft element ze in X1 such that T (ze) = F e. As X1⊆̃X2 so ze

is a fuzzy soft element of X2. So for every fuzzy soft element F e in T (X1),

F e is a fuzzy soft element in T (X2). Hence the result.

v. Let ze ∈̃T (X1∪̃X2). Then ze = T (F e) for some F e∈̃X1∪̃X2. If F e∈̃X1

thenze∈̃T (X1)⊆̃T (X1)∪̃ T (X2) and if F e∈̃X2 thenze∈̃T (X2)⊆̃T (X1)∪̃T (X2).

Therefore, T (X1∪̃X2)⊆̃ T (X1)∪̃T (X2). Now let ze∈̃T (X1)∪̃T (X2), that is,

ze is fuzzy soft element of T (X1) or T (X2). If F e∈̃T (X1), then T (X1)⊆̃T (X1∪̃X2)
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gives F e∈̃T (X1∪̃X2). Similarly, If F e∈̃T (X2), then T (X2)⊆̃T (X1∪̃X2) gives

F e∈̃T (X1∪̃X2). Therefore T (X1)∪̃T (X2)⊆̃T (X1∪̃X2). So we conclude that

T (X1∪̃X2) = T (X1)∪̃T (X2).

viii. If F e∈̃T−1(Y1∩̃Y2) then T (F e)∈̃Y1∩̃Y2. Since for each e ∈ E,

T (F e)⊆̃Y1(e) ∩ Y2(e),then, for all x, T (F e)(x) is less than the minimum of

Y1(e)(x) and Y2(e)(x). Hence, F e∈̃ T−1(Y1)∩̃T−1(Y2) and therefore,

T−1(Y1∩̃Y2)⊆̃T−1(Y1)∩̃T−1(Y2).

Now, let F e∈̃T−1(Y1)∩̃T−1(Y2). Then following similar arguments to those

given above it follows that T (F e)∈̃Y1and T (F e)∈̃Y2. It follows from here that

F e∈̃T−1(Y1∩̃Y2). So, T−1(Y1)∩̃T−1(Y2)⊆̃T−1(Y1∩̃Y2).

Proofs of the rest of the properties follow on similar lines.

Definition 3.3.10 Let (F, τ) be a fuzzy soft topological space and K⊆̃F. A

fuzzy soft open cover for K is a collection of fuzzy soft open sets {Vi}i∈I ⊆ τ

whose union contains K.

Definition 3.3.11 A fuzzy soft topological space (F, τ) is compact if for

each fuzzy soft open cover {Vi}i∈I of K there exists i1, i2, .., ik ∈ I, k ∈ N
such that K⊆̃ ∪kn=1 Vin .

Definition 3.3.12 Let (F, τ), (G, v) be fuzzy soft topological spaces and

T : F → G a soft fuzzy mapping. Then T is a fuzzy soft continuous mapping

(with respect to the fuzzy soft topologies τ and v ) if for each V ∈ v, T−1(V ) ∈
τ , that is, the inverse image of a fuzzy soft open set is a fuzzy soft open set.

We say that the fuzzy soft set K⊆̃F is fuzzy soft compact in (F, τ) if the

fuzzy soft topological space (K, τ|K) is fuzzy soft compact.

Example 3.3.13 Let U = {u1, u2, u3}, E = {e1, e2, e3}. Suppose F ∈
F(U,A) is of the form F = {(e1, {

u1

1
,
u2

1
,
u3

0.7
}), (e2, {

u1

0.6
,
u2

0.9
,
u3

0.7
})}. Con-

sider the family τ of all fuzzy soft subsets of F and let V = F̂ e1 ∈ τ where

F̂ e1 is the largest fuzzy soft element of F. Define T : F → F as T (F e) = F e

for each e ∈ E. Then, T−1(F̂ e1) = F̂ e1 ∈ τ.
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Proposition 3.3.14 Let (K, τ) be a fuzzy soft compact topological space

and T : K → K a fuzzy soft continuous mapping. Then T (K) is a fuzzy soft

compact set in (K, τ).

Proof. Suppose that T (K)⊆̃∪̃`G`, where {G`} is a family of fuzzy soft open

sets in K. Then taking the preimage, we have, K⊆̃T−1(∪̃`G`). As T−1(G`) is

open in K so there must exist soft fuzzy open V`⊆̃T (K) such that T−1(G`)

= V`∩̃K. So K⊆̃∪̃`(V`∩̃K) implies that K⊆̃∪̃`V`. Since K is compact fuzzy

soft set, therefore there exist `1, `2, ..., `N such that K⊆̃∪̃Ni=1V`i . Hence

K = ∪̃`(V`∩̃K) = ∪̃Ni=1T
−1(G`i) which implies that T (K)⊆̃∪̃Ni=1G`i . Hence

T (K) is compact.

3.4 Fixed points of fuzzy soft mappings

We start this section with the definition of a fixed point of a fuzzy soft

mapping.

Definition 3.4.1 Let F ∈ F(U,A) be a fuzzy soft set and T : F → F a

fuzzy soft mapping. A fuzzy soft element F e∈̃F is called a fixed point of T

if T (F e) = F e.

Example 3.4.2 If T : F → F is defined as an identity map, then each

fuzzy soft element of F is a fixed point.

Proposition 3.4.3 Let (F, τ) be a fuzzy soft compact topological space

and {Fn : n ∈ N} a countable family of fuzzy soft subsets of F satisfying:

AI. Fn 6= Φ̃ for each n ∈ N,

A2. Fn is fuzzy soft closed for each n ∈ N,

A3. Fn+1⊆̃Fn for each n ∈ N.

Then ∩̃n∈NFn 6= Φ̃.

Proof. Suppose on the contrary, that ∩̃n∈NFn = Φ̃. We know that

(∩̃n∈NFn)c̃ = ∪̃n∈N(Fn)c̃ (see [6]). From (A2), (Fn)̃c is a fuzzy soft open
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set for each n ∈ N. Hence

F ⊆̃Ẽ = (Φ̃)c̃ = (∩̃n∈NFn)c̃ = ∪̃n∈N(Fn)c̃.

As F is fuzzy soft compact, there exists i1, i2, ..., ik ∈ N, i1 < i2 < ... < ik,

k ∈ N such that

F ⊆̃F c̃
i1
∪̃F c̃

i2
, ...∪̃F c̃

ik
.

Hence from (A3), we have, Fik⊆̃F ⊆̃(Fi1∩̃Fi2∩̃...∩̃Fik)c̃ = F
c̃

ik
= Ẽ/Fik , which

is impossible in the light of (A1).

Example 3.4.4 Let (F, τ) be a fuzzy soft topological space where τ contains

all possible subsets of F = {(e1, {
u1

1
,
u2

0.7
}), (e2, {

u1

0.9
,
u2

1
})}. Let two fuzzy

soft subsets of F be defined as

F1 = {(e1, {
u1

0.4
,
u2

0.5
}), (e2, {

u1

0.8
,
u2

0.4
})}

and

F2 = {(e1, {
u1

0.6
,
u2

0.3
}), (e2, {

u1

0.8
,
u2

0.5
})}.

Note that they satisfy the conditions of proposition 36. Moreover F1⊆̃F2 and

∩̃2
j=1Fj = F1 6= Φ̃.

Proposition 3.4.5 Let (F, τ) be a fuzzy soft topological space and T :

F → F a fuzzy soft mapping such that for each nonempty fuzzy soft element

F e∈̃F, T (F e) is a non empty fuzzy soft element of F. If ∩̃n∈NT n(F ) contains

only one nonempty fuzzy soft element F e∈̃F, then F e is a unique fixed point

of T.

Proof. Observe that T n(F )⊆̃T n−1(F ) for each n ∈ N. Let F e be a fuzzy

soft element of F such that F e∈̃ ∩̃n∈NT n(F ). That is, F e⊆̃∩̃n∈NT n(F ). Con-

sequently

T (F e)⊆̃T (∩̃n∈NT n(F ))⊆̃∩̃n∈NT n+1(F )⊆̃∩̃n∈NT n(F ) = F e.

Since T (F e) is a non empty fuzzy soft element of F , therefore we obtain that

T (F e) = F e.
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Example 3.4.6 Let (F, τ) be a fuzzy soft topological space and define

T : F → F as T (F e) = F̂ e for all F e∈̃F, where F 6= Φ̃ and F̂ e represents

the largest fuzzy soft element of F or equivalently F e⊆̃F̂ e for each fuzzy

soft element F e∈̃F. Then ∩̃n∈NT n(F ) contains only one non empty fuzzy soft

element which is F̂ e. Note that F̂ e is a unique fixed point of T.

Proposition 3.4.7 Let (F, τ) be a fuzzy soft Hausdorff topological space.

Then every fuzzy soft compact set in F is fuzzy soft closed in F.

Proof. Let K be a fuzzy soft compact set in (F, τ). We need to show that

K is fuzzy soft closed, that is, K c̃ is fuzzy soft open. Let F e∈̃K c̃. For every

F e′∈̃K, let Ui, Vi ∈ τ be such that Ui∩̃Vi = Φ̃ and F e∈̃Ui, F e′∈̃Vi where i ∈ I.
Since K is fuzzy soft compact so there exists F e′ , F e′ , ..., F e′∈̃K such that

K⊆̃ Vi1∪̃Vi2∪̃...∪̃Vik . Denote U = Ui1∪̃Ui2∪̃...∪̃Uik and V = Vi1∪̃Vi2∪̃...∪̃Vik .
Then F e∈̃U ∈ τ, U ∩̃V = Φ̃, which gives that F e∈̃U⊆̃ K c̃. Therefore K is

fuzzy soft closed.

Theorem 3.4.8 Let (K, τ) be a fuzzy soft compact Hausdorff topological

space and T : K → K a fuzzy soft continuous mapping such that

(a). for each non empty fuzzy soft element F e∈̃K,T (F e) is a non empty

fuzzy soft element of K,

(b). for each fuzzy soft closed set X⊆̃K if T (X) = X then X contains only

one non empty fuzzy soft element of K.

Then there exists a unique nonempty fuzzy soft element F e∈̃K such that

T (F e) = F e.

Proof. Consider a family of fuzzy soft subsets of K of the form

C1 = T (K), C2 = T (C1) = T 2(K), ..., Cn = T (Cn−1) = T n(K)

for n ∈ N. It is clear that Cn⊆̃Cn−1 for each n ∈ N. By proposition 40, for

each n ∈ N, Cn is fuzzy soft closed. Using Proposition 3.4.7, we conclude

that a fuzzy soft set D of the form D = ∩n∈N Cn is non empty. Observe that

T (D) = T (∩n∈NT n(K))⊆̃ ∩n∈N T n+1(K)⊆̃ ∩n∈N T n(K) = D.
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Now we show that D⊆̃T (D). For this, suppose that there exists F e∈̃D such

that F e is not a fuzzy soft element of T (D). Put En = T−1(F e)∩̃Cn. Let

us observe that En 6= Φ̃ and En⊆̃En−1 for each n ∈ N. By proposition

36, there exists non empty fuzzy soft element ze′∈̃T−1(F e)∩̃D and thus

F e = T (ze′)∈̃T (D), a contradiction. Therefore, T (D) = D.

Hence the result follows using of Proposition 3.4.7.



Chapter 4

Soft Contraction Mappings

The material of this chapter is an adaptation to the thesis of the content of the

paper by Muhajid Abbas, Ghulam Murtaza and Salvador Romaguera, “Soft

contraction mappings”, which is accepted for publication in the JCR-journal

Journal of Nonlinear and Convex Analysis

51
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4.1 Introduction and preliminaries

The notions of soft real sets, soft real numbers have several applications in

real life problems [29]. These concepts paved a way to introduce soft metric

spaces [28]. It is known that a soft metric space is also a soft topological

space. The study of soft metric spaces and its properties is in a developing

stage. On the other hand, intersection of soft set theory and fixed point

theory is a very recent trend. Wardowski [128] defined the concept of a soft

mappings and obtained some fixed point results in the framework of soft

topological spaces. This is a beginning of a new area of research.

Fixed point results of mappings satisfying certain contractive condition

on the entire domain has been at the centre of vigorous research activity.

From application point of view, the situation is not completely satisfactory

because it frequently happens that a mapping is a contraction not on the

entire domain X but merely on a subset Y of X. However if Y is closed, then

it is complete and T has a fixed point x in Y and {xn} converges to x as in

the case of the whole space of X provided we impose some subtle restriction

on the choice of initial guess x0 .

In this chapter, a concept of fixed point in soft metric spaces is studied.

In order to achieve this, we first introduce the concept of soft contraction

mapping on soft metric spaces and then obtain among other results, a theo-

rem of Banach contraction principle type called soft contraction theorem in

the setup of soft complete metric spaces . We also obtained a fixed point

results when a soft mapping satisfies soft contraction condition on the soft

closed balls in complete soft metric spaces. We provide some examples to

illustrate the validity of our presented results. We believe that this will open

some new avenues of research in soft metric fixed point theory.

We begin with some basic definitions and concepts related to soft metrics

needed in the sequel. This section is mainly based on the definitions and

results from [96], [42], [43], [41], [29] and [28].
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In some cases, we have set our own notations, terminology and made

some stylistic changes to the original definitions.

Let U be a given universe, E a set of parameters, and R the set of real

numbers. Throughout this chapter, P (U) and B(R) denotes a family of

all subsets of U and the collection of all nonempty bounded subsets of R,

respectively..

We denote the collection of soft sets over a common universe U by S(U).

Definition 4.1.1 [29] If f is a single valued mapping on A ⊂ E taking

values in U, then the pair (f, A), or simply f , is called a soft element of U.

Let (F,A) ∈ S(U). A soft element f of U is said to belongs to (F,A), denoted

by f ∈̃(F,A), if f(e) ∈ F (e), for each e ∈ A.
Definition 4.1.2 [29] Let A be a nonempty subset of E. A soft real set

denoted by (f̂ , A), or simply by f̂ , is a mapping f̂ : A → B(R). If f̂ is a

single valued mapping on A ⊂ E taking values in R, then the pair (f̂ , A) or

simply f̂ , is called a soft element of R or a soft real number. If f̂ is a single

valued mapping on A ⊂ E taking values in the set R+ of non negative real

numbers, then a pair (f̂ , A), or simply f̂ , is called a non negative soft real

number. We shall denote the set of non negative soft real numbers by R(A)∗.

A null soft number 0 is a soft real number defined by 0(e) = 0 for all e ∈ A.
A unit soft number 1 is a soft real number defined by 1(e) = 1 for all e ∈ A.
A constant soft real number c is a soft real number such that for each e ∈ A,
we have c(e) = c, where c is some real number.

Definition 4.1.3 [28] A soft set (F,A) over U is said to be a soft point

if there is exactly one e ∈ A such that F (e) = {x} for some x ∈ U and

F (ε) = φ, for all ε ∈ A\{e}. We shall denote such a soft point by (F x
λ , A) or

simply by F x
e .

Definition 4.1.4 [28] Let (F,A) be a soft set over U. A soft point F x
e is said

to belong to (F,A), denoted by F x
e ∈̃(F,A), if F x

e (e) = {x} ⊂ F (e).

Definition 4.1.5 [28] Two soft points F x
e1
, F y

e2
are said to be equal if e1 = e2

and F x
e1

(e1) = F y
e2

(e2), i.e., x = y. Thus F x
e1
6= F y

e2
if and only if either x 6= y
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or e1 6= e2.

Proposition 4.1.6 [28] Let (F,A) be a soft set over U. Then

(F,A) = ∪{F x
e : F x

e ∈̃(F,A)}

Proposition 4.1.7 [28] If (F,A), (G,A) ∈ S(U), then (F,A)⊂̃(G,A) if and

only if F x
e ∈̃(F,A) implies that F x

e ∈̃(G,A). Also, (F,A) is soft equal to (G,A)

if and only if F x
e ∈̃(F,A) if and only if F x

e ∈̃(G,A).

Proposition 4.1.8 [28] For a soft point F x
e , the following hold:

F x
e ∈̃ (F,A) if and only if F x

e /̃∈(F,A)c,

F x
e ∈̃ (F,A)∪̃(G,A) if and only if F x

e ∈̃(F,A) or F x
e ∈̃(G,A), and

F x
e ∈̃ (F,A)∩̃(G,A) if and only if F x

e ∈̃(F,A) and F x
e ∈̃(G,A).

Remark 4.1.9 [28] Let B be a collection of soft points. The soft set gener-

ated by taking all the soft points of B is denoted by SS(B). The collection

of all soft points of (F,A) is denoted SP (F,A).

Proposition 4.1.10 [28] Let B, B1 and B2 be collections of soft points,

and (F,A), (G,A) ∈ S(U). Then following hold:

SP (SS(B)) = B, SS(SP (F,A)) = (F,A),

SP ((F,A)∪̃(G,A)) = SP ((F,A)) ∪ SP ((G,A)),

SP ((F,A)∩̃(G,A)) = SP ((F,A)) ∩ SP ((G,A))

SS(B1 ∪B2) = SS(B1)∪̃SS(B2) and

SS(B1 ∩B2) = SS(B1)∩̃SS(B2).

Definition 4.1.11 [28] For two soft real numbers f̂ , ĝ , we say that

(i) f̂≤̃ĝ if f̂(e) ≤ ĝ(e), for all e ∈ A,

(ii) f̂≥̃ĝ if f̂(e) ≥ ĝ(e), for all e ∈ A,

(iii) f̂ <̃ĝ if f̂(e) < ĝ(e), for all e ∈ A, and



4.1. Introduction and preliminaries 55

(iv) f̂ >̃ĝ if f̂(e) > ĝ(e), for all e ∈ A.

The definition of a soft metric introduced in [28] is given below:

Definition 4.1.12 A mapping d : SP (Ũ)× SP (Ũ)→ R(A)∗ is said to be

a soft metric on Ũ if for any Ux
λ , U

y
µ , U

z
γ ∈̃Ũ , the following hold

M1. d(Ux
λ , U

y
µ)≥̃0̄,

M2. d(Ux
λ , U

y
µ) = 0̄ if and only if Ux

λ = Uy
µ .

M3. d(Ux
λ , U

y
µ) = d(Ux

µ , U
y
λ).

M4. d(Ux
λ , U

z
γ )≤̃d(Ux

λ , U
y
µ) + d(Uy

µ , U
z
γ ).

A soft metric space is a pair (Ũ , d) such that Ũ is a soft set and d is a

soft metric on Ũ .

Definition 4.1.13 [28] Let (Ũ , d) be a soft metric space, r̂ a non negative

soft real number and Ua
e ∈̃Ũ . An open ball with center Ua

e and radius r̂ is

given by the set B(Ua
e , r̂) = {Ux

λ ∈̃Ũ ; d(Ux
λ , U

a
e )<̃r̂} ⊂ SP (Ũ). A soft set

SS(B(Ua
e , r̂)) is called a soft open ball with center Ua

e and radius r̂.

Definition 4.1.14 [28] Let (Ũ , d) be a soft metric space, r̂ a non-negative

soft real number and Ua
e ∈̃Ũ . A closed ball with center Ua

e and radius r̂

is given by a set B[Ua
e , r̂] = {Ux

λ ∈̃Ũ ; d(Ux
λ , U

a
e )≤̃r̂} ⊂ SP (Ũ). A soft set

SS(B[Ua
e , r̂)]) is called a soft closed ball with center Ua

e and radius r̂.

Definition 4.1.15 [28] Let (F,A) be a soft subset in a soft metric space

(Ũ , d). A soft point F a
e is said to be an interior point of the soft set (F,A)

if there exists a positive soft real number r̂ such that F a
e ∈ B(F a

e , r̂) ⊂
SP (F,A).

Definition 4.1.16 [28] Let (Ũ , d) be a soft metric space and (F,A) a non-

null soft subset of Ũ . Then (F,A) is soft open in Ũ with respect to d if all

soft points of (F,A) are interior points of (F,A).

Definition 4.1.17 [28] Let (Ũ , d) be a soft metric space. A soft subset

(F,A) of Ũ is said to be soft closed in Ũ with respect to d if its complement

(F,A)c is soft open in Ũ .
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Definition 4.1.18 [28] Let (Ũ , d) be a soft metric space and (F,A)⊂̃Ũ .

A soft point Ua
e ∈̃Ũ is a soft limit point of (F,A) if every soft open ball

SS(B(Ua
e , r̂)) containing Ua

e contains at least one soft point of (F,A) other

than Ua
e .

Definition 4.1.19 [28] Let (Ũ , d) be a soft metric space and (F,A)⊂̃Ũ .
Then a soft set generated by the collection of all soft points of (F,A) and

soft limit points of (F,A) is called soft closure of (F,A) in (Ũ , A) and is

denoted by (F,A).

Definition 4.1.20 [28] Let (Ũ , d) be a soft metric space. A sequence {Ux
λ,n}n

of soft points in Ũ is said to be convergent in (Ũ , d) if there is a soft

point Uy
µ∈̃Ũ such that d(Ux

λ,n, U
y
µ) → 0̄ as n → ∞. This means for every

ε̂>̃0̄, chosen arbitrary, there exists a natural number N = N(ε̃) such that

d(Ux
λ,n, U

y
µ)<̃ε̂, whenever n > N.

Proposition 4.1.21 [28] Limit of a sequence {Ux
λ,n}n in a soft metric space

(Ũ , d), if exists is unique.

Proposition 4.1.22 [28] Let (Ũ , d) be a soft metric space and (F,A)⊂̃Ũ .
Then Uy

µ∈̃Ũ is a soft limit point of (F,A) if and only if there is a sequence

{Ux
λ,n}n in (F,A) other than {Uy

µ}n which converges to Uy
µ .

Proposition 4.1.23 [28] Let (F,A) be a soft subset in a soft metric space

(Ũ , d). Then (F,A) is soft closed if and only if {Ux
λ,n}n in (F,A) which

converges in Ũ cannot converges to a soft point of (F,A)c.

Definition 4.1.24 [28] A sequence {Ux
λ,n}n of soft points in (Ũ , d) is said to

be a Cauchy sequence in (Ũ , d) if corresponding to every ε̂>̃0̄, there exists

a natural number m such that d(Ux
λ,i, U

x
λ,j)<̃ε̂, for all i, j ≥ m. That is,

d(Ux
λ,i, U

x
λ,j)→ 0̄ as i, j →∞.

Proposition 4.1.25 [28] Every convergent sequence {Ux
λ,n}n in a soft metric

space (Ũ , d) is Cauchy and every Cauchy sequence is bounded.

Definition 4.1.26 [28] A soft metric space (Ũ , d) is called complete if every

Cauchy sequence in Ũ converges to some soft point of (Ũ , d). In this case, we

say that the soft metric d is complete.
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4.2 Fixed point theorems

In the sequel, soft real numbers will be denoted with “tildes” instead of

“widehats”, i.e., we will write ε̃, δ̃, etc., instead of ε̂, δ̂, etc.

Now we prove the following proposition.

Proposition 4.2.1 A soft subset (F,A) of a soft complete metric space

(Ũ , d) is soft complete if and only if (F,A) is soft closed in (Ũ , d).

Proof. Suppose that (F,A) is soft complete. By Proposition 4.1.22, we

know that for every F y
µ ∈̃(F,A), there is a sequence {F x

λ,n}n in (F,A) which

converges to F y
µ . As {F x

λ,n}n is a Cauchy sequence (Proposition 4.1.34) and

(F,A) is soft complete, {F x
λ,n}n converges in (F,A). By uniqueness of the

limit (Proposition 4.1.21) we obtain that F y
µ ∈̃(F,A). This proves that (F,A)

is soft closed. Conversely, if (F,A) is soft closed and {F x
λ,n}n is Cauchy

sequence in (F,A). Then by the completeness of (Ũ , d) we have F x
λ,n → F y

µ ∈̃Ũ ,
which by Proposition 4.1.23, further implies that F y

µ ∈̃(F,A). Hence (F,A) is

soft complete.

The following definitions are somehow similar to those given by War-

dowski ([128]).

Definition 4.2.2 Let (F,A), (G,A) ∈ S(U). The soft Cartesian product

of (F,A) and (G,A), denoted by (F,A)×̃(G,A), is defined as

(F,A)×̃(G,A) = {((p1, p2), F (p1)×G(p2)) : p1, p2 ∈ A}.

Example 4.2.3 Suppose that U = {h1, h2, h3} and A = {p1, p2, p3}. Define

soft sets (F,A) and (G,A) as follows:

(F,A) = {(p1, {h1, h2}), (p2, {h2, h3}), (p3, {h1})} and

(G,A) = {(p1, {h1}), (p2, {h1, h3}), (p3, {h1, h2})}.
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Then

(F,A)×̃(G,A)

= {((p1, p1), {h1, h2} × {h1}), ((p1, p2), {h1, h2} × {h1, h3}),

((p1, p3), {h1, h2} × {h1, h2}), ((p2, p1), {h2, h3} × {h1}),

((p2, p2), {h2, h3} × {h1, h3}), ((p2, p3), {h2, h3} × {h1, h2}),

((p3, p1), {h1} × {h1}), ((p3, p2), {h1} × {h1, h3}),

((p3, p3), {h1} × {h1, h2})}.

Definition 4.2.4 Let (F,A), (G,A) be two soft sets over a common universe

U . A soft relation R is a soft set such that (R,A× A)⊂̃(F,A)×̃(G,A), i.e.,

(R,A× A) = {((p, q), Up × Uq) : p, q ∈ A,Up ⊆ F (p), Uq ⊆ G(q)}.

We will denote ((p, q), Up × Uq) ∈ (R,A× A) as (p, Up)R(q, Uq).

Example 4.2.5 Let (F,A), (G,A) be as in Example 4.2.3. Then

R = {((p1, p1), {(h1, h1)}), ((p2, p1), {(h2, h1)}), ((p2, p3), {(h2, h1), ((h3, h2))})}.

So we can write

(p1, {h1})R(p1, {h1}), (p2, {h2})R(p1, {h1}), (p2, {h2, h3})R(p3, {h1, h2}).

Definition 4.2.6 Let (F,A) and (G,A) be two soft sets. A soft relation

(T,A × A)⊂̃(F,A)×̃(G,A) is called a soft mapping from (F,A) to (G,A) if

for each soft point F x
λ ∈̃(F,A) there exists only one soft point F y

µ such that

F x
λTF

y
µ . We will denote F x

λTF
y
µ by T (F x

λ ) = F y
µ . If (T,A×A)⊂̃(F,A)×̃(G,A)

is soft mapping from (F,A) to (G,A), then we write it as T : (F,A)→̃(G,A).

Example 4.2.7 Let (F,A), (G,A) be as in Example 4.2.3. Suppose that

(T,A× A)⊂̃(F,A)×̃(G,A) is defined as:

T = {((p1, p3), {(h1, h2)}), ((p1, p2), {(h2, h1)}), ((p2, p1), {(h3, h1)}),

((p2, p2), {(h2, h1)}), ((p3, p2), {(h1, h3)})}.
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Therefore we can write T (F h1
p1

) = F h2
p3

, T (F h2
p1

) = F h1
p2

, T (F h3
p2

) = F h1
p1

,

T (F h2
p2

) = F h1
p2

and T (F h1
p3

) = F h3
p2

.

Definition 4.2.8 Let (F,A) and (G,A) be two soft sets and T : (F,A)→̃(G,A)

a soft mapping. The image of (H,A)⊂̃(F,A) under the soft mapping T is

the soft set, denoted by T ((H,A)), defined as follows

T ((H,A)) = ∪̃{T{F x
λ } : F x

λ ∈̃(H,A)}.

Definition 4.2.9 Let (F,A) and (G,A) be two soft sets and T : (F,A)→̃(G,A)

a soft mapping. The inverse of (Y,A)⊂̃(G,A)-under the soft mapping T is

the soft set, denoted by T−1((Y,A)), defined as:

T−1((Y,A)) = ∪̃{{F x
λ } : F x

λ ∈̃F, T{F x
λ }∈̃Y }.

Definition 4.2.10 Let (F,A) be a soft set and T : (F,A)→̃(F,A) a soft

mapping. A soft point F x
λ ∈̃(F,A) is called a fixed point of T if T (F x

λ ) = F x
λ .

Example 4.2.11 Let U = {h1, h2, h3}, A = {p1, p2}. Define the soft set

(F,A) as follows

(F,A) = {(p1, {h1, h2}), (p2, {h2, h3})}.

If T : (F,A)→̃(F,A) is defined as:

T (F h1
p1

) = F h1
p1
, T (F h2

p1
) = F h2

p2
, T (F h2

p2
) = F h3

p2
, and T (F h3

p2
) = F h2

p1
,

then F h1
p1

is the fixed point of T .

Definition 4.2.12 Let (Ũ1, d1) and (Ũ2, d2) be two soft metric spaces. A

soft mapping T : Ũ1→̃Ũ2 is said to be soft continuous at a soft point Ux
λ ∈̃Ũ

if for every ε̃>̃0̄, there is a δ̃>̃0̄ such that d2(T (Ux
λ ), T (Uy

µ))<̃ε̃ whenever

d1(Ux
λ , U

y
µ)<̃δ̃. If T is soft continuous at every soft point of Ũ , we say that T

is soft continuous on Ũ .

Proposition 4.2.13 Let (Ũ , d1) and (Y̌ , d2) be two soft metric spaces. For

a soft mapping T : Ũ→̃Y̌ the following are equivalent:
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(i) T is soft continuous on Ũ .

(ii) For any Uy
µ∈̃Ũ , if Ux

λ,n → Uy
µ in Ũ , then T (Ux

λ,n)→ T (Uy
µ) in Y̌ .

(iii) If (W,A) is soft closed in Y̌ , then T−1(W,A) is soft closed in Ũ .

(iv) If (V,A) is soft open in Y̌ , then T−1(V,A) is soft open in Ũ .

Proof. (i)⇒(ii): Suppose that Ux
λ,n → Uy

µ in Ũ . Given ε̃>̃0̄, let δ̃>̃0̄ such

that T (SS(B(Uy
µ , δ̃)))⊂̃SS(B(T (Uy

µ), ε̃)). Then, since Ux
λ,n → Uy

µ , we have

{Ux
λ,n}n eventually in SS(B(Uy

µ , δ̃)). But this implies that {T (Ux
λ,n)}n even-

tually in SS(B(T (Uy
µ), ε̃)). Since ε̃ is arbitrary, this means that T (Ux

λ,n) →
T (Uy

µ).

(ii)⇒(iii) Let (W,A) be soft closed in Y̌ . Given {Ux
λ,n}n in T−1(W,A) such

that Ux
λ,n → Uy

µ in Ũ , we are to show that Uy
µ∈̃T−1(W,A). But {Ux

λ,n}n in

T−1(W,A) implies that {T (Ux
λ,n)}n is in (W,A), while Ux

λ,n → Uy
µ in Ũ tells

us that T (Ux
λ,n) → T (Uy

µ) in Y̌ from (ii). Thus, since (W,A) is soft closed,

we have that T (Uy
µ)∈̃(W,A) or Uy

µ∈̃T−1(W,A).

(iii)⇔(iv) It is obvious, since T−1((V,A)c) = (T−1(V,A))c.

(iv)⇒(i) Given Ux
λ ∈̃Ũ and ε̃>̃0̄, the set SS(B(T (Ux

λ ), ε̃)) is open in Y̌

and thus, by (iv), the set T−1(SS(B(T (Ux
λ ), ε̃))) is open in Ũ .

Therefore, SS(B(Ux
λ , δ̃))⊂̃T−1(SS(B(T (Ux

λ ), ε̃))) for some δ̃>̃0̄, because

Ux
λ ∈̃SS(B(T (Ux

λ ), ε̃)).

Definition 4.2.14 Let (Ũ , d) be a soft metric space and T : Ũ→̃Ũ a soft

mapping. Then T is said to be a soft contraction if

d(T (Ux
λ ), T (Uy

µ))≤̃c̄d(Ux
λ , U

y
µ)

for all Ux
λ , Uy

µ ∈ SU(Ũ), where 0̄ ≤ c̄ < 1̄. We will call c̄ as soft contraction

constant.

Remark 4.2.15 A soft contraction on a soft metric space is a soft contin-

uous mapping.

Our main result is the following.
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Theorem 4.2.16 Let (Ũ , d) be a soft complete metric space, where d :

SP (Ũ) × SP (Ũ) → R(A)∗ with A a (non-empty) finite set, and let T be a

soft contraction with soft contraction constant c̄. Then T has unique soft

fixed point Uy
µ . Moreover, for any soft point Ux

λ , the sequence of iterates

{T n(Ux
λ )}n converges to Uy

µ , and the following hold:

d(Ux
λ,n, U

x
λ,m) ≤̃ c̄m

1− c̄
d(T (Ux

λ,0), Ux
λ,0),whenever n > m,

d(Ux
λ,m, U

y
µ) ≤̃ c̄d(Ux

λ,m−1, U
y
µ),

and

d(Ux
λ,m, U

y
µ)≤̃ c̄

1− c̄
d(Ux

λ,m−1, U
x
λ,m),

where Ux
λ,0 = Ux

λ and Ux
λ,n+1 = T (Ux

λ,n) for all n = 0, 1, 2...

Proof Choose a soft point Ux
λ . Put Ux

λ,0 = Ux
λ and note that

d(Ux
λ,n+1, U

x
λ,n) = d(T (Ux

λ,n), T (Ux
λ,n−1))≤̃c̄d(Ux

λ,n, U
x
λ,n−1)

≤̃ c̄2d(Ux
λ,n−1, U

x
λ,n−2)≤̃

· · · ≤̃ c̄nd(Ux
λ,1, U

x
λ,0).

For n > m, we have

d(Ux
λ,n, U

x
λ,m) ≤̃ d(Ux

λ,n, U
x
λ,n−1) + d(Ux

λ,n−1, U
x
λ,n−2) + · · ·+ d(Ux

λ,m+1, U
x
λ,m)

≤̃ (c̄n−1 + c̄n−2 + · · ·+ c̄m)d(Ux
λ,1, U

x
λ,0)

≤̃ c̄m

1− c̄
d(Ux

λ,1, U
x
λ,0).4.2.1 (4.1)

Now we show that {Ux
λ,n}n is a Cauchy sequence. Indeed, choose an arbi-

trary soft real number ε̃>̃0. Since A is finite, we can write A = {λ1, ..., λk}.
Then, for each i ∈ {1, ..., k}, there exists an Ni ∈ N such that

(
cNi

1− c
d(Ux

λ,1, U
x
λ,0))(λi) < ε̃(λi).
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Take N = max{N1, ..., Nk}. Therefore, for any n > m ≥ N and any i ∈
{1, ..., k}, we have

d(Ux
λ,n, U

x
λ,m)(λi) ≤ (

cm

1− c
d(Ux

λ,1, U
x
λ,0))(λi)

≤ (
cN

1− c
d(Ux

λ,1, U
x
λ,0))(λi) < ε̃(λi),

i.e.,

d(Ux
λ,n, U

x
λ,m)<̃ε̃,

whenever n > m ≥ N. Hence {Ux
λ,n}n is a Cauchy sequence. By the com-

pleteness of (Ũ , d) there is a Uy
µ∈̃Ũ such that d(Ux

λ,n, U
y
µ)→ 0̄ as n→∞.

Since

d(Uy
µ , T (Uy

µ)) ≤̃ d(Ux
λ,n, U

y
µ) + d(Ux

λ,n, T (Uy
µ))

≤̃ d(Ux
λ,n, U

y
µ) + c̄d(Ux

λ,n−1, U
y
µ),

we can make the second term smaller than any ε̃>̃0̄ as Ux
λ,n → Uy

µ . Hence

d(Uy
µ , T (Uy

µ)) = 0̄. This implies T (Uy
µ) = Uy

µ . So Uy
µ is a fixed point of T.

Now if U z
γ is another fixed point of T, then

d(Uy
µ , U

z
γ ) = d(T (Uy

µ), T (U z
γ ))≤̃c̄d(Uy

µ , U
z
γ )

implies that d(Uy
µ , U

z
γ ) = 0̄ as c̄<̃1̄. Hence Uy

µ = U z
γ . Therefore the fixed point

of T is unique.

As for n > m, we have

d(Ux
λ,n, U

x
λ,m) ≤̃ c̄m

1− c̄
d(Ux

λ,1, U
x
λ,0)

=
c̄m

1− c̄
d(T (Ux

λ,0), Ux
λ,0).

Taking limit as n→∞, we obtain that

d(Ux
λ,m, U

y
µ) = d(T (Ux

λ,m−1), T (Uy
µ))

≤̃ c̄d(Ux
λ,m−1, U

y
µ)

≤̃ c̄[d(Ux
λ,m−1, U

x
λ,m) + d(Ux

λ,m, U
y
µ)].
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This implies

d(Ux
λ,m, U

y
µ)≤̃ c̄

1− c̄
d(Ux

λ,m−1, U
x
λ,m)

Remark 4.2.17 When T : Ũ→̃Ũ is a soft contraction with constant c̄, any

iterate T n is a soft contraction with constant c̄n. The unique soft fixed point

of T will also be the unique soft fixed point of T n.

Corollary 4.2.18 Let (Ũ , d) be a soft complete metric space, where d :

SP (Ũ) × SP (Ũ) → R(A)∗ with A a (non-empty) finite set, T : Ũ→̃Ũ a

soft contraction and Y ⊂̃Ũ a soft closed subset such that T (Y )⊂̃Y. Then the

unique soft fixed point of T is a soft point of Y.

Proof. Since Y is a soft closed subset of a soft complete metric space, it is

soft complete. Then by applying soft contraction mapping theorem to T on

Y , we obtain a soft fixed point of T in Y . Since T has only one fixed point

in Ũ , it must lie in Y.

Theorem 4.2.19 Let T be a soft mapping on a soft complete metric space

(Ũ , d), where d : SP (Ũ)×SP (Ũ)→ R(A)∗ with A a (non-empty) finite set .

Suppose T is a soft contraction on a soft closed ball SS(B[Ux
λ,0, r̃]) with soft

contraction constant c̄ and d(T (Ux
λ,0), Ux

λ,0)<̃(1 − c̄)r̃. Then T has a unique

soft fixed point in SS(B[Ux
λ,0, r̃]).

Proof. Construct a sequence {Ux
λ,m}m as in the previous theorem starting

from Ux
λ,0. Now taking m = 0 in (4.2.1) and changing n to m, we have

d(Ux
λ,m, U

x
λ,0) ≤̃ 1

1− c̄
d(Ux

λ,1, U
x
λ,0)

=
1

1− c̄
d(T (Ux

λ,0), Ux
λ,0)<̃r̃.

Hence all Ux
λ,m’s are in SS(B[Ux

λ,0, r̃]). Since {Ux
λ,m}m is a Cauchy se-

quence, by the completeness of (Ũ , d) we have Ux
λ,m → Uy

µ∈̃Ũ . As SS(B[Ux
λ,0, r̃])

is soft closed, so Uy
µ∈̃SS(B[Ux

λ,0, r̃]). Hence the result.

We conclude the chapter with two examples that illustrate our main re-

sult. They are based on the following interesting example given in [28, Ex-

ample 4.3].
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Example 4.2.20 Let U and A be non-empty subsets of R. Define d :

SP (Ũ)× SP (Ũ)→ R(A)∗ as

d(Ux
λ , U

y
µ) = |x− y|+

∣∣λ− µ∣∣ ,
for all Ux

λ , U
y
µ ∈ Ũ , where |.| denotes the modulus of soft real numbers (recall

that for each x ∈ U , x is the constant soft real number defined by x(λ) = x

for all λ ∈ A, and, similarly, for each λ ∈ A, λ is the constant soft real

number defined by λ(µ) = λ for all µ ∈ A). Then, according to [28, Example

4.3], d is a soft metric on Ũ .

Example 4.2.21 Let U = [0, 1] and E = A = {0, 1}. Let d be the soft

metric on Ũ as constructed in Example 4.2.20. Since U is complete for the

Euclidean metric, it immediately follows that (Ũ , d) is complete.

Now define a soft mapping T : Ũ → Ũ as T (Ux
0 ) = U0

0 and T (Ux
1 ) = U

x/2
0

for all x ∈ U. We show that T is a soft contraction with soft contraction

constant c given by c(0) = c(1) = 1/2. Indeed, for each x, y ∈ U we have

d(T (Ux
0 ), T (Uy

0 )) = 0, and

d(T (Ux
1 ), T (Uy

1 )) = d(U
x/2
0 , U

y/2
0 ) =

∣∣∣x/2− y/2∣∣∣ ≤̃c |x− y| .
Finally, since x, y ∈ [0, 1], one has for µ = 0, 1,∣∣∣y/2− 0

∣∣∣ (µ) = y/2 ≤ (|x− y|+ 1) /2 = (c(|x− y|+
∣∣1− 0

∣∣))(µ),

so

d(T (Ux
0 ), T (Uy

1 )) = d(U0
0 , U

y/2
0 ) =

∣∣∣y/2− 0
∣∣∣ ≤̃c(|x− y|+∣∣1− 0

∣∣) = cd(Ux
0 , U

y
1 ).

Consequently, all conditions of Theorem 4.2.16 are satisfied. In fact, U0
0 is

the unique fixed point of T.

Our last example shows that condition “A is a finite set” cannot be omit-

ted in Theorem 4.2.16.

Example 4.2.22 Let U = A = {1/n : n ∈ N}. Let d be the soft metric

on Ũ as constructed in Example 4.2.20. We show that (Ũ , d) is complete.
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Indeed, suppose that {Ux
λ,n}n is a Cauchy sequence in (Ũ , d). Take the soft

real number ε̃ such that ε̃(λ) = λ for all λ ∈ A, i.e., ε̃(1/k) = 1/k for all

k ∈ N. Then, there is m ∈ N such that

d(Ux
λ,i, U

x
λ,j)<̃ε̃,

for all i, j ≥ m. This implies that d(Ux
λ,i, U

x
λ,j)(1/k) < ε̃(1/k) for all k ∈ N.

Hence

(|xi − xj|+
∣∣λi − λj∣∣)(1

k
) <

1

k
,

for all i, j ≥ m and for all k ∈ N. Consequently

|xi − xj|+ |λi − λj| <
1

k
,

for all i, j ≥ m and for all k ∈ N. In particular, for any j ≥ m,

|xj − xj+1|+ |λj − λj+1| <
1

k
,

for all k ∈ N.

Therefore xj = xj+1 and λj = λj+1 for all j ≥ m. We deduce that xj = xm

and λj = λm for all j ≥ m. Thus the sequence {Ux
λ,n}n is eventually constant,

and hence convergent. We conclude that (Ũ , d) is complete.

Now let T : Ũ → Ũ defined as T (Ux
λ ) = U

x/2
1 for all x ∈ U, λ ∈ A. Clearly

T has no fixed point. However it is a soft contraction with soft constant

contraction c defined as c(λ) = 1/2 for all λ ∈ A. Indeed, fix x, y ∈ U and

λ, µ ∈ A, then for each η ∈ A we have

d(T (Ux
λ ), T (Uy

µ))(η) = d(U
x/2
1 , U

y/2
1 )(η) =

∣∣∣x
2
− y

2

∣∣∣
≤ 1

2
(|x− y|+ |λ− µ|) = c(d(T (Ux

λ ), T (Uy
µ)))(η).

Hence d(T (Ux
λ ), T (Uy

µ))≤̃cd(T (Ux
λ ), T (Uy

µ)).

Remark 4.2.23 We have discovered that Murat I. Yazar, Cigdem Gunduz

(Aras) and Sadi Bayramov have established in Theorem 4.8 of their paper
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“Fixed point theorems of soft contractive mappings” [135], a similar result

to our main theorem (Theorem 4.2.16) but without assuming that the set

A is finite. Our Example 4.2.22 shows that their result is not correct (the

error seems occur on line -3 of page 9). Furthermore, if in Example 4.2.22 we

put x/3 instead of x/2, a counterexample to Theorem 4.9 of Yazar-Gunduz-

Bayramov’s paper, is also obtained.



Chapter 5

Multivalued Caristi’s Type

Mappings in Fuzzy Metric

Spaces and a Characterization

of Fuzzy Metric Completeness

The material of this chapter is an adaptation to the thesis of the content of

the paper by Muhajid Abbas, Basit Ali and Salvador Romaguera, “Multivalued

Caristi’s type mappings in fuzzy metric spaces and a characterization of fuzzy

metric completeness”, which is accepted for publication in the JCR-journal

FILOMAT

67
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5.1 Introduction and preliminaries

Since the appearance of celebrated Banach contraction principle in 1932,

several generalizations of this theorem in the setting of point to point map-

pings have been obtained. Caristi fixed point theorem is one of the most

important extension of Banach contraction principle. It is known that this

theorem is equivalent to Ekland variational principle [36] , an important tool

in nonlinear analysis.

In the year 1969, Nadler combined the ideas of multivalued mappings

and contractions proving a generalization of Banach contraction principle.

He proved that any multivalued contractive mapping of a complete metric

space X into the family of closed and bounded subsets of X has a fixed point.

The mathematical modelling of fuzzy concepts was initiated by Zadeh

[136] in 1965. With the advancement of automatic control and expert sys-

tems, an involvement of fuzzy concepts in technology has increased rapidly.

The study of fuzzy topology, an important branch of fuzzy theory has re-

ceived much attention for the last two decades. The concept of a fuzzy metric

spaces is one of the central theme of Fuzzy topology. Many authors defined

and generalized the concept of a fuzzy metric space ([31], [74]). George and

Veeramani ([46, 47]) modified the concept of a fuzzy metric space introduced

by Kramosil and Michalek [80] and showed that every metric induces a fuzzy

metric.

In this chapter, we obtain a fixed point theorem for multivalued mappings

of Caristi’s type in complete fuzzy metric spaces which actually provides a

characterization of fuzzy metric completeness in the case of continuous t-

norms greater than or equal to the Lukasiewicz t-norm. We recall that pre-

vious and interesting versions of Caristi’s fixed point theorem for fuzzy metric

spaces (actually, for probabilistic Menger spaces), but with an approach dif-

ferent from our one, were proved by Hadžić and Pap ([53, Section 3.4]). Thus

the results presented in this chapter and the ones given in [53, Section 3.4]
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are of an independent value.

First, we recall some pertinent concepts and results.

Following [117], a binary operation ∗ : [0, 1]2 → [0, 1] is called a continuous

t-norm if: (i) ∗ is associative and commutative; (ii) ∗ is continuous; (iii)

a ∗ 1 = a for all a ∈ [0, 1]; and (iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

Typical instances of continuous t-norm are ∧, · and ∗L, where, for all

a, b ∈ [0, 1], a ∧ b = min{a, b}, a · b = ab, and ∗L is the Lukasiewicz t-norm

defined by a ∗L b = max{a+ b− 1, 0}.
It is easy to check that ∗L ≤ · ≤ ∧. In fact ∗ ≤ ∧ for all continuous

t-norm ∗.

In our context we will use the following notion of a fuzzy metric space

which is a slight modification to the one given by Kramosil and Michalek in

[80] (it is appropriate to point out that George and Veeramani presented in

[46, 47] a stronger but interesting notion of fuzzy metric completeness, which

will not be explicitly considered here).

Definition 5.1.1 (compare [80]) A fuzzy metric space is a triple (X,M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X × [0,+∞)

such that for all x, y, z ∈ X :

(i) M(x, y, 0) = 0;

(ii) x = y if and only if M(x, y, t) = 1 for all t > 0;

(iii) M(x, y, t) = M(y, x, t);

(iv) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;

(v) M(x, y, ) : [0,+∞)→ [0, 1] is left continuous.

In this case, the pair (M, ∗) (or simply, M if no confusion arises) is said

to be a fuzzy metric on X.

It is well known, and easy to see, that for each x, y ∈ X, M(x, y, ) is a

non-decreasing function on [0,+∞).

Each fuzzy metric (M, ∗) on a set X induces a topology τM on X which

has a base the family of open balls {BM(x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0},
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where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}.
Observe that a sequence (xn)n∈N converges to x ∈ X (with respect to τM)

if and only if limn→∞M(x, xn, t) = 1 for all t > 0.

It is also well known (see, for instance, [50]) that every fuzzy metric space

(X,M, ∗) is metrizable, i.e., there exists a metric d on X whose induced

topology agrees with τM .

Conversely, if (X, d) is a metric space and we define Md : X × X ×
[0,+∞)→ [0, 1] by M(x, y, 0) = 0 and

Md(x, y, t) =
t

t+ d(x, y)
,

for all t > 0, then (X,Md,∧) is a fuzzy metric space and (Md,∧) is called

the standard fuzzy metric of (X, d) ([46]). Moreover, the topology τMd
agrees

with the topology induced by d.

A sequence (xn)n∈N in a fuzzy metric space (X,M, ∗) is said to be a

Cauchy sequence if for each t > 0 and ε ∈ (0, 1) there exists n0 ∈ N such

that M(xn, xm, t) > 1− ε for all n,m ≥ n0.

A fuzzy metric space (X,M, ∗) is said to be complete ([47]) if every

Cauchy sequence converges.

5.2 The results

Let (X, d) be a metric space. A mapping T : X → X is called a Caristi’s

mapping if there is a lower semicontinuous function ϕ : X → [0,+∞) satis-

fying the following condition

d(x, Tx) ≤ ϕ(x)− ϕ(Tx),

for all x ∈ X.
Caristi proved in [24] his celebrated theorem that every Caristi’s mapping

on a complete metric space has a fixed point.
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Later on, Kirk proved the following nice characterization of metric com-

pleteness.

Theorem 5.2.1 [78] A metric space (X, d) is complete if and only if every

Caristi’s mapping T : X → X has a fixed point.

In the sequel, we shall denote by C0(X) the set of all non-empty closed

subsets of a metric space (X, d), or of a fuzzy metric space (X,M, ∗).
There exist several multivalued generalizations of Caristi’s fixed point

theorem in the literature. For our purposes here we need the following .

Theorem 5.2.2 (see e.g. [14]) Let (X, d) be a complete metric space and

let T : X → C0(X) be a multivalued mapping such that there is a lower

semicontinuous function ϕ : X → [0,+∞) satisfying the following condition:

For each x ∈ X there is y ∈ Tx with

d(x, y) ≤ ϕ(x)− ϕ(y).

Then T has a fixed point, i.e., there is z ∈ X such that z ∈ Tz.

A multivalued mapping T satisfying the conditions of the preceding the-

orem will be called a Caristi’s multivalued mapping (for (X, d)).

Definition 5.2.3 Let (X,M, ∗) be a fuzzy metric space. We say that T :

X → X is a fuzzy Caristi’s mapping on X if there is a lower semicontinuous

function ϕ : X → [0,+∞) satisfying the following condition:

(IC) ϕ(x)− ϕ(Tx) < t =⇒M(x, Tx, t) > 1− t.

The next example shows that every Caristi’s mapping on a metric space

(X, d) is a Caristi’s mapping on a well-known fuzzy metric space induced by

(X, d) in a natural way.

Example 5.2.4 Let (X, d) be a metric space and let T : X → X be a

Caristi’s mapping. Consider the fuzzy metric (M, ∗) on X (where ∗ is any

continuous t-norm) given by M(x, y, t) = 1 if d(x, y) < t, and M(x, y, t) = 0



72 Chapter 5. Caristi’s type mappings in fuzzy metric spaces

if d(x, y) ≥ t (with t ≥ 0). We show that T is a fuzzy Caristi’s mapping for

(X,M, ∗). Indeed, let ϕ : X → [0,+∞) be a lower semicontinuous function

for (X, d) such that d(x, Tx) ≤ ϕ(x) − ϕ(Tx), for all x ∈ X. First observe

that ϕ is also lower semicontinuous for (X,M, ∗) because the topology τM

agrees with the topology induced by d. Now suppose that ϕ(x)− ϕ(Tx) < t

for any t > 0. Then d(x, Tx) < t, so M(x, Tx, t) = 1. Hence, condition (IC)

is satisfied and thus T is a fuzzy Caristi’s mapping for (X,M, ∗).

Definition 5.2.5 Let (X,M, ∗) be a fuzzy metric space. We say that

T : X → C0(X) is a fuzzy Caristi’s multivalued mapping on X if there is

a lower semicontinuous function ϕ : X → [0,+∞) satisfying the following

condition:

(ICM) For each x ∈ X there is yx ∈ Tx such that

ϕ(x)− ϕ(yx) < t =⇒M(x, yx, t) > 1− t.

It is clear that every fuzzy Caristi’s mapping can be considered as a fuzzy

Caristi’s multivalued mapping.

Consider now a fuzzy metric space (X,M, ∗) with ∗ ≥ ∗L. Then, Radu

proved in [105] (see also [25, Remark 7.6.1]) that the function dM defined on

X ×X by

dM(x, y) = sup{t ≥ 0 : M(x, y, t) ≤ 1− t}

for all x, y ∈ X, is a metric on X. Moreover, is is easy to check that for each

x, y ∈ X and t ∈ (0, 1), we have

dM(x, y) < t⇐⇒M(x, y, t) > 1− t.

From this fact it is easily deduced the following.

Proposition 5.2.6 Let (X,M, ∗) be a fuzzy metric space such that ∗ ≥ ∗L.
Then (X,M, ∗) is complete if and only if the metric space (X, dM) is complete.

With the help of the above results and facts we can prove the following.
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Theorem 5.2.7 Let (X,M, ∗) be a fuzzy metric space such that ∗ ≥ ∗L.
Then, the following are equivalent:

(1) (X,M, ∗) is complete.

(2) Every fuzzy Caristi’s multivalued mapping T : X → C0(X) has a fixed

point.

(3) Every fuzzy Caristi’s mapping T : X → X has a fixed point.

Proof. (1) ⇒ (2). Since (X,M, ∗) is complete, then the metric space

(X, dM) is complete by Proposition 5.2.6.

Let T : X → C0(X) be a fuzzy Caristi’s multivalued mapping. Then,

there exists a lower semicontinuous function ϕ : X → [0,+∞) for which

condition (ICM) holds.

Let x ∈ X. By (ICM), there is yx ∈ Tx such that

ϕ(x)− ϕ(yx) < t =⇒M(x, yx, t) > 1− t.

Suppose ϕ(x) − ϕ(yx) < dM(x, yx). Then, there exists t0 > 0 such that

ϕ(x)−ϕ(yx) < t0 ≤ 1−M(x, yx, t0), soM(x, yx, t0) ≤ 1−t0, which contradicts

condition (ICM). Therefore, dM(x, yx) ≤ ϕ(x)− ϕ(yx). Hence, we can apply

Theorem 5.2.2 and thus T has a fixed point.

(2)⇒ (3). Obvious.

(3) ⇒ (1). Let T : X → X be a Caristi’s mapping for the metric space

(X, dM). We shall prove that T has a fixed point. Indeed, there exists a lower

semicontinuous function ϕ : X → [0,+∞) such that

dM(x, Tx) ≤ ϕ(x)− ϕ(Tx),

for all x ∈ X.
Suppose ϕ(x)−ϕ(Tx) < t. Then dM(x, Tx) < t, and hence M(x, Tx, t) >

1− t. We have shown that condition (IC) is satisfied, so T is a fuzzy Caristi’s

mapping for (X,M, ∗). By our hypothesis T has a fixed point. Therefore

(X, dM) is complete by Theorem 5.2.1. We conclude that (X,M, ∗) is com-

plete by Proposition 5.2.6.
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The following natural question remains open:

Question. Is it possible to generalize Theorem 5.2.6 to the case that ∗ is

any continuous t-norm?

We conclude the chapter with two examples that illustrate Theorem 5.2.6.

Example 5.2.8 Let X = (0, 1] and let (M, ∗) be the fuzzy metric on X,

with ∗ ≥ ∗L, given by M(x, y, 0) = 0 for all x, y ∈ X, M(x, x, t) = 1 for all

x ∈ X and t > 0, and M(x, y, t) = x ∗ y otherwise.

First note that x = 1 is the unique non-isolated point of X, because

BM(1, 1/n, 1/n) = {y ∈ X : y > 1− 1/n},

for all n ∈ N, while for each x ∈ X\{1}, one has

BM(x, x, 1− x) = {x} ∪ {y ∈ X : x ∗ y > x} = {x}.

Consequently (X,M, ∗) is complete. In fact, if (xn)n∈N is a non-eventually

constant Cauchy sequence, then for each ε ∈ (0, 1) there is n0 ∈ N such that

xn ∗ xm > 1− ε for all n,m ≥ n0, so (xn)n∈N converges to 1 with respect to

the Euclidean topology and hence with respect to τM .

Define T : X → C0(X) by Tx = [
√
x, 1]. We show that T is a multivalued

Caristi’s fuzzy mapping on (X,M, ∗). Indeed, let ϕ : X → [0,+∞) be the

lower semicontinuous function on X defined by

ϕ(1) = 0 and ϕ(x) = 1 otherwise.

Let x ∈ X. Take yx = 1 ∈ Tx, and suppose ϕ(x)−ϕ(yx) < t. Then t > 1, and

consequently M(x, yx, t) ≥ 0 > 1 − t. We have shown that condition (ICM)

is satisfied, and hence T is a multivalued Caristi’s fuzzy mapping. Clearly 1

is a fixed point of T (in fact, it is the only fixed point of T ).
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Example 5.2.9 Let X = (0, 1] and let (M,∧) be the fuzzy metric on X

given by M(x, y, 0) = 0 for all x, y ∈ X, M(x, x, t) = 1 for all x ∈ X and

t > 0, and M(x, y, t) = min{x, y, t} otherwise.

First note that τM is the discrete topology on X because for each x ∈ X
one has

BM(x, 1/2, 1/2) = {x} ∪ {y ∈ X : min{x, y, 1/2} > 1/2} = {x}.

Moreover (X,M, ∗) is complete because for x 6= y and t ∈ (0, 1) we have

M(x, y, t) ≤ t and hence the eventually constant sequences are the only

Cauchy sequences in (X,M,∧).

Denote by Q the set of rational numbers and define T : X → C0(X) by

Tx = {y ∈ (0, 1] ∩Q : x ≤ y ≤ x+ 1

2
},

for all x ∈ X. Note that, indeed, Tx ∈ C0(X) since τM is the discrete topology

on X.

We show that T is a multivalued Caristi’s fuzzy mapping on (X,M, ∗).
Indeed, let ϕ : X → [0,+∞) be the lower semicontinuous function on X

defined by ϕ(x) = 0 if x ∈ (0, 1] ∩ Q and ϕ(x) = 1 otherwise. Let x ∈ X.

If x ∈ Q take yx = x ∈ Tx. Then M(x, yx, t) = 1 for all t > 0, so condition

(ICM) is trivially satisfied in this case. If x /∈ Q, take yx a rational number

belonging to (x, x + 1/2) and suppose ϕ(x) − ϕ(yx) < t. Then t > 1, and

consequently M(x, yx, t) ≥ 0 > 1− t. Therefore T is a multivalued Caristi’s

fuzzy mapping. Clearly x ∈ Tx for all x ∈ (0, 1]∩Q (in particular T1 = {1}).
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The material of Sections 6.2 and 6.3 of this chapter is an adaptation to the

thesis of the content of the paper by Muhajid Abbas, Basit Ali and Salvador

Romaguera, “Fixed and periodic points of generalized contractions in metric

spaces”, published in the JCR-journal Fixed Point Theory and Applications

2013, 2013:243. The material of Sections 6.4 and 6.5 is an adaptation to the

thesis of the content of the paper by Muhajid Abbas, Basit Ali and Salvador

Romaguera, “Generalized contraction and invariant approximation results on

nonconvex subsets of normed spaces”, published in the JCR-journal Abstract

and Applied Analysis 2014 (2014), Article ID 391952.
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6.1 Introduction and preliminaries

Fixed point theory can mainly be classified into three different areas (a) Topo-

logical fixed point theory (b) Order oriented fixed point theory (c) Metric

fixed point theory, each is determined by underlying mathematical structure.

Topological fixed point theory is based on Brouwer’s fixed point theorem. It

is worth mentioning that Brouwer’s theorem is not constructive and does

not give information about how to find the fixed point of a given mapping.

Order oriented fixed point theory is studied in the environment created by

the class of partially ordered sets along with appropriate mappings satisfying

certain conditions like monotonicity, expansivity, or various forms of order

continuity. Zermelo’s theorem, the famous Tarski fixed point theorem, Fu-

jimoto fixed point theorem provide the basis for order theoretic fixed point

theory. These theorems are existential in nature. Metric fixed point theory

is studied in the framework of a set endowed with some notion of a distance

and is based on Banach contraction principle. Contrary to Brouwer’s fixed

point theorem, Banach contraction principle not only solves the problem on

the existence of a unique solution to an operator equation but also gives a

practical method to obtain the approximation of a solution. Being based on

an iteration process, it can be implemented on a computer to find the fixed

point of a contractive mapping.

Recently, Wardowski [129] introduced a new type of contraction called

F−contraction and proved a fixed point result in complete metric spaces

which in turn generalizes the Banach contraction principle. In this chapter,

we introduce F−contractions with respect to a self mapping on a metric space

and obtain common fixed point results in a partially ordered sets equipped

with a complete metric. From this perspective, our results can be viewed as a

mixture of metric fixed point and order oriented fixed point results. We also

introduced a notion of generalized F− contraction and employed this concept

to prove a fixed point theorem for generalized nonexpansive mapping. As an
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application of our results, periodic point results for the F−contractions in

metric spaces are also proved. Examples are provided to support results and

concepts presented herein.

We first present some definitions and known results needed in the sequel.

Definition 6.1.1 Let f and g be self mappings on a set X. If fx = gx = w

for some x in X, then x is called a coincidence point of f and g and w is called

a point of coincidence of f and g. Furthermore, if fgx = gfx whenever x is

a coincidence point of f and g, then f and g are called weakly compatible

mappings [67].

Let C(f, g) = {x ∈ X : fx = gx} (F (f, g) = {x ∈ X : x = fx = gx})
denote the set of all coincidence points (the set of all common fixed points)

of self mappings f and g.

Definition 6.1.2 [70] Let (X, d) be a metric space and f, g : X → X. The

mapping f is called a g−contraction if there exists α ∈ (0, 1) such that

d(fx, fy) ≤ αd(gx, gy)

holds for all x, y ∈ X .

In 1976, Jungck [70] obtained the following useful generalization of Ba-

nach contraction principle.

Theorem 6.1.3 Let g be a continuous self mapping on a complete metric

space (X, d). Then g has a fixed point in X if and only if there exists

a g−contraction mapping f : X → X such that f commutes with g and

g(X) ⊆ f(X).

In the sequel by R+ we shall denote the set of positive real numbers.

Let z be the collection of all mappings F : R+ → R that satisfy the

following conditions:

(C1) F is strictly increasing, that is for all α, β ∈ R+ such that α < β

implies that F (α) < F (β).
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(C2) For every sequence {αn}n∈N of positive real numbers, lim
n→∞

αn = 0 and

lim
n→∞

F (αn) = −∞ are equivalent.

(C3) There exists k ∈ (0, 1) such that

lim
α→0+

αkF (α) = 0.

Definition 6.1.4 [129] Let (X, d) be a metric space. A mapping f : X → X

is said to be an F−contraction on X if there exists τ > 0 such that

d(fx, fy) > 0 implies that τ + F (d(fx, fy)) ≤ F (d(x, y)) (6.1.1)

for all x, y ∈ X, and F ∈ z.
Note that every F−contraction is continuous (see [129]). We extend above

definition to two mappings.

Definition 6.1.5 Let (X, d) be a metric space and f, g : X → X. The

mapping f is said to be an F−contraction with respect to g on X, if there

exists τ > 0 such that

τ + F (d(fx, fy)) ≤ F (d(gx, gy)) (6.1.2)

for all x, y ∈ X satisfying min{ d(fx, fy), d(gx, gy)} > 0, and F ∈ z.
By different choices of mappings F in (6.1.1) and (6.1.2), one obtains a

variety of contractions ([129]).

Remark 6.1.6 Let F1 : R+ → R be given by F1(α) = ln(α). It is clear

that F ∈ z. Suppose that f : X → X is an F−contraction with respect to

a self mapping g on X. From (6.1.2), we have

τ + ln(d(fx, fy)) ≤ ln(d(gx, gy))

which implies that

d(fx, fy) ≤ e−τd(gx, gy).

Therefore F1−contraction map f with respect to g reduces to a g−contraction

mapping.
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Now we give an example of an F−contraction with respect to a self map-

ping g on X which is not a g−contraction on X.

Example 6.1.7 Consider the following sequence of partial sums {Sn}n∈N
[129, Example 2.5]

S1 = 1,

S2 = 1 + 2,

S3 = 1 + 2 + 3,

...

Sn = 1 + 2 + ...+ n =
n(n+ 1)

2
, n ∈ N.

Let X = {Sn : n ∈ N} and d be the usual metric on X. Let f : X → X and

g : X → X be defined as:

fSn =

{
Sn−1, if n > 1,

S1, if n = 1
, gSn =

{
Sn+1, if n > 1,

S1, if n = 1
.

Let F1 : R+ → R be given by F1(α) = ln(α). As

lim
n→∞

d(fSn, fS1)

d(gSn, gS1)
= lim

n→∞

Sn−1 − S1

Sn+1 − S1

= 1,

so f is not a g−contraction. If we take F2(α) = ln(α) + α, then F2 ∈ z
and f is F2−contraction with respect to mapping g (taking τ = 2). Indeed,

following holds:

d(fSn, fS1)

d(gSn, gS1)
ed(fSn,fS1)−d(gSn,gS1)

=
Sn−1 − S1

Sn+1 − S1

eSn−1−S1−Sn+1+S1

=
n2 − n− 2

n2 + 3n
e−4n−2 ≤ e−2,
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for all n > 1. For all m,n ∈ N with m > n > 1, we have

d(fSm, fSn)

d(gSm, gSn)
ed(fSm,fSn)−d(gSm,gSn)

=
Sm−1 − Sn−1

Sm+1 − Sn+1

eSm−1−Sn−1−Sm+1+Sn+1

=
m2 +m− n2 − n
m2 + 3m− n2 − 3n

e−2(m−n) ≤ e−2.

Definition 6.1.8 [3] (Dominance Condition) Let (X,�) be a partially

ordered set. A self mapping f on X is said to be (i) dominated map if

fx � x for each x in X, (ii) dominating map if x � fx for each x in X.

Example 6.1.9 Let X = [0, 1] be endowed with the usual ordering and

f, g : X → X defined by gx = xn for some n ∈ N and fx = kx for some real

number k ≥ 1. Note that

gx = xn ≤ x and x ≤ kx = fx

for all x in X. Thus g is dominated and f is a dominating map.

Definition 6.1.10 Let (X,�) be a partially ordered set. Two mappings

f, g : X → X are said to be weakly increasing if fx � gfx and gx � fgx for

all x in X (see [11]).

Definition 6.1.11 Let X be a nonempty set. Then (X, d,�) is called

an ordered metric space if (X, d) is a metric space and (X,�) is a partially

ordered set.

Definition 6.1.12 Let (X,≤) be an ordered set. A pair (f, g) on X is said:

(i) weakly increasing if for all x ∈ X, we have fx ≤ gfx and gx ≤ fgx, [12]

(ii) partially weakly increasing if fx ≤ gfx, for all x ∈ X.

Remark 6.1.13 A pair (f, g) is weakly increasing if and only if ordered

pair (f, g) and (g, f) are partially weakly increasing.

Example 6.1.14 Let X = [0, 1] be endowed with usual ordering. Let

f, g : X → X be defined by fx = x2 and gx =
√
x. Then fx = x2 ≤ x = gfx

for all x ∈ X. Thus (f, g) is partially weakly increasing. But gx =
√
x � x =

fgx for x ∈ (0, 1). So (g, f) is not partially weakly increasing.
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Definition 6.1.15 Let (X,≤) be an ordered set. A mapping f is called

weak annihilator of g if fgx ≤ x for all x ∈ X.

Example 6.1.16 Let X = [0, 1] be endowed with usual ordering. Define

f, g : X → X by fx = x2 and gx = x3. Then fgx = x6 ≤ x for all x ∈ X.
Thus f is a weak annihilator of g.

Definition 6.1.17 Let (X,≤) be an ordered set. A selfmap f on X is

called dominating map if x ≤ fx for each x in X.

Example 6.1.18 Let X = [0, 1] be endowed with usual ordering. Let

f : X → X be defined by fx = x
1
3 . Then x ≤ x

1
3 = fx for all x ∈ X. Thus

f is a dominating map.

Example 6.1.19 Let X = [0,∞) be endowed with usual ordering. Define

f : X → X by

fx =

{
n
√
x for x ∈ [0, 1),

xn for x ∈ [1,∞),

n ∈ N. Then for all x ∈ X, x ≤ fx so that f is a dominating map.

Definition 6.1.20 Let (X,�) be a partial ordered set, then x, y in X are

called comparable elements if either x � y or y � x holds true. Moreover,

we define ∆ ⊆ X ×X by

∆ = {(x, y) ∈ X ×X : x � y or y � x}.

Definition 6.1.21 An ordered metric space (X, d,�) is said to have se-

quential limit comparison property if for every non-decreasing sequence (non-

increasing sequence) {xn}n∈N in X such that xn → x implies that xn � x

(x � xn).

6.2 Common fixed point results in ordered

metric spaces

We present following theorem as a generalization of results in [71] and [129,

Theorem 2.1].
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Theorem 6.2.1 Let (X,�) be a partially ordered set such that there

exists a metric d on X and f : X → X an F−contraction with respect to

g : X → X on ∆ with f(X) ⊆ g(X). Assume that f is dominating and g is

dominated. Then

(a) f and g have a coincidence point in X provided that g(X) is complete

and has sequential limit comparison property.

(b) C(f, g) is well ordered if and only if C(f, g) is singleton.

(c) f and g have unique common fixed point if f and g are weakly compatible

and C(f, g) is well ordered.

Proof. (a) Let x0 be an arbitrary point of X. Since the range of g contains

the range of f, so there exists a point x1 in X such that f(x0) = g(x1). As f

is dominating and g is dominated, so we have

x0 � fx0 = gx1 � x1.

Hence (x0, x1) ∈ ∆. Continuing this process, having chosen xn in X, we

obtain xn+1 in X such that

xn � fxn = gxn+1 � xn+1.

So we obtain (xn, xn+1) ∈ ∆ for every n ∈ N ∪ {0}. For sake of simplicity,

take

γn = d(gxn, gxn+1) (6.2.1)

for all n ∈ N ∪ {0}. If there exists n0 ∈ N ∪ {0} for which xn0+1 = xn0 , then

fxn0 = gxn0+1 implies that fxn0+1 = gxn0+1, that is, xn0+1 ∈ C(f, g). Now

we assume that xn+1 6= xn for all n ∈ N ∪ {0}. As f is F−contraction with
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respect to g on ∆, so we obtain

F (γn) = F (d(gxn, gxn+1)) = F (d(fxn−1, fxn))

≤ F (d(gxn−1, gxn))− τ

= F (d(fxn−2, fxn−1))− τ

≤ F (d(gxn−2, gxn−1))− 2τ ≤ ...

≤ F (d(gx1, gx2))− (n− 1)τ = F (γ1)− (n− 1)τ.

That is

F (γn) ≤ F (γ1)− (n− 1)τ.

On taking limit as n→∞, we obtain lim
n→∞

F (γn) = −∞. Hence lim
n→∞

γn = 0

by (C2). Now by (C3), there exists k ∈ (0, 1) such that lim
n→∞

γknF (γn) = 0.

Note that

γknF (γn)− γknF (γ1) ≤ γkn(F (γ1)− (n− 1)τ)− γknF (γ1) = −γkn(n− 1)τ ≤ 0.

(6.2.2)

Taking limit as n→∞ in (6.2.2), we have lim
n→∞

(n− 1)γkn = 0. Consequently,

lim
n→∞

nγkn = 0. Thus there exist n1 in N such that nγkn ≤ 1 for all n ≥ n1, that

is γn ≤ 1/n1/k for all n ≥ n1. Now for integers m > n ≥ 1, we obtain

d(gxn, gxm) ≤ d(gxn, gxn+1) + d(gxn+1, gxn+2) + ...+ d(gxm−1, gxm)

<

∞∑
i=n

γi ≤
∞∑
i=n

1

i
1
k

<∞.

This shows that {gxn}n∈N is a Cauchy sequence in g(X). As g(X) is complete

so there exists q in g(X) such that lim
n→∞

gxn = q. Let p ∈ X be such that

g(p) = q. Sequential limit comparison property implies that gxn+1 � q. As

xn � fxn = gxn+1 � q = g(p) � p so (xn, p) ∈ ∆. Hence from (6.1.2), we

have

F (d(gxn, fp)) = F (d(fxn−1, fp)) ≤ F (d(gxn−1, gp))− τ.
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Since lim
n→∞

d(gxn−1, gp) = 0, therefore by (C2), we have lim
n→∞

F (d(gxn−1, gp)) =

−∞. Hence lim
n→∞

F (d(gxn, fp)) = −∞ implies that lim
n→∞

d(gxn, fp) = 0. That

is lim
n→∞

gxn = fp. Uniqueness of limit implies fp = gp, that is, p ∈ C(f, g).

(b) Now suppose that C(f, g) is well ordered. We prove that C(f, g) is a

singleton. Assume on contrary that there exists another point w in X such

that fw = gw with w 6= p. Since C(f, g) is well ordered so (w, p) ∈ ∆. Now

from (6.1.2), we have

τ ≤ F (d(gw, gp))− F (d(fw, fp)) = 0

a contradiction. Therefore w = p. Hence f and g have a unique coincidence

point p in X. Converse follows immediately.

(c) Now if f and g are weakly compatible mappings, then we have fq =

fgp = gfp = gq, that is, q is the coincidence point of f and g. But q is the

only point of coincidence of f and g, so fq = gq = q. Hence q is the unique

common fixed point of f and g.

Example 6.2.2 Let X = [0, 5] be endowed with usual metric and usual

order. Define mappings f, g : X → X by

gx =


0 if x ∈ [0, , 3)

3 if x ∈ [3, 5)

5 if x = 5

, fx =

{
3 if x ∈ [0, 3)

5 if x ∈ [3, 5]
.

Clearly g is dominated, and f is dominating. Define F : R+ → R as F (x) =

ln(x). If x ∈ [0, 3) and y ∈ [3, 5) then

F (d(fx, fy)) = F (d(3, 5)) = F (2) = ln(2) ≈ 0.693

< F (d(gx, gy)) = F (d(0, 3))

= F (3) = ln(3) ≈ 1.098.

Hence for τ ∈ (0, 0.40], inequality (6.1.2) is satisfied. Similarly for x ∈ [0, 3)
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and y = 5, we have

F (d(fx, fy)) = F (d(3, 5)) = F (2) = ln(2) ≈ 0.693

< F (d(gx, gy)) = F (d(0, 5))

= F (5) = ln(5) ≈ 1.6094.

Hence for τ ∈ (0, 0.9164], inequality (6.1.2) is satisfied. We can take a τ ∈
(0, 0.40] so that

τ + F (d(fx, fy)) ≤ F (d(gx, gy))

is satisfied for all x, y ∈ [0, 5], whenever min{d(fx, fy), d(gx, gy)} > 0. Hence

f is an F−contraction with respect to g on [0, 5]. Hence all the conditions

of Theorem 6.2.1 are satisfied. Moreover x = 5 is the coincidence point of

f and g. Also note that f and g are weakly compatible and x = 5 is the

common fixed point of g and f as well.

Now we give a common fixed point result without imposing any type of

commutativity condition for self mappings f and g on X. Moreover we relax

the dominance conditions on f and g as well.

Theorem 6.2.3 Let (X,�) be a partially ordered set such that there

exists a complete metric d on X. If self mappings f and g on X are weakly

increasing and for some τ > 0 satisfy

τ + F (d(fx, gy)) ≤ F (d(x, y)) (6.2.3)

for all (x, y) ∈ ∆ such that min{d(fx, gy), d(x, y)} > 0. Then F (f, g) 6= ∅,
provided that X has sequential limit comparison property. Further f and g

have a unique common fixed point if and only if F (f, g) is well ordered.

Proof. Let x0 be an arbitrary point of X. Define a sequence {xn}n∈N
in X as follows: x2n+1 = fx2n and x2n+2 = gx2n+1. Since f and g are

weakly increasing so we have x2n+1 = fx2n � gfx2n = gx2n+1 = x2n+2 and

x2n+2 = gx2n+1 � fgx2n+1 = fx2n+2 = x2n+3. Hence (x2n+1, x2n+2) ∈ ∆ and

(x2n+2, x2n+3) ∈ ∆ for every n ∈ N ∪ {0}. Now denote

γ2n = d(x2n+1, x2n+2) (6.2.4)
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for all n ∈ N ∪ {0}. Using (6.2.3) the following holds for every n ∈ N ∪ {0}

F (γ2n) = F (d(x2n+1, x2n+2)) = F (d(fx2n, gx2n+1))

≤ F (d(x2n, x2n+1))− τ = F (γ2n−1)− τ.

Similarly

F (γ2n+1) = F (d(x2n+3, x2n+2)) = F (d(fx2n+2, gx2n+1))

≤ F (d(x2n+1, x2n+2))− τ = F (γ2n)− τ.

Therefore, for all n ∈ N ∪ {0}, we have

F (γn) ≤ F (γn−1)− τ ≤ F (γn−2)− 2τ...

≤ F (d(x1, x2))− nτ = F (γ0)− nτ.

Thus

F (γn) ≤ F (γ0)− nτ. (6.2.5)

Taking limit as n→∞ in (6.2.5) we get

lim
n→∞

F (γn) = −∞.

By (C2) and (C3) we get lim
n→∞

γn = 0 and k ∈ (0, 1) such that lim
n→∞

γknF (γn) =

0. Note that

γknF (γn)− γknF (γ0) ≤ γkn(F (γ0)− nτ)− γknF (γ0) = −γknnτ ≤ 0. (6.2.6)

By taking limit as n → ∞ in (6.2.6), we get lim
n→∞

nγkn = 0. This implies

there exist n1 such that nγkn ≤ 1 for all n ≥ n1. Consequently we obtain

γn ≤ 1/n1/k for all n ≥ n1. Now for integers m > n ≥ 1, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

<

∞∑
i=n

γi ≤
∞∑
i=n

1

i
1
k

<∞.
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This shows that xn is a Cauchy sequence in X, so there exist p in X

such that lim
n→∞

xn = p. As X has sequential limit comparison property, so

(xn, p), (x2n, p), (x2n+1, p) ∈ ∆. Therefore

lim
n→∞

F (d(x2n+1, gp)) = lim
n→∞

F (d(fx2n, gp)) ≤ F (d(x2n, p))− τ.

Since lim
n→∞

d(x2n, p) = 0. So by (C2), we have lim
n→∞

F (d(x2n, p)) = −∞. This

implies lim
n→∞

F (d(x2n+1, gp)) = −∞ which further implies that lim
n→∞

d(x2n+1, gp) =

0. Hence d(p, gp) = 0 and p = gp. Similarly, we obtain p = fp. This shows

that p is a common fixed point of g and f. Now suppose that F (f, g) is well

ordered. We prove that F (f, g) is singleton. Assume on contrary that there

exists another point q in X such that q = fq = gq with q 6= p. Obviously

(q, p) ∈ ∆. So from (6.2.3) we have τ ≤ F (d(q, p)) − F (d(fq, gp)) = 0, a

contradiction. Therefore q = p. Hence g and f have a unique common fixed

point p in X. Converse follows immediately.

6.3 Periodic points results in metric spaces

If x is the fixed point of f then x is the fixed point of fn for every n ∈ N,
but the converse is not true.

Example 6.3.1 Let f : [0, 1]→ [0, 1] be given by

f(x) = 1− x.

Then f has a unique fixed point x =
1

2
. Note that fnx = x holds for every

even natural number n and x in [0, 1]. On the other hand, define a mapping

g : [0, π]→ [0, π] as

g(x) = cos x.

Then g has the same fixed point as gn for every n.

Definition 6.3.2 The self mapping f is said to have the property P if

F (fn) = F (f) for every n ∈ N. A pair (f, g) of self mappings is said to have

the property Q if F (f) ∩ F (g) = F (fn) ∩ F (gn).
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For further details on these properties, we refer to [19, 64].

Let (X, d) be a metric space and f : X → X be a self mapping. The set

O(x) = {x, fx, ..., fnx, ...} is called orbit of x [58]. A mapping f is called

orbitally continuous at p if lim
n→∞

fnx = p implies that lim
n→∞

fn+1x = fp. A

mapping f is orbitally continuous on X if f is orbitally continuous for all

x ∈ X.
In this section we prove some periodic points results for self mappings on

complete metric spaces.

Theorem 6.3.3 Let X be a nonempty set such that there exists a complete

metric d on X. Suppose that f : X → X satisfies

τ + F (d(fx, f 2x)) ≤ F (d(x, fx)), (6.3.1)

for some τ > 0 and for all x in X such that d(fx, f 2x) > 0. Then f has

property P provided that f is orbitally continuous on X.

Proof. First we show that F (f) 6= ∅. Let x0 ∈ X. Define a sequence

{xn}n∈N in X, such that xn+1 = fxn, for all n ∈ N ∪ {0}. Denote γn =

d(xn, xn+1) for all n ∈ N∪{0}. If there exists n0 ∈ N∪{0} for which xn0+1 =

xn0 , then fxn0 = xn0 and the proof is finished. Suppose that xn+1 6= xn, for

all n ∈ N ∪ {0}. Using (6.3.1), we obtain

F (γn) = F (d(xn, xn+1)) = F (d(fxn−1, f
2xn−1))

≤ F (d(xn−1, fxn−1))− τ = F (d(fxn−2, f
2xn−2))− τ

≤ F (d(xn−2, fxn−2))− 2τ ≤ ...

≤ F (d(x1, x2))− (n− 1)τ

= F (d(fx0, f
2x1))− (n− 1)τ ≤ F (d(x0, x1))− nτ

= F (γ0)− nτ.

for every n ∈ N ∪ {0}. By taking limit as n → ∞ in above inequality, we

obtain that lim
n→∞

F (γn) = −∞, that together with (C2) gives lim
n→∞

γn = 0.
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From (C3), there exist k ∈ (0, 1) such that lim
n→∞

γknF (γn) = 0. Note that

γknF (γn)− γknF (γ0) ≤ γkn(F (γ0)− nτ)− γknF (γ0)

= −γknnτ ≤ 0.

On taking limit as n→∞, we get lim
n→∞

nγkn = 0. Hence there exists n1 such

that nγkn ≤ 1 for all n ≥ n1. Consequently γn ≤ 1/n1/k for all n ≥ n1. Now

for integers m > n ≥ 1 such that

d(fnx0, f
mx0) = d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...

+d(xm−1, xm)

<
∞∑
i=n

γi ≤
∞∑
i=n

1

i
1
k

<∞.

This shows that {fnx0}n∈N is a Cauchy sequence. Since {fnx0 : n ∈ N} ⊆
O(x0) ⊆ X and X is complete which implies that there exists an x in X such

that lim
n→∞

fnx0 = x. Since f is orbitally continuous at x, so x = lim
n→∞

fnx0 =

f( lim
n→∞

fn−1x0) = fx. Hence f has fixed point and F (fn) = F (f) is true

for n = 1. Now assume n > 1. Suppose on contrary that u ∈ F (fn) but

u /∈ F (f), then d(u, fu) = α > 0. Now consider

F (α) = F (d(u, fu) = F (d(f(fn−1u), f 2(fn−1u)))

≤ F (d(fn−1u, fnu))− τ

≤ F (d(fn−2u, fn−1u))− 2τ

≤ ... ≤ F (d(u, fu))− nτ.

Thus F (α) ≤ lim
n→∞

F (d(u, fu)) − nτ = −∞. Hence F (α) = −∞. By (C2)

α = 0, a contradiction. So u ∈ F (f).

Theorem 6.3.4 Let (X,�) be a partially ordered set such that there exists

a complete metric d on X and f, g self mappings on X. Further assume that

f, g are weakly increasing and satisfy

τ + F (d(fx, gy)) ≤ F (d(x, y))
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for some τ > 0, for all x, y in X such that min{d(fx, gy), d(x, y)} > 0. Then

f and g have property Q provided that X has sequential limit comparison

property.

Proof. By Theorem 6.2.3, f and g have common fixed point. Suppose on

contrary that

u ∈ F (fn) ∩ F (gn)

but u /∈ F (f) ∩ F (g), then there are three possibilities (a) u ∈ F (f)r F (g),

(b) u ∈ F (g)r F (f) (c) u /∈ F (f) and u /∈ F (g). Without loss of generality

let u /∈ F (g), that is d(u, gu) = α > 0, so we get

F (α) = F (d(u, gu) = F (d(f(fn−1u), g(gnu)))

≤ F (d(fn−1u, gnu))− τ

≤ F (d(fn−2u, gn−1u))− 2τ

≤ ... ≤ F (d(u, gu))− nτ.

As lim
n→∞

F (d(u, gu)− nτ = −∞, so we have F (α) = −∞. By (C2) α = 0, a

contradiction. Hence u ∈ F (g) ∩ F (f).

6.4 Fixed points of generalized contractions

In this section, we introduce a notion of generalized F -contraction mappings

which is used to prove a fixed point result for generalized nonexpansive map-

pings on star shaped subsets of normed linear spaces. Some theorems on

invariant approximations in normed linear spaces are deduced. Our results

extend, unify and generalize comparable results in [22, 34, 77, 92]. Some

illustrative examples are also presented.
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Motivated by the work of Wardowski [129] and by Theorem 4 of [1], we

give the following definition.

Definition 6.4.1 Let (X, d) be a metric space and F ∈ z. A mapping

f : X → X is said to be a generalized F−contraction if there exists a τ > 0

such that

d(fx, f 2x) > 0⇒ τ + F (d(fx, f 2x)) ≤ F (d(x, fx)) (6.4.1)

for all x ∈ X.
Definition 6.4.2 Let (X, d) be a metric space and F ∈ z. A mapping

f : X → X is said to be F−nonexpansive if

d(fx, fy) > 0⇒ F (d(fx, fy)) ≤ F (d(x, y)), (6.4.2)

for all x, y ∈ X.
Remark 6.4.3 It follows from condition C1 that if F ∈ z and f is an

F−nonexpansive self-mapping of a metric space (X, d), then f is nonexpan-

sive (recall that f is nonexpansive provided that d(fx, fy) ≤ d(x, y) for all

x, y ∈ X). Conversely, it is clear, by C1, that if f is a nonexpansive self-

mapping of a metric space (X, d), then f is F−nonexpansive for all F ∈ z.

By considering different choices of mappings F in (6.4.1) and (6.4.2), we

obtain a variety of contractions. For details we refer to [129] and the following

examples.

Example 6.4.4 Let (X, d) be a metric space, F ∈ z and G : R+ →
R be given by G(α) = F (α) − τ, where τ > 0. It is clear that G ∈ z.
Now, if f : X → X is a generalized F−contraction, then it is a generalized

G−contraction because for any x, y ∈ X with d(fx, f 2x) > 0, we have

τ +G(d(fx, f 2x)) = F (d(fx, f 2x))

≤ F (d(x, fx))− τ = G(d(x, fx)).

Similarly, if f is an F−contraction, then it is a G−contraction. Furthermore,
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if f is F−nonexpansive then

G(d(fx, fy)) = F (d(fx, fy))−τ ≤ F (d(x, y))−2τ ≤ G(d(x, y))−τ ≤ G(d(x, y)),

(6.4.3)

whenever d(fx, fy) > 0, which shows that f is G−nonexpansive. Finally,

note that taking G(α) = ln(α) in (6.4.3), we deduce that f is nonexpansive.

Example 6.4.5 Let (X, d) be a metric space, let F1 : R+ → R be given

by F1(α) = ln(α) and let f : X → X a generalized F−contraction. Since

F1 ∈ z, then (6.4.1) becomes

τ + ln(d(fx, f 2x)) ≤ ln(d(x, fx))

whenever d(fx, f 2x) > 0, which implies

ln
d(fx, f 2x)

d(x, fx)
≤ −τ, that is,

d(fx, f 2x)

d(x, fx)
≤ e−τ ,

and thus d(fx, f 2x) ≤ e−τd(x, fx). Hence our definition is more general than

those given in [77] and [124].

If we take F2(α) = ln(α) + α, it is clear that F2 ∈ z, and then (6.4.1)

becomes

τ + ln(d(fx, f 2x)) + d(fx, f 2x) ≤ ln(d(x, fx)) + d(x, fx)

whenever d(fx, f 2x) > 0, which implies that

d(fx, f 2x)

d(x, fx)
ed(fx,f2x)−d(x,fx) ≤ e−τ ,

i.e.,

d(fx, f 2x) ≤ e−τ

ed(fx,f2x)−d(x,fx)
d(x, fx).

Definition 6.4.6 Let C be a closed subset of metric space (X, d). Then

f : C → C is called compact if for every bounded subset A of C, f(A) is

compact in C.
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Definition 6.4.7 If f : X → X is a mapping with f(C) ⊆ C, then C is

called an f−invariant subset of X.

Definition 6.4.8 Let C be a subset of metric space (X, d). As usual, for

any x ∈ X, we define

d(x,C) = inf{d(x, y) : y ∈ C},

and

PC(x) = {y ∈ C : d(x, y) = d(x,C)}.

PC(x) is called the set of best approximations of x from C. If for each x ∈ X,

PC(x) is nonempty then C is called proximinal. Observe that if C is closed,

then PC(x) is also closed.

Definition 6.4.9 Let E be a linear space over R. A subset C of E is called

star-shaped if there exists at least one point z ∈ C such that tz+(1−t)x ∈ C
for all x ∈ C and 0 < t < 1. In this case z is called a star centre of C.

Let (X, d) be a metric space, C be a closed subset of X and f : C → C be

a self-mapping. For each x ∈ C, the set O(x) = {x, fx, ..., fnx, ...} is called

the orbit of x (compare [58]). The mapping f is called orbitally continuous

at p if lim
n→∞

fnx = p implies lim
n→∞

fn+1x = fp, and f is orbitally continuous

on a set C if f is orbitally continuous for all p ∈ C.
In the following a normed linear space (E, ‖.‖) will be simply denoted

by E if no confusion arises. Furthermore, by a complete subset of a normed

linear space E we will mean a subset A of E such that the restriction to

A of the metric induced on E by its norm is a complete. Of course, every

complete subset of a normed linear space is closed, and every closed subset

of a Banach space is complete.

Our main result will be proved with the help of the following re-formulation

of Theorem 4 of [1].

Theorem 6.4.10 [1] Let (X, d) be a complete metric space, F ∈ z and

f : X → X an orbitally continuous generalized F−contraction. Then f has

a fixed point.
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Theorem 6.4.11 Let E be a normed linear space, C a complete and

star-shaped subset of E and F ∈ z. If f : C → C is an F−nonexpansive

mapping and f(C) is compact, then f has a fixed point.

Proof. We first note that, by Remark 6.4.3, f is nonexpansive on C, so

it is continuous on C.

Now let z be a star centre of C. For each n ≥ 1, define fn : C → C by

fnx = (1− kn)z + knfx,

for all x ∈ C, where 0 < kn < 1 and lim
n→∞

kn = 1. From the fact that f is

continuous on C it immediately follows that each fn is continuous on C.

For any fixed n ≥ 1 and any x ∈ C, we have

F (
∥∥fnx− f 2

nx
∥∥) = F (‖(1− kn)z + knfx− fn((1− kn)z + knfx)‖)

= F (‖(1− kn)z + knfx− (1− kn)z − knf((1− kn)z + knfx)‖)

= F (‖kn(fx− f((1− kn)z + knfx))‖).

Since F is strictly increasing, with kn < 1 for each n ≥ 1, and f is F−nonexpansive,

we have

F (
∥∥fnx− f 2

nx
∥∥) < F (‖fx− f((1− kn)z + knfx)‖)

< F (‖x− ((1− kn)z + knfx)‖) = F (‖x− fnx‖).

Hence

F (‖x− fnx‖)− F (
∥∥fnx− f 2

nx
∥∥) > 0.

This implies that there exists τn > 0, such that

0 < τn ≤ F (‖x− fnx‖)− F (
∥∥fnx− f 2

nx
∥∥).

Therefore

τn + F (
∥∥fnx− f 2

nx
∥∥) ≤ F (‖x− fnx‖).

Hence fn is a generalized F−contraction for each n ≥ 1. By Theorem 6.4.10,

for each n ≥ 1 there exists xn ∈ C such that fnxn = xn. Since f(C) is
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compact there exist a subsequence {fxni
}i≥1 of the sequence {fxn}n≥1, and

an x ∈ f(C) such that

x = lim
i→∞

fxni
.

(In fact x ∈ C because f(C) ⊆ C and C is closed).

Since limi→∞ kni
= 1 and xni

= fni
xni

for all i ≥ 1, we deduce that

x = lim
i→∞

fxni
= lim

i→∞
((1− kni

)z + kni
fxni

) = lim
i→∞

fni
xni

= lim
i→∞

xni
.

Therefore

fx = lim
i→∞

fxni
.

We conclude that x = fx.

Remark 6.4.12 Note that, by Remark 6.4.3, we can restate the preceding

theorem as follows: Let E be a normed linear space (resp. Banach space)

and C a complete (resp. closed) and star-shaped subset of E. If f : C → C

is a nonexpansive mapping and f(C) is compact, then f has a fixed point.

The following is an example where we can apply Theorem 6.4.11 for every

F ∈ z.
Example 6.4.13 Let `1 be the linear space of all summable sequences of

real numbers. Then, the pair (`1, ‖.‖1) is a (classical) Banach space, where

‖.‖1 is the norm on `1 such that for each x := {xn}n≥1 ∈ `1,

‖x‖1 =
∞∑
n=1

|xn| .

In the following any element x := {xn}n≥1 of `1 will be also denoted as

(x1, x2, x3, ..., xn, ...).

Let C be the closed unit ball of (`1, ‖.‖1), i.e.,

C = {x ∈ `1 : ‖x‖1 ≤ 1}.
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It is well known that C is a (noncompact) closed subset of (`1, ‖.‖1). Moreover

C is star-shaped with z = 0 a star center of C.

Now let k ∈ (0, 1] constant, and define f : C → C as

fx = (x1, kx2, 0, ..., 0, ...),

for all x := (xn)n≥1 ∈ `1. Clearly f is nonexpansive on C, and hence it is

F−nonexpansive for any F ∈ z, by Remark 6.4.3.

Furthermore f(C) is homeomorphic to the compact subset of R2,

{(u, v) ∈ R2 : |u|+
∣∣∣v
k

∣∣∣ ≤ 1},

so that f(C) is compact. Hence f(C) = f(C) and thus f(C) is compact. We

have shown that all conditions of Theorem 6.4.11 (compare Remark 6.4.3)

are satisfied. Thus f has a fixed point. In fact, the fixed points of f are the

elements x = {xn}n≥1 of C such that xn = 0 whenever n ≥ 2.

Now we give an example of a discontinuous self-mapping f on a compact

metric space which is a generalized F−contraction but not an F−contraction.

So the class of generalized F−contraction mappings is a bigger than the class

of F−contraction.

Example 6.4.14 Let X = R, and C = [0, 1] be endowed with usual metric.

Define a mapping f : C → C as f(x) = 1 if x ∈ {0, 1}, and f(x) = x/2 if

x ∈ (0, 1).

Let F : R+ → R be defined by Fx = lnx for x ∈ (0, 1). Note that

ln 2 + F (d(fx, f 2x)) ≤ F (d(x, fx)),

is satisfied for all x ∈ C whenever d(fx, f 2x) > 0. Hence f is a generalized

F−contraction. Clearly f is not continuous at x = 1 and at x = 0. Hence f

is not an F−contraction ( see Remark 2.1 in [129] ) or let x = 0 and y = 1
2
,

then

F (d(f0, f
1

2
)) = F (d(1,

1

4
)) = F (

3

4
) = ln(

3

4
) = ln 3− 2 ln 2,
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while

F (d(0,
1

2
)) = F (

1

2
) = ln(

1

2
) = − ln 2,

and thus

F (d(0,
1

2
))− F (d(f0, f

1

2
)) = ln 2− ln 3 < 0.

Hence there does not exist any τ > 0, such that for x = 0 and y = 1
2
,

τ + F (d(fx, fy)) ≤ F (d(x, y)),

is satisfied. Now let x0 = 0, then f(0) = 1, and f 2(0) = 1. Hence the orbit

of x0 is the set O(0) = {0, 1, 1, ...} = O(0) which is compact, and

lim
n→∞

fn(0) = 1, lim
n→∞

fn+1(0) = f1 = 1,

that is f is orbitally continuous at 1. Hence, by Theorem 6.4.11, f has a fixed

point (in fact x = 1 is the only fixed point of f).

6.5 Invariant approximation results in non-

convex subsets of normed spaces

In the last part, we discuss nonemptiness and existence of fixed points for the

set of best approximations of closed subsets of metric spaces and of normed

spaces, respectively.

Theorem 6.5.1 Let (X, d) be a metric space. Let F ∈ z be a continuous

mapping and f : X → X be F−nonexpansive with a fixed point u ∈ X. If C

is a closed f−invariant subset of X such that f is compact on C, then the

set PC(u) of best approximations is nonempty.

Proof. Let r = d(u,C). Then, there is a sequence {yn}n≥1 in C such

that lim
n→∞

d(u, yn) = r. Since {yn : n ≥ 1} is a bounded subset of C and

f is compact on C, the set {fyn : n ≥ 1} is a compact subset of C, and so
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there exist a subsequence {fyni
}i≥1 of {fyn}n≥1 and an x ∈ C such that

lim
i→∞

fyni
= x. Now,

F (r) ≤ F (d(u, x)) = F ( lim
i→∞

d(fu, fyni
))

= lim
i→∞

F (d(fu, fyni
)) ≤ lim

i→∞
F (d(u, yni

))

= F ( lim
i→∞

d(u, yni
)) = F (r).

This implies

F (r) = F (d(u, x)).

Since F is strictly increasing, we get r = d(u, x). Hence PC(u) is nonempty.

As an application of Theorems 6.4.11 and 6.5.1 we deduce the following.

Theorem 6.5.2 Let E be a normed linear space. Let F ∈ z be a continuous

mapping and f : E → E be F−nonexpansive with a fixed point u ∈ E. If

C is a complete f−invariant subset of E such that f is compact onC, and

PC(u) is a star-shaped set, then f has a fixed point in PC(u).

Proof. By Theorem 6.5.1, PC(u) is nonempty. We show that PC(u) is

f−invariant. To this end, let y ∈ PC(u) and set r = d(u,C), then

F (r) ≤ F (d(u, fy)) = F (d(fu, fy))

≤ F (d(u, y)) = F (r).

This implies

F (r) = F (d(u, fy)).

Since F is strictly increasing, we get r = d(u, fy). So fy ∈ PC(u). This proves

that PC(u) is f−invariant, so f : PC(u) → PC(u) is F−nonexpansive. Now

observe that if C is complete then PC(u) is also complete. Hence PC(u) is

star-shaped and complete, and f(PC(u)) is compact, so, by Theorem 6.4.11,

there exists x ∈ PC(u) such that fx = x.
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Remark 6.5.3 As in the case of Theorem 6.4.11 (see Remark 6.4.3), the

preceding theorem can be restated as follows: Let E be a normed linear space

(resp. Banach space) and let f : E → E be nonexpansive with a fixed point

u ∈ E. If C is a complete (resp. closed) f−invariant subset of E such that

f is compact onC, and PC(u) is a star-shaped set, then f has a fixed point

in PC(u).

We conclude the chapter illustrating Theorem 6.5.2 with the following

example.

Example 6.5.4 Let (`1, ‖.‖1) be the Banach space of Example 6.4.13.

Define f : `1 → `1 as

fx = (x1, kx2, 0, ..., 0, ...),

for all x := {xn}n≥1 ∈ `1, with k ∈ (0, 1]. Let F ∈ z be continuous. Since

f is nonexpansive, it follows from Remark 5 that it is F−nonexpansive. Of

course, f has fixed points. In fact

Fix(f) = {x :={xn}n≥1 ∈ `1 : xn = 0 for all n ≥ 2} .

As in Example 7.2.9, let C be the closed unit ball of (`1, ‖.‖1). We know

that C is a closed, and thus complete, f−invariant subset of E such that f

is compact on C.

Then, if we choose x :={xn}n≥1 ∈ Fix(f) such that |x1| > 1, we deduce

that PC(x) = (1, 0, 0, ..., 0, ...) if x1 > 1, and PC(x) = (−1, 0, 0, ..., 0, ...) if

x1 < −1. Therefore, PC(u) is trivially star-shaped. Thus, all conditions of

Theorem 6.5.2 (compare Remark 6.5.3) have been verified.
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Chapter 7

Discussion of the Obtained

Results and Conclusions

The development of soft topology is based on basic soft set operations. This

is the reason that a lot of research activity around soft set operations has

been seen in recent years. The concepts of soft equality, soft union and soft

intersection are the basic ingredients to prove Demorgan’s laws in the setup

of soft set theory. The soft null set and soft universal sets are also important

to study soft topology. It has been observed that several basic properties in

[87] do not hold true in general. This was the basic motivation for Chapter

2 of this thesis.

We introduced the concepts of g−null soft set and g−soft subset of a soft

set along with the notion of g−soft equality relation ug between the soft sets.

It is shown that g−soft equality relation ug generalizes existing comparable

concepts about equality of soft sets. Moreover we gave example to show that

ug gives rise to the bigger class of soft subsets which ultimately will refine the

bases for soft topological spaces. Furthermore, we give algebraic structure

(lattice structure with order �s on the class of soft sets) with g−soft equality

relation ug and already existing operations on union and intersection of soft

sets. It is proved that order relation �s is dependence relation and g−soft
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equality relation is an equivalence relation on the collection of soft sets. Some

examples have been provided as illustrations and for comparisons. The new

operations on soft sets will be important basis for the further developments

on soft set theory.

Recently, Tridiv [100] and Mahanta [85] studied the concept of fuzzy soft

topological spaces. Chapter 3 deals with our initiative of the study of fixed

points in the framework of fuzzy soft set theory. In order to develop this

theory, it was natural to develop some basic machinery to deal with this new

subject. The concept of fuzzy soft mapping was central to this chapter. We

also studied some basic properties of fuzzy soft elements. We also proved

a fuzzy soft Cantor intersection theorem for the class of fuzzy soft closed

subsets of fuzzy soft compact topological space. Based on these concepts,

we were able to obtain fixed points of fuzzy soft mappings.

Das and Samanta [29, 28] coined the notion of soft real set, soft real

numbers and studied their properties. Along these directions, they intro-

duced the concept of a soft metric. In Chapter 4 we introduced the concept

of a soft contraction mappings and then proved soft contraction theorem.

We also obtained a fixed point result for a soft contraction mapping on soft

closed subsets of complete soft metric space. These results can be viewed as

a foundation of soft metric fixed point theory. Considering these results as a

starting point, soft metric fixed point theory can be developed further and we

believe that this will attract mathematicians working in metric fixed point

theory to explore this new dimension of research to expand the boundaries

of metric fixed point theory.

The simplicity and usefulness of Banach contraction principle has inspired

many researchers to analyze it further. One of the deepest generalization

and modification of this principle is well known Caristi fixed point theorem.

Strength of this theorem lies in the fact that it characterizes the complete-

ness of a metric space. The fixed point theory of multivalued mappings is a

powerful tool for the study of those problems of computational mathematics
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which can be formulated as fixed point inclusion for an appropriate multival-

ued mapping. In Chapter 5, employing concept of Caristi type multivlaued

mappings, an existence of fixed point of such mapping is obtained in the

setup of complete fuzzy metric spaces. This fixed point theorem provides

a characterization of fuzzy metric completeness in the case of continuous

t-norms greater than or equal to the Lukasiewicz t-norm.

The results presented in Chapter 6 can be viewed as unification, exten-

sion and generalizations of several comparable results in existing literature

with supporting examples. We introduced a notion of a generalized F−
contraction and generalized F− nonexpansive mappings. We also presented

an example of a discontinuous mapping defined on an infinite dimensional

Banach space which showed that our concept is a substantial generalization

of an F− contraction mapping. Some best approximation results as an appli-

cation of our fixed point results are also obtained. We extended the concept

of F− contraction mapping given in [129] to two mappings and then obtained

common fixed point results in the setup of partially ordered sets equipped

with complete metric. As an application of the results presented therein,

periodic point property of two mappings was also investigated.

Following is a brief summary of findings of our study:

i) We defined some new operations on soft sets that will be important

basis for the further developments on soft set theory. Based on the def-

initions and results given in Chapter 2, some more properties on soft

sets can be established and existing soft topological concepts can be

modified in the light of these results. Consequently, several existing re-

sults in soft topological spaces can be studied employing our definitions

in this chapter. The scope of these results is not limited to the study

of soft topological spaces. The similar observation can also provide a

basis to revisit the existing concepts of basic operations in fuzzy soft

set and intuitionistic fuzzy soft set theory. These findings could add a

new dimension to the present study of soft and fuzzy soft topological
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spaces.

ii) We put forward the notion of fuzzy soft mappings based on the theory

of fuzzy soft element of fuzzy soft set and fuzzy soft topological space.

In Chapter 3 we study fixed points of fuzzy soft mappings. Employing

these results, one can further study fixed point theory in the frame-

work of fuzzy soft set theory. These results can be extended further in

different directions. For instance, it will be a matter of great interest

to study the same problem in intuitionistic fuzzy soft set theory. The

results proved in this chapter are of basic nature so they can be con-

sidered as a foundation results to develop fixed point theory for fuzzy

soft mappings.

iii) In Chapter 4 we introduce the notion of soft contraction mapping based

on the theory of soft element of soft metric space. We study fixed points

of soft contraction mappings and obtain, among others results, a the-

orem of Banach contraction principle type. Employing these results,

we can further study fixed point theory in the framework of soft met-

ric spaces. Some constructive examples are provided to support our

findings in this direction. We hope that our results will open some new

avenues of research. For instance, different contractive conditions can

be considered to extend the results presented herein. A study of com-

mon fixed point theory based on our recent investigation could lead to

a new area of research. A soft fixed points of soft multivalued mappings

in the framework of soft metric spaces can also be a fascinating field of

research.

iv) Based on the concept of Caristi’s multivalued mappings in complete

fuzzy metric spaces, an issue of characterization of completeness of

domain of the mapping is addressed in Chapter 5. Example is provided

to support the results presented herein. These results provide a good
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platform to intersect fixed point theorems of multivalued mappings

with properties of fuzzy metric spaces.

v) The results proved in Chapter 6 lead to different directions and aspect

of metric fixed point theory. This work can further be extended to fixed

point theory of nonexpansive multivalued mappings. Reformulation of

our results replacing a metric space by some generalized metric struc-

ture could be considered as a valuable addition to present fixed point

results. In short, these results can be extended to different directions.
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maps in partially ordered metric spaces, Applied Math. Lett., 24 (2011),

1520-1526.
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[93] D. Miheţ, On the existence and the uniqueness of fixed points of Sehgal

contractions, Fuzzy Sets Syst., 156 (2005), 135-141.
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